JP3698863B2 - Bonding material for single-sided metal-clad laminate production - Google Patents

Bonding material for single-sided metal-clad laminate production Download PDF

Info

Publication number
JP3698863B2
JP3698863B2 JP16918097A JP16918097A JP3698863B2 JP 3698863 B2 JP3698863 B2 JP 3698863B2 JP 16918097 A JP16918097 A JP 16918097A JP 16918097 A JP16918097 A JP 16918097A JP 3698863 B2 JP3698863 B2 JP 3698863B2
Authority
JP
Japan
Prior art keywords
resin
clad laminate
bonding material
metal
sided metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16918097A
Other languages
Japanese (ja)
Other versions
JPH1110791A (en
Inventor
利之 東田
英人 三澤
繁 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP16918097A priority Critical patent/JP3698863B2/en
Publication of JPH1110791A publication Critical patent/JPH1110791A/en
Application granted granted Critical
Publication of JP3698863B2 publication Critical patent/JP3698863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、片面プリント配線板として使用される片面金属張り積層板を製造する際に用いられる接合材に関するものである。
【0002】
【従来の技術】
片面に銅箔などの金属箔を積層した片面金属箔張り積層板を製造するにあたって、特開平7−273424号公報等で提供されるような、接合材を用いる方法がある。
すなわちこの接合材としては、例えば、基材の両面にエポキシ樹脂とシリコン樹脂の混合樹脂を塗布した離型材や、フッ素樹脂系フィルム離型材や、トリアセテートフィルム離型材などが用いられるものであり、図2(a)のように接合材Aの両側にそれぞれ複数枚のプリプレグ3を重ね、さらに各プリプレグ3の最外層に銅箔等の金属箔4を重ね、これを加熱加圧することによって接合材Aの両面にそれぞれ接合させた状態で図2(b)のように片面金属張り積層板5を成形することができるものである。
【0003】
このように接合材Aを用いることによって、2枚の片面金属張り積層板5を同時に成形することができるものであり、生産性高く片面金属張り積層板5を製造することができるものである。そして各片面金属張り積層板5を接合材Aから剥がして、各片面金属張り積層板5に個別に回路印刷、エッチング、ドリル加工等を行なって、片面プリント配線板に加工することができるが、接合材Aの両面にそれぞれ片面金属張り積層板5を接合した上記のものを1セットとして、回路印刷、エッチング、ドリル加工等を行なうことによって、接合材Aの両面の片面金属張り積層板5を同時に片面プリント配線板に加工することができるものであり、従ってこの場合には、加工効率を高く得ることがきるものである。
【0004】
【発明が解決しようとする課題】
しかし、接合材Aとして従来から使用されている上記のものを用いると、接合材Aに対する片面金属張り積層板5の密着性が不十分であり、プリント加工の工程中に接合材Aから片面金属張り積層板5が剥離したり、また接合材Aと片面金属張り積層板5の間にエッチング液がしみ込んで片面金属張り積層板5の基板10の裏面にエッチング液が残ったりする等の問題があった。
【0005】
本発明は上記の点に鑑みてなされたものであり、密着性高く接合して片面金属張り積層板を成形することができ、しかもこの積層板を剥離するときには積層板に樹脂層の樹脂が転写されて残ったりすることがない片面金属張り積層板製造用接合材を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明の請求項1に係る片面金属張り積層板製造用接合材は、両面にプリプレグ3を介して金属箔4を配置すると共にこれを加熱加圧することによって、片面金属張り積層板5を両面に接合させて成形するために用いられる接合材Aにおいて、金属材1の両側の表面にそれぞれエポキシ樹脂とメラミン樹脂を混合した熱硬化性樹脂からなる樹脂層2を設けて成ることを特徴とするものである。
【0007】
また請求項2の発明は、請求項1において、エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用い、エポキシ樹脂100重量部に対してメラミン樹脂を1〜100重量部混合して成ることを特徴とするものである。
本発明の請求項3に係る片面金属張り積層板製造用接合材は、両面にプリプレグ3を介して金属箔4を配置すると共にこれを加熱加圧することによって、片面金属張り積層板5を両面に接合させて成形するために用いられる接合材Aにおいて、金属材1の両側の表面にそれぞれエポキシ樹脂とメラミン樹脂とアクリル・ブタジエン・メタクリル酸共重合物とポリエステル系樹脂を混合した熱硬化性樹脂からなる樹脂層2を設けて成ることを特徴とするものである。
【0008】
また請求項4の発明は、請求項3において、エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用い、エポキシ樹脂100重量部に対してメラミン樹脂を1〜100重量部混合して成ることを特徴とするものである。
また請求項5の発明は、請求項1乃至4において、樹脂層2は熱硬化性樹脂をCステージ状態に硬化させて形成されていることを特徴とするものである。
【0009】
また請求項6の発明は、請求項1乃至5において、樹脂層2の厚みが0.1〜10μmであることを特徴とするものである。
また請求項7の発明は、請求項1乃至6において、金属材1がアルミニウム箔であることを特徴とするものである。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
本発明の接合材Aは、芯材となる金属材1の両面に樹脂層2,2を設けて形成されるものであり、金属材1としては、アルミニウム箔や銅箔などの金属箔を用いることができる。金属材1としてこのように金属箔を用いる場合には、アルミニウム箔を使用するのが好ましい。この金属材1は片面金属張り積層板の製造に一般に用いられる銅箔に熱膨張が近く、表面が平滑なものが適している。金属材1として銅箔を使用する場合、厚みの薄いものを使用するには電解銅箔を使用する必要があるが、電解銅箔は片面が粗面に形成されており、不適である。これに対してアルミニウム箔は厚みが薄く表面が平滑化されたものが汎用されており、熱膨張も銅箔に近いために、適しているものである。
【0011】
また、樹脂層2を形成する樹脂としては、エポキシ樹脂とメラミン樹脂からなる熱硬化性樹脂を用いるものである。エポキシ樹脂とメラミン樹脂を混合してブレンド熱硬化性樹脂として使用することができるものである。エポキシ樹脂としてはビスフェノールA型エポキシ樹脂を用いるのが好ましい。片面金属張り積層板の製造に使用されるプリプレグは一般にエポキシ樹脂で作製されているが、このエポキシ樹脂にはビスフェノールA型エポキシ樹脂が使用されることが多く、プリプレグの樹脂との接合性から樹脂層2を形成する樹脂のエポキシ樹脂としてはビスフェノールA型エポキシ樹脂が好ましいのである。エポキシ樹脂とメラミン樹脂の混合量は、エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用いる場合、エポキシ樹脂100重量部に対して、メラミン樹脂1〜100重量部の範囲が好ましい。メラミン樹脂の混合量が1重量部未満であると、樹脂層2が硬く脆くなり、後述のように成形した片面金属張り積層板5の基板10に樹脂が転写し易くなる。逆にメラミン樹脂の混合量が100重量部を超えると、樹脂層2の耐熱性や耐溶剤性が悪くなり、同様に片面金属張り積層板5の基板10に樹脂が転写し易くなる。
【0012】
またエポキシ樹脂とメラミン樹脂をベースとし、さらに剥離強度をコントロールするために、アクリル・ブタジエン・メタクリル酸共重合物とポリエステル系樹脂を混合して調製した熱硬化性樹脂を用いることもできる。アクリル・ブタジエン・メタクリル酸共重合物としては、各共重合成分の重量比率が、アクリル1に対して、ブタジエンが1〜4、メタクリル酸が0.1〜2の範囲のものが好ましい。またポリエステル系樹脂としては後述する化学構造式(D)のものなどの熱可塑性ポリエステル樹脂を用いることができる。これらの配合量は、エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用いる場合、エポキシ樹脂100重量部に対して、メラミン樹脂1〜100重量部の範囲が好ましく、さらにアクリル・ブタジエン・メタクリル酸共重合物は0〜10重量部、ポリエステル系樹脂は0〜1重量部の範囲が好ましい。
【0013】
そして、金属材1の両面にそれぞれ熱硬化性樹脂を塗布して樹脂層2,2を形成することによって、接合材Aを作製することができるものである。形成する樹脂層2の厚みは、0.1〜10μmの範囲が好ましい。樹脂層2の厚みをこの範囲に設定することによって、金属材1への樹脂層2の密着性が良好になり、樹脂層2が金属材1から剥離して後述のように成形した片面金属張り積層板5の基板10に樹脂が転写し難くなるものである。
【0014】
このとき、金属材1に塗布した熱硬化性樹脂を加熱することによって、樹脂層2をCステージ状態にまで完全に硬化させるようにするのが好ましい。樹脂層2が半硬化のBステージ状態であると、後述のように接合材Aに接合させて成形した片面金属張り積層板5を接合材Aから剥離する際の剥離性が悪くなると共に片面金属張り積層板5の基板10の背面に樹脂層2が転写するおそれがあるので、樹脂層2はCステージ状態に硬化させて形成するのが好ましい。
【0015】
上記のようにして作製される接合材Aを用いて片面金属張り積層板5を製造するにあたっては、図1(a)に示すように、接合材Aの両面に複数枚のプリプレグ3を重ねると共に、このプリプレグ3の外側に銅箔などの金属箔4を重ね、これを加熱加圧成形することによって、図1(b)のように、プリプレグ3による基板10の片側表面に金属箔4が積層された2枚の片面金属張り積層板5を接合材Aの両面に成形することができるものであり、各片面金属張り積層板5は接合材Aの表面に接合されて一体化された状態で成形されるものである。
【0016】
そして、このように接合材Aの両面にそれぞれ片面金属張り積層板5を接合したものを1セットとして、各片面金属張り積層板5に回路印刷、エッチング、ドリル加工等を行なうことによって、接合材Aの両面の片面金属張り積層板5を同時に片面プリント配線板に加工することができるものである。このようにプリント加工するにあたって、接合材Aの表面にはエポキシ樹脂とメラミン樹脂をベースとする樹脂層2が形成してあり、接合材Aの表面と片面金属張り積層板5との間の密着性を高く得ることができる。従って、プリント加工の工程中に接合材Aから片面金属張り積層板5が剥離したり、また接合材Aと片面金属張り積層板5の間にエッチング液がしみ込んで片面金属張り積層板5の基板10の裏面にエッチング液が残ったりするようなことを防ぐことができるものである。またエポキシ樹脂とメラミン樹脂をベースとする樹脂層2は片面金属張り積層板5の剥離性も良好であり、片面プリント配線板に加工した後の片面金属張り積層板5を接合材Aから剥離する際に、樹脂層2の樹脂が片面金属張り積層板5の基板10の背面に転写して付着するようなことがなくなるものである。従って、片面プリント配線板に加工した片面金属張り積層板5の基板10の背面にシルクスクーン印刷等するにあたって、片面金属張り積層板5の基板10に対するインクの密着性に問題が生じることがなくなり、また片面プリント配線板に加工した片面金属張り積層板5を二次成形して多層プリント配線板などの多層板を製造するにあたって、層間引き剥がし強度に問題が生じることがなくなるものである。
【0017】
【実施例】
以下本発明を実施例によって具体的に説明する。
(実施例1)
ビスフェノールA型エポキシ樹脂(化学構造式(A)のもの、平均分子量14900)100重量、メラミン樹脂(化学構造式(B)のもの、平均分子量241)50重量部を混合して熱硬化性樹脂を調製した。
【0018】
そして、厚み30μのアルミニウム箔(JIS H 4160 A1N30H18)を金属材1として用い、その両面にグラビアロールコート法で上記の熱硬化性樹脂をコーティングし、170℃のオーブンで1分間加熱乾燥することによって、Cステージ状態の厚み1μmの樹脂層2を金属材1の両面に設けた接合材Aを作製した。
【0019】
(実施例2)
実施例1と同じビスフェノールA型エポキシ樹脂100重量、実施例1と同じメラミン樹脂5重量部を混合して熱硬化性樹脂を調製した。この熱硬化性樹脂を用いて、後は実施例1と同様にして、金属材1の両面にCステージ状態の厚み3μmの樹脂層2を設けた接合材Aを作製した。
【0020】
(実施例3)
実施例1と同じビスフェノールA型エポキシ樹脂100重量、実施例1と同じメラミン樹脂85重量部を混合して熱硬化性樹脂を調製した。この熱硬化性樹脂を用いて、後は実施例1と同様にして、金属材1の両面にCステージ状態の厚み2μmの樹脂層2を設けた接合材Aを作製した。
【0021】
(実施例4)
実施例1と同じビスフェノールA型エポキシ樹脂100重量、実施例1と同じメラミン樹脂50重量部、アクリル・ブタジエン・メタクリル酸共重合物(化学構造式(C)のもの、平均分子量3000)0.4重量部、熱可塑性飽和共重合ポリエステル樹脂(化学構造式(D)のもの、平均分子量3000)0.13重量部を混合して熱硬化性樹脂を調製した。この熱硬化性樹脂を用いて、後は実施例1と同様にして、金属材1の両面にCステージ状態の厚み4μmの樹脂層2を設けた接合材Aを作製した。
【0022】
(実施例5)
実施例1と同じビスフェノールA型エポキシ樹脂100重量、実施例1と同じメラミン樹脂50重量部、実施例4と同じアクリル・ブタジエン・メタクリル酸共重合物2.1重量部、実施例4と同じ熱可塑性飽和共重合ポリエステル樹脂0.63重量部を混合して熱硬化性樹脂を調製した。この熱硬化性樹脂を用いて、後は実施例1と同様にして、金属材1の両面にCステージ状態の厚み1μmの樹脂層2を設けた接合材Aを作製した。
【0023】
(実施例6)
実施例1と同じビスフェノールA型エポキシ樹脂100重量、実施例1と同じメラミン樹脂50重量部、実施例4と同じアクリル・ブタジエン・メタクリル酸共重合物4.2重量部、実施例4と同じ熱可塑性飽和共重合ポリエステル樹脂1.25重量部を混合して熱硬化性樹脂を調製した。この熱硬化性樹脂を用いて、後は実施例1と同様にして、金属材1の両面にCステージ状態の厚み8μmの樹脂層2を設けた接合材Aを作製した。
【0024】
(実施例7)
実施例1と同じビスフェノールA型エポキシ樹脂100重量、実施例1と同じメラミン樹脂0.5重量部を混合して熱硬化性樹脂を調製した。この熱硬化性樹脂を用いて、後は実施例1と同様にして、金属材1の両面にCステージ状態の厚み6μmの樹脂層2を設けた接合材Aを作製した。
【0025】
(実施例8)
実施例1と同じビスフェノールA型エポキシ樹脂100重量、実施例1と同じメラミン樹脂120重量部を混合して熱硬化性樹脂を調製した。この熱硬化性樹脂を用いて、後は実施例1と同様にして、金属材1の両面にCステージ状態の厚み15μmの樹脂層2を設けた接合材Aを作製した。
【0026】
(比較例1)
実施例1と同じビスフェノールA型エポキシ樹脂100重量、シリコーン樹脂(ビックケミ−ジャパン(株)製「Byk−306)1重量部、シリカ10重量部を混合して熱硬化性樹脂を調製した。この熱硬化性樹脂を用いて、後は実施例1と同様にして、金属材1の両面にCステージ状態の厚み5μmの樹脂層2を設けた接合材Aを作製した。
【0027】
【化1】

Figure 0003698863
【0028】
上記の実施例1〜8及び比較例1で作製した接合材Aを用い、片面金属箔張り積層板5を製造した。
すなわち、まずガラス基材(日東紡績社製、WEA 116E S136)にエポキシ樹脂を含浸乾燥して、樹脂量42重量%、硬化時間140秒のエポキシ樹脂プリプレグ3を調製し、接合材Aの両面にこのプリプレグ3をそれぞれ2枚重ね、さらに接合材Aの両面のプリプレグ3の外側に厚み35μmの銅箔からなる金属箔4を重ねた。そしてこの構成物の上下にプレートやクッション材をセットし、成形プレス装置で、温度180℃、圧力40kg/cm2 、時間90分の条件で加熱加圧成形することによって、板厚2.0mmの2枚の片面金属張り積層板5を接合材Aの両面に接合させた状態で製造した。
【0029】
上記のように接合材Aの表面に接合させた状態で製造した片面金属張り積層板5について、接合材Aと片面金属張り積層板5との引き剥がし強さを測定した。結果を表1に示す。次に、このように接合材Aの両面にそれぞれ片面金属張り積層板5を接合したものを1セットとしてエッチング液で処理し、各片面金属張り積層板5の金属箔4をエッチングした。このようにエッチング処理を行なった際に、実施例1〜8のものは接合材Aから片面金属張り積層板5が剥離することはなく、接合材Aと片面金属張り積層板5の基板10との間にエッチング液がしみ込むこともなかったが、比較例1のものでは接合材Aから片面金属張り積層板5が剥離し、また接合材Aと片面金属張り積層板5の基板10との間にエッチング液がしみ込むものであった。
【0030】
次に、このようにエッチング処理した後に、接合材Aから片面金属張り積層板5を剥がし、片面金属張り積層板5の基板10の裏面(接合材A側の面)に樹脂層2の樹脂が転写して付着しているか否を観察した。またこのように接合材Aから剥がした片面金属張り積層板5の基板10の裏面にUV硬化インクをシルクスクリーン印刷し、基板10のインク密着性を評価した。インク密着性の評価は、基板10にUVインクをシルクスクリーンで印刷して照射することによって硬化させ、硬化させたUVインクに縦横1mm間隔の碁盤目の切り込みを入れ、粘着テープ(セロテープ)を貼って剥がす試験を行ない、粘着テープへのUVインクの転写量を測定することによって行なった。そして転写10%以下を「○」、転写10〜50%を「△」、転写50%以上を「×」と判定した。さらに、接合材Aから剥がした片面金属張り積層板5の両面に上記のエポキシ樹脂プリプレグを2枚ずつ重ねると共にその外側に厚み35μmの銅箔を重ね、温度172℃、圧力40kg/cm2 、時間90分の条件で加熱加圧して二次成形することによって、板厚0.6mmの3層構成の多層板を製造した。この多層板について層間接着強度を測定した。これらの結果を表1に示す。
【0031】
【表1】
Figure 0003698863
【0032】
表1にみられるように、実施例1〜8のものは、接合材Aと金属張り積層板5の引き剥がし強度が高く、エッチング後に接合材Aからの剥離やエッチング液のしみ込みがなく、多層板の層間接着強度が高いものであった。また実施例1〜6のものは、接合材Aから剥がした積層板5に接合材Aの樹脂層2の樹脂が転写して付着することがなく、インクの密着性にも問題がないが、樹脂層2におけるエポキシ樹脂に対するメラミン樹脂の配合量が多い実施例7や少ない実施例8のものは、樹脂層2の樹脂の転写やインクの密着性に問題があった。
【0033】
【発明の効果】
上記のように本発明は、両面にプリプレグを介して金属箔を配置すると共にこれを加熱加圧することによって、片面金属張り積層板を両面に接合させて成形するために用いられる接合材を、金属材の表面にそれぞれエポキシ樹脂とメラミン樹脂を混合した熱硬化性樹脂からなる樹脂層を設けて形成するようにしたので、エポキシ樹脂とメラミン樹脂からなる樹脂層によって、接合材と片面金属張り積層板との間の密着性を高く得ることができ、プリント加工の工程中に接合材から片面金属張り積層板が剥離したり、接合材と片面金属張り積層板の間にエッチング液がしみ込んだりすることを防ぐことができるものであり、またエポキシ樹脂とメラミン樹脂からなる樹脂層は片面金属張り積層板の剥離性も良好であって、加工した後の片面金属張り積層板を接合材から剥離する際に、樹脂層の樹脂が片面金属張り積層板に転写して付着するようなことがなくなり、片面金属張り積層板の背面に対するインクの密着性に問題が生じることがなくなると共に加工した片面金属張り積層板を二次成形して多層板を製造するにあたって、層間引き剥がし強度に問題が生じることがなくなるものである。
【0034】
また本発明は、両面にプリプレグを介して金属箔を配置すると共にこれを加熱加圧することによって、片面金属張り積層板を両面に接合させて成形するために用いられる接合材を、金属材の表面にそれぞれエポキシ樹脂とメラミン樹脂とアクリル・ブタジエン・メタクリル酸共重合物とポリエステル系樹脂を混合した熱硬化性樹脂からなる樹脂層を設けて形成するようにしたので、エポキシ樹脂とメラミン樹脂とアクリル・ブタジエン・メタクリル酸共重合物とポリエステル系樹脂からなる樹脂層によって、接合材と片面金属張り積層板との間の密着性を高く得ることができ、プリント加工の工程中に接合材から片面金属張り積層板が剥離したり、接合材と片面金属張り積層板の間にエッチング液がしみ込んだりすることを防ぐことができるものであり、またエポキシ樹脂とメラミン樹脂とアクリル・ブタジエン・メタクリル酸共重合物とポリエステル系樹脂からなる樹脂層は片面金属張り積層板の剥離性も良好であって、加工した後の片面金属張り積層板を接合材から剥離する際に、樹脂層の樹脂が片面金属張り積層板に転写して付着するようなことがなくなり、片面金属張り積層板の背面に対するインクの密着性に問題が生じることがなくなると共に加工した片面金属張り積層板を二次成形して多層板を製造するにあたって、層間引き剥がし強度に問題が生じることがなくなるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示すものであり、(a),(b)はそれぞれ断面図である。
【図2】従来例の一例を示すものであり、(a),(b)はそれぞれ断面図である。
【符号の説明】
1 金属材
2 樹脂層
3 プリプレグ
4 金属箔
5 片面金属張り積層板
A 接合材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonding material used when manufacturing a single-sided metal-clad laminate used as a single-sided printed wiring board.
[0002]
[Prior art]
In manufacturing a single-sided metal foil-clad laminate in which a metal foil such as copper foil is laminated on one side, there is a method using a bonding material as provided in JP-A-7-273424.
That is, as this bonding material, for example, a release material in which a mixed resin of epoxy resin and silicon resin is applied to both surfaces of the base material, a fluororesin film release material, a triacetate film release material, etc. are used. As shown in FIG. 2A, a plurality of prepregs 3 are stacked on both sides of the bonding material A, and a metal foil 4 such as a copper foil is further stacked on the outermost layer of each prepreg 3, and the bonding material A is heated and pressed. The single-sided metal-clad laminate 5 can be formed as shown in FIG. 2 (b) in a state where it is bonded to both sides.
[0003]
By using the bonding material A in this way, two single-sided metal-clad laminates 5 can be simultaneously formed, and the single-sided metal-clad laminate 5 can be manufactured with high productivity. Then, each single-sided metal-clad laminate 5 can be peeled off from the bonding material A, and each single-sided metal-clad laminate 5 can be individually printed, etched, drilled, etc., and processed into a single-sided printed wiring board. The above-described one in which the single-sided metal-clad laminate 5 is bonded to both surfaces of the bonding material A as a set, and the circuit printing, etching, drilling, etc. are performed, whereby the single-sided metal-clad laminate 5 on both sides of the bonding material A is obtained. At the same time, it can be processed into a single-sided printed wiring board. Therefore, in this case, high processing efficiency can be obtained.
[0004]
[Problems to be solved by the invention]
However, when the above-mentioned materials used conventionally as the bonding material A are used, the adhesion of the single-sided metal-clad laminate 5 to the bonding material A is insufficient, and the single-sided metal is bonded to the bonding material A during the printing process. There is a problem that the laminated laminate 5 is peeled off, or that the etching solution penetrates between the bonding material A and the single-sided metal-clad laminate 5 and the etching solution remains on the back surface of the substrate 10 of the single-sided metal-clad laminate 5. there were.
[0005]
The present invention has been made in view of the above points, and can be bonded with high adhesion to form a single-sided metal-clad laminate, and the resin of the resin layer is transferred to the laminate when the laminate is peeled off. It is an object to provide a bonding material for producing a single-sided metal-clad laminate that does not remain.
[0006]
[Means for Solving the Problems]
In the bonding material for producing a single-sided metal-clad laminate according to claim 1 of the present invention, the single-sided metal-clad laminate 5 is disposed on both sides by arranging the metal foil 4 on both sides via the prepreg 3 and heating and pressing it. In the bonding material A used for bonding and forming, a resin layer 2 made of a thermosetting resin in which an epoxy resin and a melamine resin are mixed is provided on both surfaces of the metal material 1, respectively. It is.
[0007]
The invention of claim 2 is characterized in that, in claim 1, bisphenol A type epoxy resin is used as the epoxy resin, and 1 to 100 parts by weight of melamine resin is mixed with 100 parts by weight of epoxy resin. It is.
In the bonding material for producing a single-sided metal-clad laminate according to claim 3 of the present invention, the single-sided metal-clad laminate 5 is disposed on both sides by arranging the metal foil 4 on both sides via the prepreg 3 and heating and pressing it. In the bonding material A used for bonding and molding, a thermosetting resin in which an epoxy resin, a melamine resin, an acrylic / butadiene / methacrylic acid copolymer, and a polyester resin are mixed on both surfaces of the metal material 1 respectively. The resin layer 2 is provided.
[0008]
The invention of claim 4 is characterized in that, in claim 3, bisphenol A type epoxy resin is used as an epoxy resin, and 1 to 100 parts by weight of melamine resin is mixed with 100 parts by weight of epoxy resin. It is.
According to a fifth aspect of the present invention, in the first to fourth aspects, the resin layer 2 is formed by curing a thermosetting resin in a C-stage state.
[0009]
The invention of claim 6 is characterized in that, in claims 1 to 5, the thickness of the resin layer 2 is 0.1 to 10 μm.
A seventh aspect of the invention is characterized in that, in the first to sixth aspects, the metal material 1 is an aluminum foil.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
The bonding material A of the present invention is formed by providing resin layers 2 and 2 on both surfaces of a metal material 1 serving as a core material. As the metal material 1, a metal foil such as an aluminum foil or a copper foil is used. be able to. When using a metal foil as the metal material 1, it is preferable to use an aluminum foil. The metal material 1 is suitable to have a smooth surface and a thermal expansion close to that of a copper foil generally used in the production of a single-sided metal-clad laminate. When using a copper foil as the metal material 1, it is necessary to use an electrolytic copper foil in order to use a thin one, but the electrolytic copper foil is not suitable because it has a rough surface on one side. On the other hand, aluminum foil having a thin thickness and a smooth surface is widely used, and thermal expansion is close to that of a copper foil, which is suitable.
[0011]
Moreover, as resin which forms the resin layer 2, the thermosetting resin which consists of an epoxy resin and a melamine resin is used. An epoxy resin and a melamine resin can be mixed and used as a blend thermosetting resin. It is preferable to use a bisphenol A type epoxy resin as the epoxy resin. The prepreg used for the production of single-sided metal-clad laminates is generally made of epoxy resin, but bisphenol A type epoxy resin is often used for this epoxy resin. As the epoxy resin of the resin forming the layer 2, a bisphenol A type epoxy resin is preferable. When the bisphenol A type epoxy resin is used as the epoxy resin, the mixing amount of the epoxy resin and the melamine resin is preferably in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin. When the mixing amount of the melamine resin is less than 1 part by weight, the resin layer 2 becomes hard and brittle, and the resin is easily transferred to the substrate 10 of the single-sided metal-clad laminate 5 formed as described later. On the other hand, when the amount of the melamine resin mixed exceeds 100 parts by weight, the heat resistance and solvent resistance of the resin layer 2 are deteriorated, and similarly, the resin is easily transferred to the substrate 10 of the single-sided metal-clad laminate 5.
[0012]
Further, based on an epoxy resin and a melamine resin, a thermosetting resin prepared by mixing an acrylic / butadiene / methacrylic acid copolymer and a polyester resin can be used in order to control the peel strength. As the acrylic / butadiene / methacrylic acid copolymer, those having a weight ratio of each copolymer component in the range of 1 to 4 for butadiene and 0.1 to 2 for methacrylic acid with respect to acrylic 1 are preferable. Further, as the polyester resin, a thermoplastic polyester resin such as a chemical structural formula (D) described later can be used. In the case where a bisphenol A type epoxy resin is used as the epoxy resin, these blending amounts are preferably in the range of 1 to 100 parts by weight of the melamine resin with respect to 100 parts by weight of the epoxy resin, and the acrylic / butadiene / methacrylic acid copolymer is The range of 0 to 10 parts by weight and the polyester resin is preferably in the range of 0 to 1 part by weight.
[0013]
And the joining material A can be produced by apply | coating a thermosetting resin to both surfaces of the metal material 1, and forming the resin layers 2 and 2, respectively. The thickness of the resin layer 2 to be formed is preferably in the range of 0.1 to 10 μm. By setting the thickness of the resin layer 2 within this range, the adhesion of the resin layer 2 to the metal material 1 is improved, and the resin layer 2 is peeled off from the metal material 1 and molded as described later. This makes it difficult to transfer the resin to the substrate 10 of the laminated plate 5.
[0014]
At this time, it is preferable to completely cure the resin layer 2 to the C-stage state by heating the thermosetting resin applied to the metal material 1. When the resin layer 2 is in a semi-cured B-stage state, the peelability when the single-sided metal-clad laminate 5 formed by bonding to the bonding material A as described later is peeled off from the bonding material A is deteriorated and the single-sided metal Since the resin layer 2 may be transferred to the back surface of the substrate 10 of the stretched laminated plate 5, the resin layer 2 is preferably formed by being cured in a C stage state.
[0015]
In manufacturing the single-sided metal-clad laminate 5 using the bonding material A produced as described above, a plurality of prepregs 3 are stacked on both surfaces of the bonding material A as shown in FIG. The metal foil 4 such as a copper foil is stacked on the outside of the prepreg 3 and is heated and pressed to laminate the metal foil 4 on one surface of the substrate 10 by the prepreg 3 as shown in FIG. The two single-sided metal-clad laminates 5 thus formed can be formed on both sides of the bonding material A, and each single-sided metal-clad laminate 5 is bonded and integrated with the surface of the bonding material A. It is to be molded.
[0016]
Then, by joining the single-sided metal-clad laminates 5 on both sides of the joining material A as one set, the single-sided metal-clad laminates 5 are subjected to circuit printing, etching, drilling, etc. The single-sided metal-clad laminate 5 on both sides of A can be simultaneously processed into a single-sided printed wiring board. Thus, in the printing process, the resin layer 2 based on epoxy resin and melamine resin is formed on the surface of the bonding material A, and the adhesion between the surface of the bonding material A and the single-sided metal-clad laminate 5 is formed. High sex can be obtained. Accordingly, the single-sided metal-clad laminate 5 is peeled off from the bonding material A during the printing process, or the etching solution is soaked between the bonding material A and the single-sided metal-clad laminate 5 so that the substrate of the single-sided metal-clad laminate 5 is obtained. Thus, it is possible to prevent the etching solution from remaining on the back surface of 10. Moreover, the resin layer 2 based on epoxy resin and melamine resin has good peelability of the single-sided metal-clad laminate 5, and peels the single-sided metal-clad laminate 5 processed from the single-sided printed wiring board from the bonding material A. At this time, the resin of the resin layer 2 is not transferred and attached to the back surface of the substrate 10 of the single-sided metal-clad laminate 5. Therefore, when silk scoon printing or the like is performed on the back surface of the substrate 10 of the single-sided metal-clad laminate 5 processed into a single-sided printed wiring board, there is no problem in ink adhesion to the substrate 10 of the single-sided metal-clad laminate 5. Further, when producing a multi-layer board such as a multi-layer printed wiring board by secondary molding of the single-sided metal-clad laminate 5 processed into a single-side printed wiring board, there is no problem in peeling strength between layers.
[0017]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
(Example 1)
A thermosetting resin is prepared by mixing 100 parts by weight of a bisphenol A type epoxy resin (with a chemical structural formula (A), average molecular weight 14900) and 50 parts by weight of a melamine resin (with a chemical structural formula (B), average molecular weight 241). Prepared.
[0018]
Then, using a 30 μm thick aluminum foil (JIS H 4160 A1N30H18) as the metal material 1, the above-mentioned thermosetting resin is coated on both surfaces by a gravure roll coating method, and then heated and dried in a 170 ° C. oven for 1 minute. A bonding material A in which the resin layer 2 having a thickness of 1 μm in the C stage state was provided on both surfaces of the metal material 1 was produced.
[0019]
(Example 2)
A thermosetting resin was prepared by mixing 100 parts by weight of the same bisphenol A type epoxy resin as in Example 1 and 5 parts by weight of the same melamine resin as in Example 1. Using this thermosetting resin, a bonding material A in which a resin layer 2 having a thickness of 3 μm in a C stage state was provided on both surfaces of the metal material 1 in the same manner as in Example 1 was produced.
[0020]
(Example 3)
A thermosetting resin was prepared by mixing 100 parts by weight of the same bisphenol A type epoxy resin as in Example 1 and 85 parts by weight of the same melamine resin as in Example 1. Using this thermosetting resin, a bonding material A in which a resin layer 2 having a thickness of 2 μm in a C-stage state was provided on both surfaces of the metal material 1 in the same manner as in Example 1 was produced.
[0021]
(Example 4)
100 weights of the same bisphenol A type epoxy resin as in Example 1, 50 parts by weight of melamine resin as in Example 1, acrylic / butadiene / methacrylic acid copolymer (of chemical structural formula (C), average molecular weight 3000) 0.4 A thermosetting resin was prepared by mixing 0.13 part by weight of a thermoplastic saturated copolymerized polyester resin (with a chemical structural formula (D), average molecular weight of 3000). Using this thermosetting resin, a bonding material A in which a resin layer 2 having a thickness of 4 μm in a C stage state was provided on both surfaces of the metal material 1 in the same manner as in Example 1 was produced.
[0022]
(Example 5)
100 parts by weight of the same bisphenol A type epoxy resin as in Example 1, 50 parts by weight of the same melamine resin as in Example 1, 2.1 parts by weight of the same acrylic / butadiene / methacrylic acid copolymer as in Example 4, and the same heat as in Example 4 A thermosetting resin was prepared by mixing 0.63 parts by weight of a plastic saturated copolyester resin. Using this thermosetting resin, a bonding material A in which a resin layer 2 having a thickness of 1 μm in a C stage state was provided on both surfaces of the metal material 1 in the same manner as in Example 1 was produced.
[0023]
(Example 6)
100 parts by weight of the same bisphenol A type epoxy resin as in Example 1, 50 parts by weight of the same melamine resin as in Example 1, 4.2 parts by weight of the same acrylic / butadiene / methacrylic acid copolymer as in Example 4, and the same heat as in Example 4 A thermosetting resin was prepared by mixing 1.25 parts by weight of a plastic saturated copolyester resin. After that, using this thermosetting resin, a bonding material A in which a resin layer 2 having a thickness of 8 μm in a C stage state was provided on both surfaces of the metal material 1 in the same manner as in Example 1 was produced.
[0024]
(Example 7)
A thermosetting resin was prepared by mixing 100 parts by weight of the same bisphenol A type epoxy resin as in Example 1 and 0.5 parts by weight of the same melamine resin as in Example 1. Using this thermosetting resin, a bonding material A in which a resin layer 2 having a thickness of 6 μm in a C stage state was provided on both surfaces of the metal material 1 in the same manner as in Example 1 was produced.
[0025]
(Example 8)
A thermosetting resin was prepared by mixing 100 parts by weight of the same bisphenol A type epoxy resin as in Example 1 and 120 parts by weight of the same melamine resin as in Example 1. Using this thermosetting resin, a bonding material A in which a resin layer 2 having a thickness of 15 μm in a C stage state was provided on both surfaces of the metal material 1 in the same manner as in Example 1 was produced.
[0026]
(Comparative Example 1)
A thermosetting resin was prepared by mixing 100 parts by weight of the same bisphenol A type epoxy resin as in Example 1, 1 part by weight of a silicone resin (“Byk-306” manufactured by Big Chemi-Japan Co., Ltd.) and 10 parts by weight of silica. After that, using the curable resin, a bonding material A in which a resin layer 2 having a thickness of 5 μm in a C-stage state was provided on both surfaces of the metal material 1 in the same manner as in Example 1 was produced.
[0027]
[Chemical 1]
Figure 0003698863
[0028]
A single-sided metal foil-clad laminate 5 was manufactured using the bonding material A prepared in Examples 1 to 8 and Comparative Example 1 described above.
That is, first, an epoxy resin was impregnated and dried on a glass substrate (manufactured by Nitto Boseki Co., Ltd., WEA 116E S136) to prepare an epoxy resin prepreg 3 having a resin amount of 42% by weight and a curing time of 140 seconds. Two each of the prepregs 3 were stacked, and a metal foil 4 made of copper foil having a thickness of 35 μm was stacked on the outside of the prepreg 3 on both surfaces of the bonding material A. And plate and cushion material are set on the upper and lower sides of this structure, and a plate thickness of 2.0 mm is formed by heating and pressing under conditions of a temperature of 180 ° C., a pressure of 40 kg / cm 2 , and a time of 90 minutes with a molding press device. Two single-sided metal-clad laminates 5 were manufactured in a state of being bonded to both sides of the bonding material A.
[0029]
About the single-sided metal-clad laminate 5 manufactured in the state bonded to the surface of the bonding material A as described above, the peel strength between the bonding material A and the single-sided metal-clad laminate 5 was measured. The results are shown in Table 1. Next, the single-sided metal-clad laminate 5 bonded to both surfaces of the bonding material A in this way was treated with an etching solution as a set, and the metal foil 4 of each single-sided metal-clad laminate 5 was etched. When the etching process is performed in this manner, the one-sided metal-clad laminate 5 does not peel from the bonding material A in the examples 1 to 8, and the bonding material A and the substrate 10 of the single-sided metal-clad laminate 5 In the case of Comparative Example 1, the single-sided metal-clad laminate 5 was peeled off from the bonding material A, and between the bonding material A and the substrate 10 of the single-sided metal-clad laminate 5. The etchant soaked into the film.
[0030]
Next, after performing the etching process in this manner, the single-sided metal-clad laminate 5 is peeled off from the bonding material A, and the resin of the resin layer 2 is placed on the back surface (surface on the bonding material A side) of the substrate 10 of the single-sided metal-clad laminate 5. It was observed whether it was transferred and adhered. Further, UV curable ink was silk-screen printed on the back surface of the substrate 10 of the single-sided metal-clad laminate 5 peeled from the bonding material A in this way, and the ink adhesion of the substrate 10 was evaluated. The ink adhesion is evaluated by printing UV ink on the substrate 10 by irradiating it with a silk screen, curing it, cutting the grids at intervals of 1 mm vertically and horizontally into the cured UV ink, and sticking adhesive tape (cello tape). The test for peeling off was performed, and the amount of UV ink transferred to the adhesive tape was measured. Then, 10% or less of the transfer was judged as “◯”, 10-50% of the transfer as “Δ”, and 50% or more as “x”. Further, two epoxy resin prepregs are stacked on each side of the single-sided metal-clad laminate 5 peeled off from the bonding material A, and a copper foil having a thickness of 35 μm is stacked on the outside, and the temperature is 172 ° C., the pressure is 40 kg / cm 2 , the time. A multi-layer board having a thickness of 0.6 mm and having a three-layer structure was manufactured by heating and pressing under a condition of 90 minutes and secondary molding. The interlayer adhesive strength of this multilayer board was measured. These results are shown in Table 1.
[0031]
[Table 1]
Figure 0003698863
[0032]
As can be seen in Table 1, those of Examples 1 to 8 have high peeling strength between the bonding material A and the metal-clad laminate 5, and there is no peeling from the bonding material A or etching liquid penetration after etching. The interlayer adhesive strength of the multilayer board was high. In addition, in Examples 1 to 6, the resin of the resin layer 2 of the bonding material A is not transferred and adhered to the laminate 5 peeled from the bonding material A, and there is no problem in ink adhesion, Examples 7 and 8 in which the amount of the melamine resin with respect to the epoxy resin in the resin layer 2 is large have a problem in the resin transfer of the resin layer 2 and the ink adhesion.
[0033]
【The invention's effect】
As described above, according to the present invention, a metal foil is disposed on both sides via a prepreg and heated and pressed to bond a single-sided metal-clad laminate to both sides to form a bonding material. Since a resin layer made of a thermosetting resin in which an epoxy resin and a melamine resin are mixed is provided on the surface of each material, a bonding material and a single-sided metal-clad laminate are formed by a resin layer made of an epoxy resin and a melamine resin. It is possible to obtain high adhesion between the single-sided metal-clad laminate from the bonding material during the printing process and to prevent the etchant from penetrating between the bonding material and the single-sided metal-clad laminate. In addition, the resin layer made of epoxy resin and melamine resin has good peelability of the single-sided metal-clad laminate, and the single-sided metal after processing When the laminate is peeled off from the bonding material, the resin of the resin layer is not transferred to and adhered to the single-sided metal-clad laminate, which causes a problem with the ink adhesion to the back side of the single-sided metal-clad laminate. At the same time, when the processed single-sided metal-clad laminate is secondarily formed to produce a multilayer board, there is no problem in delamination strength.
[0034]
The present invention also provides a bonding material used for bonding and forming a single-sided metal-clad laminate on both sides by placing a metal foil on both sides via a prepreg and heating and pressing it. In each case, a resin layer made of a thermosetting resin in which an epoxy resin, a melamine resin, an acrylic / butadiene / methacrylic acid copolymer, and a polyester resin are mixed is provided. The resin layer made of butadiene / methacrylic acid copolymer and polyester resin can provide high adhesion between the bonding material and the single-sided metal-clad laminate, and the single-sided metal tensioning from the bonding material during the printing process. It can prevent the laminate from peeling off and the etchant from getting in between the bonding material and the single-sided metal-clad laminate. In addition, the resin layer made of epoxy resin, melamine resin, acrylic / butadiene / methacrylic acid copolymer and polyester resin has good peelability of the single-sided metal-clad laminate, and the processed single-sided metal-clad laminate When the plate is peeled off from the bonding material, the resin of the resin layer is not transferred to and adhered to the single-sided metal-clad laminate, which may cause problems with the ink adhesion to the back side of the single-sided metal-clad laminate. In addition, when the processed single-sided metal-clad laminate is secondarily formed to produce a multilayer board, there is no problem in the interlayer peeling strength.
[Brief description of the drawings]
FIG. 1 shows an example of an embodiment of the present invention, in which (a) and (b) are cross-sectional views, respectively.
FIG. 2 shows an example of a conventional example, and (a) and (b) are cross-sectional views, respectively.
[Explanation of symbols]
1 Metal material 2 Resin layer 3 Prepreg 4 Metal foil 5 Single-sided metal-clad laminate A Bonding material

Claims (7)

両面にプリプレグを介して金属箔を配置すると共にこれを加熱加圧することによって、片面金属張り積層板を両面に接合させて成形するために用いられる接合材において、金属材の両側の表面にそれぞれエポキシ樹脂とメラミン樹脂を混合した熱硬化性樹脂からなる樹脂層を設けて成ることを特徴とする片面金属張り積層板製造用接合材。In the bonding material used to form a single-sided metal-clad laminate on both sides by placing a metal foil via prepreg on both sides and heating and pressing it, epoxy is applied to the surfaces on both sides of the metal material. A bonding material for producing a single-sided metal-clad laminate, comprising a resin layer made of a thermosetting resin in which a resin and a melamine resin are mixed. エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用い、エポキシ樹脂100重量部に対してメラミン樹脂を1〜100重量部混合して成ることを特徴とする請求項1に記載の片面金属張り積層板製造用接合材。The bisphenol A type epoxy resin is used as an epoxy resin, and 1 to 100 parts by weight of a melamine resin is mixed with 100 parts by weight of the epoxy resin. Wood. 両面にプリプレグを介して金属箔を配置すると共にこれを加熱加圧することによって、片面金属張り積層板を両面に接合させて成形するために用いられる接合材において、金属材の両側の表面にそれぞれエポキシ樹脂とメラミン樹脂とアクリル・ブタジエン・メタクリル酸共重合物とポリエステル系樹脂を混合した熱硬化性樹脂からなる樹脂層を設けて成ることを特徴とする片面金属張り積層板製造用接合材。In the bonding material used to form a single-sided metal-clad laminate on both sides by placing a metal foil via prepreg on both sides and heating and pressing it, epoxy is applied to the surfaces on both sides of the metal material. A bonding material for producing a single-sided metal-clad laminate comprising a resin layer made of a thermosetting resin obtained by mixing a resin, a melamine resin, an acrylic / butadiene / methacrylic acid copolymer and a polyester resin. エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用い、エポキシ樹脂100重量部に対してメラミン樹脂を1〜100重量部混合して成ることを特徴とする請求項3に記載の片面金属張り積層板製造用接合材。The bisphenol A type epoxy resin is used as an epoxy resin, and 1 to 100 parts by weight of a melamine resin is mixed with 100 parts by weight of the epoxy resin. Wood. 樹脂層は熱硬化性樹脂をCステージ状態に硬化させて形成されていることを特徴とする請求項1乃至4のいずれかに記載の片面金属張り積層板製造用接合材。The bonding material for producing a single-sided metal-clad laminate according to any one of claims 1 to 4, wherein the resin layer is formed by curing a thermosetting resin in a C-stage state. 樹脂層の厚みが0.1〜10μmであることを特徴とする請求項1乃至5のいずれかに記載の片面金属張り積層板製造用接合材。The thickness of a resin layer is 0.1-10 micrometers, The joining material for single-sided metal-clad laminated board manufacture in any one of the Claims 1 thru | or 5 characterized by the above-mentioned. 金属材がアルミニウム箔であることを特徴とする請求項1乃至6のいずれかに記載の片面金属張り積層板製造用接合材。The bonding material for producing a single-sided metal-clad laminate according to any one of claims 1 to 6, wherein the metal material is an aluminum foil.
JP16918097A 1997-06-25 1997-06-25 Bonding material for single-sided metal-clad laminate production Expired - Lifetime JP3698863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16918097A JP3698863B2 (en) 1997-06-25 1997-06-25 Bonding material for single-sided metal-clad laminate production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16918097A JP3698863B2 (en) 1997-06-25 1997-06-25 Bonding material for single-sided metal-clad laminate production

Publications (2)

Publication Number Publication Date
JPH1110791A JPH1110791A (en) 1999-01-19
JP3698863B2 true JP3698863B2 (en) 2005-09-21

Family

ID=15881738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16918097A Expired - Lifetime JP3698863B2 (en) 1997-06-25 1997-06-25 Bonding material for single-sided metal-clad laminate production

Country Status (1)

Country Link
JP (1) JP3698863B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520606B2 (en) * 2000-09-11 2010-08-11 イビデン株式会社 Multilayer circuit board manufacturing method
KR101548158B1 (en) 2012-09-07 2015-08-28 제일모직 주식회사 Article and manufacturing method of article
KR101515430B1 (en) 2012-10-24 2015-04-27 제일모직 주식회사 Laminate sheet, manufacturing method of the laminate sheet, article using the laminate sheet, and manufacturing method of the article
KR20140087802A (en) * 2012-12-31 2014-07-09 제일모직주식회사 Complex material and manufacturing method of the complex material
KR101665484B1 (en) 2013-02-21 2016-10-12 롯데첨단소재(주) Resin composition and article using the same

Also Published As

Publication number Publication date
JPH1110791A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP6477631B2 (en) Manufacturing method of multilayer printed wiring board
US6451710B1 (en) Method of manufacturing multi-layer printed wiring board
JP2009105446A (en) Method for manufacturing multilayer printed wiring board
JP6063183B2 (en) Peelable copper foil substrate and circuit board manufacturing method
JP3698863B2 (en) Bonding material for single-sided metal-clad laminate production
JP2008251971A (en) Process for producing multilayer printed wiring board
JP3280604B2 (en) Method of manufacturing metal-clad laminate, method of manufacturing printed wiring board, and method of manufacturing multilayer board
TWI559825B (en) Printed wiring board and manufacturing method thereof
JP3840744B2 (en) Multilayer board manufacturing method
JPH0493093A (en) Forming method for electronic component containing recess of circuit board
JPH08148836A (en) Multilayered flexrigid wiring board
JP4759896B2 (en) Manufacturing method of printed wiring board manufacturing material
JP2010147443A (en) Method of manufacturing laminate
JP2001007532A (en) Method of manufacturing multilayer wiring board
JP2002344135A (en) Insulation layer transfer sheet in manufacturing wiring board, built-up printed wiring board, and manufacturing method
JP2004237447A (en) Adhesive film, and method for manufacturing multilayered printed wiring board using the film
JPH07221440A (en) Flexible wiring board and its manufacture
JP2001308521A (en) Method for manufacturing multilayered circuit board
JPS5818799B2 (en) Tasou print high quality print
JPH1067027A (en) Release film
JPH10308581A (en) Production of printed wiring board
JP2000345119A (en) Adhesive film and production of multilayered printed circuit board by using the same
JPH0564098B2 (en)
JPH09153677A (en) Method for manufacturing multilayered printed wiring board
JPH0750456A (en) Rigid/flexible printed wiring board and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5