JP7479631B2 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP7479631B2
JP7479631B2 JP2020194409A JP2020194409A JP7479631B2 JP 7479631 B2 JP7479631 B2 JP 7479631B2 JP 2020194409 A JP2020194409 A JP 2020194409A JP 2020194409 A JP2020194409 A JP 2020194409A JP 7479631 B2 JP7479631 B2 JP 7479631B2
Authority
JP
Japan
Prior art keywords
storage device
motor
electric vehicle
braking torque
operation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020194409A
Other languages
English (en)
Other versions
JP2022083134A (ja
Inventor
達之 大橋
アブドルナビ サイド アブダラ マハムド
隆晴 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APERD CORPORATION
FCC Co Ltd
Original Assignee
APERD CORPORATION
FCC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APERD CORPORATION, FCC Co Ltd filed Critical APERD CORPORATION
Priority to JP2020194409A priority Critical patent/JP7479631B2/ja
Publication of JP2022083134A publication Critical patent/JP2022083134A/ja
Application granted granted Critical
Publication of JP7479631B2 publication Critical patent/JP7479631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Regulating Braking Force (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Description

特許法第30条第2項適用 (公開1:学会資料web配信) 論文名:Energy Regeneration System for Electric Vehicles Using DC-DC Converter with Super-capacitors(和名:スーパーキャパシタとDC-DCコンバータを組合わせて用いた電動車用エネルギー回生システム) ダウンロードURL:https://www.gakkai-web.net/p/knt/icems2020/reg/mod2.php ダウンロード開始日:令和02年11月20日 (公開2:学会) 開催名:ICEMS2020-Hamamatsu 開催日:令和02年11月24日 開催URL:https://www.icems2020.com/
本発明は、力行及び回生可能なモータと当該モータにエネルギ供給可能な蓄電装置とを具備した電動車両に関するものである。
力行及び回生可能なモータと当該モータにエネルギ供給可能な蓄電装置とを具備し、モータの駆動力で推力を得るとともに、駆動輪の制動トルクを調整して蓄電装置にエネルギを回収可能な電動車両として、例えば特許文献1に記載された電動自転車が挙げられる。かかる電動車両によれば、制動時に回収したエネルギを蓄電装置(電池)に蓄電させて力行時に駆動エネルギとして使用することができる。
特開2002-84780号公報
しかしながら、上記従来技術においては、モータの低回転領域ではモータ起電圧が低くなるため、回生ブレーキを使用することができず、その一方、モータの高回転領域ではモータ起電圧が高くなるので、インバータ直流電圧を抑制するため弱め磁界制御が必要となり、回生ブレーキの最大制動トルクが小さくなってしまう。このため、回生ブレーキ時、運転者の意図した回生ブレーキによる制動力を得られない場合が生じてしまう虞があった。
本発明は、このような事情に鑑みてなされたもので、モータの広い回転領域に亘って運転者の意図した回生ブレーキによる制動トルクを生じさせることができる電動車両を提供することにある。
請求項1記載の発明は、力行及び回生可能なモータと、直流電流から交流電流に変換可能なインバータと、エネルギを放出して制動可能なメカブレーキと、前記モータにエネルギを供給可能な蓄電装置と、前記モータを制御して駆動輪の駆動トルクを調整可能なアクセル操作手段と、前記メカブレーキを制御して制動トルクを調整可能なメカブレーキ操作手段と、前記モータを制御して、前記駆動輪の制動トルクを調整し、前記蓄電装置にエネルギを回収可能な回生ブレーキ操作手段と、前記モータの回転数を検知する検知手段とを具備し、前記モータの回転数が所定値以上のとき、前記回生ブレーキ操作手段の操作量に応じた所定制動トルクを回生ブレーキにより発生する電動車両であって、力行時に降圧する機能と回生時に昇圧する機能を有する電力変換器を具備するとともに、回生時に前記電力変換器を介してエネルギを回収する構成とされ、且つ、前記蓄電装置は、高容量型の特性を有する第1蓄電装置と、高出力型の特性を有する第2蓄電装置とを有して構成されるとともに、前記第1蓄電装置に力行時に降圧する機能を有する前記電力変換器が接続され、前記電力変換器のリアクトルと前記インバータの間に前記第2蓄電装置が直列に接続された回路を有し、前記モータの回生時に前記回路を使ってエネルギを前記第1蓄電装置及び第2蓄電装置に回収することを特徴とする。
請求項2記載の発明は、請求項1記載の電動車両において、前記モータの回生時、前記所定制動トルクの最大値は、前記モータの定格トルクであることを特徴とする。
請求項記載の発明は、請求項1又は請求項2記載の電動車両において、前記モータの回転数が所定値未満のとき、前記回生ブレーキ操作手段の操作量に応じて前記メカブレーキにより制動トルクを発生させることを特徴とする。
請求項記載の発明は、請求項記載の電動車両において、前記第1蓄電装置の充電量が所定値以上のとき、前記回生ブレーキ操作手段の操作量に応じて、前記メカブレーキにより制動トルクを発生させることを特徴とする。
請求項記載の発明は、請求項1~の何れか1つに記載の電動車両において、前記電動車両は、鞍乗り型車両であることを特徴とする。
本発明によれば、モータの回転数が所定値以上のとき、回生ブレーキ操作手段の操作量に応じた所定制動トルクを回生ブレーキにより発生するので、モータの広い回転領域に亘って運転者の意図した回生ブレーキによる制動トルクを生じさせることができる。
本発明の実施形態に係る電動車両を示す模式図 同電動車両の電力変換装置を示す回路図 同電動車両の電力変換装置を示す概念図 同電動車両の制御関係を示す概略図 同電動車両の電力制御を示すタイムチャート 同電動車両の電力制御の全体を示すフローチャート 同電動車両の要求特性(駆動輪の車両要求)を示すグラフ 同電動車両の要求特性(駆動輪のモータ要求)を示すグラフ 同電動車両の要求特性(従動輪の車両要求)を示すグラフ 同電動車両の要求特性(従動輪のブレーキ要求)を示すグラフ 同電動車両の電力制御の要求処理制御を示すフローチャート 同電動車両の運転者要求テーブル(テーブル1)を示すグラフ 同電動車両の運転者要求テーブル(テーブル2)を示すグラフ 同電動車両の運転者要求テーブル(テーブル3)を示すグラフ 同電動車両の運転者要求テーブル(テーブル4)を示すグラフ 同電動車両の運転者要求テーブル(テーブル5)を示すグラフ 同電動車両の運転者要求テーブル(テーブル6)を示すグラフ 同電動車両の電力制御のモータ制御を示すフローチャート 同電動車両の電力変換回路制御を示す表 同電動車両の電圧要求テーブル(PWMの場合のテーブルA)を示すグラフ 同電動車両の電圧要求テーブル(PWMの場合のテーブルB)を示すグラフ 同電動車両の電圧要求テーブル(PWMの場合のテーブルC)を示すグラフ 同電動車両の電圧要求テーブル(モータ線間電圧波高値依存型の場合のテーブルA)を示すグラフ 同電動車両の電圧要求テーブル(モータ線間電圧波高値依存型の場合のテーブルB)を示すグラフ 同電動車両の電圧要求テーブル(モータ線間電圧波高値依存型の場合のテーブルC)を示すグラフ 他の実施形態に係る電動車両のモータ線間電圧波高値依存型の動作例を示すタイムチャート 同電動車両の第1蓄電装置の蓄電状態を示すグラフ 同電動車両の第2蓄電装置の蓄電状態を示すグラフ 同電動車両の蓄電装置の組み合わせを示す表
以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態に係る電動車両は、モータの駆動力により走行可能な自動二輪車等の鞍乗り型車両から成るもので、図1~4に示すように、モータ1と、インバータ2と、メカブレーキ(3a、3b)と、第1蓄電装置4と、第2蓄電装置5と、アクセル操作手段6と、メカブレーキ操作手段7と、回生ブレーキ操作手段8と、電力変換器10と、ECU11と、スタートスイッチ12と、モニタ13(補助装置)とを主に具備している。
モータ1(Motor)は、エネルギ供給により駆動力を得るための電磁モータから成り、図2、3に示すように、インバータ2を介して第2蓄電装置5、電力変換器10及び第1蓄電装置4と電気的に接続可能とされ、力行及び回生可能とされている。インバータ2(DC-AC Inverter)は、直流電流から交流電流に変換可能なもので、本実施形態においては、第1蓄電装置4及び第2蓄電装置5の直流電流を交流電流に変換してモータ1に供給可能とされている。
メカブレーキは、ディスクブレーキやドラムブレーキ等のエネルギを放出して制動可能な制動装置から成り、駆動輪Taの運動エネルギを放出して制動する駆動輪メカブレーキ3aと、従動輪Tbの運動エネルギを放出して制動する従動輪メカブレーキ3bとを有して構成されている。これら駆動輪メカブレーキ3a及び従動輪メカブレーキ3bは、ブレーキアクチュエータ9を介してメカブレーキ操作手段7と接続されている。
かかるメカブレーキ操作手段7は、メカブレーキ(従動輪メカブレーキ3b)を制御して制動トルクを調整可能な部品(本実施形態においては、ハンドルバーの右側端部に取り付けられた操作レバー)から成り、その操作量に応じてメカブレーキ制御部18(図4参照)がブレーキアクチュエータ9を作動させ、従動輪メカブレーキ3bを動作させ得るよう構成されている。
アクセル操作手段6は、モータ1を制御して駆動輪Taの駆動トルクを調整可能な部品(本実施形態においては、ハンドルバーの右側端部に取り付けられたアクセルグリップ)から成り、図4に示すように、その操作量に応じてインバータ制御部16によりトルク要求を推定してモータ1を作動させることにより、所望の駆動力を得るよう構成されている。なお、インバータ制御部16は、ECU11に形成された制御部の一つである。
蓄電装置は、モータ1にエネルギを供給可能なもので、本実施形態においては、第1蓄電装置4及び第2蓄電装置5を有して構成されている。第1蓄電装置4は、高容量型の特性を有する蓄電池から成り、図29に示すように、例えば高容量リチウムイオン電池又は高容量ニッケル水素電池を使用することができる。第2蓄電装置5は、高出力型の特性を有する蓄電池から成り、図29に示すように、例えば高出力リチウムイオン電池、高出力ニッケル水素電池、リチウムイオンキャパシタ又は電気二重層キャパシタの何れかを使用することができる。
回生ブレーキ操作手段8は、モータ1を制御して、駆動輪Taの制動トルクを調整し、蓄電装置(第1蓄電装置4及び第2蓄電装置5)にエネルギを回収可能な部品(本実施形態においては、ハンドルバーの左側端部に取り付けられた操作レバー)から成り、その操作量に応じてモータ1の回生を行わせて所望の制動力が得られるよう構成されている。かかるモータ1の回生により、第1蓄電装置4及び第2蓄電装置5にエネルギを回収することができる。
電力変換器10は、モータ1の力行時(モータ1へのエネルギ供給時)に電圧を降圧する機能とモータ1の回生時(モータ1からのエネルギ回収時)に電圧を昇圧する機能を有するもので、図2、3に示すように、電気回路における第1蓄電装置4及び第2蓄電装置5の間に接続されている。より具体的には、電力変換器10は、図2に示すように、スイッチS1、S2及び整流器としてのダイオードを有する2つの半導体スイッチ素子(MOSFET)10a、10bと、リアクトル10c(コイル)とを有して構成されている。
そして、本実施形態に係る電力変換器10によれば、半導体スイッチ素子10a、10bのスイッチS1、S2を高速スイッチング(duty制御)することにより、モータ1の力行時(図3において右側に向かって電流が流れるとき)には、リアクトル10cが半導体スイッチ素子10a、10bの下流側に位置するため、電圧を降圧し得るとともに、モータ1の回生時(図3において左側に向かって電流が流れるとき)には、リアクトル10cが半導体スイッチ素子10a、10bの上流側に位置するため、電圧を昇圧し得るようになっている。
より具体的には、本実施形態においては、図2、3に示すように、第1蓄電装置4に第1蓄電装置に力行時に降圧する機能を有する電力変換器10が接続され、電力変換器10のリアクトル10cとインバータ2の間に第2蓄電装置5が直列に接続された回路を有しており、モータ1の力行時に電力変換器10によって第1蓄電装置4の出力電圧(Vdc)を降圧し、第1蓄電装置4及び第2蓄電装置5からインバータ2にエネルギを供給するとともに、モータ1の回生時、電力変換器10によって第2蓄電装置5の出力電圧(Vinv-Vc)を昇圧し、第1蓄電装置4及び第2蓄電装置5でエネルギを回収するよう構成されている。
また、本実施形態においては、図2に示すように、第2蓄電装置5を介さずに電力変換器10とインバータ2とを接続する回路を形成する第1スイッチS3と、第2蓄電装置5を介して電力変換器10とインバータ2とを接続する回路を形成する第2スイッチS4とを有している。かかる回路には、電力変換器10がオフ時にオン状態とされるスイッチSaが形成されるとともに、安定化のためのコンデンサCa、Cbが接続されている。なお、本実施形態に係る第1スイッチS3及び第2スイッチS4は、半導体スイッチ素子(MOSFET)14、15(半導体スイッチ素子10a、10bと同様、整流器としてのダイオードを有している)に構成されている。
ECU11は、入力された運転者の要求に応じてモータ1等を制御するためのもので、図4に示すように、インバータ制御部16、回路制御部17及びメカブレーキ制御部18を有するとともに、インバータ2、電力変換器10、第1蓄電装置4、第2蓄電装置5及びブレーキアクチュエータ9と接続されている。また、第1蓄電装置4及び第2蓄電装置5の各電圧が検出可能とされており、それら電圧に基づいて第1蓄電装置4及び第2蓄電装置5の蓄電状態をそれぞれ判断可能とされている。なお、第1蓄電装置4の蓄電状態を図27、第2蓄電装置5の蓄電状態を図28にそれぞれ示している。
しかるに、モータ1の力行時、第2蓄電装置5の蓄電状態が所定の下限値以下(図28参照)の場合、第1スイッチS3をオン、且つ、第2スイッチS4をオフとし、第1蓄電装置4の出力電圧(Vdc)を降圧しつつ当該第1蓄電装置4からインバータ2にエネルギを供給するとともに、モータ1の回生時、第2蓄電装置5の蓄電状態が所定の上限値以上(図28参照)の場合、第1スイッチS3をオン、且つ、第2スイッチS4をオフとし、インバータ2の直流電圧(Vinv)を昇圧しつつ第1蓄電装置4で回生エネルギを蓄積するようになっている。
スタートスイッチ12は、車両の走行を可能にする操作スイッチから成り、かかるスタートスイッチ12を操作した後、アクセル操作手段6を操作することにより、モータ1を作動させて走行し得るようになっている。モニタ13は、車両に取り付けられた液晶モニタ等の補助装置から成り、例えば車両の状態(速度、蓄電状態又は故障の有無等)やナビゲーションシステムの地図等を表示させ得るようになっている。
ここで、本実施形態においては、図4に示すように、モータ1の回転数を検知するセンサから成る検知手段19を具備しており、検知手段19で検知されたモータ1の回転数が所定値以上のとき、回生ブレーキ操作手段8の操作量に応じた所定制動トルクを回生ブレーキにより発生(特に、本実施形態においては、回生ブレーキのみにより発生)するよう構成されている。また、モータ1の回生時、その所定制動トルクの最大値は、モータ1の定格トルクとされている。
さらに、検知手段19で検知されたモータ1の回転数が所定値未満のとき、回生ブレーキ操作手段8の操作量に応じてメカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させるようになっている。加えて、第1蓄電装置4の充電量が所定値以上のとき、回生ブレーキ操作手段8の操作量に応じて、メカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させるよう構成されている。
図5は、上記実施形態に係る電動車両において、スタートスイッチ12をオンした後、アクセル操作手段6及び回生ブレーキ操作手段8の操作を行った場合の各パラメータの変化を示している。特に、キャパシタ電流(Ic)及びキャパシタ容量(SOC2)は、本実施形態の第2蓄電装置5の電流及び容量、電池電流(Idc)及び電池容量(SOC1)は、本実施形態の第1蓄電池4の電流及び容量を示している。なお、同図の表における「FCCNO」(function circuit control number)は、図4、18、19で示される「FCCNO」と対応するものである。
次に、本実施形態に係る電動車両の制御(メイン制御)について、図6のフローチャートに基づいて説明する。
先ず、S1にてスタートスイッチ12がオンしたか否か判定され、スタートスイッチ12がオンしたと判断されると、S2にて第1蓄電装置4の充電状態(Soc1)が所定下限値(図27参照)より大きいか否か判定される。そして、充電状態(Soc1)が所定下限値より大きいと判断されると、要求処理(S3)、モータ制御(S4)及びメカブレーキ制御(S5)が順次行われることとなる。
次に、本実施形態に係る電動車両の要求特性について、図7~10に基づいて説明する。
駆動輪Taにおける駆動トルク及び制動トルクと車速との関係は、図7に示すような特性とされ、駆動輪Taにおけるモータトルクとモータ1の回転数(ω)との関係は、図8に示すような特性とされる。特に、図7において、高速走行の場合、駆動トルクが車速に対して漸減関係にあるのに対し、制動トルクは一定関係となっている。なお、図8においては、縦軸のプラス側(上半分)がアクセル操作手段6の操作量に応じた駆動トルクを示しており、縦軸のマイナス側(下半分)が回生ブレーキ操作手段8の操作量に応じた制動トルクを示している。同図中の符号Tm1は、モータ1の定格トルクを示している。
また、従動輪Tbにおける制動トルクと車速との関係は、図9に示すような特性とされ、従動輪Tbにおける制動トルク(メカ制動トルク(Tbmf)とモータ1の回転数(ω)との関係は、図10に示すような特性とされる。なお、図9、10においては、従動輪Tbの特性を示すものであるため、縦軸のマイナス側(下半分)のみの特性(制動トルク)のみが示されている。
次に、本実施形態に係る電動車両の制御(要求処理制御)について、図11のフローチャートに基づいて説明する。
先ず、S1にて故障信号の有無に基づいて回生システムが正常か否か判定され、故障信号がないと判断された場合、S2にてアクセル操作手段6の操作の有無(アクセル操作量Apが0より大きいか否か)が判定され、アクセル操作手段6の操作があると判断されると、S5に進み、図12に示すテーブル1に基づいてアクセル操作手段6の操作量に応じたモータトルク(Tm)が算出される。
そして、S5の算出の後、S9に進み、図16に示すテーブル5に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出され、その後、S13に進み、図17に示すテーブル6に基づいてメカブレーキ操作手段7の操作量に応じたメカ制動トルク(Tbmf)が算出される。なお、S9で算出されたメカ制動トルク(Tbmr)は、駆動輪Taの制動トルクとされるとともに、S13で算出されたメカ制動トルク(Tbmf)は、従動輪Tbの制動トルクとされる。
また、S2にてアクセル操作手段の操作がないと判断されると、S3にてモータ1の回生が可能か否か判定される。かかる判定は、第1蓄電装置4の蓄電状態(Soc1)が所定上限値以下(図27参照)であり、且つ、モータの回転数がω1(図8参照)以上である場合、モータ1の回生が可能であると判断されるものである。そして、モータ1の回生が可能であると判断されると、S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(図28参照)より大きいか否か判定される。
S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(図28参照)より大きいと判断されると、S6に進み、図13に示すテーブル2に基づいて回生ブレーキ操作手段8の操作量に応じたモータトルク(Tm)が算出される。ここで、テーブル2に基づくモータトルク(Tm)の算出においては、モータ1の回転数が図8で示す所定回転数(ω2)以下の場合、Tm=Tm(ω-ω1)/(ω2-ω1)なる補正が行われる。なお、S6の算出後、S10に進み、図15に示すテーブル4に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出され、その後、既述のS13が順次行われることとなる。
さらに、S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(図28参照)より大きくないと判断されると、S7に進み、図14に示すテーブル3に基づいて回生ブレーキ操作手段8の操作量に応じたモータトルク(Tm)が算出される。ここで、テーブル3に基づくモータトルク(Tm)の算出においては、テーブル2と同様、モータ1の回転数が図8で示す所定回転数(ω2)以下の場合、Tm=Tm(ω-ω1)/(ω2-ω1)なる補正が行われる。なお、S7の算出後、S11にてメカ制動トルク(Tbmr)が0に設定された後、既述のS13が行われることとなる。
一方、S1にて故障信号があると判断された場合やS3にて回生可能でないと判断された場合、S8に進み、モータトルク(Tm)=0に設定された後、S12に進み、図16に示すテーブル5に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出される。これにより、回生システムに故障があると判断されたときや回生可能でないと判断されたとき、回生ブレーキ操作手段8の操作量に応じてメカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させることができる。なお、S12の算出後、既述のS13が行われることとなる。
次に、本実施形態に係る電動車両の制御(モータ制御)について、図18のフローチャートに基づいて説明する。
先ず、S1にて故障信号の有無に基づいて回生システムが正常か否か判定され、故障信号がないと判断された場合、S2にてアクセル操作手段6の操作の有無(アクセル操作量Apが0より大きいか否か)が判定され、アクセル操作手段6の操作があると判断されると、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(図28参照)より大きいか否か判定される。
そして、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(図28参照)より大きくないと判断されると、S6にてモータ1の回転数(ω)がω3(図20、23参照)より小さいか否か判定され、モータ1の回転数(ω)がω3より小さくない(高回転)と判断されると、S7に進み、FCC(function circuit control)=1とする。また、S6にてモータ1の回転数(ω)がω3より小さい(低回転)と判断されると、S8に進み、FCC=2とする。
さらに、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(図28参照)より大きいと判断されると、S9に進み、FCC=3とする。またさらに、S2にてアクセル操作手段6の操作がないと判断されると、S4にてモータ1の回生が可能か否か判定される。かかる判定は、第1蓄電装置4の蓄電状態(Soc1)が所定上限値以下(図27参照)であり、且つ、モータの回転数がω1(図8参照)以上である場合、モータ1の回生が可能であると判断されるものである。
そして、S4にてモータ1の回生が可能であると判断されると、S5にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(図28参照)より大きいか否か判定され、第2蓄電装置5の蓄電状態(Soc2)が所定上限値より大きいと判断されると、S10に進んでFCC=4とし、第2蓄電装置5の蓄電状態(Soc2)が所定上限値より大きくないと判断されると、S11に進んでFCC=5とする。一方、S1にて故障信号があると判断された場合、又はS4にてモータ1の回生が可能でないと判断されると、S12に進み、FCC=6とする。
上記の如くモード(FCC)1~6が決定した後、S13にて前回処理で決定したモード(FCCO)に対し、今回処理で決定したモード(FCC)の変更有無について判定され、モード変更がないと判断された場合、S14に進み、S7~12で決定されたFCCを維持するとともに、モード変更があると判断された場合、S15に進み、FCC=7とする。その後、S16にてFCCNOに応じた制御が行われ、続いて、S17にて今回処理決定されたモード(FCC)をFCCOに記憶し、S18にてインバータ制御が行われる。
ここで、S16の制御は、図19の制御表に基づいて行われる。かかる制御表による制御内容について以下に説明する。
FCCNO=1のとき、半導体スイッチ素子10a、10bのスイッチS1、S2がオフ状態(電力変換器10がオフ状態)とされるとともに、第1スイッチS3及び第2スイッチ素子S4がオフ状態、及びスイッチSaがオン状態とされる。なお、当該制御表の「キャパシタ直列接続」とは、「電力変換器10のリアクトル10cとインバータ2の間に第2蓄電装置5が直列に接続」された状態を意味している。
FCCNO=2のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が力行時にDuty制御されて電力変換器10が第1蓄電装置4の出力電圧を降圧するとともに、第1スイッチS3がオン状態及び第2スイッチS4がオフ状態とされ、且つ、スイッチSaがオフ状態とされる。そして、FCCNO=2のとき、インバータ2の電流制御は、図20に示すテーブルAに基づいて行われる。
かかるテーブルAによれば、PWM制御でインバータ2の電流制御が行われる場合、図20に示すように、インバータ2の直流電圧をモータ1の回転数(ω)に応じて制御可能とされるとともに、モータ1の回転数が所定の回転数(ω3)以下の場合、モータ1の回転数が低いほどインバータ2の直流電圧を低く制御することとなる。なお、後述するテーブルB、Cについても、PWM制御でインバータ2の電流制御が行われることを前提としている。
FCCNO=3のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が力行時にDuty制御されて電力変換器10が第1蓄電装置4の出力電圧を降圧するとともに、第1スイッチS3がオフ状態及び第2スイッチS4がオン状態とされ、且つ、スイッチSaがオフ状態とされる。なお、FCCNO=3のとき、インバータ2の電流制御は、FCCNO=2のときと同様、図20に示すテーブルAに基づいて行われる。
FCCNO=4のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が回生時にDuty制御されて電力変換器10がインバータ直流電圧を昇圧するとともに、第1スイッチS3がオン状態及び第2スイッチS4がオフ状態とされ、且つ、スイッチSaがオフ状態とされる。そして、FCCNO=4のとき、インバータ2の電流制御は、図21に示すテーブルBに基づいて行われる。
FCCNO=5のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が回生時にDuty制御されて電力変換器10が第2蓄電装置5の出力電圧を昇圧するとともに、第1スイッチS3がオフ状態及び第2スイッチS4がオン状態とされ、且つ、スイッチSaがオフ状態とされる。そして、FCCNO=5のとき、インバータ2の電流制御は、図22に示すテーブルBに基づいて行われる。
FCCNO=6のとき、半導体スイッチ素子10a、10bのスイッチS1、S2がオフ状態(電力変換器10がオフ状態)とされるとともに、第1スイッチS3、第2スイッチS4、及びスイッチSaがオフ状態とされる。FCCNO=7のとき、半導体スイッチ素子10a、10bのスイッチS1、S2がDuty制御されるとともに、第1スイッチS3、第2スイッチS4、及びスイッチSaがオフ状態とされる。
さらに、上記実施形態においては、テーブルA~Cを適用するにあたり、PWM(pulse width modulation:パルス幅変調)制御でインバータ2の電流制御が行われることを前提としているが、これに代えて、インバータ2の電流制御をモータ線間電圧波高値依存型制御としてもよい。すなわち、PWM制御は、所定のインバータ直流電圧に対して、スイッチング周波数の幅(パルス幅)を変える(インバータの電流流通率を変える)制御であるのに対し、モータ線間電圧波高値依存型制御は、図23~26に示すように、前記インバータの直流電圧そのものをモータ線間電圧の波高値に応じて変える制御である。
しかるに、モータ線間電圧波高値依存型制御でインバータ2の電流制御が行われる場合、テーブルAにおいては、図23に示すように、モータ1の回転数が所定の回転数(ω3)以下の場合、インバータ2の直流電圧をモータ線間電圧の波高値に応じて制御する。また、テーブルBにおいては、図24に示す制御、及びテーブルCにおいては、図25に示す制御とされる。図26は、図23~25のいずれかのテーブル(インバータ直流電圧とモータ線間電圧波高値が同じ電圧の場合)において電流制御した場合の、インバータ回路のスイッチ動作とモータ線間電圧とモータ線間電圧の基本波の動作例を示すタイムチャートを示す。このタイムチャートにおいて、インバータ直流電圧(Vinv)とモータ線間電圧の基本波の波高値が一致している。
上記実施形態に係る電動車両によれば、モータ1の回転数が所定値以上のとき、回生ブレーキ操作手段8の操作量に応じた所定制動トルクを回生ブレーキにより発生するので、モータ1の広い回転領域に亘って運転者の意図した回生ブレーキによる制動トルクを生じさせることができる。
すなわち、回生ブレーキ操作手段8の操作量に応じて回生ブレーキのみで所定制動トルクを発生するので、モータの高回転時回生ブレーキとメカブレーキを併用して所定制動トルクを発生するものに比べ、ブレーキ作動特性(応答性、効き具合)の違和感がなく、運転者の意図した制動力を安定して得ることができる。また、回生ブレーキの使用速度域が広いため、エネルギ回生効率が高くなるとともに、メカブレーキ(駆動輪メカブレーキ3a)の使用頻度が低減するため、メカブレーキ部品の耐久劣化を減少させることができる。
また、モータ1の回生時、所定制動トルクの最大値は、モータ1の定格トルクであるので、所定回転数以上で運転者の意図した十分な制動トルクが得られるとともに、回生エネルギを増大させることができる。さらに、力行時に降圧する機能と回生時に昇圧する機能を有する電力変換器10を具備するとともに、回生時に電力変換器10を介してエネルギを回収するので、回生時に昇圧しないシステムに比べて、より低回転まで所定制動トルクを回生ブレーキのみで発生することができ、回生エネルギを増加させることができる。
またさらに、モータ1の回転数が所定値未満のとき、回生ブレーキ操作手段8の操作量に応じてメカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させるので、極めて低いモータ1の回転域では、昇圧制御しても回生ブレーキを車両が停止するまで作動させることは難しいため、車速が所定値未満の時、回生ブレーキに変えてメカブレーキにより、確実に制動トルクを発生することできる。
また、蓄電装置は、高容量型の特性を有する第1蓄電装置4と、高出力型の特性を有する第2蓄電装置5とを有して構成されるとともに、第1蓄電装置4に第1蓄電装置に力行時に降圧する機能を有する電力変換器が接続され、電力変換器10のリアクトル10cとインバータ2の間に第2蓄電装置5が直列に接続された回路を有し、モータ1の回生時に当該回路を使ってエネルギを第1蓄電装置4及び第2蓄電装置5に回収するので、モータ1の回生時、第1蓄電装置4のみで定格トルクを発生できるモータ回転数に比べ、より高回転まで定格トルクを回生ブレーキのみで発生することができる。
さらに、第1蓄電装置4の充電量が所定値以上のとき、回生ブレーキ操作手段8の操作量に応じて、メカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させるので、第1蓄電装置4の充電量が所定値以上でそれ以上充電できないと判定され、回生ブレーキを作動させることは難しい場合であっても、回生ブレーキに変えてメカブレーキにより、確実に制動トルクを発生することできる。またさらに、本実施形態においては、鞍乗り型車両に適用されているため、回生ブレーキ操作手段8とメカブレーキ操作手段7の2つのブレーキ操作手段を備えても、別個の新しい操作手段を増設する必要がなく、コストが嵩んでしまうのを回避できる。
加えて、モータの力行時に第1蓄電装置4の出力電圧を降圧し、第1蓄電装置4及び第2蓄電装置5からインバータ2にエネルギを供給するので、第2蓄電装置5による昇圧機能と併せることにより、降圧及び昇圧可能とされる。したがって、第1蓄電装置4の出力電圧を昇圧及び降圧することによりインバータ2の直流電圧設定に合致させて調整することができるので、インバータ2の直流電圧の設定値が変化した場合でも、電圧が規格品の蓄電池を用いることができ、製造コストの増加を防止させることができる。
特に、本実施形態によれば、力行時、電力変換器10の半導体スイッチ素子10a、10bにおけるスイッチS1、S2をduty制御することにより、モータ1のインバータ直流電圧を第1蓄電装置4の電圧に対して最適に昇降圧制御できる。また、第1蓄電装置4及び第2蓄電装置5で力行用エネルギを分担して供給するので、第1蓄電装置4のみで同量の力行用エネルギを供給するものに比べて、第1蓄電装置4の電流が小さくなり、力行エネルギが大きい場合であっても第1蓄電装置4の電流を小さくすることができ、第1蓄電装置4の寿命を向上させることができる。
さらに、第1スイッチS3と、第2スイッチS4とを有し、第2蓄電装置5の電圧に基づいて当該第2蓄電装置5の蓄電状態を判断可能とされるとともに、モータ1の力行時、第2蓄電装置5の蓄電状態が所定の下限値以下の場合、第1スイッチS3をオン、且つ、第2スイッチS4をオフとし、第1蓄電装置4の出力電圧を降圧しつつ当該第1蓄電装置4からインバータ2にエネルギを供給するので、第2蓄電装置5が空充電になっても、第1蓄電装置4のエネルギを使ってモータ1の力行を継続させて車両を走行させることができる。
またさらに、第1スイッチS3と、第2スイッチS4とを有し、第2蓄電装置5の電圧に基づいて当該第2蓄電装置5の蓄電状態を判断可能とされるとともに、モータ1の回生時、第2蓄電装置5の蓄電状態が所定の上限値以上の場合、第1スイッチS3をオン、且つ、第2スイッチS4をオフとし、インバータ2の直流電圧を昇圧しつつ第1蓄電装置4で回生エネルギを蓄積するので、第2蓄電装置5が満充電になっても、第1蓄電装置4にエネルギを蓄積し、モータ1の回生を継続させることができる。
また、インバータ2の電流制御時、インバータ2の直流電圧をモータ1の回転数に応じて制御可能とされるとともに、モータ1の回転数が所定の回転数以下の場合、モータ1の回転数が低いほどインバータ2の直流電圧を低く制御するので、低回転時におけるインバータ2の直流電圧を低くすることができ、スイッチの瞬時電力を低くすることができ、低回転時のスイッチング損失を低減できる。
さらに、インバータ2の電流制御時、モータ1の回転数が所定の回転数以下の場合、インバータ2の直流電圧をモータ線間電圧の波高値に応じて制御するので、スイッチングパターンを基本波周波数の3倍程度の低次高調波低減の固定パターンを使用できる。これにより、PWM制御(インバータ直流電圧一定でのDUTY制御)のスイッチング周波数に対し、スイッチング周波数を1/30以下の周波数とすることができ、スイッチング損失をPWM制御に比べて1/30以下とすることができる。
以上、本実施形態について説明したが、本発明はこれに限定されず、例えば第1蓄電装置4を第2蓄電装置5より高容量型の特性を有した他の形態の蓄電装置とし、或いは第2蓄電装置5を第1蓄電装置4より高出力型の特性を有した他の形態の蓄電装置としてもよい。また、半導体スイッチ素子は、MOSFETに代えてIGBTとしてもよい。また、モニタ13を具備しないもの、或いはバギー等の3輪車両又は4輪車両に適用してもよい。
モータの回転数が所定値以上のとき、回生ブレーキ操作手段の操作量に応じた所定制動トルクを回生ブレーキにより発生する電動車両であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。
1 モータ
2 インバータ
3a 駆動輪メカブレーキ
3b 従動輪メカブレーキ
4 第1蓄電装置(電池)
5 第2蓄電装置(キャパシタ)
6 アクセル操作手段
7 メカブレーキ操作手段
8 回生ブレーキ操作手段
9 ブレーキアクチュエータ
10 電力変換器
10a、10b 半導体スイッチ素子(MOSFET)
10c リアクトル(コイル)
11 ECU
12 スタートスイッチ
13 モニタ(補助装置)
14、15 半導体スイッチ素子(MOSFET)
16 インバータ制御部
17 回路制御部
18 メカブレーキ制御部
19 検知手段
Ta 駆動輪
Tb 従動輪
S3 第1スイッチ
S4 第2スイッチ
Ca 平滑コンデンサ
Cb 平滑コンデンサ
Vdc 第一蓄電装置(電池)電圧
Vc 第二蓄電装置(キャパシタ)電圧
Vinv インバータ直流電圧
V1 S2端子平均電圧

Claims (5)

  1. 力行及び回生可能なモータと、
    直流電流から交流電流に変換可能なインバータと、
    エネルギを放出して制動可能なメカブレーキと、
    前記モータにエネルギを供給可能な蓄電装置と、
    前記モータを制御して駆動輪の駆動トルクを調整可能なアクセル操作手段と、
    前記メカブレーキを制御して制動トルクを調整可能なメカブレーキ操作手段と、
    前記モータを制御して、前記駆動輪の制動トルクを調整し、前記蓄電装置にエネルギを回収可能な回生ブレーキ操作手段と、
    前記モータの回転数を検知する検知手段と、
    を具備し、前記モータの回転数が所定値以上のとき、前記回生ブレーキ操作手段の操作量に応じた所定制動トルクを回生ブレーキにより発生する電動車両であって、
    力行時に降圧する機能と回生時に昇圧する機能を有する電力変換器を具備するとともに、回生時に前記電力変換器を介してエネルギを回収する構成とされ、且つ、前記蓄電装置は、高容量型の特性を有する第1蓄電装置と、高出力型の特性を有する第2蓄電装置とを有して構成されるとともに、前記第1蓄電装置に力行時に降圧する機能を有する前記電力変換器が接続され、前記電力変換器のリアクトルと前記インバータの間に前記第2蓄電装置が直列に接続された回路を有し、前記モータの回生時に前記回路を使ってエネルギを前記第1蓄電装置及び第2蓄電装置に回収することを特徴とする電動車両。
  2. 前記モータの回生時、前記所定制動トルクの最大値は、前記モータの定格トルクであることを特徴とする請求項1記載の電動車両。
  3. 前記モータの回転数が所定値未満のとき、前記回生ブレーキ操作手段の操作量に応じて前記メカブレーキにより制動トルクを発生させることを特徴とする請求項1又は請求項2記載の電動車両。
  4. 前記第1蓄電装置の充電量が所定値以上のとき、前記回生ブレーキ操作手段の操作量に応じて、前記メカブレーキにより制動トルクを発生させることを特徴とする請求項記載の電動車両。
  5. 前記電動車両は、鞍乗り型車両であることを特徴とする請求項1~の何れか1つに記載の電動車両。
JP2020194409A 2020-11-24 2020-11-24 電動車両 Active JP7479631B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020194409A JP7479631B2 (ja) 2020-11-24 2020-11-24 電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020194409A JP7479631B2 (ja) 2020-11-24 2020-11-24 電動車両

Publications (2)

Publication Number Publication Date
JP2022083134A JP2022083134A (ja) 2022-06-03
JP7479631B2 true JP7479631B2 (ja) 2024-05-09

Family

ID=81811209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020194409A Active JP7479631B2 (ja) 2020-11-24 2020-11-24 電動車両

Country Status (1)

Country Link
JP (1) JP7479631B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472187B2 (ja) 2022-03-30 2024-04-22 本田技研工業株式会社 鞍乗り型車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236109A (ja) 2006-03-01 2007-09-13 Mitsubishi Fuso Truck & Bus Corp 電気自動車の制御装置
JP2014064729A (ja) 2012-09-26 2014-04-17 Taiyo Elec Co Ltd 遊技機
JP2014533920A (ja) 2011-11-17 2014-12-15 コミサリア ア レネルジ アトミクエ オウ エネルジ アルタナティヴ 電気化学セルを含むdc電圧源
JP2016203677A (ja) 2015-04-16 2016-12-08 日立オートモティブシステムズ株式会社 制動制御装置または制動制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236109A (ja) 2006-03-01 2007-09-13 Mitsubishi Fuso Truck & Bus Corp 電気自動車の制御装置
JP2014533920A (ja) 2011-11-17 2014-12-15 コミサリア ア レネルジ アトミクエ オウ エネルジ アルタナティヴ 電気化学セルを含むdc電圧源
JP2014064729A (ja) 2012-09-26 2014-04-17 Taiyo Elec Co Ltd 遊技機
JP2016203677A (ja) 2015-04-16 2016-12-08 日立オートモティブシステムズ株式会社 制動制御装置または制動制御方法

Also Published As

Publication number Publication date
JP2022083134A (ja) 2022-06-03

Similar Documents

Publication Publication Date Title
JP4648054B2 (ja) ハイブリッド車両,電動駆動装置用制御装置及び電動駆動装置
JP4193704B2 (ja) 電源装置およびそれを搭載する自動車
JP4835383B2 (ja) 電力供給ユニットの制御装置および制御方法、その方法をコンピュータに実現させるためのプログラム、そのプログラムを記録した記録媒体
US20220161663A1 (en) Motor Vehicle
JP7068893B2 (ja) 車両電源システム
JP7081959B2 (ja) 車両電源システム
JP2010247725A (ja) 電動車両の電源制御装置
JP4775522B2 (ja) 電気駆動式車両
JP6989431B2 (ja) 車両電源システム
JPH07123514A (ja) 電気車および電気車の走行制御方法
JP7479631B2 (ja) 電動車両
JP7432896B2 (ja) 電動車両
JP7096046B2 (ja) 車両電源システム
JP7081958B2 (ja) 車両電源システム
JP2010215106A (ja) ハイブリッド車両の制御システム
JP2010178506A (ja) 電池ハイブリッドシステム及びその使用方法
JP4399838B2 (ja) 動力供給装置の運転制御装置
JP5737329B2 (ja) 車両用誘導電動機制御装置
JP3824896B2 (ja) 燃料電池自動車
JP5621633B2 (ja) 電源装置
WO2023033108A1 (ja) 電動車両
JP2010288414A (ja) 車両の電源装置
WO2023203901A1 (ja) 電動車両
US11718201B2 (en) Motor vehicle
JP2012125051A (ja) 電気自動車の電源制御装置

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240416

R150 Certificate of patent or registration of utility model

Ref document number: 7479631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150