JP7449995B2 - 複合材の分断方法 - Google Patents

複合材の分断方法 Download PDF

Info

Publication number
JP7449995B2
JP7449995B2 JP2022149739A JP2022149739A JP7449995B2 JP 7449995 B2 JP7449995 B2 JP 7449995B2 JP 2022149739 A JP2022149739 A JP 2022149739A JP 2022149739 A JP2022149739 A JP 2022149739A JP 7449995 B2 JP7449995 B2 JP 7449995B2
Authority
JP
Japan
Prior art keywords
brittle material
laser light
resin
light source
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022149739A
Other languages
English (en)
Other versions
JP2022176239A (ja
Inventor
直之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2022149739A priority Critical patent/JP7449995B2/ja
Publication of JP2022176239A publication Critical patent/JP2022176239A/ja
Application granted granted Critical
Publication of JP7449995B2 publication Critical patent/JP7449995B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/074Glass products comprising an outer layer or surface coating of non-glass material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Description

本発明は、脆性材料層と樹脂層とが積層された複合材を分断する方法に関する。特に、本発明は、分断後の脆性材料層の端面のクラックや、分断後の樹脂層の端面の深刻な熱劣化を生じさせることなく、複合材を分断可能な方法に関する。
テレビやパーソナルコンピュータに用いられる画像表示装置の最表面側には、多くの場合、画像表示装置を保護するための保護材が配置されている。保護材として、代表的には、ガラス板が使用されている。
しかしながら、スマートフォン、スマートウォッチ、車載ディスプレイ等に用いられる画像表示装置のように、画像表示装置の小型化、薄型化、軽量化に伴い、保護機能と光学機能とを兼ね備える薄型の保護材に対する要望が高まっている。このような保護材としては、例えば、保護機能を奏するガラス等の脆性材料層と、光学機能を奏する偏光フィルム等の樹脂層とが積層された複合材が挙げられる。この複合材は、用途に応じた所定形状・所定寸法に分断する必要がある。
従来、ガラス等の脆性材料を分断する方法として、ウォータージェット加工、レーザ加工、エンドミル加工、打ち抜き加工等が知られている。これらの分断方法は、分断後の脆性材料の端面の品質を改善するために、端面の研磨処理、洗浄処理及び乾燥処理(これらをポスト処理という)を必要とし、プロセスコストが高い。また、これらの分断方法を脆性材料層と樹脂層とが積層された複合材に適用した場合には、研磨処理で樹脂層が剥がれたり、洗浄処理で樹脂層が洗浄液に浸されることで品質低下を招くおそれがある。
一方、前述のレーザ加工で用いられるレーザ光源とは異なる超短パルスレーザ光源から発振したレーザ光(超短パルスレーザ光)をガラス等の脆性材料に照射することで、脆性材料を精密加工する技術が知られている(例えば、特許文献1参照)。特許文献1に記載のような超短パルスレーザ光を用いた加工技術は、生産性に優れ、加工後の端面にクラックを生じさせることなく品質にも優れるため、品質要求レベルによっては端面の研磨処理等のポスト処理が不要となり得る画期的な技術である。
しかしながら、超短パルスレーザ光を用いた加工技術は、ガラス等の脆性材料単体には有効であるものの、脆性材料層と樹脂層とが積層された複合材を一括して分断するのに用いるのは、分断後の端面の品質低下を招くために困難である。例えば、複合材の脆性材料層側から超短パルスレーザ光を照射したとしても、脆性材料層を形成する脆性材料の除去に消費されずに透過した超短パルスレーザ光によって樹脂層の端面が熱劣化してしまう。
なお、非特許文献1には、超短パルスレーザ光を用いた加工技術において、超短パルスレーザ光のフィラメンテーション現象を利用することや、超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することが記載されている。
特許第6239461号公報
ジョン ロペス(John Lopez)他、"超短パルスベッセルビームを用いたガラス切断(GLASS CUTTING USING ULTRASHORT PULSED BESSEL BEAMS)"、[online]、2015年10月、International Congress on Applications of Lasers & Electro-Optics (ICALEO)、[平成29年12月20日検索]、インターネット(URL:https://www.researchgate.net/publication/284617626_GLASS_CUTTING_USING_ULTRASHORT_PULSED_BESSEL_BEAMS)
本発明は、上記のような従来技術の問題点を解決するためになされたものであり、分断後の脆性材料層の端面のクラックや、分断後の樹脂層の端面の深刻な熱劣化を生じさせることなく、複合材を分断可能な方法を提供することを課題とする。
前記課題を解決するため、本発明者は鋭意検討した結果、一般的なレーザ加工で用いられるレーザ光源から発振したレーザ光を樹脂層に照射して樹脂層を形成する樹脂を除去した後に、超短パルスレーザ光源から発振したレーザ光を脆性材料層に照射して脆性材料層を形成する脆性材料を除去すれば、分断後の脆性材料層の端面のクラックや、分断後の樹脂層の端面の深刻な熱劣化を生じさせることなく、複合材を分断可能であることを見出し、本発明を完成した。
すなわち、前記課題を解決するため、本発明は、第1の方法として、脆性材料層と樹脂層とが積層された複合材を分断する方法であって、CO レーザ光源又はCOレーザ光源から発振したレーザ光を前記複合材の分断予定線に沿って前記樹脂層に照射して前記樹脂層を形成する樹脂を除去することで、前記分断予定線に沿った加工溝を形成する樹脂除去工程と、前記樹脂除去工程の後、超短パルスレーザ光源から発振したレーザ光を前記分断予定線に沿って前記脆性材料層に照射して前記脆性材料層を形成する脆性材料を除去することで、前記分断予定線に沿った加工痕を形成する脆性材料除去工程と、前記脆性材料除去工程の後、前記分断予定線に沿って外力を加えることで、前記複合材を分断する複合材分断工程と、を含み、前記脆性材料層の厚みは、20μm以上200μm以下であり、前記脆性材料除去工程で形成する加工痕は、前記分断予定線に沿ったミシン目状の貫通孔であり、該貫通孔のピッチが10μm以下であり、前記脆性材料除去工程において、前記超短パルスレーザ光源から発振したレーザ光のフィラメンテーション現象を利用して、或いは、前記超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することで、前記脆性材料層を形成する脆性材料を除去する、ことを特徴とする複合材の分断方法を提供する。
本発明に係る第1の方法によれば、樹脂除去工程において、樹脂層を形成する樹脂を除去することで、分断予定線に沿った加工溝を形成した後、脆性材料除去工程において、脆性材料層を形成する脆性材料を除去することで、同じ分断予定線に沿った加工痕を形成する。脆性材料除去工程で形成する加工痕は、分断予定線に沿ったミシン目状の貫通孔であり、該貫通孔のピッチが10μm以下と小さいため、複合材分断工程において、分断予定線に沿って外力を加えることで、複合材を比較的容易に分断可能である。
本発明に係る第1の方法によれば、脆性材料除去工程において、超短パルスレーザ光源から発振したレーザ光を脆性材料層に照射して脆性材料層を形成する脆性材料を除去するため、分断後の脆性材料層の端面にクラックが生じない。また、本発明に係る第1の方法によれば、脆性材料除去工程の前に、樹脂除去工程において、CO レーザ光源又はCOレーザ光源から発振したレーザ光を樹脂層に照射して樹脂層を形成する樹脂を除去するため、分断後の樹脂層の端面に深刻な熱劣化が生じない。すなわち、本発明に係る第1の方法によれば、分断後の脆性材料層の端面のクラックや、分断後の樹脂層の端面の深刻な熱劣化を生じさせることなく、複合材を分断可能である。
本発明に係る第1の方法によれば、脆性材料除去工程において、超短パルスレーザ光源から発振したレーザ光のフィラメンテーション現象を利用して、或いは、超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することで、脆性材料層を形成する脆性材料を除去するため、脆性材料層に寸法精度の良い加工痕を形成可能である。
なお、本発明に係る第1の方法において、「レーザ光を前記複合材の分断予定線に沿って前記樹脂層に照射」とは、複合材の厚み方向(脆性材料層と樹脂層との積層方向)から見て、分断予定線に沿ってレーザ光を樹脂層に照射することを意味する。また、本発明に係る第1の方法において、「レーザ光を前記分断予定線に沿って前記脆性材料層に照射」とは、複合材の厚み方向(脆性材料層と樹脂層との積層方向)から見て、分断予定線に沿ってレーザ光を脆性材料層に照射することを意味する。後述の本発明に係る第2の方法についても同様である。
また、本発明に係る第1の方法において、樹脂除去工程において用いるレーザ光源としては、複合材に対するレーザ光の相対的な移動速度(加工速度)を高めることが可能である点で、赤外域の波長のレーザ光を発振するCOレーザ光源やCOレーザ光源用いられる。後述の本発明に係る第2の方法についても同様である。
本発明に係る第1の方法では、脆性材料除去工程で形成する加工痕がミシン目状の貫通孔であるため、複合材を分断するには、脆性材料除去工程の後に、分断予定線に沿って外力を加える複合材分断工程が必要である。
しかしながら、脆性材料除去工程において、超短パルスレーザ光源から発振したレーザ光と脆性材料層との分断予定線に沿った相対移動速度を小さく設定するか、超短パルスレーザ光源のパルス発振の繰り返し周波数を大きく設定すれば、分断予定線に沿って一体的に繋がった貫通孔(長孔)が形成されるため、脆性材料を除去した後に分断予定線に沿った外力を加えなくても、複合材が分断されることになる。
すなわち、前記課題を解決するため、本発明は、第2の方法として、脆性材料層と樹脂層とが積層された複合材を分断する方法であって、CO レーザ光源又はCOレーザ光源から発振したレーザ光を前記複合材の分断予定線に沿って前記樹脂層に照射することで、前記樹脂層を形成する樹脂を除去し、前記分断予定線に沿った加工溝を形成する樹脂除去工程と、前記樹脂除去工程の後、超短パルスレーザ光源から発振したレーザ光を前記分断予定線に沿って前記脆性材料層に照射して前記脆性材料層を形成する脆性材料を除去することで、前記複合材を分断する脆性材料除去工程と、を含み、前記脆性材料層の厚みは、20μm以上200μm以下であり、前記脆性材料除去工程において、前記超短パルスレーザ光源から発振したレーザ光のフィラメンテーション現象を利用して、或いは、前記超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することで、前記脆性材料層を形成する脆性材料を除去する、ことを特徴とする複合材の分断方法としても提供される。
本発明に係る第2の方法によっても、分断後の脆性材料層の端面のクラックや、分断後の樹脂層の端面の深刻な熱劣化を生じさせることなく、複合材を分断可能である。
本発明に係る第1及び第2の方法において、樹脂除去工程で樹脂層を形成する樹脂を除去して形成した加工溝の底部に樹脂の残渣が生じる場合がある。この場合に、脆性材料除去工程において、加工溝側から脆性材料層に超短パルスレーザ光源から発振したレーザ光を照射すると、レーザ光が樹脂の残渣の影響を受けて、脆性材料層に分断するのに適切な加工痕を形成できないおそれがある。一方で、レーザ光源から発振するレーザ光のパワーを過度に高めて樹脂を確実に除去して加工溝を形成しようとした場合、脆性材料層のダメージを回避することは容易ではない。ダメージを受けて歪んだ脆性材料層に対して、超短パルスレーザ光源から発振したレーザ光を加工溝側から照射しても、やはり適切な加工痕を形成できないおそれがある。
上記のように、脆性材料層に適切な加工痕を形成できないおそれを回避するには、本発明に係る第1及び第2の方法の前記脆性材料層除去工程において、前記超短パルスレーザ光源から発振したレーザ光を前記樹脂層除去工程で形成した前記加工溝と反対側から前記脆性材料層に照射することが好ましい。
上記の好ましい方法によれば、超短パルスレーザ光源から発振したレーザ光を加工溝と反対側から照射するため、たとえ加工溝の底部に樹脂の残渣が生じていたとしても、残渣の影響を受けることなく、脆性材料層に適切な加工痕を形成可能である。
或いは、脆性材料層に適切な加工痕を形成できないおそれを回避するには、本発明に係る第1及び第2の方法において、前記樹脂除去工程で形成した前記加工溝を前記脆性材料除去工程の前にクリーニングすることで、前記樹脂層を形成する樹脂の残渣を除去するクリーニング工程を更に含み、前記脆性材料除去工程において、前記加工溝側から前記脆性材料層に前記超短パルスレーザ光源から発振したレーザ光を照射することが好ましい。
上記の好ましい方法によれば、クリーニング工程において、樹脂層を形成する樹脂の残渣を除去するため、脆性材料除去工程において、加工溝側から脆性材料層に超短パルスレーザ光源から発振したレーザ光を照射しても、レーザ光が樹脂の残渣の影響を受けず、脆性材料層に適切な加工痕を形成可能である。
本発明に係る第1及び第2の方法において、前記樹脂層としては、偏光フィルム等の光学フィルムを例示できる。
本発明によれば、分断後の脆性材料層の端面のクラックや、分断後の樹脂層の端面の深刻な熱劣化を生じさせることなく、複合材を分断可能である。
本発明の第1実施形態に係る複合材の分断方法の手順を模式的に説明する説明図である。 本発明の第1実施形態に係る複合材の分断方法の手順を模式的に説明する説明図である。 本発明の第3実施形態に係る複合材の分断方法の手順を模式的に説明する説明図である。 実施例1に係る試験の概要を模式的に説明する図である。
<第1実施形態>
以下、添付図面を適宜参照しつつ、本発明の第1実施形態に係る複合材の分断方法について説明する。
図1及び図2は、本発明の第1実施形態に係る複合材の分断方法の手順を模式的に説明する説明図である。図1(a)は第1実施形態に係る分断方法の樹脂除去工程を示す断面図であり、図1(b)は第1実施形態に係る分断方法の脆性材料除去工程を示す断面図であり、図1(c)は第1実施形態に係る分断方法の複合材分断工程を示す断面図である。図2(a)は第1実施形態に係る分断方法の脆性材料除去工程を示す平面図であり、図2(b)は第1実施形態に係る分断方法の脆性材料除去工程を示す斜視図である。なお、図2において、超短パルスレーザ光源30の図示は省略している。
第1実施形態に係る分断方法は、脆性材料層1と樹脂層2とが積層された複合材10を厚み方向(脆性材料層1と樹脂層2との積層方向、図1の上下方向、Z方向)に分断する方法である。
脆性材料層1と樹脂層2とは、任意の適切な方法によって積層される。例えば、脆性材料層1と樹脂層2とは、いわゆるロール・トゥ・ロール方式によって積層可能である。すなわち、長尺の脆性材料層1と長尺の樹脂層2とを長手方向に搬送しながら、互いの長手方向を揃えるようにして互いに貼り合わせることで、脆性材料層1と樹脂層2とを積層可能である。また、脆性材料層1と樹脂層2とをそれぞれ所定形状に切断した後、積層することも可能である。脆性材料層1と樹脂層2とは、代表的には、任意の適切な粘着剤や接着剤(図示せず)を介して積層される。
脆性材料層1を形成する脆性材料としては、ガラス、及び単結晶又は多結晶シリコンを例示できる。
ガラスとしては、組成による分類によれば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス、及びサファイアガラスを例示できる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスを例示できる。ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の含有量は、好ましくは15重量%以下であり、更に好ましくは10重量%以下である。
脆性材料層1の厚みは、好ましくは200μm以下であり、より好ましくは150μm以下であり、更に好ましくは120μm以下であり、特に好ましくは100μm以下である。一方、脆性材料層1の厚みは、好ましくは5μm以上であり、より好ましくは20μm以上である。脆性材料層1の厚みがこのような範囲であれば、ロール・トゥ・ロールによる樹脂層2との積層が可能になる。
脆性材料層1を形成する脆性材料がガラスである場合、脆性材料層1の波長550nmにおける光透過率は、好ましくは85%以上である。脆性材料層1を形成する脆性材料がガラスである場合、脆性材料層1の波長550nmにおける屈折率は、好ましくは1.4~1.65である。脆性材料層1を形成する脆性材料がガラスである場合、脆性材料層1の密度は、好ましくは2.3g/cm~3.0g/cmであり、更に好ましくは2.3g/cm~2.7g/cmである。
脆性材料層1を形成する脆性材料がガラスである場合、脆性材料層1として、市販のガラス板をそのまま用いてもよく、市販のガラス板を所望の厚みになるように研磨して用いてもよい。市販のガラス板としては、例えば、コーニング社製「7059」、「1737」又は「EAGLE2000」、旭硝子社製「AN100」、NHテクノグラス社製「NA-35」、日本電気硝子社製「OA-10」、ショット社製「D263」又は「AF45」が挙げられる。
樹脂層2としては、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルメタクリレート(PMMA)などのアクリル樹脂、環状オレフィンポリマー(COP)、環状オレフィンコポリマー(COC)、ポリカーボネート(PC)、ウレタン樹脂、ポリビニルアルコール(PVA)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、トリアセチルセルロース(TAC)、ポリエチレンナフタレート(PEN)、エチレン-酢酸ビニル(EVA)、ポリアミド(PA)、シリコーン樹脂、エポキシ樹脂、液晶ポリマー、各種樹脂製発泡体などのプラスチック材料で形成された単層フィルム、又は複数の層からなる積層フィルムを例示できる。
樹脂層2が複数の層からなる積層フィルムである場合、層間に、アクリル粘着剤、ウレタン粘着剤、シリコーン粘着剤などの各種粘着剤や、接着剤が介在してもよい。
また、樹脂層2の表面に、酸化インジウムスズ(ITO)、Ag、Au、Cuなどの導電性の無機膜が形成されていてもよい。
第1実施形態に係る分断方法は、特に樹脂層2がディスプレイに用いられる偏光フィルムや位相差フィルム等の各種光学フィルムである場合に好適に用いられる。
樹脂層2の厚みは、好ましくは20~500μmである。
なお、図1に示す例では、樹脂層2が、偏光フィルム21と剥離ライナー23とが粘着剤22を介して積層された積層フィルムである例を図示している。
第1実施形態に係る分断方法は、樹脂除去工程と、脆性材料除去工程と、複合材分断工程と、を含んでいる。以下、各工程について順に説明する。
[樹脂除去工程]
図1(a)に示すように、樹脂除去工程では、レーザ光源20から発振したレーザ光L1を複合材10の分断予定線に沿って樹脂層2に照射して樹脂層2を形成する樹脂を除去することで、分断予定線に沿った加工溝24を形成する。
図1及び図2に示す例では、複合材10の面内(XY2次元平面内)の直交する2方向(X方向及びY方向)のうち、Y方向に延びる直線DLが分断予定線である場合を図示している。分断予定線DLは、視覚的に認識できる表示として実際に複合材10に描くことも可能であるし、レーザ光L1と複合材10とのXY2次元平面上での相対的な位置関係を制御する制御装置(図示せず)にその座標を予め入力しておくことも可能である。図1及び図2に示す分断予定線DLは、制御装置にその座標が予め入力されており、実際には複合材10に描かれていない仮想線である。なお、分断予定線DLは、直線に限るものではなく、曲線であってもよい。複合材10の用途に応じて分断予定線DLを決定することで、複合材10を用途に応じた任意の形状に分断可能である。
第1実施形態では、レーザ光源20として、発振するレーザ光L1の波長が赤外域の9~11μmであるCOレーザ光源を用いている。
ただし、本発明はこれに限るものではなく、レーザ光源20として、発振するレーザ光L1の波長が5μmであるCOレーザ光源を用いることも可能である。
また、レーザ光源20として、可視光及び紫外線(UV)パルスレーザ光源を用いることも可能である。可視光及びUVパルスレーザ光源としては、発振するレーザ光L1の波長が532nm、355nm、349nm又は266nm(Nd:YAG、Nd:YLF、又はYVO4を媒質とする固体レーザ光源の高次高調波)であるもの、発振するレーザ光L1の波長が351nm、248nm、222nm、193nm又は157nmであるエキシマレーザ光源、発振するレーザ光L1の波長が157nmであるF2レーザ光源を例示できる。
また、レーザ光源20として、発振するレーザ光L1の波長が紫外域以外であり、なお且つパルス幅がフェムト秒又はピコ秒オーダーのパルスレーザ光源を用いることも可能である。このパルスレーザ光源から発振するレーザ光L1を用いれば、多光子吸収過程に基づくアブレーション加工を誘発可能である。
さらに、レーザ光源20として、発振するレーザ光L1の波長が赤外域である半導体レーザ光源やファイバーレーザ光源を用いることも可能である。
前述のように、本実施形態では、レーザ光源20としてCOレーザ光源を用いているため、以下、レーザ光源20を「COレーザ光源20」と称する。
レーザ光L1を複合材10の分断予定線に沿って照射する態様(レーザ光L1を走査する態様)としては、例えば、枚葉状の複合材10をXY2軸ステージ(図示せず)に載置して固定(例えば、吸着固定)し、制御装置からの制御信号によってXY2軸ステージを駆動することで、レーザ光L1に対する複合材10のXY2次元平面上での相対的な位置を変更することが考えられる。また、複合材10の位置を固定し、制御装置からの制御信号によって駆動するガルバノミラーやポリゴンミラーを用いてCOレーザ光源20から発振したレーザ光L1を偏向させることで、複合材10に照射されるレーザ光L1のXY2次元平面上での位置を変更することも考えられる。更には、上記のXY2軸ステージを用いた複合材10の走査と、ガルバノミラー等を用いたレーザ光L1の走査との双方を併用することも可能である。
COレーザ光源20の発振形態は、パルス発振でも連続発振でもよい。レーザ光L1の空間強度分布は、ガウシアン分布でもよいし、レーザ光L1の除去対象外である脆性材料層1のダメージを抑制するため、回折光学素子(図示せず)等を用いて、フラットトップ分布に整形してもよい。レーザ光L1の偏光状態に制約はなく、直線偏光、円偏光及びランダム偏光の何れであってもよい。
レーザ光L1を複合材10の分断予定線DLに沿って樹脂層2(偏光フィルム21、粘着剤22及び剥離ライナー23からなる積層フィルム)に照射することで、樹脂層2を形成する樹脂のうち、レーザ光L1が照射された樹脂(偏光フィルム21、粘着剤22及び剥離ライナー23のレーザ光L1が照射された部分)の赤外光吸収に伴う局所的な温度上昇が生じて当該樹脂が飛散することで、当該樹脂が複合材10から除去され、複合材10に加工溝24が形成される。複合材10から除去される樹脂の飛散物が複合材10に再付着することを抑制するには、分断予定線DL近傍に集塵機構を設けることが好ましい。加工溝24の溝幅が大きくなるのを抑制するには、樹脂層2への照射位置におけるスポット径が300μm以下となるようにレーザ光L1を集光することが好ましく、スポット径が200μm以下となるようにレーザ光L1を集光することが更に好ましい。
なお、本発明者の知見によれば、レーザ光L1が照射された樹脂の赤外光吸収に伴う局所的な温度上昇を原理とする樹脂の除去方法の場合、樹脂の種類や樹脂層2の層構造に関わらず、樹脂層2の厚みによって、加工溝24を形成するのに必要な投入エネルギーを概ね見積もることが可能である。具体的には、加工溝24を形成するのに必要な以下の式(1)で表わされる投入エネルギーを、樹脂層2の厚みに基づき、以下の式(2)によって見積もることが可能である。
投入エネルギー[mJ/mm]=レーザ光L1の平均パワー[mW]/加工速度[mm/sec] ・・・(1)
投入エネルギー[mJ/mm]=0.5×樹脂層2の厚み[μm] ・・・(2)
実際に設定する投入エネルギーは、上記の式(2)で見積もった投入エネルギーの20%~180%に設定することが好ましく、50%~150%に設定することが更に好ましい。このように見積もった投入エネルギーに対してマージンを設けるのは、樹脂層2を形成する樹脂の光吸収率(レーザ光L1の波長における光吸収率)や、樹脂の融点・分解点等の熱物性の違いによって、加工溝24を形成するのに必要な投入エネルギーに差異が生じることを考慮しているからである。具体的には、例えば、第1実施形態に係る分断方法を適用する複合材10のサンプルを用意し、上記の好ましい範囲内の複数の投入エネルギーでこのサンプルの樹脂層2に加工溝24を形成する予備試験を行って、適切な投入エネルギーを決定すればよい。
[脆性材料除去工程]
図1(b)及び図2に示すように、脆性材料除去工程では、樹脂除去工程の後、超短パルスレーザ光源30から発振(パルス発振)したレーザ光(超短パルスレーザ光)L2を分断予定線DLに沿って脆性材料層1に照射して脆性材料層1を形成する脆性材料を除去することで、分断予定線DLに沿った加工痕11を形成する。
レーザ光L2を分断予定線DLに沿って照射する態様(レーザ光L2を走査する態様)としては、前述のレーザ光L1を分断予定線DLに沿って照射する態様と同じ態様を採用できるため、ここでは詳細な説明を省略する。
脆性材料層1を形成する脆性材料は、超短パルスレーザ光源30から発振したレーザ光L2のフィラメンテーション現象を利用して、或いは、超短パルスレーザ光源30にマルチ焦点光学系(図示せず)又はベッセルビーム光学系(図示せず)を適用することで、除去される。
なお、超短パルスレーザ光のフィラメンテーション現象を利用することや、超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することについては、前述の非特許文献1に記載されている。また、ドイツのTrumpf社から、超短パルスレーザ光源にマルチ焦点光学系を適用したガラス加工に関する製品が販売されている。このように、超短パルスレーザ光のフィラメンテーション現象を利用することや、超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することについては公知であるため、ここでは詳細な説明を省略する。
第1実施形態の脆性材料除去工程で形成する加工痕11は、分断予定線DLに沿ったミシン目状の貫通孔である。貫通孔のピッチPは、パルス発振の繰り返し周波数と、複合材10に対するレーザ光L2の相対的な移動速度(加工速度)とによって決まる。後述の複合材分断工程を簡便且つ安定的に行うために、貫通孔のピッチPは、10μm以下に設定される。より好ましくは、貫通孔のピッチPは、5μm以下に設定される。貫通孔の直径は5μm以下で形成される場合が多い。
超短パルスレーザ光源30から発振するレーザ光L2の波長は、脆性材料層1を形成する脆性材料がガラスである場合に高い光透過率を示す500nm~2500nmであることが好ましい。非線形光学現象(多光子吸収)を効果的に引き起こすため、レーザ光L2のパルス幅は、100ピコ秒以下であることが好ましく、50ピコ秒以下であることが更に好ましい。レーザ光L2の発振形態は、シングルパルス発振でも、バーストモードのマルチパルス発振でもよい。
第1実施形態の脆性材料除去工程では、超短パルスレーザ光源30から発振したレーザ光L2を樹脂除去工程で形成した加工溝24と反対側から脆性材料層1に照射している。図1(a)、(b)に示す例では、樹脂層2に対向するように、COレーザ光源20を複合材10に対してZ方向下側に配置し、脆性材料層1に対向するように、超短パルスレーザ光源30を複合材10に対してZ方向上側に配置している。そして、樹脂除去工程においてCOレーザ光源20から発振したレーザ光L1で加工溝24を形成した後、レーザ光L1の発振を停止し、脆性材料除去工程において超短パルスレーザ光源30から発振したレーザ光L2で加工痕11を形成している。
しかしながら、本発明はこれに限るものではなく、COレーザ光源20及び超短パルスレーザ光源30を複合材10に対していずれも同じ側(Z方向上側又は下側)に配置し、樹脂除去工程では樹脂層2をCOレーザ光源20に対向させ、脆性材料除去工程では脆性材料層1が超短パルスレーザ光源30に対向するように複合材10の上下を反転させる方法を採用することも可能である。
超短パルスレーザ光源30から発振したレーザ光Lを加工溝24と反対側から照射すれば、たとえ加工溝24の底部に樹脂の残渣が生じていたとしても、残渣の影響を受けることなく、脆性材料層1に適切な加工痕11を形成可能である。
ただし、本発明は、これに限るものではなく、樹脂除去工程で形成した加工溝24を脆性材料除去工程の前にクリーニングすることで、樹脂層2を形成する樹脂の残渣を除去するクリーニング工程を更に含んでもよい。そして、脆性材料除去工程において、加工溝24側から脆性材料層1に超短パルスレーザ光源30から発振したレーザ光L2を照射して加工痕11を形成することも可能である。
クリーニング工程では、各種ウェット方式及びドライ方式のクリーニング方法を適用可能である。ウェット方式のクリーニング方法としては、薬液浸漬、超音波洗浄、ドライアイスブラスト、マイクロ及びナノファインバブル洗浄を例示できる。ドライ方式のクリーニング方法としては、レーザ、プラズマ、紫外線、オゾンなどを用いることが可能である。
クリーニング工程において、樹脂層2を形成する樹脂の残渣を除去するため、脆性材料除去工程において、加工溝24側から脆性材料層1に超短パルスレーザ光源30から発振したレーザ光L2を照射しても、レーザ光L2が樹脂の残渣の影響を受けず、脆性材料層1に適切な加工痕11を形成可能である。
[複合材分断工程]
図1(c)に示すように、複合材分断工程では、脆性材料除去工程の後、分断予定線DLに沿って外力を加えることで、複合材10を分断する。図1(c)に示す例では、複合材10は、複合材片10a、10bに分断される。
複合材10への外力の付加方法としては、機械的なブレイク(山折り)、赤外域レーザ光による切断予定線DLの近傍部位の加熱、超音波ローラによる振動付加、吸盤による吸着及び引き上げ等を例示できる。山折りによって複合材10を分断する場合には、脆性材料層1に引張り応力が作用するように、脆性材料層1を山側にして(樹脂層2を谷側にして)外力を加えることが好ましい。
以上に説明した第1実施形態に係る分断方法によれば、樹脂除去工程において、樹脂層2を形成する樹脂を除去することで、分断予定線DLに沿った加工溝24を形成した後、脆性材料除去工程において、脆性材料層1を形成する脆性材料を除去することで、同じ分断予定線DLに沿った加工痕11を形成する。脆性材料除去工程で形成する加工痕11は、分断予定線DLに沿ったミシン目状の貫通孔であり、該貫通孔のピッチが10μm以下と小さいため、複合材分断工程において、分断予定線DLに沿って外力を加えることで、複合材10を比較的容易に分断可能である。
また、第1実施形態に係る分断方法によれば、脆性材料除去工程において、超短パルスレーザ光源30から発振したレーザ光L2を脆性材料層1に照射して脆性材料層1を形成する脆性材料を除去するため、分断後の脆性材料層1の端面にクラックが生じない。また、第1実施形態に係る分断方法によれば、脆性材料除去工程の前に、樹脂除去工程において、COレーザ光源20から発振したレーザ光L1を樹脂層2に照射して樹脂層2を形成する樹脂を除去するため、分断後の樹脂層2の端面に深刻な熱劣化が生じない。すなわち、第1実施形態に係る分断方法によれば、分断後の脆性材料層1の端面のクラックや、分断後の樹脂層2の端面の深刻な熱劣化を生じさせることなく、複合材10を分断可能である。
<第2実施形態>
前述の第1実施形態に係る分断方法では、脆性材料除去工程で形成する加工痕11がミシン目状の貫通孔であるため、複合材10を分断するには、脆性材料除去工程の後に、分断予定線DLに沿って外力を加える複合材分断工程が必要である。
しかしながら、脆性材料除去工程において、超短パルスレーザ光源30から発振したレーザ光L2と脆性材料層1との分断予定線DLに沿った相対移動速度を小さく設定するか、超短パルスレーザ光源30のパルス発振の繰り返し周波数を大きく設定すれば、分断予定線DLに沿って一体的に繋がった貫通孔(長孔)が形成されるため、脆性材料を除去した後に分断予定線DLに沿った外力を加えなくても、複合材10が分断されることになる。
第2実施形態に係る分断方法は、分断予定線DLに沿った外力の付加が不要な方法である。
すなわち、第2実施形態に係る分断方法は、COレーザ光源20から発振したレーザ光L1を複合材10の分断予定線DLに沿って樹脂層2に照射することで、樹脂層2を形成する樹脂を除去し、分断予定線DLに沿った加工溝24を形成する樹脂除去工程と、樹脂除去工程の後、超短パルスレーザ光源30から発振したレーザ光L2を分断予定線DLに沿って脆性材料層1に照射して脆性材料層1を形成する脆性材料を除去することで、複合材10を分断する脆性材料除去工程と、を含んでいる。
第2実施形態に係る分断方法は、脆性材料除去工程において脆性材料を除去すると同時に複合材10を分断することで、第1実施形態に係る分断方法の複合材分断工程を不要とした点だけが、第1実施形態に係る分断方法と異なり、その他の手順については同じであるため、詳細な説明は省略する。
第2実施形態に係る分断方法によっても、分断後の脆性材料層1の端面のクラックや、分断後の樹脂層2の端面の深刻な熱劣化を生じさせることなく、複合材10を分断可能である。
<第3実施形態>
前述の第1実施形態及び第2実施形態では、脆性材料層1と樹脂層2とが一層ずつ積層された複合材10を厚み方向に分断する方法について説明したが、本発明はこれに限るものではなく、脆性材料層の両側にそれぞれ樹脂層が積層された複合材を厚み方向に分断する場合にも適用可能である。
図3は、本発明の第3実施形態に係る複合材の分断方法の手順を模式的に説明する説明図である。なお、図3において、COレーザ光源20及びレーザ光L1、並びに超短パルスレーザ光源30及びレーザ光L2の図示は省略している。また、図3において、複合材分断工程の図示は省略している。
図3(a)に示すように、第3実施形態に係る分断方法は、脆性材料層1の両側にそれぞれ樹脂層2a、2bが積層された複合材10Aを厚み方向(Z方向)に分断する方法である。脆性材料層1と樹脂層2a、2bとの積層方法、脆性材料層1や樹脂層2a、2bの形成材料等は、第1実施形態と同様であるので、詳細な説明は省略する。
第3実施形態に係る分断方法も、第1実施形態に係る分断方法と同様に、樹脂除去工程と、脆性材料除去工程と、複合材分断工程と、を含んでいる。以下、各工程について、第1実施形態と異なる点を主として説明する。
[樹脂除去工程]
図3(b)及び(c)に示すように、樹脂除去工程では、第1実施形態と同様に、COレーザ光源20から発振したレーザ光L1を複合材10Aの分断予定線DLに沿って樹脂層に照射して樹脂層を形成する樹脂を除去することで、分断予定線DLに沿った加工溝を形成する。ただし、第3実施形態では、脆性材料層1の両側にそれぞれ樹脂層2a、2bが積層されているため、図3(b)に示すように、何れか一方の樹脂層2aに加工溝24aを形成すると共に、図3(c)に示すように、他方の樹脂層2bに加工溝24bを形成する。図3(b)及び(c)に示す例では、先にZ方向下側の加工溝24aを形成した後、Z方向上側の加工溝24bを形成しているが、形成順序を逆にすることも無論可能である。
例えば、一対のCOレーザ光源20を、樹脂層2aに対向する側と、樹脂層2bに対向する側とにそれぞれ配置し、樹脂層2aに対向する側に配置されたCOレーザ光源20を用いて樹脂層2aに加工溝24aを形成し、樹脂層2bに対向する側に配置されたCOレーザ光源20を用いて樹脂層2bに加工溝24bを形成することができる。この場合には、加工溝24a及び加工溝24bを順番に形成するのではなく、加工溝24a及び加工溝24bを同時に形成することも可能である。
或いは、樹脂層2a及び樹脂層2bのうち何れか一方に対向する側に単一のCOレーザ光源20を配置し、COレーザ光源20を用いて一方の樹脂層2aに加工溝24aを形成(又は樹脂層2bに加工溝24bを形成)した後、複合材10Aの上下を反転させ、同じCOレーザ光源20を用いて他方の樹脂層2bに加工溝24bを形成(又は樹脂層2aに加工溝24aを形成)することも可能である。
[脆性材料除去工程]
図3(d)に示すように、脆性材料除去工程では、第1実施形態と同様に、樹脂除去工程の後、超短パルスレーザ光源30から発振したレーザ光L2を分断予定線DLに沿って脆性材料層1に照射して脆性材料層1を形成する脆性材料を除去することで、分断予定線DLに沿った加工痕11を形成する。第1実施形態と同様に、脆性材料除去工程で形成する加工痕11は、分断予定線DLに沿ったミシン目状の貫通孔であり、貫通孔のピッチは10μm以下に設定される。
第3実施形態では、脆性材料層1の両側に加工溝24a、24bが形成されるため、加工溝24a、24bのうち何れか一方の加工溝側から脆性材料層1に超短パルスレーザ光源30から発振したレーザ光L2を照射して加工痕11を形成することになる。このため、例えば、加工溝24a側からレーザ光L2を照射する場合には、加工溝24aを脆性材料除去工程の前にクリーニングすることで、樹脂層2aを形成する樹脂の残渣を除去するクリーニング工程を更に含むことが好ましい。加工溝24b側からレーザ光L2を照射する場合も同様に、加工溝24bを脆性材料除去工程の前にクリーニングすることで、樹脂層2bを形成する樹脂の残渣を除去するクリーニング工程を更に含むことが好ましい。
[複合材分断工程]
複合材分断工程では、第1実施形態と同様に、脆性材料除去工程の後、分断予定線DLに沿って外力を加えることで、複合材10Aを分断する。
ただし、第2実施形態と同様に、脆性材料除去工程において、分断予定線DLに沿って一体的に繋がった貫通孔(長孔)を形成すれば、脆性材料を除去した後に分断予定線DLに沿った外力を加えなくても、複合材10Aが分断されることになる。すなわち、脆性材料除去工程において脆性材料を除去すると同時に複合材10Aが分断されるため、分断予定線DLに沿って外力を加える複合材分断工程は不要である。
第3実施形態に係る分断方法によっても、分断後の脆性材料層1の端面のクラックや、分断後の樹脂層2a、2bの端面の深刻な熱劣化を生じさせることなく、複合材10Aを分断可能である。
以下、第1実施形態に係る分断方法(実施例)及び比較例に係る分断方法を用いて複合材10を分断する試験を行った結果の一例について説明する。
<実施例1>
図4は、実施例1に係る試験の概要を模式的に説明する図である。以下、図1及び図4を適宜参照しつつ、実施例1に係る試験の概要及び結果について説明する。
実施例1で用いた複合材10は、脆性材料層1が、無アルカリガラスから形成され、厚みが0.1mmである。また、樹脂層2が、偏光フィルム(ポリビニルアルコールで形成)21、粘着剤22及び剥離ライナー23で形成され、偏光フィルム21と粘着剤22の総厚みが0.08mmで、剥離ライナー23の厚みが0.04mmである(樹脂層2の総厚みは0.12mm)。図4に示すように、複合材10は、面内(XY2次元平面内)寸法が150mm×150mmの正方形状である。図4に破線で示す直線は分断予定線である。
実施例1では、樹脂除去工程において、COレーザ光源20として、コヒレント社製「E-400i」(発振波長9.4μm、パルス発振の繰り返し周波数25kHz、レーザ光L1のパワー18W、ガウシアンビーム)を用い、COレーザ光源20から発振したレーザ光L1を集光レンズを用いてスポット径120μmに集光し、複合材10の樹脂層2に照射した。複合材10に対するレーザ光L1の相対的な移動速度(加工速度)を400mm/secとし、図4に示すように、面内寸法が110mm×60mmの複合材片10cを分断できるように、分断予定線に沿ってレーザ光L1を走査したところ、溝幅150μmの加工溝24(図1参照)が形成された。
なお、実施例1の樹脂除去工程において、前述の式(2)によって見積もられる投入エネルギーは、60mJ/mmである。これに対し、実際の投入エネルギーは、前述の式(1)より、45mJ/mmであり、見積もった投入エネルギーの75%である。
次いで、脆性材料除去工程において、超短パルスレーザ光源30として、発振波長1064nm、レーザ光L2のパルス幅10ピコ秒、パルス発振の繰り返し周波数50kHz、平均パワー10Wのものを用い、超短パルスレーザ光源30から発振したレーザ光L2をマルチ焦点光学系を介して、加工溝24と反対側(脆性材料層1側)から複合材10の脆性材料層1に照射した。複合材10に対するレーザ光L2の相対的な移動速度(加工速度)を100mm/secとし、分断予定線に沿ってレーザ光L1を走査したところ、加工痕11として、ピッチが2μmのミシン目状の貫通孔(直径1~2μm程度)が形成された。
最後に、複合材分断工程において、分断予定線に沿って人手で複合材10を山折りすることで、複合材片10cを分断した。
以上に説明した実施例1によって得られた複合材片10cの端面の品質を光学顕微鏡で観察・評価した結果、4つの端面全てにおいて、脆性材料層1にクラックは生じていなかった。また、樹脂層2の熱劣化に伴う変色領域は、端面から内側に100μm以下であり、深刻な熱劣化が生じていなかった。
更に、複合材片10cに2点曲げ試験を行った。2点曲げ試験においては、まず図4(b)に示すように、固定部40、可動部50a、50bを具備する一軸ステージの固定部40に複合材片10cを載置し、可動部50a、50bの間に複合材片10cを挟み込んだ。次いで、図4(c)に示すように、可動部50aの位置を固定する一方、可動部50bを20mm/minの速度で可動部50aに向けて移動させ、複合材片10cに曲げ応力を作用させた。そして、複合材片10cが破壊したときの可動部50aと可動部50bとの間隔Lの値によって、複合材片10cの曲げ強度を評価した。
複合材片10cについての上記2点曲げ試験によって得られた曲げ強度(間隔L)は75mmであった。好ましい曲げ強度(間隔L)は85mm以下であるため、複合材片10cは十分な曲げ強度を有するといえる。
<実施例2>
脆性材料除去工程において、加工速度を150mm/secに変更した(これにより、加工痕11として、ピッチが3μmのミシン目状の貫通孔(直径1~2μm程度)が形成された)こと以外は実施例1と同じ条件で試験したところ、実施例1と同等の複合材片10cの端面品質及び曲げ強度を得ることができた。
<実施例3>
脆性材料除去工程において、パルス発振の繰り返し周波数を30kHzに変更すると共に、加工速度を250mm/secに変更した(これにより、加工痕11として、ピッチが8.3μmのミシン目状の貫通孔(直径1~2μm程度)が形成された)こと以外は実施例1と同じ条件で試験したところ、実施例1と同等の複合材片10cの端面品質及び曲げ強度を得ることができた。
<比較例1>
樹脂除去工程を実行しないこと以外は実施例1と同じ条件で試験したところ、樹脂層2に加工溝24が形成されていないため、複合材分断工程で山折りしても複合材片10cを分断することができず、無理矢理に樹脂層2を引きちぎって複合材片10cを分断したため、複合材片10cの端面の品質が劣化した。
<比較例2>
樹脂除去工程と脆性材料除去工程との順序を入れ替えること以外は実施例1と同じ条件で試験したところ、先に実行した脆性材料除去工程で樹脂層2の端面が熱劣化してしまった。得られた複合材片10cの曲げ強度は実施例1と同等であったが、樹脂層2の熱劣化に伴う変色領域は、端面から内側に200μmであり、実施例1よりも大きくなった。また、脆性材料層1と樹脂層2との界面に局所的な剥離が確認された。
<比較例3>
樹脂除去工程において、COレーザ光源20から発振するレーザ光L1のパワーを40Wに変更し、脆性材料除去工程を実行しないこと以外は実施例1と同じ条件で試験を行った。上記の樹脂除去工程において、樹脂層2に加工溝24が形成されると共に、脆性材料層1にも浅い筋が形成されたため、複合材分断工程において、この筋に沿って人手で複合材10を山折りしたものの、切断予定線通りに分断できず、複合材片10cの寸法精度が悪くなった。
<比較例4>
脆性材料除去工程において、加工速度を600mm/secに変更した(これにより、加工痕11として、ピッチが12μmのミシン目状の貫通孔(直径1~2μm程度)が形成された)こと以外は実施例1と同じ条件で試験したところ、複合材分断工程において、複合材片10cの分断はできたものの、切断予定線から外れた箇所が散見され、複合材片10cの寸法精度の低下を招いた。
1・・・脆性材料層
2・・・樹脂層
10・・・複合材
11・・・加工痕
20・・・COレーザ光源
24・・・加工溝
30・・・超短パルスレーザ光源
DL・・・分断予定線
L1・・・レーザ光
L2・・・レーザ光

Claims (5)

  1. 脆性材料層と樹脂層とが積層された複合材を分断する方法であって、
    CO レーザ光源又はCOレーザ光源から発振したレーザ光を前記複合材の分断予定線に沿って前記樹脂層に照射して前記樹脂層を形成する樹脂を除去することで、前記分断予定線に沿った加工溝を形成する樹脂除去工程と、
    前記樹脂除去工程の後、超短パルスレーザ光源から発振したレーザ光を前記分断予定線に沿って前記脆性材料層に照射して前記脆性材料層を形成する脆性材料を除去することで、前記分断予定線に沿った加工痕を形成する脆性材料除去工程と、
    前記脆性材料除去工程の後、前記分断予定線に沿って外力を加えることで、前記複合材を分断する複合材分断工程と、を含み、
    前記脆性材料層の厚みは、20μm以上200μm以下であり、
    前記脆性材料除去工程で形成する加工痕は、前記分断予定線に沿ったミシン目状の貫通孔であり、該貫通孔のピッチが10μm以下であり、
    前記脆性材料除去工程において、前記超短パルスレーザ光源から発振したレーザ光のフィラメンテーション現象を利用して、或いは、前記超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することで、前記脆性材料層を形成する脆性材料を除去する、
    ことを特徴とする複合材の分断方法。
  2. 脆性材料層と樹脂層とが積層された複合材を分断する方法であって、
    CO レーザ光源又はCOレーザ光源から発振したレーザ光を前記複合材の分断予定線に沿って前記樹脂層に照射することで、前記樹脂層を形成する樹脂を除去し、前記分断予定線に沿った加工溝を形成する樹脂除去工程と、
    前記樹脂除去工程の後、超短パルスレーザ光源から発振したレーザ光を前記分断予定線に沿って前記脆性材料層に照射して前記脆性材料層を形成する脆性材料を除去することで、前記複合材を分断する脆性材料除去工程と、を含み、
    前記脆性材料層の厚みは、20μm以上200μm以下であり、
    前記脆性材料除去工程において、前記超短パルスレーザ光源から発振したレーザ光のフィラメンテーション現象を利用して、或いは、前記超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することで、前記脆性材料層を形成する脆性材料を除去する、
    ことを特徴とする複合材の分断方法。
  3. 前記脆性材料除去工程において、前記超短パルスレーザ光源から発振したレーザ光を前記樹脂除去工程で形成した前記加工溝と反対側から前記脆性材料層に照射する、
    ことを特徴とする請求項1又は2に記載の複合材の分断方法。
  4. 前記樹脂除去工程で形成した前記加工溝を前記脆性材料除去工程の前にクリーニングすることで、前記樹脂層を形成する樹脂の残渣を除去するクリーニング工程を更に含み、
    前記脆性材料除去工程において、前記加工溝側から前記脆性材料層に前記超短パルスレーザ光源から発振したレーザ光を照射する、
    ことを特徴とする請求項1又は2に記載の複合材の分断方法。
  5. 前記樹脂層が光学フィルムである、
    ことを特徴とする請求項1からの何れかに記載の複合材の分断方法。
JP2022149739A 2018-01-12 2022-09-21 複合材の分断方法 Active JP7449995B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022149739A JP7449995B2 (ja) 2018-01-12 2022-09-21 複合材の分断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018003324A JP7182362B2 (ja) 2018-01-12 2018-01-12 複合材の分断方法
JP2022149739A JP7449995B2 (ja) 2018-01-12 2022-09-21 複合材の分断方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018003324A Division JP7182362B2 (ja) 2018-01-12 2018-01-12 複合材の分断方法

Publications (2)

Publication Number Publication Date
JP2022176239A JP2022176239A (ja) 2022-11-25
JP7449995B2 true JP7449995B2 (ja) 2024-03-14

Family

ID=67219528

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018003324A Active JP7182362B2 (ja) 2018-01-12 2018-01-12 複合材の分断方法
JP2022149739A Active JP7449995B2 (ja) 2018-01-12 2022-09-21 複合材の分断方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018003324A Active JP7182362B2 (ja) 2018-01-12 2018-01-12 複合材の分断方法

Country Status (7)

Country Link
US (1) US20200353567A1 (ja)
EP (1) EP3738709A4 (ja)
JP (2) JP7182362B2 (ja)
KR (1) KR20200105827A (ja)
CN (1) CN111587161A (ja)
TW (1) TWI832837B (ja)
WO (1) WO2019138967A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043999B2 (ja) * 2018-07-11 2022-03-30 日本電信電話株式会社 ハイブリッド光デバイスの溝作製方法およびハイブリッド光デバイス
US20220410319A1 (en) * 2019-11-22 2022-12-29 Mitsubishi Heavy Industries, Ltd. Laser processing method and laser processing device
JP7422526B2 (ja) 2019-12-03 2024-01-26 ダウ・東レ株式会社 シリコーン層を含む積層体の切断方法
KR20220148197A (ko) 2020-03-11 2022-11-04 닛토덴코 가부시키가이샤 복합재의 분단 방법
JPWO2022049824A1 (ja) 2020-09-04 2022-03-10
CN116096681A (zh) * 2020-09-14 2023-05-09 斯纳普公司 用于波导玻璃基板的优化的激光切割工艺
JP2022078515A (ja) * 2020-11-13 2022-05-25 日東電工株式会社 複層構造体及びその製造方法
TWI744135B (zh) * 2020-12-15 2021-10-21 鈦昇科技股份有限公司 貫通孔的多焦點雷射形成方法
JP2022190204A (ja) 2021-06-14 2022-12-26 日東電工株式会社 複合材の分断方法
CN117529689A (zh) 2021-07-28 2024-02-06 奥林巴斯株式会社 透镜单元的制造方法、透镜单元、摄像装置以及内窥镜
KR102522773B1 (ko) * 2021-08-09 2023-04-18 주식회사 도우인시스 레이저를 이용한 유리 절단 및 후처리 방법
JP2023025535A (ja) 2021-08-10 2023-02-22 日東電工株式会社 長尺積層体
KR102525405B1 (ko) * 2021-10-20 2023-04-25 주식회사 도우인시스 레이저를 이용한 코팅막 제거와 유리 절단 및 후처리 방법
JP2023089634A (ja) * 2021-12-16 2023-06-28 日東電工株式会社 シート材の分断方法
JP2023094076A (ja) * 2021-12-23 2023-07-05 日本電気硝子株式会社 積層体の製造方法
JP2023128345A (ja) * 2022-03-03 2023-09-14 日東電工株式会社 脆性材料チップ、脆性材料シート、脆性材料シートの製造方法及び脆性材料チップの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192478A (ja) 2005-01-14 2006-07-27 Nitto Denko Corp レーザー加工品の製造方法及びレーザー加工用保護シート
JP2008277414A (ja) 2007-04-26 2008-11-13 Disco Abrasive Syst Ltd ウエーハの分割方法
JP2010501457A (ja) 2006-08-24 2010-01-21 コーニング インコーポレイテッド フレキシブルディスプレイ用途のための薄い積層ガラス基板のレーザ分割
JP2016078038A (ja) 2014-10-10 2016-05-16 日立化成株式会社 積層体への貫通孔の形成方法
JP2016224307A (ja) 2015-06-01 2016-12-28 日東電工株式会社 両面粘着剤層付偏光フィルムおよび画像表示装置
JP2017508691A (ja) 2013-12-17 2017-03-30 コーニング インコーポレイテッド ディスプレイ用ガラス組成物のレーザ切断
JP2017509568A (ja) 2013-12-17 2017-04-06 コーニング インコーポレイテッド イオン交換可能なガラス基材のレーザ切断

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532168A (en) 1978-08-29 1980-03-06 Fujitsu Ltd Manuscript letter recognition system by stroke
US5622540A (en) * 1994-09-19 1997-04-22 Corning Incorporated Method for breaking a glass sheet
US6770544B2 (en) * 2001-02-21 2004-08-03 Nec Machinery Corporation Substrate cutting method
TWI469842B (zh) * 2010-09-30 2015-01-21 Mitsuboshi Diamond Ind Co Ltd 雷射加工裝置、被加工物之加工方法及被加工物之分割方法
JP6059059B2 (ja) * 2013-03-28 2017-01-11 浜松ホトニクス株式会社 レーザ加工方法
WO2015053167A1 (ja) * 2013-10-07 2015-04-16 日本電気硝子株式会社 板ガラスのレーザー切断方法および板ガラス
CN105481236A (zh) * 2014-07-14 2016-04-13 康宁股份有限公司 用于切割叠层结构的系统和方法
TW201603927A (zh) * 2014-07-29 2016-02-01 Youngtek Electronics Corp 雷射切割方法及其裝置
JP2016164101A (ja) * 2015-03-06 2016-09-08 三星ダイヤモンド工業株式会社 積層基板の加工方法及びレーザ光による積層基板の加工装置
US10981251B2 (en) * 2016-06-08 2021-04-20 Han's Laser Technology Industry Group Co., Ltd Method and device for cutting sapphire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192478A (ja) 2005-01-14 2006-07-27 Nitto Denko Corp レーザー加工品の製造方法及びレーザー加工用保護シート
JP2010501457A (ja) 2006-08-24 2010-01-21 コーニング インコーポレイテッド フレキシブルディスプレイ用途のための薄い積層ガラス基板のレーザ分割
JP2008277414A (ja) 2007-04-26 2008-11-13 Disco Abrasive Syst Ltd ウエーハの分割方法
JP2017508691A (ja) 2013-12-17 2017-03-30 コーニング インコーポレイテッド ディスプレイ用ガラス組成物のレーザ切断
JP2017509568A (ja) 2013-12-17 2017-04-06 コーニング インコーポレイテッド イオン交換可能なガラス基材のレーザ切断
JP2016078038A (ja) 2014-10-10 2016-05-16 日立化成株式会社 積層体への貫通孔の形成方法
JP2016224307A (ja) 2015-06-01 2016-12-28 日東電工株式会社 両面粘着剤層付偏光フィルムおよび画像表示装置

Also Published As

Publication number Publication date
JP2019122966A (ja) 2019-07-25
EP3738709A4 (en) 2021-12-01
JP2022176239A (ja) 2022-11-25
TWI832837B (zh) 2024-02-21
EP3738709A1 (en) 2020-11-18
KR20200105827A (ko) 2020-09-09
CN111587161A (zh) 2020-08-25
WO2019138967A1 (ja) 2019-07-18
TW201936309A (zh) 2019-09-16
US20200353567A1 (en) 2020-11-12
JP7182362B2 (ja) 2022-12-02

Similar Documents

Publication Publication Date Title
JP7449995B2 (ja) 複合材の分断方法
CN106132627B (zh) 用于对脆性材料进行划割并随后进行化学蚀刻的方法和系统
JP4776994B2 (ja) 加工対象物切断方法
JP4907984B2 (ja) レーザ加工方法及び半導体チップ
WO2011013556A1 (ja) 加工対象物切断方法
WO2011013549A1 (ja) 加工対象物切断方法
JP4527098B2 (ja) レーザ加工方法
JP2007118009A (ja) 積層体の加工方法
WO2021181766A1 (ja) 複合材の分断方法
WO2021009961A1 (ja) 複合材の分断方法
WO2022264623A1 (ja) 複合材の分断方法
WO2022049824A1 (ja) 複合材の分断方法及び複合材
WO2021009960A1 (ja) 複合材の分断方法
WO2024004545A1 (ja) シート材の分断方法及びシート材の分断装置
JP2003010986A (ja) レーザ加工方法
JP2003039186A (ja) レーザ加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7449995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150