WO2021181766A1 - 複合材の分断方法 - Google Patents

複合材の分断方法 Download PDF

Info

Publication number
WO2021181766A1
WO2021181766A1 PCT/JP2020/044790 JP2020044790W WO2021181766A1 WO 2021181766 A1 WO2021181766 A1 WO 2021181766A1 JP 2020044790 W JP2020044790 W JP 2020044790W WO 2021181766 A1 WO2021181766 A1 WO 2021181766A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
layer
light source
composite material
brittle material
Prior art date
Application number
PCT/JP2020/044790
Other languages
English (en)
French (fr)
Inventor
貴博 篠▲崎▼
伊藤 賢
敏広 菅野
宏太 仲井
俊樹 大峰
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2022505761A priority Critical patent/JPWO2021181766A1/ja
Priority to CN202080099699.5A priority patent/CN115485097A/zh
Priority to KR1020227031053A priority patent/KR20220148197A/ko
Publication of WO2021181766A1 publication Critical patent/WO2021181766A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • a resin optical functional layer for example, a polarizing film
  • a resin protective layer for example, a protective film
  • the present invention relates to a method of dividing a laminated composite material.
  • the present invention relates to a method capable of dividing a composite material without causing cracks in the end faces of the brittle material layer.
  • liquid crystal panels have become thinner and higher in definition, and liquid crystal panels equipped with a touch sensor function on the screen to give a variety of interfaces are available in a wide range of fields, from mobile phones to information displays. It has come to be used in. Recently, from the viewpoint of thinning and weight reduction, a liquid crystal panel having an in-cell type liquid crystal cell in which a touch sensor is incorporated in a glass substrate of the liquid crystal cell has appeared.
  • film-like glass called thin glass is attracting attention as a front plate arranged on the outermost surface of a liquid crystal panel. Since thin glass can be wound into a roll, it has an advantage that it can be applied to a so-called roll-to-roll manufacturing process, and a glass polarizing film integrated with a polarizing film has been proposed (for example, Patent Documents). 1). Since a glass polarizing film can be obtained as a liquid crystal panel equipped with a touch sensor function simply by attaching it to an in-cell type liquid crystal cell, the manufacturing process is different from that of a general liquid crystal panel using tempered glass as a front plate. It can be much simplified.
  • a composite material in which a brittle material layer formed of glass or the like and an optical functional layer formed of a polarizing film or the like are laminated is divided into a desired shape and size according to an application.
  • the method described in Patent Document 2 has been proposed.
  • a laser beam oscillated from a laser light source such as a CO 2 laser light source is applied to an optical functional layer (resin layer in Patent Document 2) of the composite material along a scheduled division line of the composite material.
  • the brittle material layer is irradiated with laser light (ultra-short pulse laser light) oscillated from the ultra-short pulse laser light source along the planned division line of the composite material.
  • laser light ultra-short pulse laser light
  • a composite material in which a brittle material layer formed of glass or the like and an optical functional layer formed of a polarizing film or the like are laminated has an optical function in the composite material piece after being divided.
  • a protective layer such as a protective film is laminated on the surface opposite to the surface of the brittle material layer on which the layers are laminated and shipped. Since it takes time and effort to execute the process of laminating the protective layer for each composite piece after division, the optical functional layer is laminated on one surface side of the brittle material layer in order to eliminate this time and effort and reduce the man-hours. Therefore, a method of simultaneously dividing a composite material in which a protective layer is laminated on the other surface side of the brittle material layer is desired.
  • Patent Document 2 proposes a method for simultaneously dividing a composite material in which an optical functional layer is laminated on one surface side of a brittle material layer and a protective layer is laminated on the other surface side of the brittle material layer.
  • Non-Patent Document 1 in the processing technique using the ultrashort pulse laser light, the filtration phenomenon of the ultrashort pulse laser light is used, and the multifocal optical system or the vessel beam optical system is used as the ultrashort pulse laser light source. It is stated that the system is applied.
  • the present invention has been made to solve the above-mentioned problems of the prior art, in which an optical functional layer made of resin is laminated on one surface side of the brittle material layer, and the other surface of the brittle material layer is laminated.
  • An object of the present invention is to provide a method for dividing a composite material in which a protective layer made of a resin is laminated on the side, and which is a method for dividing the composite material in which cracks do not occur on the end face of the brittle material layer.
  • a CO 2 laser light source is used in a composite material in which a resin optical functional layer is laminated on one surface side of the brittle material layer and a resin protective layer is laminated on the other surface side of the brittle material layer.
  • a processing groove (first processing groove) is formed in the optical functional layer along the scheduled division line of the composite material by the laser light oscillated from the above, and the scheduled division line of the composite material is formed by the laser light oscillated from the CO 2 laser light source or the like. It was considered to form a machined groove (second machined groove) in the protective layer along the above.
  • the laser light oscillated from the ultrashort pulse laser light source through the second processing groove I thought that it would be better to irradiate the brittle material layer along the planned division line of the composite material (ultrashort pulse laser light).
  • the present inventors actually conducted a test on the above method, when the output of the laser beam forming the second machined groove was small and the depth of the second machined groove was too small, the ultrashort pulse laser light was used. It was found that when the brittle material layer was irradiated with, it was not possible to form processing marks penetrating the brittle material layer in the thickness direction, and the composite material could not be divided. On the other hand, if the output of the laser beam forming the second processing groove is too large, the brittle material layer is thermally damaged, and when the brittle material layer is irradiated with the ultrashort pulse laser beam, the location of the thermal damage is the starting point.
  • the output of the laser beam for forming the second processed groove is set to an appropriate value so that processing marks can be formed on the brittle material layer and cracks do not occur on the end face of the brittle material layer. This requires extremely delicate adjustments and has proved difficult to automate.
  • the present inventors have formed the second machined groove so that the width of the second machined groove is equal to or larger than the spot diameter at the irradiation position of the brittle material layer of the ultrashort pulse laser beam. For example, they have found that the composite material can be divided without causing cracks in the end face of the brittle material layer without the need for fine adjustment of the laser beam output for forming the second processing groove, and completed the present invention. ..
  • a resin optical functional layer is laminated on one surface side of the brittle material layer, and a resin protective layer is laminated on the other surface side of the brittle material layer.
  • the laser light oscillated from the first laser light source is applied to the optical functional layer along the scheduled division line of the composite material to remove the resin forming the optical functional layer.
  • the width of the second machined groove is equal to or larger than the spot diameter at the irradiation position of the brittle material layer of the laser beam oscillated from the ultrashort pulse laser light source in the machined mark forming step.
  • the resin forming the optical functional layer and the resin forming the protective layer are removed to form the first processing groove and the second processing groove along the planned division line.
  • the brittle material forming the brittle material layer is removed from the second processing groove side to form processing marks along the same scheduled division line.
  • the width of the second machined groove formed in the machined groove forming step is the position where the laser beam (ultrashort pulse laser light) oscillated from the ultrashort pulse laser light source in the machined mark forming step irradiates the brittle material layer. It is formed so as to be equal to or larger than the spot diameter.
  • the brittle material layer can be divided without causing cracks in the end face of the brittle material layer.
  • the energy of the ultrashort pulse laser beam forms a protective layer by setting the width of the second processing groove to be equal to or larger than the spot diameter at the irradiation position of the brittle material layer of the ultrashort pulse laser beam. It becomes difficult to consume to remove the resin to be used, and is sufficiently used to remove the brittle material forming the brittle material layer, so that processing marks can be formed on the brittle material layer, and the brittle material can be formed. It is possible to prevent cracks from occurring on the end faces of the layer.
  • “irradiating the optical functional layer with a laser beam along the planned division line of the composite material” means the thickness direction of the composite material (optical functional layer, brittle material layer, and protective layer). Seen from the stacking direction), it means irradiating the optical functional layer with a laser beam along the planned division line.
  • “irradiating the protective layer with the laser beam along the planned division line” means from the thickness direction of the composite material (the direction in which the optical functional layer, the brittle material layer and the protective layer are laminated). Seeing, it means irradiating the protective layer with a laser beam along the planned division line.
  • “irradiating the brittle material layer from the second processing groove side along the planned division line” means the thickness direction of the composite material (the direction in which the optical functional layer, the brittle material layer and the protective layer are laminated). This means that the protective layer is irradiated with the laser beam from the second processing groove side along the planned division line.
  • “irradiation along the scheduled division line " means irradiating on the scheduled division line or irradiating in parallel with the scheduled division line at a position near the scheduled division line. do.
  • the "width of the second machined groove” means the dimension of the bottom portion of the second machined groove in the direction orthogonal to the planned division line.
  • the types of the first laser light source and the second laser light source used in the processing groove forming step are not particularly limited as long as the resin can be removed by the oscillated laser light. ..
  • the first laser light source and the second laser light source may be of the same type or may be of different types. Further, the first laser light source and the second laser light source do not necessarily have to be prepared separately, and the first laser light source can also be used as the second laser light source.
  • the first laser light source and the second laser light source are separately prepared, the first laser light source is arranged on the optical functional layer side, the second laser light source is arranged on the protective layer side, and the first laser light source is used.
  • the second processed groove may be formed in the protective layer using a second laser light source.
  • the first laser light source may be used to form the first processed groove in the optical functional layer.
  • the first laser light source is also used as the second laser light source
  • the first laser light source (second laser light source) is arranged on the side facing either one of the optical functional layer and the protective layer, and the first After forming a first machined groove in the optical functional layer (or forming a second machined groove in the protective layer) using a laser light source (second laser light source), the first one of the optical functional layer and the protective layer is the first.
  • the composite material is inverted so that the laser light source (second laser light source) faces each other, and the first laser light source (second laser light source) is used to form a second machined groove in the protective layer (or the first in the optical functional layer). It is also possible to form a machined groove).
  • the processing mark formed in the processing mark forming step for example, a perforated through hole along the planned division line as described in Patent Document 2 can be exemplified.
  • the composite material can be divided by applying an external force along the scheduled division line after the processing mark forming step.
  • Examples of the method of applying an external force to the composite material include mechanical break (mountain fold), heating of a portion near the planned cutting line by an infrared laser beam, vibration addition by an ultrasonic roller, adsorption and pulling by a suction cup, and the like. ..
  • the processing marks formed in the processing mark forming step are not necessarily limited to the perforated through holes.
  • the relative movement speed along the planned division line between the laser beam oscillated from the ultrashort pulse laser light source and the brittle material layer is set small, or the repetition frequency of pulse oscillation of the ultrashort pulse laser light source is increased. If set, through holes (long holes) integrally connected along the planned division line are formed as machining marks.
  • the brittle material layer can be divided without applying an external force along the planned division line after the processing mark forming step.
  • the brittle material layer may be divided, and then, for example, a mechanical external force may be applied to the optical functional layer to divide the composite material.
  • the width of the second machined groove formed in the machined groove forming step is applied to the brittle material layer of the laser light (ultra-short pulse laser light) oscillated from the ultra-short pulse laser light source in the machined mark forming step.
  • the irradiation position of the laser light oscillated from the second laser light source is shifted in the direction orthogonal to the planned division line, and the protective layer is irradiated with the laser light at each irradiation position.
  • the width of the second processed groove is ultrashort. It can be larger than the spot diameter at the irradiation position of the brittle material layer of the pulsed laser beam. That is, preferably, in the processing groove forming step, the irradiation position of the laser light oscillated from the second laser light source on the protective layer is shifted in a direction orthogonal to the scheduled division line, and the division schedule is performed at each irradiation position. After irradiating the protective layer with the laser beam along the line, the resin forming the protective layer existing between the irradiation positions is peeled off to form the second processed groove.
  • the laser beam oscillated from the second laser light source is orthogonal to the scheduled division line with reference to the planned division line. It is conceivable to irradiate the positions equidistant in the direction and peel off the resin forming the protective layer existing between them. As a result, after forming the second processing groove centered on the scheduled division line in the width direction, if the ultrashort pulse laser light is irradiated on the scheduled division line, the irradiation position of the laser light oscillated from the second laser light source and the irradiation position of the laser light oscillated from the second laser light source can be obtained.
  • the irradiation position of the ultrashort pulse laser beam is deviated by 1/2 of the width of the second processing groove. Therefore, if the output of the laser light oscillated from the second laser light source is set to a certain extent in the processing groove forming step, the resin forming the protective layer is removed, the surface of the brittle material layer is exposed, and some heat damage is caused. Even if it is received, it is difficult for the same portion to be irradiated with the ultrashort pulse laser beam, so that cracks are unlikely to occur on the end face of the brittle material layer.
  • the resin forming the protective layer existing between the irradiation positions can be peeled off by appropriately using a known peeling device.
  • the method of setting the width of the second machined groove formed in the machined groove forming step to be equal to or larger than the spot diameter at the irradiation position of the brittle material layer of the ultrashort pulse laser beam is limited to the above-mentioned peeling method. is not it.
  • the irradiation position of the laser light oscillated from the second laser light source on the protective layer is sequentially shifted in the direction orthogonal to the planned division line, and the laser light oscillated from the second laser light source is sequentially shifted to the planned division line at each irradiation position.
  • a method of forming the second processed groove by irradiating the protective layer with the laser beam along the line may be used. If the range for shifting the irradiation position of the laser beam oscillated from the second laser light source (the range in the direction orthogonal to the planned division line) is equal to or greater than the spot diameter at the irradiation position of the ultrashort pulse laser beam on the brittle material layer, the second The width of the machined groove can be made larger than the spot diameter at the irradiation position of the brittle material layer of the ultrashort pulse laser light.
  • the spot diameter at the irradiation position of the ultrashort pulse laser beam on the brittle material layer is, for example, 100 ⁇ m. Therefore, in the machined groove forming step, it is preferable to remove the resin forming the protective layer so that the width of the second machined groove is 100 ⁇ m or more, and the width of the second machined groove is 150 ⁇ m or more. As described above, it is more preferable to remove the resin forming the protective layer.
  • the spot diameter at the irradiation position of the ultrashort pulse laser light on the brittle material layer is 100 ⁇ m
  • the spot diameter on the surface of the brittle material layer on the optical functional layer side is focused, for example, 1.2 ⁇ m. Become.
  • the spot diameter at the position where the ultrashort pulse laser beam is irradiated to the brittle material layer is 100 ⁇ m
  • the spot diameter at the position corresponding to the surface of the protective layer is For example, it is 154 ⁇ m.
  • the protective layer includes a base material layer and an adhesive layer arranged on the brittle material layer side, and a part of the pressure-sensitive adhesive layer in the thickness direction remains in the processing groove forming step. As such, the resin forming the protective layer is removed.
  • the resin forming the protective layer is removed so that a part of the pressure-sensitive adhesive layer in the thickness direction remains, so that the brittle material layer is less likely to be damaged by heat. Cracks are less likely to occur due to the end face of the brittle material layer.
  • the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer provided by the protective layer for example, an acrylic pressure-sensitive adhesive can be used, but fume is generated when the protective layer is formed with the second processed groove in the processing groove forming step. To prevent this, it is preferable to use a urethane-based adhesive that does not easily generate fume as the adhesive. That is, preferably, the protective layer includes a base material layer and a urethane-based pressure-sensitive adhesive layer arranged on the brittle material layer side.
  • the above-mentioned preferable method it is possible to prevent the generation of fume from the adhesive layer provided in the protective layer in the processing groove forming step.
  • the above-mentioned preferable method is particularly effective when the above-mentioned offset method is applied in the machined groove forming step. That is, when the offset method is applied, there are more locations where the laser beam oscillated from the second laser light source is applied to the protective layer than when the peeling method is applied, so that the adhesive layer provided by the protective layer is used. The situation is such that fume is likely to occur. Therefore, the above-mentioned preferable method capable of preventing the generation of fume is particularly effective when the offset method is applied.
  • the method according to the present invention is preferably used when, for example, the brittle material layer contains glass and the optical functional layer contains a polarizing film.
  • a composite material in which a resin optical functional layer is laminated on one surface side of the brittle material layer and a resin protective layer is laminated on the other surface side of the brittle material layer is formed as a brittle material layer. It can be divided without causing cracks on the end face of the plastic.
  • an example of the result when the peeling method is applied in the machined groove forming step is shown.
  • an example of test conditions and test results when the offset method is applied in the machined groove forming step is shown.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a composite material to which the dividing method according to the present embodiment is applied. It should be noted that FIG. 1 is for reference only, and the dimensions, scale and shape of the members and the like shown in the figure may differ from the actual ones. The same applies to other figures.
  • the composite material 10 includes a brittle material layer 1 and a resin optical functional layer 2 laminated on one surface side (lower side in the example shown in FIG. 1) of the brittle material layer 1.
  • the dividing method according to the present embodiment is a method of dividing the composite material 10 in the thickness direction (the direction in which the optical functional layer 2, the brittle material layer 1 and the protective layer 3 are laminated, the vertical direction in FIG. 1, and the Z direction).
  • the brittle material layer 1, the optical functional layer 2 and the protective layer 3 are laminated by any suitable method.
  • the brittle material layer 1, the optical functional layer 2 and the protective layer 3 can be laminated by a so-called roll-to-roll method.
  • the long brittle material layer 1 and the main body of the long optical functional layer 2 for example, the polarizing film, the adhesive, and the release film constituting the optical functional layer 2 in this order from the top of FIG. 1;
  • the polarizing film, the pressure-sensitive adhesive, and the release film are conveyed in the longitudinal direction, and are bonded to each other via an adhesive (not shown) so as to be aligned with each other in the longitudinal direction.
  • the brittle material layer 1 and the optical functional layer 2 (the main body of the optical functional layer 2 and the adhesive) can be laminated.
  • the adhesive is adhered so as to align the longitudinal directions with each other.
  • the brittle material layer 1, the optical functional layer 2 and the protective layer 3 can be laminated by laminating each other via the agent layer 3b.
  • the brittle material layer 1 and the main body of the optical functional layer 2 may be cut into predetermined shapes and then laminated with an adhesive.
  • the laminated body of the brittle material layer 1 and the optical functional layer 2 and the base material layer 3a of the protective layer 3 may be cut into predetermined shapes and then laminated via the adhesive layer 3b.
  • Examples of the brittle material forming the brittle material layer 1 include glass and single crystal or polycrystalline silicon. Preferably, glass is used. Examples of the glass include soda-lime glass, borosilicate glass, aluminosilicate glass, quartz glass, and sapphire glass according to the classification according to the composition. Further, according to the classification based on the alkaline component, non-alkali glass and low-alkali glass can be exemplified. The content of the alkali metal component (for example, Na 2 O, K 2 O, Li 2 O) of the glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
  • the alkali metal component for example, Na 2 O, K 2 O, Li 2 O
  • the thickness of the brittle material layer 1 is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and further preferably 100 ⁇ m or less. On the other hand, the thickness of the brittle material layer 1 is preferably 30 ⁇ m or more, more preferably 80 ⁇ m or more. If the thickness of the brittle material layer 1 is within such a range, it can be laminated with the optical functional layer 2 by roll-to-roll.
  • the light transmittance of the brittle material layer 1 at a wavelength of 550 nm is preferably 85% or more.
  • the refractive index of the brittle material layer 1 at a wavelength of 550 nm is preferably 1.4 to 1.65.
  • the density of the brittle material layer 1 is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , and more preferably 2.3 g / cm 3. It is ⁇ 2.7 g / cm 3 .
  • a commercially available glass plate may be used as it is as the brittle material layer 1, or a commercially available glass plate may be polished to a desired thickness and used. good.
  • commercially available glass plates include Corning's "7059”, “1737” or “EAGLE2000”, Asahi Glass's “AN100”, NH Techno Glass's “NA-35”, and Nippon Electric Glass's "OA-”. Examples thereof include “10G”, “D263” manufactured by Schott AG, and "AF45".
  • the main body of the optical functional layer 2 includes acrylic resins such as polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and polymethylmethacrylate (PMMA), cyclic olefin polymers (COP), and cyclic olefin copolymers (COC).
  • acrylic resins such as polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and polymethylmethacrylate (PMMA), cyclic olefin polymers (COP), and cyclic olefin copolymers (COC).
  • PC Polycarbonate
  • PC polycarbonate
  • PVA polyvinyl alcohol
  • PI polyimide
  • PTFE polytetrafluoroethylene
  • PVC polyvinyl chloride
  • PS polystyrene
  • TAC triacetyl cellulose
  • PET polyethylene naphthalate
  • Single-layer film made of plastic materials such as PEN ethylene-vinyl acetate
  • EVA polyamide
  • PA silicone resin
  • epoxy resin epoxy resin
  • liquid crystal polymer liquid crystal polymer
  • various resin foams or laminated film consisting of multiple layers.
  • the main body of the optical functional layer 2 is a laminated film composed of a plurality of layers
  • various adhesives such as an acrylic pressure-sensitive adhesive, a urethane pressure-sensitive adhesive, and a silicone pressure-sensitive adhesive, or an adhesive may be interposed between the layers.
  • a conductive inorganic film such as indium tin oxide (ITO), Ag, Au, or Cu may be formed on the surface of the main body of the optical functional layer 2.
  • ITO indium tin oxide
  • the dividing method according to the present embodiment is particularly preferably used when the main body of the optical functional layer 2 is a polarizing film, a retardation film, or the like used for a display.
  • the thickness of the main body of the optical functional layer 2 is preferably 20 to 500 ⁇ m, more preferably 50 to 300 ⁇ m.
  • the main body of the optical functional layer 2 is a laminated film in which a polarizing film, an adhesive, and a release film are laminated in this order from the top of FIG.
  • the main body of the optical functional layer 2 is laminated with the brittle material layer 1 via an adhesive (not shown).
  • the combination of the main body (polarizing film, adhesive and release film) of the optical functional layer 2 and the adhesive is referred to as the optical functional layer 2.
  • the polarizing film constituting the main body of the optical functional layer 2 has a polarizing element and a protective film arranged on at least one of the polarizing elements.
  • the thickness of the polarizer is not particularly limited, and an appropriate thickness can be adopted according to the purpose.
  • the thickness of the polarizer is typically about 1 to 80 ⁇ m. In one aspect, the thickness of the polarizer is preferably 30 ⁇ m or less.
  • the polarizer is an iodine-based polarizer. More specifically, the polarizer can be composed of a polyvinyl alcohol-based resin film containing iodine.
  • Method 1 A method of stretching and dyeing a single polyvinyl alcohol-based resin film.
  • Method 2 A method of stretching and dyeing a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer. Since the method 1 is a well-known and commonly used method in the art, detailed description thereof will be omitted.
  • the laminate (i) having the resin base material and the polyvinyl alcohol-based resin layer formed on one side of the resin base material is stretched and dyed, and a polarizer is formed on the resin base material. Including the step of making.
  • the laminate (i) can be formed by applying and drying a coating liquid containing a polyvinyl alcohol-based resin on a resin base material. Further, the laminate (i) may be formed by transferring a polyvinyl alcohol-based resin film onto a resin base material. Details of Method 2 are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580, and this publication is incorporated herein by reference.
  • the protective film constituting the polarizing film is arranged on one side or both sides of the polarizing element.
  • a triacetyl cellulose-based film, an acrylic-based film, a cycloolefin-based film, a polyethylene terephthalate-based film, or the like can also be used.
  • the polarizing film may further include a retardation film as appropriate.
  • the retardation film can have any suitable optical and / or mechanical properties depending on the intended purpose.
  • the release film constituting the main body of the optical functional layer 2 has a role of protecting the adhesive layer constituting the main body of the optical functional layer 2 until the composite material 10 is put into practical use.
  • the constituent material of the release film include plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester film, porous materials such as paper, cloth, and non-woven fabric, nets, foam sheets, metal foils, and laminates thereof.
  • a plastic film is preferably used because of its excellent surface smoothness.
  • the adhesive constituting the optical functional layer 2 for example, a polyester-based adhesive, a polyurethane-based adhesive, a polyvinyl alcohol-based adhesive, or an epoxy-based adhesive can be used.
  • an epoxy adhesive because good adhesion can be obtained.
  • the adhesive is a thermosetting adhesive, it can exhibit peeling resistance by heating and curing (solidifying) it. Further, when the adhesive is a photocurable adhesive such as an ultraviolet curable type, the peeling resistance can be exhibited by irradiating the adhesive with light such as ultraviolet rays to cure the adhesive.
  • the adhesive when it is a moisture-curable adhesive, it can be cured by reacting with moisture or the like in the atmosphere, so that it can be cured even if left unattended and can exhibit peeling resistance.
  • a commercially available adhesive may be used, or various curable resins may be dissolved or dispersed in a solvent to prepare an adhesive solution (or dispersion).
  • the thickness of the adhesive is preferably 10 ⁇ m or less, more preferably 1 to 10 ⁇ m, still more preferably 1 to 8 ⁇ m, and particularly preferably 1 to 6 ⁇ m.
  • the base material layer 3a of the protective layer 3 is laminated on the brittle material layer 1 via the pressure-sensitive adhesive layer 3b. It is also possible to form the base material layer 3a of the protective layer 3 with a self-adhesive film and laminate it on the brittle material layer 1 without interposing the adhesive layer, but from the viewpoint of protecting the brittle material layer 1, from the viewpoint of protecting the brittle material layer 1. As in the present embodiment, it is preferable to laminate the brittle material layer 1 via the pressure-sensitive adhesive layer 3b. As the base material layer 3a, a film material having or isotropic is selected from the viewpoint of inspectability and controllability.
  • the film material examples include polyester resins such as polyethylene terephthalate films, cellulose resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and acrylic resins.
  • polyester resin is preferable.
  • As the base material layer 3a a laminated body of one kind or two or more kinds of film materials can be used, and a stretched product of the film can also be used.
  • the thickness of the base material layer 3a is preferably 35 ⁇ m to 100 ⁇ m or less, and more preferably more than 38 ⁇ m and 100 ⁇ m or less.
  • a pressure-sensitive adhesive having a polymer such as (meth) acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer as a base polymer is appropriately used. It can be selected and used. From the viewpoint of transparency, weather resistance, heat resistance and the like, an acrylic pressure-sensitive adhesive using an acrylic polymer as a base polymer is preferable. However, as will be described later, in order to prevent the generation of fume when forming the second processed groove 31 in the protective layer 3, urethane-based adhesive using polyurethane as a base polymer as the adhesive for forming the adhesive layer 3b. It is preferable to use an agent.
  • the thickness (dry film thickness) of the pressure-sensitive adhesive layer 3b is determined according to the required adhesive strength. It is usually about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the dividing method according to the present embodiment includes a processing groove forming step and a processing mark forming step.
  • the dividing method according to the present embodiment includes a composite material dividing step, if necessary.
  • each step will be described in order.
  • FIG. 2 is an explanatory diagram schematically explaining a schematic procedure of the division method according to the present embodiment.
  • 2 (a) and 2 (b) are cross-sectional views showing a machined groove forming step of the dividing method according to the present embodiment.
  • FIG. 2C is a cross-sectional view showing a processing mark forming step of the dividing method according to the present embodiment.
  • FIG. 2D is a cross-sectional view showing a composite material dividing step of the dividing method according to the present embodiment.
  • the optical functional layer 2 is irradiated with the laser beam L1 oscillated from the first laser light source 20 along the scheduled division line of the composite material 10.
  • the first machined groove 21 is formed along the planned division line.
  • the straight line DL extending in the Y direction is the planned division line among the two orthogonal directions (X direction and Y direction) in the plane (in the XY two-dimensional plane) of the composite material 10
  • the present invention is not limited to this, and various divisions such as a planned division line in which a plurality of straight line DLs extending in the X direction and a plurality of straight line DLs extending in the Y direction are set in a grid pattern.
  • the schedule line can be set.
  • this straight line DL will be referred to as a “scheduled division line DL”.
  • the planned division line DL can be actually drawn on the composite material 10 as a visually recognizable display, and controls the relative positional relationship between the laser beam L1 and the composite material 10 on the XY two-dimensional plane. It is also possible to input the coordinates in advance in the control device (not shown).
  • the planned division line DL shown in FIG. 2 is a virtual line whose coordinates are input to the control device in advance and is not actually drawn on the composite material 10.
  • the planned division line DL is not limited to a straight line, but may be a curved line. By determining the planned division line DL according to the use of the composite material 10, the composite material 10 can be divided into arbitrary shapes and dimensions according to the use.
  • the first laser light source 20 a CO 2 laser light source in which the wavelength of the oscillating laser light L1 is 9 to 11 ⁇ m in the infrared region is used.
  • the present invention is not limited to this, and it is also possible to use a CO laser light source in which the wavelength of the oscillating laser light L1 is 5 ⁇ m as the first laser light source 20. It is also possible to use a visible light and an ultraviolet (UV) pulse laser light source as the first laser light source 20.
  • UV ultraviolet
  • the wavelength of the oscillating laser light L1 is 532 nm, 355 nm, 349 nm or 266 nm (high-order harmonics of a solid-state laser light source using Nd: YAG, Nd: YLF, or YVO4 as a medium).
  • Examples thereof include an excima laser light source in which the wavelength of the oscillating laser light L1 is 351 nm, 248 nm, 222 nm, 193 nm or 157 nm, and an F2 laser light source in which the wavelength of the oscillating laser light L1 is 157 nm.
  • the first laser light source 20 it is also possible to use a pulse laser light source in which the wavelength of the oscillating laser light L1 is other than the ultraviolet region and the pulse width is on the order of femtoseconds or picoseconds. By using the laser beam L1 oscillating from this pulsed laser light source, it is possible to induce ablation processing based on the multiphoton absorption process. Further, as the first laser light source 20, it is also possible to use a semiconductor laser light source or a fiber laser light source in which the wavelength of the oscillating laser light L1 is in the infrared region.
  • a mode of irradiating the laser beam L1 along the planned division line of the composite material 10 (a mode of scanning the laser beam L1), for example, a single-wafer-shaped composite material 10 is placed on an XY 2-axis stage (not shown). It is conceivable to change the relative position of the composite material 10 on the XY two-dimensional plane with respect to the laser beam L1 by fixing (for example, suction fixing) and driving the XY 2-axis stage by a control signal from the control device. Be done.
  • the composite material 10 is irradiated by fixing the position of the composite material 10 and deflecting the laser beam L1 oscillated from the first laser light source 20 by using a galvano mirror or a polygon mirror driven by a control signal from the control device. It is also conceivable to change the position of the laser beam L1 to be generated on the XY two-dimensional plane. Further, it is also possible to use both the scanning of the composite material 10 using the above-mentioned XY 2-axis stage and the scanning of the laser beam L1 using a galvano mirror or the like in combination.
  • the oscillation form of the first laser light source 20 may be pulse oscillation or continuous oscillation.
  • the spatial intensity distribution of the laser beam L1 may be a Gaussian distribution, or flat using a diffractive optical element (not shown) or the like in order to suppress thermal damage of the brittle material layer 1 which is not the target of removal of the laser beam L1. It may be shaped into a top distribution.
  • the polarization state of the laser beam L1 is not limited, and may be linearly polarized light, circularly polarized light, or randomly polarized light.
  • the resin irradiated with the laser beam L1 absorbs infrared light.
  • the resin is removed from the composite material 10 and the first processing groove 21 is formed in the composite material 10.
  • the spot diameter at the irradiation position of the optical functional layer 2 (the spot diameter on the surface of the optical functional layer 2 opposite to the surface on the brittle material layer 1 side). ) Is preferably focused so that the laser beam L1 is 300 ⁇ m or less, and more preferably the laser beam L1 is focused so that the spot diameter is 200 ⁇ m or less.
  • the spot diameter of the laser beam L1 at the irradiation position of the optical functional layer 2 is, for example, about 150 ⁇ m.
  • the spot diameter on the surface of the optical functional layer 2 on the brittle material layer 1 side is focused, for example. , 30-40 ⁇ m.
  • the first machined groove 21 having a width (dimension of the bottom of the first machined groove 21 in the direction orthogonal to the planned division line DL) of 30 to 40 ⁇ m is formed.
  • the width of the first processed groove 21 is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the input energy required to form the first processing groove 21 can be roughly estimated from the thickness of the optical functional layer 2.
  • Input energy [mJ / mm] 0.5 ⁇ thickness of optical functional layer 2 [ ⁇ m] ⁇ ⁇ ⁇ (2)
  • the input energy actually set is preferably 20 to 180% of the input energy estimated by the above formula (2), and more preferably 50 to 150%.
  • a margin is provided for the input energy estimated in this way, such as the light absorption rate of the resin forming the optical functional layer 2 (light absorption rate at the wavelength of the laser beam L1) and the heat such as the melting point and decomposition point of the resin. This is because it is taken into consideration that the input energy required to form the first processing groove 21 differs depending on the difference in physical properties.
  • a sample of the composite material 10 to which the dividing method according to the present embodiment is applied is prepared, and the first processing groove 21 is formed in the optical functional layer 2 of this sample with a plurality of input energies within the above preferable range. Preliminary tests may be performed to determine the appropriate input energy.
  • the protective layer 3 is irradiated with the laser beam L2 oscillated from the second laser light source 30 along the scheduled division line of the composite material 10. Remove the resin that forms.
  • the second machined groove 31 (see FIG. 2C) is formed along the scheduled division line.
  • the peeling method or the offset method is used in this embodiment, and the specific contents thereof will be described later.
  • the second machined groove 31 is formed after the first machined groove 21 is formed, but the present invention is not limited to this, and the first machined after the second machined groove 31 is formed. It is also possible to form a groove 21.
  • FIG. 2 when the first laser light source 20 and the second laser light source 30 are separately prepared, the first machined groove 21 and the second machined groove 31 can be formed at the same time.
  • the same type of CO 2 laser light source as the first laser light source 20 is used as the second laser light source 30.
  • the present invention is not limited to this, and it is also possible to use another laser light source such as a CO laser light source as described above for the first laser light source 20.
  • the second laser light source 30 may be of the same type as the first laser light source 20, or may be of a different type.
  • a mode of irradiating the laser light L2 along the scheduled division line DL (a mode of relatively scanning the laser light L2)
  • an XY 2-axis stage, a galvano mirror, or the like was used in the same manner as described above for the laser light L1. Aspects can be adopted.
  • the laser beam L2 is focused so that the spot diameter at the irradiation position of the protective layer 3 (the spot diameter on the surface of the protective layer 3 opposite to the surface on the brittle material layer 1 side) is, for example, 120 to 130 ⁇ m. NS. As a result, a groove having a width of 20 to 30 ⁇ m is formed at the bottom.
  • the width W (see FIG. 2C) of the second machined groove 31 is a spot at the irradiation position of the laser beam L3 oscillated from the ultrashort pulse laser light source 40 in the processing mark forming step described later on the brittle material layer 1. It is formed so as to have a diameter D (see FIG. 2C) or more.
  • the width W of the second machined groove 31 of the present embodiment is preferably 100 ⁇ m or more, and more preferably 150 ⁇ m or more.
  • the upper limit of the width W of the second processed groove 31 is, for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the width W of the second machined groove 31 is preferably 100 ⁇ m or more, and preferably 100 ⁇ m or less, which is larger than the width of the first machined groove 21.
  • the first laser light source 20 is arranged on the side facing the optical functional layer 2, and the second laser light source 30 different from the first laser light source 20 is arranged on the side facing the protective layer 3.
  • the present invention is not limited to this, and the first laser light source 20 can also be used as the second laser light source 30.
  • the first laser light source 20 is also used as the second laser light source 30, for example, as shown in FIG. 2A, the first laser light source 20 (second laser light source 30) is on the side facing the optical functional layer 2.
  • the first processing groove 21 is formed in the optical functional layer 2 by using the first laser light source 20 (the second laser light source 30), and then the first laser light source 20 (the second laser light source 30) is formed in the protective layer 3.
  • the first laser light source 20 (second laser light source 30) is arranged on the side facing the protective layer 3, and the first laser light source 20 (second laser light source 30) is used.
  • the composite material 10 is moved up and down using a known inversion mechanism so that the first laser light source 20 (second laser light source 30) faces the optical functional layer 2.
  • the first processing groove 21 may be formed in the optical functional layer 2 by using the first laser light source 20 (second laser light source 30).
  • the processing groove forming step it is also possible to remove the resin forming the optical functional layer 2 so that a part of the optical functional layer 2 in the thickness direction remains as a residue.
  • the resin forming the protective layer 3 is removed so that a part of the adhesive layer 3b of the protective layer 3 in the thickness direction remains as a residue.
  • the thickness of the residue is preferably 1 to 30 ⁇ m, more preferably 1 to 10 ⁇ m for both the optical functional layer 2 and the protective layer 3.
  • the laser beam (ultrashort pulse laser beam) L3 oscillated (pulse oscillated) from the ultrashort pulse laser light source 40 is secondly processed.
  • the brittle material layer 1 along the planned division line DL from the groove 31 side is removed from the ultrashort pulse laser light source 40.
  • the brittle material forming the brittle material layer 1 utilizes the fillering phenomenon of the laser beam L3 oscillated from the ultrashort pulse laser light source 40, or a multifocal optical system (not shown) on the ultrashort pulse laser light source 40. Alternatively, it is removed by applying a Bessel beam optical system (not shown).
  • Non-Patent Document 1 describes the use of the filtration phenomenon of ultrashort pulse laser light and the application of a multifocal optical system or a Bessel beam optical system to an ultrashort pulse laser light source.
  • Trumpf of Germany sells products related to glass processing in which a multifocal optical system is applied to an ultrashort pulse laser light source.
  • the processing mark 11 formed in the processing mark forming step of the present embodiment is, for example, a perforated through hole along the scheduled division line DL as described in Patent Document 2.
  • the pitch of the through holes along the scheduled division line DL is determined by the repetition frequency of pulse oscillation and the relative moving speed (machining speed) of the laser beam L3 with respect to the composite material 10.
  • the pitch of the through holes is preferably set to 10 ⁇ m or less in order to easily and stably perform the composite material cutting step described later. More preferably, it is set to 5 ⁇ m or less.
  • the diameter of the through hole is often 5 ⁇ m or less.
  • the processing mark 11 is not limited to the perforated through hole along the scheduled division line DL.
  • the wavelength of the laser beam L3 oscillating from the ultrashort pulse laser light source 40 is preferably 500 nm to 2500 nm, which exhibits high light transmittance when the brittle material forming the brittle material layer 1 is glass.
  • the pulse width of the laser beam L3 is preferably 100 picoseconds or less, and more preferably 50 picoseconds or less.
  • the oscillation form of the laser beam L3 may be single pulse oscillation or burst mode multi-pulse oscillation. As shown in FIG.
  • the spot diameter D at the irradiation position of the laser beam L3 on the brittle material layer 1 is, for example, 100 ⁇ m, and as described above, the width W of the second processing groove 31 is this.
  • the spot diameter is D or more.
  • the second machined groove 31 formed in the machined groove forming step is cleaned by applying various wet or dry cleaning methods before the machining mark forming step to remove the residue of the resin forming the protective layer 3. Further steps may be included. If the resin residue forming the protective layer 3 is removed in the cleaning step, the brittle material layer 1 is irradiated with the laser light L3 oscillated from the ultrashort pulse laser light source 40 from the second machining groove 31 side in the machining mark forming step. Even so, the laser beam L3 is not affected by the resin residue, and the brittle material layer 1 can form more suitable processing marks 11.
  • the composite material 10 is divided by applying an external force along the scheduled division line DL after the processing mark forming step.
  • the composite material 10 is divided into composite material pieces 10a and 10b.
  • the processing mark 11 formed in the processing mark forming step is a perforated through hole along the scheduled cutting line DL, or a part of the optical functional layer 2 in the thickness direction remains as a residue. This is particularly necessary when the resin forming the optical functional layer 2 is removed (residue remains at the bottom of the first processing groove 21).
  • the machining mark 11 is a through hole (long hole) integrally connected along the scheduled division line DL and no residue remains at the bottom of the first machining groove 21, the machining mark forming step is executed.
  • the composite material 10 can be divided, so that the composite material dividing step is not always necessary.
  • mechanical break mountain fold
  • heating of a portion near the planned cutting line DL by an infrared laser beam vibration addition by an ultrasonic roller, suction and pulling by a suction cup, etc. It can be illustrated.
  • FIG. 3 is a cross-sectional view schematically illustrating a schematic procedure of a peeling method in a machined groove forming step.
  • the peeling method is carried out in the order of FIGS. 3 (a), (b) and (d).
  • FIG. 3C is an enlarged view of the area surrounded by the broken line C in FIG. 3B.
  • the irradiation position of the laser beam L2 oscillated from the second laser light source 30 on the protective layer 3 is in the direction orthogonal to the planned division line DL (in FIG. 3).
  • the laser beam L2 is protected along the scheduled division line DL at each irradiation position (the position of A1 shown in FIG. 3A and the position of A2 shown in FIG. 3B) by shifting in the X direction. Irradiate to 3.
  • the laser beams L2 oscillated from the second laser light source 30 are equidistant positions A1 and A2 in the direction (X direction) orthogonal to the scheduled division line DL with reference to the scheduled division line DL. Irradiate each.
  • processing grooves 31a and 31b are formed at the irradiation positions A1 and A2.
  • the separation distance between the processing grooves 31a and 31b in the X direction is the spot diameter at the irradiation position of the ultrashort pulse laser beam L3 on the brittle material layer 1 in the processing mark forming step. It is considered to be D (see FIG. 2C) or higher.
  • D see FIG. 2C
  • the thickness T of the residue is preferably 1 to 30 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the second processing groove 31 is formed by peeling the resin forming the protective layer 3 existing between the irradiation positions A1 and A2.
  • the resin can be peeled off by using a known peeling device as appropriate.
  • the separation distance between the machined grooves 31a and 31b is equal to or larger than the spot diameter D of the ultrashort pulse laser beam L3
  • the width W of the second machined groove 31 is also an ultrashort pulse.
  • the spot diameter D or more of the laser beam L3 is obtained.
  • the ultrashort pulse laser light L3 is irradiated on the planned division line DL (see FIG. 2C)
  • the irradiation position A1 of the laser light L2 oscillated from the second laser light source 30 , A2 and the irradiation position of the ultrashort pulse laser beam L3 are deviated by 1/2 of the width W of the second processing groove 31. Therefore, temporarily, in the processing groove forming step, the output of the laser beam L2 oscillated from the second laser light source 30 is set to be large to some extent, the resin forming the protective layer 3 is removed, and the surface of the brittle material layer 1 is exposed. Even if some heat damage is received, it is difficult for the ultrashort pulse laser beam L3 to irradiate the same portion, so that cracks are unlikely to occur on the end face of the brittle material layer 1.
  • FIG. 4 is a plan view schematically illustrating a peeling method in a machining groove forming step and a schematic procedure of a machining mark forming step in a case where the composite material 10 is divided into four rectangular composite material pieces.
  • 4 (a) to 4 (c) show a schematic procedure of the peeling method
  • FIG. 4 (d) shows a schematic procedure of the machining mark forming step.
  • the second laser light source 30 and the ultrashort pulse laser light source 40 are shown in perspective for convenience. As shown in FIG.
  • the irradiation position of the laser beam L2 oscillated from the second laser light source 30 on the protective layer 3 is shifted in the direction orthogonal to the planned division line DL, and at each irradiation position.
  • the protective layer 3 is irradiated with the laser beam L2 along the planned division line DL.
  • the position (solid line) shifted inward by 1/2 of the width W (see FIG. 2C) of the second machined groove 31 from the scheduled division line DL.
  • the laser beam L2 is irradiated at the position indicated by.
  • the portions indicated by reference numerals 31a and 31b in FIG. 4A correspond to the processing grooves 31a and 31b shown in FIG.
  • the second processing groove 31 is formed by peeling the resin forming the protective layer 3 existing between the irradiation positions.
  • FIG. 4B shows the resin forming the peeled protective layer 3
  • FIG. 4C shows the peeled composite material 10.
  • the resin forming the located protective layer 3 is also peeled off at the same time.
  • the ultrashort pulse laser light L3 oscillated from the ultrashort pulse laser light source 40 is irradiated on the planned division line DL. Thereby (or by further performing the composite material dividing step), it is possible to divide into four rectangular composite material pieces.
  • FIG. 5 is a cross-sectional view schematically illustrating a schematic procedure of the offset method in the machined groove forming step.
  • the offset method is executed in the order of FIGS. 5A to 5D.
  • the irradiation position of the laser beam L2 oscillated from the second laser light source 30 on the protective layer 3 is in the direction orthogonal to the planned division line DL (in FIG. 5).
  • the light is sequentially shifted in the X direction) and divided at each irradiation position (the position of B1 shown in FIG. 5 (a), the position of B2 shown in FIG. 5 (b), and the position of B3 shown in FIG. 5 (c)).
  • the protective layer 3 is irradiated with the laser beam L2 along the scheduled line DL.
  • the laser beam L2 oscillated from the second laser light source 30 is positioned from the position B1 at an equal distance in the direction (X direction) orthogonal to the scheduled division line DL with reference to the scheduled division line DL.
  • Each position is irradiated with a predetermined pitch (for example, a pitch of about 30 ⁇ m, which is the same size as the spot diameter of the laser beam L2) up to B3.
  • a predetermined pitch for example, a pitch of about 30 ⁇ m, which is the same size as the spot diameter of the laser beam L2
  • the range in which the irradiation position of the laser beam L2 is shifted (the separation distance between the irradiation positions B1 and B3) is set to the spot diameter D at the irradiation position of the ultrashort pulse laser beam L3 on the brittle material layer 1 in the processing mark forming step (FIG. 2 (c). ))
  • the width W of the second processing groove 31 (see FIG. 2C) can be made equal to or larger than the spot diameter D of the ultrashort pulse laser beam L3.
  • the protective layer 3 is formed by irradiating the protective layer 3 with the laser beam L2 so that a part of the adhesive layer 3b of the protective layer 3 in the thickness direction remains as a residue.
  • the resin to be used is removed.
  • the brittle material layer 1 is heated because there are more irradiation points of the laser beam L2 oscillated from the second laser light source 30 on the protective layer 3 than when the peeling method is applied. The situation becomes vulnerable to damage. Therefore, leaving a part of the pressure-sensitive adhesive layer 3b in the thickness direction as a residue is particularly effective when the offset method is applied.
  • the protective layer 3 is provided because there are many irradiation points of the laser beam L2 oscillated from the second laser light source 30 on the protective layer 3 as compared with the case where the peeling method is applied. Fume is likely to be generated from the pressure-sensitive adhesive layer 3b. Therefore, when the offset method is applied, it is preferable that the pressure-sensitive adhesive layer 3b is a urethane-based pressure-sensitive adhesive layer in order to prevent the generation of fume.
  • FIG. 6 is a plan view schematically explaining a schematic procedure of an offset method and a machining mark forming step in a machining groove forming step in a case where the composite material 10 is divided into four rectangular composite material pieces.
  • FIG. 6A shows a schematic procedure of the offset method
  • FIG. 6B shows a schematic procedure of the machining mark forming step.
  • the second laser light source 30 and the ultrashort pulse laser light source 40 are shown in perspective for convenience.
  • the irradiation positions of the laser beam L2 oscillated from the second laser light source 30 on the protective layer 3 are sequentially shifted in the direction orthogonal to the planned division line DL, and each irradiation position.
  • the protective layer 3 is irradiated with the laser beam L2 along the scheduled division line DL.
  • the laser beam L2 is irradiated in the range (position shown by the solid line), and the width of the processing groove 31c formed at each irradiation position is gradually increased.
  • the second machined groove 31 (the region in FIG. 6 (b) where the shaded lines are not hatched) is formed.
  • the ultrashort pulse laser light L3 oscillated from the ultrashort pulse laser light source 40 is irradiated on the planned division line DL. Thereby (or by further performing the composite material dividing step), it is possible to divide into four rectangular composite material pieces.
  • the resin forming the optical functional layer 2 and the resin forming the protective layer 3 are removed to follow the planned division line DL.
  • the brittle material forming the brittle material layer 1 is removed from the second machined groove 31 side to obtain the same scheduled division line DL.
  • a processing mark 11 is formed along the line.
  • the second machined groove 31 formed in the machined groove forming step has a width W of a brittle material layer 1 of laser light (ultrashort pulse laser light) L3 oscillated from the ultrashort pulse laser light source 40 in the machined mark forming step. Since it is formed so as to have a spot diameter D or more at the irradiation position of the brittle material layer 1, the brittle material layer 1 can be divided without causing cracks in the end face of the brittle material layer 1.
  • FIG. 7 shows an example of the main test conditions and test results when the peeling method is applied in the machined groove forming step as an example.
  • FIG. 8 shows an example of main test conditions and test results when the offset method is applied in the machined groove forming step as an example.
  • thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long glass transition temperature (Tg) of about 75 ° C. was used, and one side of the resin base material was used. Corona treated.
  • PVA-based resin 100 in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer”) are mixed at a ratio of 9: 1.
  • a PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium iodide in water. Then, the above-mentioned PVA aqueous solution was applied to the corona-treated surface of the above-mentioned resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, and a laminate was prepared.
  • the laminate prepared as described above was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
  • the uniaxially stretched laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds ( Insolubilization treatment).
  • the above laminate was finally placed in a dyeing bath at a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by blending iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water).
  • a polarizer having a thickness of about 5 ⁇ m was formed on the resin substrate, and a laminate having a resin substrate / polarizer configuration was produced.
  • an acrylic protective film (thickness: 40 ⁇ m) was attached to one surface of the polarizing element (the surface opposite to the surface on the resin base material side) constituting the above-mentioned laminate to prepare a polarizing film. Then, the resin base material is peeled from the polarizing film, and a polyethylene terephthalate release film (thickness: 38 ⁇ m) is attached to the peeled surface via an acrylic adhesive (thickness: 20 ⁇ m) to form the optical functional layer 2. The main body was made.
  • a glass film manufactured by Nippon Electric Glass Co., Ltd., trade name "OA-10G", thickness: 100 ⁇ m
  • the brittle material layer 1 and the main body of the optical functional layer 2 were bonded to each other via the adhesive.
  • the main body of the optical functional layer 2 was arranged so that the acrylic protective film was on the brittle material layer 1 side.
  • the adhesive was irradiated with ultraviolet rays (500 mJ / cm 2 ) with a high-pressure mercury lamp to cure the adhesive, thereby producing a laminate of the brittle material layer 1 and the optical functional layer 2.
  • the thickness of the adhesive after curing was 5 ⁇ m.
  • a surface protective film having an acrylic pressure-sensitive adhesive layer (manufactured by Nitto Denko KK, trade name “RP207”) was prepared as the protective layer 3.
  • the base material layer 3a of the protective layer 3 is formed of an untreated polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Co., Ltd., Diafoil T100 # 38) having a thickness of 38 ⁇ m.
  • the pressure-sensitive adhesive layer 3b of the protective layer 3 is produced as follows.
  • an isocyanate-based cross-linking agent manufactured by Nippon Polyurethane Industry Co., Ltd., Coronate HX
  • the protective layer 3 includes a base material layer 3a and an adhesive layer 3b produced as described above. Then, the composite material 10 was produced by laminating the protective layer 3 and the brittle material layer 1 of the laminate of the brittle material layer 1 and the optical functional layer 2 via the adhesive layer 3b of the protective layer 3. ..
  • a first processed groove 21 was formed in the optical functional layer 2.
  • the TLSU series CO 2 laser light source having an oscillation wavelength of 9.4 ⁇ m
  • the repetition frequency of pulse oscillation is 12.5 kHz
  • the power of the laser beam L1 is 250 W
  • the output of the laser beam L1 oscillated from the first laser light source 20 is set to 11.8 W
  • the light condensing lens is used to reach the optical functional layer 2.
  • the optical functional layer 2 was focused on the spot diameter of 150 ⁇ m at the irradiation position of the above, and irradiated to the optical functional layer 2 along the planned division line (a plurality of scheduled division lines set in a grid pattern) DL of the composite material 10.
  • the relative moving speed (processing speed) of the laser beam L1 with respect to the composite material 10 was set to 400 mm / sec.
  • the resin forming the optical functional layer 2 was removed, and the first processed groove 21 along the planned division line DL was formed.
  • the resin was removed so that a part of the resin forming the optical functional layer 2 remained as a residue (thickness: 10 to 20 ⁇ m) at the bottom of the first processing groove 21.
  • the second processing groove 31 was formed in the protective layer 3.
  • a laser processing device provided with an optical system and a control device for controlling scanning of the second laser light source 30 and the laser light L2, as in the case of forming the first processing groove 21, manufactured by Takei Electric Co., Ltd.
  • Laser light oscillated from the second laser light source 30 using the TLSU series (CO 2 laser light source with an oscillation wavelength of 9.4 ⁇ m, pulse oscillation repetition frequency 12.5 kHz, laser light L2 power 250 W) as shown in FIG.
  • the output of L2 is set to 10.5 W, the light is focused to a spot diameter of 120 to 130 ⁇ m at the irradiation position of the protective layer 3 using a condenser lens, and the scheduled division lines of the composite material 10 (plural divisions set in a grid pattern). Scheduled line)
  • the protective layer 3 was irradiated along the DL.
  • the relative moving speed (processing speed) of the laser beam L2 with respect to the composite material 10 was set to 400 mm / sec. Then, by applying the peeling method, as shown in FIG. 7, a second machined groove 31 having a width of 200 ⁇ m was formed.
  • the resin is applied so that a part of the resin forming the protective layer 3 does not remain as a residue at the irradiation position (thickness: 0 ⁇ m). Removed.
  • the ultrashort pulse laser light source 40 uses an oscillation wavelength of 1064 nm, a pulse width of laser light L3 of 10 picoseconds, a pulse oscillation repetition frequency of 50 kHz, and an average power of 10 W, and oscillates from the ultrashort pulse laser light source 40.
  • the laser beam L3 was irradiated to the brittle material layer 1 of the composite material 10 from the second processing groove 31 side via the multifocal optical system.
  • the spot diameter D at the irradiation position of the brittle material layer 1 of the laser beam L3 was set to 100 ⁇ m.
  • the relative moving speed (machining speed) of the laser beam L3 with respect to the composite material 10 was set to 100 mm / sec and the laser beam L3 was scanned along the scheduled division line DL, the machining marks 11 were perforated with a pitch of 2 ⁇ m. A through hole (about 1 to 2 ⁇ m in diameter) was formed.
  • a composite material cutting step was executed.
  • a laser processing device equipped with a CO 2 laser light source and an optical system and a control device for controlling the scanning of the laser light MLG-9300 manufactured by Keyence Co., Ltd. (oscillation wavelength 10.6 ⁇ m, laser light power 30 W).
  • the output of the laser light oscillated from the laser light source is set to 80% (that is, the output is 24 W), and the light is condensed to a spot diameter of 0.7 mm using a condenser lens (the energy density at this time is 62 W / m 2).
  • the brittle material layer 1 was irradiated from the protective layer 3 side along the planned division line DL of the composite material 10. At this time, the relative moving speed of the laser beam with respect to the composite material 10 was set to 500 mm / sec. Finally, a mechanical external force was applied to the composite material 10 to divide the resin residue remaining at the bottom of the first processed groove 21 after the processing groove forming step, and the composite material 10 was divided.
  • Example 2 As shown in FIG. 7, when the second processing groove 31 is formed, the output of the laser beam L2 oscillated from the second laser light source 30 is set to 8.0 W, and the resin (adhesive layer) forming the protective layer 3 at the irradiation position.
  • the composite material 10 was divided under the same conditions as in Example 1 except that the resin was removed so that a part of 3b) remained as a residue (thickness: 10 ⁇ m).
  • the end face of the brittle material layer 1 of the composite material 10 (composite material piece) divided by the division method according to Example 2 was visually observed, as shown in FIG. 7, the brittle material layer 1 could be divided without any problem. There were no cracks.
  • Example 3 A composite material 10 was prepared under the same conditions as in Example 1 except for the points shown in (1) to (3) below, and the composite material 10 was divided.
  • a surface protective film having a urethane-based adhesive layer (manufactured by Nitto Denko KK, trade name “AW700EC”) was prepared as the protective layer 3.
  • the base material layer 3a of the protective layer 3 is formed of a base material "Lumirror S10" (thickness 38 ⁇ m, manufactured by Toray Industries, Inc.) made of polyester resin.
  • the pressure-sensitive adhesive layer 3b of the protective layer 3 is produced as follows.
  • the polyfunctional isocyanate compound Coronate HX (manufactured by Nippon Polyurethane Industry Co., Ltd.), which is a polyfunctional alicyclic isocyanate compound, is used.
  • the catalyst the trade name "Narsem Ferric” manufactured by Nihon Kagaku Sangyo Co., Ltd. is used.
  • Irganox 1010 manufactured by BASF is used.
  • These include 1-ethyl-3-methylimidazolium bis (fluoromethanesulfonyl) imide (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., trade name "AS110”) and both-terminal type polyether-modified silicone oil (Shin-Etsu Chemical Co., Ltd.).
  • a urethane-based pressure-sensitive adhesive composition is prepared by adding ethyl acetate as a diluting solvent and mixing and stirring the product (trade name "KF-6004") manufactured by the company. Then, the prepared urethane-based pressure-sensitive adhesive composition was applied onto the above-mentioned base material layer 3a with a fountain roll so that the thickness after drying was 10 ⁇ m, and cured under the conditions of a drying temperature of 130 ° C. and a drying time of 30 seconds. And dried to form the pressure-sensitive adhesive layer 3b.
  • the protective layer 3 (AW700EC) includes a base material layer 3a and an adhesive layer 3b produced as described above.
  • the protective layer 3 and the brittle material layer 1 of the laminate of the same brittle material layer 1 and the optical functional layer 2 as in the first embodiment are bonded to each other via the adhesive layer 3b of the protective layer 3 to form a composite.
  • Material 10 was produced.
  • the offset method was applied.
  • the output of the laser beam L2 oscillated from the second laser light source 30 is set to 4.3 W, and the resin forming the protective layer 3 at the irradiation position (3).
  • the resin was removed so that a part of the pressure-sensitive adhesive layer 3b) remained as a residue (thickness: 7.5 ⁇ m).
  • the end face of the brittle material layer 1 of the composite material 10 (composite material piece) divided by the division method according to Example 3 was visually observed, as shown in FIG. 8, the brittle material layer 1 could be divided without any problem. There were no cracks.
  • Example 4 As shown in FIG. 8, when the second processing groove 31 is formed, the output of the laser beam L2 oscillated from the second laser light source 30 is set to 4.9 W, and the resin (adhesive layer) forming the protective layer 3 at the irradiation position.
  • the composite material 10 was divided under the same conditions as in Example 3 except that the resin was removed so that a part of 3b) remained as a residue having a thickness of 2.1 ⁇ m.
  • the end face of the brittle material layer 1 of the composite material 10 (composite material piece) divided by the division method according to Example 4 was visually observed, as shown in FIG. 8, the brittle material layer 1 could be divided without any problem. There were no cracks.
  • Example 5 As shown in FIG. 8, when the second processing groove 31 is formed, the output of the laser beam L2 oscillated from the second laser light source 30 is set to 5.1 W, and a part of the resin forming the protective layer 3 at the irradiation position is formed.
  • the composite material 10 was divided under the same conditions as in Example 3 except that the resin was removed so as not to remain as a residue (thickness: 0 ⁇ m).
  • the end face of the brittle material layer 1 of the composite material 10 (composite material piece) divided by the division method according to Example 5 was visually observed, as shown in FIG. 8, the brittle material layer 1 could be divided without any problem. There were no cracks.

Abstract

脆性材料層の端面にクラックが生じない複合材の分断方法を提供する。 本発明は、脆性材料層1の各面側にそれぞれ光学機能層2と保護層3とが積層された複合材10を分断する方法であって、第1レーザ光源20から発振したレーザ光L1を複合材の分断予定線DLに沿って光学機能層に照射して第1加工溝21を形成すると共に、第2レーザ光源30から発振したレーザ光L2を複合材の分断予定線DLに沿って保護層に照射して第2加工溝31を形成する加工溝形成工程と、加工溝形成工程の後、超短パルスレーザ光源40から発振したレーザ光L3を分断予定線に沿って脆性材料層に照射して加工痕11を形成する脆性材料除去工程と、を含み、第2加工溝の幅Wが、加工痕形成工程で超短パルスレーザ光源から発振したレーザ光の脆性材料層への照射位置におけるスポット径D以上となるように、保護層を形成する樹脂を除去する。

Description

複合材の分断方法
 本発明は、脆性材料層の一方の面側に樹脂製の光学機能層(例えば、偏光フィルム)が積層され、脆性材料層の他方の面側に樹脂製の保護層(例えば、保護フィルム)が積層された複合材を分断する方法に関する。特に、本発明は、脆性材料層の端面にクラックを生じさせることなく、複合材を分断可能な方法に関する。
 近年、液晶パネルの薄型化や高精細化が進んでいることに加え、インタフェースに多様性を持たせるために画面上にタッチセンサ機能を搭載した液晶パネルが、携帯電話からインフォメーションディスプレイまで、幅広い分野において用いられるようになっている。
 最近では、薄型化や軽量化の観点から、タッチセンサを液晶セルのガラス基板に組み込んだインセルタイプの液晶セルを有する液晶パネルが登場している。
 一方、薄ガラスと呼ばれるフィルム状のガラスが、液晶パネルの最表面に配置される前面板として注目されつつある。薄ガラスはロール状に巻き取ることができるため、いわゆるロール・ツー・ロール方式の製造プロセスにも適応できる利点があり、偏光フィルムと一体化したガラス偏光フィルムが提案されている(例えば、特許文献1参照)。
 ガラス偏光フィルムは、インセルタイプの液晶セルに貼り合わせるだけでタッチセンサ機能を搭載した液晶パネルを得ることができるため、前面板として強化ガラスを用いた一般的な液晶パネルに比べて、製造プロセスをはるかに簡略化できる。
 上記のガラス偏光フィルムのように、ガラス等から形成された脆性材料層と偏光フィルム等から形成された光学機能層とが積層された複合材を、用途に応じた所望の形状・寸法に分断する方法として、特許文献2に記載の方法が提案されている。
 特許文献2に記載の方法は、COレーザ光源等のレーザ光源から発振したレーザ光を複合材の分断予定線に沿って複合材の光学機能層(特許文献2では、樹脂層)に照射して光学機能層を形成する樹脂を除去した後、超短パルスレーザ光源から発振したレーザ光(超短パルスレーザ光)を複合材の分断予定線に沿って脆性材料層に照射して脆性材料層を形成する脆性材料を除去することで、複合材を分断する方法である。
 特許文献2に記載の方法によれば、分断後の脆性材料層の端面にクラックが生じないという利点を有する。
 ここで、上記のガラス偏光フィルムのように、ガラス等から形成された脆性材料層と偏光フィルム等から形成された光学機能層とが積層された複合材は、分断後の複合材片における光学機能層が積層された脆性材料層の面と反対側の面に、保護フィルム等の保護層が積層されて出荷されるのが一般的である。分断後の複合材片毎に保護層を積層する工程を実行するには手間を要するため、この手間を無くして工数を削減するために、脆性材料層の一方の面側に光学機能層が積層され、脆性材料層の他方の面側に保護層が積層された複合材を一度に分断する方法が望まれている。
 しかしながら、特許文献2には、脆性材料層の一方の面側に光学機能層が積層され、脆性材料層の他方の面側に保護層が積層された複合材を一度に分断する方法について提案されていない。
 なお、非特許文献1には、超短パルスレーザ光を用いた加工技術において、超短パルスレーザ光のフィラメンテーション現象を利用することや、超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することが記載されている。
国際公開第2013/175767号 特開2019-122966号公報
ジョン ロペス(John Lopez)他、"超短パルスベッセルビームを用いたガラス切断(GLASS CUTTING USING ULTRASHORT PULSED BESSEL BEAMS)"、[online]、2015年10月、International Congress on Applications of Lasers & Electro-Optics (ICALEO)、[令和1年7月8日検索]、インターネット(URL:https://www.researchgate.net/publication/284617626_GLASS_CUTTING_USING_ULTRASHORT_PULSED_BESSEL_BEAMS)
 本発明は、上記のような従来技術の問題点を解決するためになされたものであり、脆性材料層の一方の面側に樹脂製の光学機能層が積層され、脆性材料層の他方の面側に樹脂製の保護層が積層された複合材を分断可能な方法であって、脆性材料層の端面にクラックが生じない複合材の分断方法を提供することを課題とする。
 前記課題を解決するため、本発明者らは、前述の特許文献2に記載の方法を適用することを検討した。
 具体的には、脆性材料層の一方の面側に樹脂製の光学機能層が積層され、脆性材料層の他方の面側に樹脂製の保護層が積層された複合材において、COレーザ光源等から発振したレーザ光によって複合材の分断予定線に沿って光学機能層に加工溝(第1加工溝)を形成すると共に、COレーザ光源等から発振したレーザ光によって複合材の分断予定線に沿って保護層に加工溝(第2加工溝)を形成することを考えた。そして、分断後の光学機能層の端面に深刻な熱劣化が生じない(熱劣化に伴う変色領域が少ない)ようにするために、第2加工溝を通じて超短パルスレーザ光源から発振したレーザ光(超短パルスレーザ光)を複合材の分断予定線に沿って脆性材料層に照射すれば良いのではないかと考えた。
 しかしながら、本発明者らが実際に上記の方法について試験を行ったところ、第2加工溝を形成するレーザ光の出力が小さく、第2加工溝の深さが小さすぎると、超短パルスレーザ光を脆性材料層に照射した際に、脆性材料層にその厚み方向に貫通する加工痕を形成することができず、複合材を分断できないことが分かった。一方、第2加工溝を形成するレーザ光の出力が大き過ぎると、脆性材料層が熱ダメージを受け、超短パルスレーザ光を脆性材料層に照射した際に、熱ダメージを受けた箇所を起点として、脆性材料層の端面にクラックが生じることが分かった。そして、脆性材料層に加工痕を形成することができ、なお且つ、脆性材料層の端面にクラックを生じさせないように、第2加工溝を形成するためのレーザ光の出力を適切な値に設定するには、極めて微妙な調整を必要とし、自動化が困難であることが分かった。
 このため、本発明者らは更に鋭意検討した結果、第2加工溝の幅が超短パルスレーザ光の脆性材料層への照射位置におけるスポット径以上となるように、第2加工溝を形成すれば、第2加工溝を形成するためのレーザ光の出力の微妙な調整を必要とせずに、脆性材料層の端面にクラックを生じさせることなく複合材を分断できることを見出し、本発明を完成した。
 本発明は、上記の本発明者らの知見に基づき完成したものである。
 すなわち、前記課題を解決するため、本発明は、脆性材料層の一方の面側に樹脂製の光学機能層が積層され、前記脆性材料層の他方の面側に樹脂製の保護層が積層された複合材を分断する方法であって、第1レーザ光源から発振したレーザ光を前記複合材の分断予定線に沿って前記光学機能層に照射して前記光学機能層を形成する樹脂を除去することで、前記分断予定線に沿った第1加工溝を形成すると共に、第2レーザ光源から発振したレーザ光を前記分断予定線に沿って前記保護層に照射して前記保護層を形成する樹脂を除去することで、前記分断予定線に沿った第2加工溝を形成する加工溝形成工程と、前記加工溝形成工程の後、超短パルスレーザ光源から発振したレーザ光を前記第2加工溝側から前記分断予定線に沿って前記脆性材料層に照射して前記脆性材料層を形成する脆性材料を除去することで、前記分断予定線に沿った加工痕を形成する加工痕形成工程と、を含み、前記加工溝形成工程において、前記第2加工溝の幅が、前記加工痕形成工程で前記超短パルスレーザ光源から発振したレーザ光の前記脆性材料層への照射位置におけるスポット径以上となるように、前記保護層を形成する樹脂を除去する、複合材の分断方法を提供する。
 本発明に係る方法によれば、加工溝形成工程において、光学機能層を形成する樹脂及び保護層を形成する樹脂を除去することで、分断予定線に沿った第1加工溝及び第2加工溝を形成した後、加工痕形成工程において、第2加工溝側から脆性材料層を形成する脆性材料を除去することで、同じ分断予定線に沿った加工痕を形成する。そして、加工溝形成工程で形成される第2加工溝は、その幅が加工痕形成工程で超短パルスレーザ光源から発振したレーザ光(超短パルスレーザ光)の脆性材料層への照射位置におけるスポット径以上となるように形成される。これにより、前述の本発明者らの知見通り、脆性材料層の端面にクラックを生じさせることなく、脆性材料層を分断可能である。
 本発明に係る方法のように、第2加工溝の幅を超短パルスレーザ光の脆性材料層への照射位置におけるスポット径以上とすることにより、超短パルスレーザ光のエネルギーが保護層を形成する樹脂を除去するのに消費され難くなり、脆性材料層を形成する脆性材料を除去するのに十分に使用されるため、脆性材料層に加工痕を形成することができ、なお且つ、脆性材料層の端面にクラックを生じさせないようにできる。
 なお、本発明に係る方法において、「レーザ光を前記複合材の分断予定線に沿って前記光学機能層に照射」とは、複合材の厚み方向(光学機能層、脆性材料層及び保護層の積層方向)から見て、分断予定線に沿ってレーザ光を光学機能層に照射することを意味する。また、本発明に係る方法において、「レーザ光を前記分断予定線に沿って前記保護層に照射」とは、複合材の厚み方向(光学機能層、脆性材料層及び保護層の積層方向)から見て、分断予定線に沿ってレーザ光を保護層に照射することを意味する。さらに、「レーザ光を前記第2加工溝側から前記分断予定線に沿って前記脆性材料層に照射」とは、複合材の厚み方向(光学機能層、脆性材料層及び保護層の積層方向)から見て、分断予定線に沿ってレーザ光を第2加工溝側から保護層に照射することを意味する。
 また、本発明に係る方法において、「分断予定線に沿って・・・照射」とは、分断予定線上に照射、又は、分断予定線の近傍位置において分断予定線に平行に照射することを意味する。
 さらに、本発明に係る方法において、「第2加工溝の幅」とは、分断予定線に直交する方向の第2加工溝の底部の寸法を意味する。
 また、本発明に係る方法において、加工溝形成工程において用いる第1レーザ光源及び第2レーザ光源の種類は、発振したレーザ光で樹脂を除去できるものである限りにおいて、特に限定されるものではない。ただし、複合材に対するレーザ光の相対的な移動速度(加工速度)を高めることが可能である点で、赤外域の波長のレーザ光を発振するCOレーザ光源やCOレーザ光源を用いることが好ましい。第1レーザ光源及び第2レーザ光源は、同一の種類であってもよいし、異なる種類であってもよい。また、第1レーザ光源及び第2レーザ光源は必ずしも別に用意する必要はなく、第1レーザ光源を第2レーザ光源として兼用することも可能である。
 第1レーザ光源及び第2レーザ光源を別に用意する場合には、第1レーザ光源を光学機能層側に配置し、第2レーザ光源を保護層側に配置して、第1レーザ光源を用いて光学機能層に第1加工溝を形成した後、第2レーザ光源を用いて保護層に第2加工溝を形成すればよい。また、第2レーザ光源を用いて保護層に第2加工溝を形成した後、第1レーザ光源を用いて光学機能層に第1加工溝を形成してもよい。さらに、第1レーザ光源及び第2レーザ光源を用いて、第1加工溝及び第2加工溝を同時に形成することも可能である。
 また、第1レーザ光源を第2レーザ光源として兼用する場合には、光学機能層及び保護層のうち何れか一方に対向する側に第1レーザ光源(第2レーザ光源)を配置し、第1レーザ光源(第2レーザ光源)を用いて光学機能層に第1加工溝を形成(又は保護層に第2加工溝を形成)した後、光学機能層及び保護層のうち何れか他方に第1レーザ光源(第2レーザ光源)が対向するように複合材を反転させて、第1レーザ光源(第2レーザ光源)を用いて保護層に第2加工溝を形成(又は光学機能層に第1加工溝を形成)することも可能である。
 さらに、本発明に係る方法において、加工痕形成工程で形成する加工痕としては、例えば、特許文献2に記載のような分断予定線に沿ったミシン目状の貫通孔を例示できる。この場合、加工痕形成工程の後に、分断予定線に沿って外力を加えることで、複合材を分断することができる。複合材への外力の付加方法としては、機械的なブレイク(山折り)、赤外域レーザ光による切断予定線の近傍部位の加熱、超音波ローラによる振動付加、吸盤による吸着及び引き上げ等を例示できる。複合材への外力の付加方法として、赤外域レーザ光による切断予定線の近傍部位の加熱を用いる場合には、脆性材料層に生じた熱応力により、ミシン目状の貫通孔を繋ぐように分断予定線に沿って亀裂が進展し、脆性材料層が分断(割断)されることになる。なお、第1加工溝の底部に樹脂の残渣が残っている場合には、上記のように外力を加えて脆性材料層を分断した後、例えば、光学機能層に更に機械的な外力を加えて複合材を分断すればよい。光学機能層ひいては脆性材料層に更なる機械的な外力が加わっても、この時点では、脆性材料層が既に分断されているため、脆性材料層の端面にクラックが生じることはない。
 本発明に係る方法において、加工痕形成工程で形成する加工痕は、必ずしもミシン目状の貫通孔に限るものではない。加工痕形成工程において、超短パルスレーザ光源から発振したレーザ光と脆性材料層との分断予定線に沿った相対移動速度を小さく設定するか、超短パルスレーザ光源のパルス発振の繰り返し周波数を大きく設定すれば、加工痕として、分断予定線に沿って一体的に繋がった貫通孔(長孔)が形成される。この場合、加工痕形成工程の後に、分断予定線に沿って外力を加えなくても、脆性材料層を分断することができる。ただし、第1加工溝の底部に樹脂の残渣が残っている場合には、脆性材料層を分断した後、例えば、光学機能層に機械的な外力を加えて複合材を分断すればよい。
 本発明に係る方法において、加工溝形成工程で形成する第2加工溝の幅を、加工痕形成工程で超短パルスレーザ光源から発振したレーザ光(超短パルスレーザ光)の脆性材料層への照射位置におけるスポット径以上とするには、例えば、第2レーザ光源から発振したレーザ光の照射位置を分断予定線に直交する方向にずらして、各照射位置でレーザ光を保護層に照射した後、各照射位置の間に存在する保護層を形成する樹脂を剥離することが考えられる。この樹脂を剥離する部分の寸法(分断予定線に直交する方向の寸法)を超短パルスレーザ光の脆性材料層への照射位置におけるスポット径以上とすれば、第2加工溝の幅を超短パルスレーザ光の脆性材料層への照射位置におけるスポット径以上にすることができる。
 すなわち、好ましくは、前記加工溝形成工程において、前記第2レーザ光源から発振したレーザ光の前記保護層への照射位置を前記分断予定線に直交する方向にずらして、各照射位置で前記分断予定線に沿って前記レーザ光を前記保護層に照射した後、前記各照射位置の間に存在する前記保護層を形成する樹脂を剥離することで、前記第2加工溝を形成する。
 上記の好ましい方法(以下、適宜、「剥離法」という)によれば、例えば、加工溝形成工程において、第2レーザ光源から発振したレーザ光を、分断予定線を基準として分断予定線に直交する方向に等距離の位置にそれぞれ照射し、その間に存在する保護層を形成する樹脂を剥離することが考えられる。これにより、分断予定線を幅方向の中心とする第2加工溝を形成した後、分断予定線上に超短パルスレーザ光を照射すれば、第2レーザ光源から発振したレーザ光の照射位置と、超短パルスレーザ光の照射位置とが、第2加工溝の幅の1/2だけずれることになる。
 したがい、仮に、加工溝形成工程において、第2レーザ光源から発振したレーザ光の出力がある程度大きく設定され、保護層を形成する樹脂が除去されて脆性材料層の表面が露出して熱ダメージを多少受けたとしても、同じ箇所に超短パルスレーザ光が照射され難いため、脆性材料層の端面にクラックが生じ難い。
 なお、各照射位置の間に存在する保護層を形成する樹脂の剥離は、公知の剥離装置を適宜用いて行うことが可能である。
 本発明に係る方法において、加工溝形成工程で形成する第2加工溝の幅を超短パルスレーザ光の脆性材料層への照射位置におけるスポット径以上とする方法は、上記の剥離法に限るものではない。
 例えば、前記加工溝形成工程において、前記第2レーザ光源から発振したレーザ光の前記保護層への照射位置を前記分断予定線に直交する方向に順次ずらして、各照射位置で前記分断予定線に沿って前記レーザ光を前記保護層に照射することで、前記第2加工溝を形成する方法(以下、適宜、「オフセット法」という)でもよい。
 第2レーザ光源から発振したレーザ光の照射位置をずらす範囲(分断予定線に直交する方向の範囲)を超短パルスレーザ光の脆性材料層への照射位置におけるスポット径以上とすれば、第2加工溝の幅を超短パルスレーザ光の脆性材料層への照射位置におけるスポット径以上にすることができる。
 本発明において、超短パルスレーザ光の脆性材料層への照射位置におけるスポット径は、例えば、100μmとされる。
 したがい、前記加工溝形成工程において、前記第2加工溝の幅が100μm以上となるように、前記保護層を形成する樹脂を除去することが好ましく、前記第2加工溝の幅が150μm以上となるように、前記保護層を形成する樹脂を除去することがより好ましい。
 なお、超短パルスレーザ光の脆性材料層への照射位置におけるスポット径が100μmである場合、脆性材料層の光学機能層側の面におけるスポット径は、集光されて、例えば、1.2μmとなる。また、超短パルスレーザ光の脆性材料層への照射位置におけるスポット径が100μmである場合、保護層の表面(脆性材料層側の面と反対側の面)に相当する位置におけるスポット径は、例えば、154μmとなる。
 好ましくは、前記保護層は、基材層と、前記脆性材料層側に配置された粘着剤層と、を具備し、前記加工溝形成工程において、前記粘着剤層の厚み方向の一部が残存するように、前記保護層を形成する樹脂を除去する。
 上記の好ましい方法によれば、加工溝形成工程において、粘着剤層の厚み方向の一部が残存するように、保護層を形成する樹脂を除去するため、脆性材料層が熱ダメージを受け難く、脆性材料層の端面により一層クラックが生じ難い。
 保護層が具備する粘着剤層を形成する粘着剤としては、例えば、アクリル系粘着剤を用いることができるものの、加工溝形成工程で保護層に第2加工溝を形成する際のヒュームの発生を防止するには、粘着剤としてヒュームが発生し難いウレタン系粘着剤を用いることが好ましい。
 すなわち、好ましくは、前記保護層は、基材層と、前記脆性材料層側に配置されたウレタン系粘着剤層と、を具備する。
 上記の好ましい方法によれば、加工溝形成工程において、保護層が具備する粘着剤層からのヒュームの発生を防止可能である。上記の好ましい方法は、加工溝形成工程において前述のオフセット法を適用する場合に特に有効である。すなわち、オフセット法を適用する場合には、剥離法を適用する場合に比べて、第2レーザ光源から発振したレーザ光の保護層への照射箇所が多いため、保護層が具備する粘着剤層からヒュームが発生し易い状況にある。したがい、ヒュームの発生を防止可能な上記の好ましい方法は、オフセット法を適用する場合に特に有効である。
 本発明に係る方法は、例えば、前記脆性材料層がガラスを含み、前記光学機能層が偏光フィルムを含む場合に好適に用いられる。
 本発明によれば、脆性材料層の一方の面側に樹脂製の光学機能層が積層され、脆性材料層の他方の面側に樹脂製の保護層が積層された複合材を、脆性材料層の端面にクラックを生じさせることなく分断可能である。
本発明の一実施形態に係る分断方法を適用する複合材の概略構成を模式的に示す断面図である。 本発明の一実施形態に係る複合材の分断方法の概略手順を模式的に説明する説明図である。 加工溝形成工程での剥離法の概略手順を模式的に説明する断面図である。 複合材を4つの矩形の複合材片に分断する場合における加工溝形成工程での剥離法及び加工痕形成工程の概略手順を模式的に説明する平面図である。 加工溝形成工程でのオフセット法の概略手順を模式的に説明する断面図である。 複合材を4つの矩形の複合材片に分断する場合における加工溝形成工程でのオフセット法及び加工痕形成工程の概略手順を模式的に説明する平面図である。 実施例として、加工溝形成工程において剥離法を適用した場合の結果の一例を示す。 実施例として、加工溝形成工程においてオフセット法を適用した場合の試験条件及び試験結果の一例を示す。
 以下、添付図面を適宜参照しつつ、本発明の一実施形態に係る複合材の分断方法について説明する。
 <複合材の構成>
 最初に、本実施形態に係る分断方法を適用する複合材の構成について説明する。
 図1は、本実施形態に係る分断方法を適用する複合材の概略構成を示す断面図である。
 なお、図1は、参考的に表したものであり、図に表された部材などの寸法、縮尺及び形状は、実際のものとは異なっている場合があることに留意されたい。他の図についても同様である。
 図1に示すように、複合材10は、脆性材料層1と、脆性材料層1の一方の面側(図1に示す例では下側)に積層された樹脂製の光学機能層2と、脆性材料層1の他方の面側(図1に示す例では上側)に積層された樹脂製の保護層3とが積層された構成を有する。保護層3は、基材層3aと、脆性材料層1側に配置された粘着剤層3bと、を具備する。
 本実施形態に係る分断方法は、この複合材10を厚み方向(光学機能層2、脆性材料層1及び保護層3の積層方向、図1の上下方向、Z方向)に分断する方法である。
 脆性材料層1、光学機能層2及び保護層3は、任意の適切な方法によって積層される。例えば、脆性材料層1、光学機能層2及び保護層3は、いわゆるロール・ツー・ロール方式によって積層可能である。例えば、長尺の脆性材料層1と、長尺の光学機能層2の本体(例えば、光学機能層2を構成する、図1の上から順に偏光フィルム、粘着剤及び離型フィルム。ただし、図1では、偏光フィルム、粘着剤及び離型フィルムの図示を省略する)とを長手方向に搬送しながら、互いの長手方向を揃えるようにして、接着剤(図示せず)を介して互いに貼り合わせることで、脆性材料層1と光学機能層2(光学機能層2の本体及び接着剤)とを積層可能である。次いで、長尺の脆性材料層1及び光学機能層2の積層体と、長尺の保護層3の基材層3aとを長手方向に搬送しながら、互いの長手方向を揃えるようにして、粘着剤層3bを介して互いに貼り合わせることで、脆性材料層1、光学機能層2及び保護層3を積層可能である。ただし、脆性材料層1と光学機能層2の本体とをそれぞれ所定形状に切断した後、接着剤を介して積層してもよい。また、脆性材料層1及び光学機能層2の積層体と保護層3の基材層3aとをそれぞれ所定形状に切断した後、粘着剤層3bを介して積層してもよい。
 脆性材料層1を形成する脆性材料としては、ガラス、及び単結晶又は多結晶シリコンを例示できる。好適には、ガラスが用いられる。
 ガラスとしては、組成による分類によれば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス、及びサファイアガラスを例示できる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスを例示できる。ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の含有量は、好ましくは15重量%以下であり、更に好ましくは10重量%以下である。
 脆性材料層1の厚みは、好ましくは150μm以下であり、より好ましくは120μm以下であり、更に好ましくは100μm以下である。一方、脆性材料層1の厚みは、好ましくは30μm以上であり、より好ましくは80μm以上である。脆性材料層1の厚みがこのような範囲であれば、ロール・ツー・ロールによる光学機能層2との積層が可能になる。
 脆性材料層1を形成する脆性材料がガラスである場合、脆性材料層1の波長550nmにおける光透過率は、好ましくは85%以上である。脆性材料層1を形成する脆性材料がガラスである場合、脆性材料層1の波長550nmにおける屈折率は、好ましくは1.4~1.65である。脆性材料層1を形成する脆性材料がガラスである場合、脆性材料層1の密度は、好ましくは2.3g/cm~3.0g/cmであり、更に好ましくは2.3g/cm~2.7g/cmである。
 脆性材料層1を形成する脆性材料がガラスである場合、脆性材料層1として、市販のガラス板をそのまま用いてもよく、市販のガラス板を所望の厚みになるように研磨して用いてもよい。市販のガラス板としては、例えば、コーニング社製「7059」、「1737」又は「EAGLE2000」、旭硝子社製「AN100」、NHテクノグラス社製「NA-35」、日本電気硝子社製「OA-10G」、ショット社製「D263」又は「AF45」が挙げられる。
 光学機能層2の本体としては、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルメタクリレート(PMMA)などのアクリル樹脂、環状オレフィンポリマー(COP)、環状オレフィンコポリマー(COC)、ポリカーボネート(PC)、ウレタン樹脂、ポリビニルアルコール(PVA)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、トリアセチルセルロース(TAC)、ポリエチレンナフタレート(PEN)、エチレン-酢酸ビニル(EVA)、ポリアミド(PA)、シリコーン樹脂、エポキシ樹脂、液晶ポリマー、各種樹脂製発泡体などのプラスチック材料で形成された単層フィルム、又は複数の層からなる積層フィルムを例示できる。
 光学機能層2の本体が複数の層からなる積層フィルムである場合、層間に、アクリル粘着剤、ウレタン粘着剤、シリコーン粘着剤などの各種粘着剤や、接着剤が介在してもよい。
 また、光学機能層2の本体表面に、酸化インジウムスズ(ITO)、Ag、Au、Cuなどの導電性の無機膜が形成されていてもよい。
 本実施形態に係る分断方法は、特に光学機能層2の本体がディスプレイに用いられる偏光フィルムや位相差フィルム等である場合に好適に用いられる。
 光学機能層2の本体の厚みは、好ましくは20~500μmであり、より好ましくは50~300μmである。
 本実施形態では、前述のように、光学機能層2の本体が、図1の上から順に、偏光フィルム、粘着剤及び離型フィルムが積層された積層フィルムである。光学機能層2の本体は、接着剤(図示せず)を介して脆性材料層1と積層されている。本実施形態では、光学機能層2の本体(偏光フィルム、粘着剤及び離型フィルム)と接着剤との組み合わせを光学機能層2と称する。
 光学機能層2の本体を構成する偏光フィルムは、偏光子と、偏光子の少なくとも一方に配置された保護フィルムとを有する。偏光子の厚みは特に制限されず、目的に応じて適切な厚みを採用できる。偏光子の厚みは、代表的には、1~80μm程度である。一態様においては、偏光子の厚みは、好ましくは30μm以下である。偏光子は、ヨウ素系偏光子である。より詳細には、上記偏光子は、ヨウ素を含むポリビニルアルコール系樹脂フィルムから構成することができる。
 上記偏光フィルムを構成する偏光子の製造方法としては、例えば、以下のような方法1、2等が挙げられる。
 (1)方法1:ポリビニルアルコール系樹脂フィルム単体を延伸、染色する方法。
 (2)方法2:樹脂基材とポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色する方法。
 方法1は、当業界で周知慣用の方法であるため、詳細な説明は省略する。
 方法2は、好ましくは、樹脂基材と該樹脂基材の片側に形成されたポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色して、前記樹脂基材上に偏光子を作製する工程を含む。積層体(i)は、樹脂基材上にポリビニルアルコール系樹脂を含む塗布液を塗布・乾燥して形成することができる。また、積層体(i)は、ポリビニルアルコール系樹脂膜を樹脂基材上に転写して形成してもよい。方法2の詳細は、例えば、特開2012-73580号公報に記載されており、この公報は、本明細書に参考として援用される。
 上記偏光フィルムを構成する保護フィルムは、偏光子の一方面又は両面に配置される。保護フィルムとしては、トリアセチルセルロース系フィルム、アクリル系フィルム、シクロオレフィン系フィルム、ポリエチレンテレフタレート系フィルムなどを用いることもできる。なお、偏光フィルムは、適宜、位相差フィルムを更に備えていてもよい。位相差フィルムは、目的に応じて任意の適切な光学的特性及び/又は機械的特性を有することができる。
 光学機能層2の本体を構成する離型フィルムは、複合材10が実用に供されるまで、光学機能層2の本体を構成する粘着剤層を保護する役割を有する。離型フィルムの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエステルフィルムなどのプラスチックフィルムや、紙、布、不織布などの多孔質材料、ネット、発泡シート、金属箔、及びこれらのラミネート体などの適宜な薄葉体などを挙げることができるが、表面平滑性に優れる点から、プラスチックフィルムが好適に用いられる。
 光学機能層2を構成する接着剤としては、例えば、ポリエステル系接着剤、ポリウレタン系接着剤、ポリビニルアルコール系接着剤、エポキシ系接着剤を用いることができる。特に、良好な密着性が得られるという点で、エポキシ系接着剤を用いることが好ましい。
 接着剤が熱硬化型接着剤である場合、加熱して硬化(固化)させることで剥離抵抗力を発揮できる。また、接着剤が紫外線硬化型等の光硬化型接着剤である場合、紫外線等の光を照射して硬化させることで剥離抵抗力を発揮できる。さらに、接着剤が湿気硬化型接着剤である場合、雰囲気中の水分等と反応して硬化し得るので、放置することでも硬化して剥離抵抗力を発揮できる。
 接着剤としては、例えば、市販の接着剤を使用してもよく、各種硬化型樹脂を溶媒に溶解又は分散し、接着剤溶液(又は分散液)として調製してもよい。
 接着剤の厚みは、好ましくは10μm以下であり、より好ましくは1~10μmであり、更に好ましくは1~8μmであり、特に好ましくは1~6μmである。
 本実施形態では、保護層3の基材層3aは、粘着剤層3bを介して脆性材料層1に積層されている。保護層3の基材層3aを自己粘着型のフィルムで構成し、粘着剤層を介することなく脆性材料層1に積層することも可能であるが、脆性材料層1を保護する観点からは、本実施形態のように、粘着剤層3bを介して脆性材料層1に積層することが好ましい。
 基材層3aとしては、検査性や管理性などの観点から、等方性を有する又は等方性に近いフィルム材料が選択される。そのフィルム材料としては、例えば、ポリエチレンテレフタレートフィルム等のポリエステル系樹脂、セルロース系樹脂、アセテート系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂のような透明なポリマーが挙げられる。これらの中でもポリエステル系樹脂が好ましい。基材層3aとしては、1種又は2種以上のフィルム材料のラミネート体を用いることもでき、前記フィルムの延伸物を用いることもできる。基材層3aの厚みは、35μm~100μm以下であることが好ましく、更には38μmを超えて100μm以下であることが好ましい。
 粘着剤層3bを形成する粘着剤としては、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとする粘着剤を適宜に選択して用いることができる。透明性、耐候性、耐熱性などの観点からは、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。ただし、後述のように、保護層3に第2加工溝31を形成する際のヒュームの発生を防止するには、粘着剤層3bを形成する粘着剤として、ポリウレタンをベースポリマーとするウレタン系粘着剤を用いることが好ましい。粘着剤層3bの厚み(乾燥膜厚)は、必要とされる粘着力に応じて決定される。通常1~100μm程度、好ましくは5~50μmである。
 <複合材の分断方法>
 以下、上記の構成を有する複合材10の分断方法について説明する。
 本実施形態に係る分断方法は、加工溝形成工程と、加工痕形成工程と、を含んでいる。また、本実施形態に係る分断方法は、必要に応じて、複合材分断工程を含んでいる。以下、各工程について順に説明する。
 [加工溝形成工程]
 図2は、本実施形態に係る分断方法の概略手順を模式的に説明する説明図である。図2(a)及び(b)は、本実施形態に係る分断方法の加工溝形成工程を示す断面図である。図2(c)は、本実施形態に係る分断方法の加工痕形成工程を示す断面図である。図2(d)は、本実施形態に係る分断方法の複合材分断工程を示す断面図である。
 図2(a)に示すように、加工溝形成工程では、第1レーザ光源20から発振したレーザ光L1を複合材10の分断予定線に沿って光学機能層2に照射して光学機能層2を形成する樹脂を除去する。これにより、分断予定線に沿った第1加工溝21を形成する。
 図2に示す例では、便宜上、複合材10の面内(XY2次元平面内)の直交する2方向(X方向及びY方向)のうち、Y方向に延びる直線DLが分断予定線である場合を図示しているが、本発明はこれに限るものではなく、例えばX方向に延びる複数の直線DLとY方向に延びる複数の直線DLとが格子状に設定された分断予定線など、種々の分断予定線を設定可能である。以下、この直線DLを「分断予定線DL」と呼ぶ。
 分断予定線DLは、視覚的に認識できる表示として実際に複合材10に描くことも可能であるし、レーザ光L1と複合材10とのXY2次元平面上での相対的な位置関係を制御する制御装置(図示せず)にその座標を予め入力しておくことも可能である。図2に示す分断予定線DLは、制御装置にその座標が予め入力されており、実際には複合材10に描かれていない仮想線である。なお、分断予定線DLは、直線に限るものではなく、曲線であってもよい。複合材10の用途に応じて分断予定線DLを決定することで、複合材10を用途に応じた任意の形状・寸法に分断可能である。
 本実施形態では、第1レーザ光源20として、発振するレーザ光L1の波長が赤外域の9~11μmであるCOレーザ光源を用いている。
 ただし、本発明はこれに限るものではなく、第1レーザ光源20として、発振するレーザ光L1の波長が5μmであるCOレーザ光源を用いることも可能である。
 また、第1レーザ光源20として、可視光及び紫外線(UV)パルスレーザ光源を用いることも可能である。可視光及びUVパルスレーザ光源としては、発振するレーザ光L1の波長が532nm、355nm、349nm又は266nm(Nd:YAG、Nd:YLF、又はYVO4を媒質とする固体レーザ光源の高次高調波)であるもの、発振するレーザ光L1の波長が351nm、248nm、222nm、193nm又は157nmであるエキシマレーザ光源、発振するレーザ光L1の波長が157nmであるF2レーザ光源を例示できる。
 また、第1レーザ光源20として、発振するレーザ光L1の波長が紫外域以外であり、なお且つパルス幅がフェムト秒又はピコ秒オーダーのパルスレーザ光源を用いることも可能である。このパルスレーザ光源から発振するレーザ光L1を用いれば、多光子吸収過程に基づくアブレーション加工を誘発可能である。
 さらに、第1レーザ光源20として、発振するレーザ光L1の波長が赤外域である半導体レーザ光源やファイバーレーザ光源を用いることも可能である。
 レーザ光L1を複合材10の分断予定線に沿って照射する態様(レーザ光L1を走査する態様)としては、例えば、枚葉状の複合材10をXY2軸ステージ(図示せず)に載置して固定(例えば、吸着固定)し、制御装置からの制御信号によってXY2軸ステージを駆動することで、レーザ光L1に対する複合材10のXY2次元平面上での相対的な位置を変更することが考えられる。また、複合材10の位置を固定し、制御装置からの制御信号によって駆動するガルバノミラーやポリゴンミラーを用いて第1レーザ光源20から発振したレーザ光L1を偏向させることで、複合材10に照射されるレーザ光L1のXY2次元平面上での位置を変更することも考えられる。更には、上記のXY2軸ステージを用いた複合材10の走査と、ガルバノミラー等を用いたレーザ光L1の走査との双方を併用することも可能である。
 第1レーザ光源20の発振形態は、パルス発振でも連続発振でもよい。レーザ光L1の空間強度分布は、ガウシアン分布でもよいし、レーザ光L1の除去対象外である脆性材料層1の熱ダメージを抑制するため、回折光学素子(図示せず)等を用いて、フラットトップ分布に整形してもよい。レーザ光L1の偏光状態に制約はなく、直線偏光、円偏光及びランダム偏光の何れであってもよい。
 レーザ光L1を複合材10の分断予定線DLに沿って光学機能層2に照射することで、光学機能層2を形成する樹脂のうち、レーザ光L1が照射された樹脂の赤外光吸収に伴う局所的な温度上昇が生じて当該樹脂が飛散することで、当該樹脂が複合材10から除去され、複合材10に第1加工溝21が形成される。複合材10から除去される樹脂の飛散物が複合材10に再付着することを抑制するには、分断予定線DLの近傍に集塵機構を設けることが好ましい。第1加工溝21の幅が大きくなり過ぎるのを抑制するには、光学機能層2への照射位置におけるスポット径(光学機能層2の脆性材料層1側の面と反対側の面におけるスポット径)が300μm以下となるようにレーザ光L1を集光することが好ましく、スポット径が200μm以下となるようにレーザ光L1を集光することがより好ましい。
 光学機能層2への照射位置におけるレーザ光L1のスポット径は、例えば、150μm程度とされ、このとき、光学機能層2の脆性材料層1側の面におけるスポット径は、集光されて、例えば、30~40μmになる。これにより、幅(分断予定線DLに直交する方向の第1加工溝21の底部の寸法)が30~40μmの第1加工溝21が形成される。
 第1加工溝21の幅は、例えば、100μm以下であり、好ましくは、50μm以下である。
 なお、本発明者らの知見によれば、レーザ光L1が照射された樹脂の赤外光吸収に伴う局所的な温度上昇を原理とする樹脂の除去方法の場合、樹脂の種類や光学機能層2の層構造に関わらず、光学機能層2の厚みによって、第1加工溝21を形成するのに必要な投入エネルギーを概ね見積もることが可能である。具体的には、第1加工溝21を形成するのに必要な以下の式(1)で表わされる投入エネルギーを、光学機能層2の厚みに基づき、以下の式(2)によって見積もることが可能である。
 投入エネルギー[mJ/mm]=レーザ光L1の平均パワー[mW]/加工速度[mm/sec] ・・・(1)
 投入エネルギー[mJ/mm]=0.5×光学機能層2の厚み[μm] ・・・(2)
 実際に設定する投入エネルギーは、上記の式(2)で見積もった投入エネルギーの20~180%に設定することが好ましく、50~150%に設定することがより好ましい。このように見積もった投入エネルギーに対してマージンを設けるのは、光学機能層2を形成する樹脂の光吸収率(レーザ光L1の波長における光吸収率)や、樹脂の融点・分解点等の熱物性の違いによって、第1加工溝21を形成するのに必要な投入エネルギーに差異が生じることを考慮しているからである。具体的には、例えば、本実施形態に係る分断方法を適用する複合材10のサンプルを用意し、上記の好ましい範囲内の複数の投入エネルギーでこのサンプルの光学機能層2に第1加工溝21を形成する予備試験を行って、適切な投入エネルギーを決定すればよい。
 また、図2(b)に示すように、加工溝形成工程では、第2レーザ光源30から発振したレーザ光L2を複合材10の分断予定線に沿って保護層3に照射して保護層3を形成する樹脂を除去する。これにより、分断予定線に沿った第2加工溝31(図2(c)参照)を形成する。第2加工溝31を形成する際、本実施形態では、剥離法又はオフセット法を用いるが、これらの具体的内容については、後述する。
 本実施形態では、第1加工溝21を形成した後、第2加工溝31を形成しているが、本発明はこれに限るものではなく、第2加工溝31を形成した後、第1加工溝21を形成することも可能である。また、図2に示すように、第1レーザ光源20及び第2レーザ光源30を別に用意する場合には、第1加工溝21及び第2加工溝31を同時に形成することも可能である。
 本実施形態では、第2レーザ光源30として、第1レーザ光源20と同一の種類のCOレーザ光源を用いている。ただし、本発明はこれに限るものではなく、第1レーザ光源20について前述したのと同様に、COレーザ光源等の他のレーザ光源を用いることも可能である。第2レーザ光源30は、第1レーザ光源20と同一の種類であってもよいし、異なる種類であってもよい。レーザ光L2を分断予定線DLに沿って照射する態様(レーザ光L2を相対的に走査する態様)としては、レーザ光L1について前述したのと同様に、XY2軸ステージやガルバノミラー等を用いた態様を採用可能である。
 レーザ光L2は、保護層3への照射位置におけるスポット径(保護層3の脆性材料層1側の面と反対側の面におけるスポット径)が、例えば、120~130μmとなるように集光される。これにより、底部での幅が20~30μmの溝が形成される。 
 第2加工溝31は、その幅W(図2(c)参照)が、後述の加工痕形成工程で超短パルスレーザ光源40から発振したレーザ光L3の脆性材料層1への照射位置におけるスポット径D(図2(c)参照)以上となるように形成される。
 具体的には、本実施形態の第2加工溝31の幅Wは、100μm以上にすることが好ましく、150μm以上であることがより好ましい。第2加工溝31の幅Wの上限は、例えば、1000μm以下であり、好ましくは500μm以下であり、より好ましくは300μm以下である。
 上記のように、第2加工溝31の幅Wは、好ましくは100μm以上であり、好ましくは100μm以下である第1加工溝21の幅よりも大きいことが好ましい。
 図2に示す例では、光学機能層2に対向する側に第1レーザ光源20を配置し、保護層3に対向する側に第1レーザ光源20とは別の第2レーザ光源30を配置しているが、本発明はこれに限るものではなく、第1レーザ光源20を第2レーザ光源30として兼用することも可能である。
 第1レーザ光源20を第2レーザ光源30として兼用する場合には、例えば、図2(a)に示すように、光学機能層2に対向する側に第1レーザ光源20(第2レーザ光源30)を配置し、第1レーザ光源20(第2レーザ光源30)を用いて光学機能層2に第1加工溝21を形成した後、保護層3に第1レーザ光源20(第2レーザ光源30)が対向するように、公知の反転機構を用いて複合材10を上下反転させて、第1レーザ光源20(第2レーザ光源30)を用いて保護層3に第2加工溝31を形成すればよい。或いは、図2(b)に示すように、保護層3に対向する側に第1レーザ光源20(第2レーザ光源30)を配置し、第1レーザ光源20(第2レーザ光源30)を用いて保護層3に第2加工溝31を形成した後、光学機能層2に第1レーザ光源20(第2レーザ光源30)が対向するように、公知の反転機構を用いて複合材10を上下反転させて、第1レーザ光源20(第2レーザ光源30)を用いて光学機能層2に第1加工溝21を形成すればよい。
 なお、加工溝形成工程では、好ましい態様として、光学機能層2の厚み方向の一部が残渣として残存するように、光学機能層2を形成する樹脂を除去することも可能である。また、本実施形態では、好ましい態様として、保護層3の粘着剤層3bの厚み方向の一部が残渣として残存するように、保護層3を形成する樹脂を除去している。残渣の厚みは、光学機能層2及び保護層3のいずれについても、好ましくは、1~30μmであり、より好ましくは、1~10μmである。
 このように、残渣が残存するように樹脂を除去することで、分断予定線DLに沿って光学機能層2及び保護層3を形成する樹脂を完全に除去する場合に比べて、脆性材料層1に与えられる熱ダメージが低減し、脆性材料層1の端面により一層クラックが生じ難いという利点が得られる。
 [加工痕形成工程]
 図2(c)に示すように、加工痕形成工程では、加工溝形成工程の後、超短パルスレーザ光源40から発振(パルス発振)したレーザ光(超短パルスレーザ光)L3を第2加工溝31側から分断予定線DLに沿って脆性材料層1に照射して脆性材料層1を形成する脆性材料を除去することで、分断予定線DLに沿った加工痕11を形成する。
 レーザ光L3を分断予定線DLに沿って照射する態様(レーザ光L3を相対的に走査する態様)としては、前述のレーザ光L1を分断予定線DLに沿って照射する態様と同じ態様を採用できるため、ここでは詳細な説明を省略する。
 脆性材料層1を形成する脆性材料は、超短パルスレーザ光源40から発振したレーザ光L3のフィラメンテーション現象を利用して、或いは、超短パルスレーザ光源40にマルチ焦点光学系(図示せず)又はベッセルビーム光学系(図示せず)を適用することで、除去される。
 なお、超短パルスレーザ光のフィラメンテーション現象を利用することや、超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することについては、非特許文献1に記載されている。また、ドイツのTrumpf社から、超短パルスレーザ光源にマルチ焦点光学系を適用したガラス加工に関する製品が販売されている。このように、超短パルスレーザ光のフィラメンテーション現象を利用することや、超短パルスレーザ光源にマルチ焦点光学系又はベッセルビーム光学系を適用することについては公知であるため、ここでは詳細な説明を省略する。
 本実施形態の加工痕形成工程で形成する加工痕11は、例えば、特許文献2に記載のような分断予定線DLに沿ったミシン目状の貫通孔とされる。分断予定線DLに沿った貫通孔のピッチは、パルス発振の繰り返し周波数と、複合材10に対するレーザ光L3の相対的な移動速度(加工速度)とによって決まる。後述の複合材分断工程を簡便且つ安定的に行うために、貫通孔のピッチは、好ましくは10μm以下に設定される。より好ましくは5μm以下に設定される。貫通孔の直径は5μm以下で形成される場合が多い。
 ただし、加工痕11は、分断予定線DLに沿ったミシン目状の貫通孔に限られるものではない。超短パルスレーザ光源40から発振したレーザ光L3と脆性材料層1との分断予定線DLに沿った相対移動速度を小さく設定するか、超短パルスレーザ光源40のパルス発振の繰り返し周波数を大きく設定すれば、加工痕11として、分断予定線DLに沿って一体的に繋がった貫通孔(長孔)が形成される。
 超短パルスレーザ光源40から発振するレーザ光L3の波長は、脆性材料層1を形成する脆性材料がガラスである場合に高い光透過率を示す500nm~2500nmであることが好ましい。非線形光学現象(多光子吸収)を効果的に引き起こすため、レーザ光L3のパルス幅は、100ピコ秒以下であることが好ましく、50ピコ秒以下であることがより好ましい。レーザ光L3の発振形態は、シングルパルス発振でも、バーストモードのマルチパルス発振でもよい。
 図2(c)に示すように、レーザ光L3の脆性材料層1への照射位置におけるスポット径Dは、例えば、100μmとされ、前述のように、第2加工溝31の幅Wは、このスポット径D以上となっている。
 なお、加工溝形成工程で形成した第2加工溝31を加工痕形成工程の前に、各種ウェット方式又はドライ方式のクリーニングを適用することで、保護層3を形成する樹脂の残渣を除去するクリーニング工程を更に含んでもよい。クリーニング工程において、保護層3を形成する樹脂の残渣を除去すれば、加工痕形成工程において、第2加工溝31側から脆性材料層1に超短パルスレーザ光源40から発振したレーザ光L3を照射しても、レーザ光L3が樹脂の残渣の影響を受けず、脆性材料層1により一層適切な加工痕11を形成可能である。
 [複合材分断工程]
 図2(d)に示すように、複合材分断工程では、加工痕形成工程の後、分断予定線DLに沿って外力を加えることで、複合材10を分断する。図2(d)に示す例では、複合材10は、複合材片10a、10bに分断される。
 複合材分断工程は、加工痕形成工程で形成する加工痕11が分断予定線DLに沿ったミシン目状の貫通孔である場合や、光学機能層2の厚み方向の一部が残渣として残存するように光学機能層2を形成する樹脂を除去する(第1加工溝21の底部に残渣が残存する)場合に、特に必要となる。加工痕11が分断予定線DLに沿って一体的に繋がった貫通孔(長孔)であり、なお且つ、第1加工溝21の底部に残渣が残存しない場合には、加工痕形成工程を実行すると同時に複合材10を分断可能であるため、必ずしも複合材分断工程は必要ではない。
 複合材10への外力の付加方法としては、機械的なブレイク(山折り)、赤外域レーザ光による切断予定線DLの近傍部位の加熱、超音波ローラによる振動付加、吸盤による吸着及び引き上げ等を例示できる。
 以下、本実施形態に係る分断方法の加工溝形成工程において、第2加工溝31を形成する際に用いる剥離法及びオフセット法について、順に説明する。
 (剥離法)
 図3は、加工溝形成工程での剥離法の概略手順を模式的に説明する断面図である。剥離法は、図3(a)、(b)及び(d)の順に実行する。なお、図3(c)は図3(b)の破線Cで囲った領域の拡大図である。
 図3(a)、(b)に示すように、剥離法では、第2レーザ光源30から発振したレーザ光L2の保護層3への照射位置を分断予定線DLに直交する方向(図3に示す例ではX方向)にずらして、各照射位置(図3(a)に示すA1の位置、図3(b)に示すA2の位置)で分断予定線DLに沿ってレーザ光L2を保護層3に照射する。具体的には、本実施形態では、第2レーザ光源30から発振したレーザ光L2を、分断予定線DLを基準として分断予定線DLに直交する方向(X方向)に等距離の位置A1、A2にそれぞれ照射する。これにより、各照射位置A1、A2に加工溝31a、31bが形成される。そして、X方向についての加工溝31a、31bの離間距離(各照射位置A1、A2の離間距離)が、加工痕形成工程における超短パルスレーザ光L3の脆性材料層1への照射位置におけるスポット径D(図2(c)参照)以上とされている。
 なお、前述のように、本実施形態では、好ましい態様として、レーザ光L2を保護層3に照射することで、保護層3の粘着剤層3bの厚み方向の一部が残渣として残存するように、保護層3を形成する樹脂を除去している(図3(c)参照)。前述のように、残渣の厚みTは、好ましくは、1~30μmであり、より好ましくは、1~10μmである。
 次に、図3(d)に示すように、剥離法では、各照射位置A1、A2の間に存在する保護層3を形成する樹脂を剥離することで、第2加工溝31を形成する。樹脂の剥離は、公知の剥離装置を適宜用いて行うことが可能である。前述のように、加工溝31a、31bの離間距離が、超短パルスレーザ光L3のスポット径D以上であるため、第2加工溝31の幅W(図2(c)参照)も超短パルスレーザ光L3のスポット径D以上となる。
 なお、剥離法で各照射位置A1、A2の間に存在する保護層3を形成する樹脂を剥離すると、図3(c)又は(d)からも分かるように、各照射位置A1、A2の近傍では、粘着剤層3bの厚み方向の一部が残渣として残存するものの、その他の部分では粘着剤層3bを含む保護層3全体が剥離し、脆性材料層1の表面が露出することが期待できる。
 以上に説明した剥離法によれば、分断予定線DL上に超短パルスレーザ光L3を照射すれば(図2(c)参照)、第2レーザ光源30から発振したレーザ光L2の照射位置A1、A2と、超短パルスレーザ光L3の照射位置とが、第2加工溝31の幅Wの1/2だけずれることになる。
 したがい、仮に、加工溝形成工程において、第2レーザ光源30から発振したレーザ光L2の出力がある程度大きく設定され、保護層3を形成する樹脂が除去されて脆性材料層1の表面が露出して熱ダメージを多少受けたとしても、同じ箇所に超短パルスレーザ光L3が照射され難いため、脆性材料層1の端面にクラックが生じ難い。
 図4は、複合材10を4つの矩形の複合材片に分断する場合における加工溝形成工程での剥離法及び加工痕形成工程の概略手順を模式的に説明する平面図である。図4(a)~(c)は剥離法の概略手順を、図4(d)は加工痕形成工程の概略手順を示す。なお、図4において、第2レーザ光源30及び超短パルスレーザ光源40は、便宜上、斜視で図示している。
 図4(a)に示すように、剥離法では、第2レーザ光源30から発振したレーザ光L2の保護層3への照射位置を分断予定線DLに直交する方向にずらして、各照射位置で分断予定線DLに沿ってレーザ光L2を保護層3に照射する。具体的には、図4(a)に示す例では、分断予定線DLよりも、第2加工溝31の幅W(図2(c)参照)の1/2だけ内側にずれた位置(実線で示す位置)にレーザ光L2を照射している。図4(a)に符号31a、31bで示す部位が、図3に示す加工溝31a、31bに相当する。
 次に、剥離法では、各照射位置の間に存在する保護層3を形成する樹脂を剥離することで、第2加工溝31を形成する。図4(b)は剥離した保護層3を形成する樹脂を、図4(c)は剥離後の複合材10を示す。図4(b)に示す例では、各照射位置の間に存在する保護層3を形成する樹脂(図4(b)の十字状の領域に存在する樹脂)だけではなく、照射位置の外側に位置する保護層3を形成する樹脂も同時に剥離している。
 次に、図4(d)に示すように、加工痕形成工程では、分断予定線DL上に超短パルスレーザ光源40から発振した超短パルスレーザ光L3を照射する。
 これにより(或いは、複合材分断工程を更に実行することにより)、4つの矩形の複合材片に分断可能である。
 (オフセット法)
 図5は、加工溝形成工程でのオフセット法の概略手順を模式的に説明する断面図である。オフセット法は、図5(a)~(d)の順に実行する。
 図5(a)~(c)に示すように、オフセット法では、第2レーザ光源30から発振したレーザ光L2の保護層3への照射位置を分断予定線DLに直交する方向(図5に示す例ではX方向)に順次ずらして、各照射位置(図5(a)に示すB1の位置、図5(b)に示すB2の位置及び図5(c)に示すB3の位置)で分断予定線DLに沿ってレーザ光L2を保護層3に照射する。具体的には、本実施形態では、第2レーザ光源30から発振したレーザ光L2を、分断予定線DLを基準として分断予定線DLに直交する方向(X方向)に等距離の位置B1から位置B3まで、所定のピッチ(例えば、レーザ光L2のスポット径と同等の大きさである30μm程度のピッチ)で順次ずらして、各位置にそれぞれ照射する。これにより、各照射位置で形成される加工溝31cの幅が順次大きくなり、最終的に、図5(d)に示すように、第2加工溝31が形成される。レーザ光L2の照射位置をずらす範囲(照射位置B1、B3の離間距離)を、加工痕形成工程における超短パルスレーザ光L3の脆性材料層1への照射位置におけるスポット径D(図2(c)参照)以上とすることで、第2加工溝31の幅W(図2(c)参照)を超短パルスレーザ光L3のスポット径D以上にすることができる。
 なお、オフセット法でも、好ましい態様として、レーザ光L2を保護層3に照射することで、保護層3の粘着剤層3bの厚み方向の一部が残渣として残存するように、保護層3を形成する樹脂を除去している。特に、オフセット法を適用する場合には、剥離法を適用する場合に比べて、第2レーザ光源30から発振したレーザ光L2の保護層3への照射箇所が多いため、脆性材料層1が熱ダメージを受け易い状況になる。したがい、粘着剤層3bの厚み方向の一部を残渣として残存させることは、オフセット法を適用する場合に特に有効である。
 また、オフセット法を適用する場合には、剥離法を適用する場合に比べて、第2レーザ光源30から発振したレーザ光L2の保護層3への照射箇所が多いため、保護層3が具備する粘着剤層3bからヒュームが発生し易い状況にある。したがい、オフセット法を適用する場合に、ヒュームの発生を防止するには、粘着剤層3bをウレタン系粘着剤層にすることが好ましい。
 図6は、複合材10を4つの矩形の複合材片に分断する場合における加工溝形成工程でのオフセット法及び加工痕形成工程の概略手順を模式的に説明する平面図である。図6(a)はオフセット法の概略手順を、図6(b)は加工痕形成工程の概略手順を示す。なお、図6において、第2レーザ光源30及び超短パルスレーザ光源40は、便宜上、斜視で図示している。
 図6(a)に示すように、オフセット法では、第2レーザ光源30から発振したレーザ光L2の保護層3への照射位置を分断予定線DLに直交する方向に順次ずらして、各照射位置で分断予定線DLに沿ってレーザ光L2を保護層3に照射する。具体的には、図6(a)に示す例では、分断予定線DLよりも、第2加工溝31の幅W(図2(c)参照)の1/2だけ内側及び外側にずれた位置(実線で示す位置)の範囲にレーザ光L2を照射して、各照射位置で形成される加工溝31cの幅を順次大きくしている。これにより、図6(b)に示すように、第2加工溝31(図6(b)において、斜線のハッチングが施されていない領域)が形成される。
 次に、図6(b)に示すように、加工痕形成工程では、分断予定線DL上に超短パルスレーザ光源40から発振した超短パルスレーザ光L3を照射する。
 これにより(或いは、複合材分断工程を更に実行することにより)、4つの矩形の複合材片に分断可能である。
 以上に説明した本実施形態に係る分断方法によれば、加工溝形成工程において、光学機能層2を形成する樹脂及び保護層3を形成する樹脂を除去することで、分断予定線DLに沿った第1加工溝21及び第2加工溝31を形成した後、加工痕形成工程において、第2加工溝31側から脆性材料層1を形成する脆性材料を除去することで、同じ分断予定線DLに沿った加工痕11を形成する。そして、加工溝形成工程で形成される第2加工溝31は、その幅Wが加工痕形成工程で超短パルスレーザ光源40から発振したレーザ光(超短パルスレーザ光)L3の脆性材料層1への照射位置におけるスポット径D以上となるように形成されるため、脆性材料層1の端面にクラックを生じさせることなく、脆性材料層1を分断可能である。
 以下、本実施形態に係る分断方法(実施例1~5)及び比較例(比較例1、2)に係る分断方法を用いて複合材10を分断する試験を行った結果の一例について説明する。
 図7は、実施例として、加工溝形成工程において剥離法を適用した場合の主な試験条件及び試験結果の一例を示す。図8は、実施例として、加工溝形成工程においてオフセット法を適用した場合の主な試験条件及び試験結果の一例を示す。
 <実施例1>
 [光学機能層2の作製]
 熱可塑性の樹脂基材として、長尺で、ガラス転移温度(Tg)が約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、この樹脂基材の片面にコロナ処理を施した。
 一方、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)及びアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 そして、上記の樹脂基材のコロナ処理面に、上記のPVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 上記のようにして作製した積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次に、一軸延伸後の積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次に、上記の積層体を、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次に、上記の積層体を、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 次に、上記の積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 次に、上記の積層体を、液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 最後に、上記の積層体を、約90℃に保たれたオーブン中で乾燥させながら、表面温度が約75℃に保たれたステンレス鋼製の加熱ロールに接触させた(乾燥収縮処理)。
 以上のようにして、樹脂基材上に厚み約5μmの偏光子を形成し、樹脂基材/偏光子の構成を有する積層体を作製した。
 次に、上記の積層体を構成する偏光子の一方の面(樹脂基材側の面と反対側の面)にアクリル系保護フィルム(厚み:40μm)を貼り合わせて偏光フィルムを作製した。そして、偏光フィルムから樹脂基材を剥離し、当該剥離面にアクリル系粘着剤(厚み:20μm)を介して、ポリエチレンテレフタレート離型フィルム(厚み:38μm)を貼り合わせることで、光学機能層2の本体を作製した。
 また、接着剤として、セロキサイド2021P(ダイセル化学工業社製)を70重量部、EHPE3150を5重量部、アロンオキセタンOXT-221(東亜合成社製)19重量部、KBM-403(信越化学工業社製)を4重量部、CPI101A(サンアプロ社製)を2重量部配合したエポキシ系接着剤を用意した。
 上記の光学機能層2の本体と、上記の接着剤との組み合わせが、光学機能層2を構成する。
 [脆性材料層1及び光学機能層2の積層体の作製]
 脆性材料層1として、ガラスフィルム(日本電気硝子社製、商品名「OA-10G」、厚み:100μm)を用意した。
 次に、上記の脆性材料層1と、上記の光学機能層2の本体とを、上記の接着剤を介して貼り合わせた。この際、光学機能層2の本体は、アクリル系保護フィルムが脆性材料層1側となるように配置した。次に、高圧水銀ランプにより上記の接着剤に紫外線を照射(500mJ/cm)して接着剤を硬化させることで、脆性材料層1及び光学機能層2の積層体を作製した。硬化後の接着剤の厚みは5μmであった。
 [複合材10の作製]
 次に、図7に示すように、保護層3として、アクリル系粘着剤層を有する表面保護フィルム(日東電工社製、商品名「RP207」)を用意した。
 この保護層3の基材層3aは、厚み38μmの未処理ポリエチレンテレフタレートフィルム(三菱化学ポリエステル社製、ダイアホイルT100 #38)から形成されている。
 また、この保護層3の粘着剤層3bは、以下のようにして作製されている。まず、酢酸エチル中に、モノマーベースで35%となるように2-エチルヘキシルアクリレート100重量部及び2-ヒドロキシエチルアクリレート4重量部を共重合して重量平均分子量60万のアクリル系ポリマーを含有する溶液を得る。次に、この溶液に、アクリル系ポリマー(乾燥重量)100重量部に対して、イソシアヌレート環を有するイソシアネート系架橋剤(日本ポリウレタン工業社製、コロネートHX)4重量部を配合し、さらに酢酸エチルを加え固形分濃度を20% に調整した粘着剤溶液を調製する。最後に、この粘着剤溶液を、基材層3a上に乾燥膜厚が20μmになるように塗布し、140℃で2分間乾燥させて、粘着剤層3bを形成する。
 保護層3(RP207)は、以上のようにして作製された基材層3a及び粘着剤層3bを具備する。そして、この保護層3の粘着剤層3bを介して、保護層3と、脆性材料層1及び光学機能層2の積層体の脆性材料層1とを貼り合わせることで、複合材10を作製した。
 [加工溝形成工程(第1加工溝21の形成)]
 上記のようにして作製した複合材10を枚葉化した後、光学機能層2に第1加工溝21を形成した。具体的には、第1レーザ光源20及びレーザ光L1の走査を制御する光学系や制御装置を備えたレーザ加工装置として、武井電機社製のTLSUシリーズ(発振波長9.4μmのCOレーザ光源、パルス発振の繰り返し周波数12.5kHz、レーザ光L1のパワー250W)を用い、第1レーザ光源20から発振したレーザ光L1の出力を11.8Wにし、集光レンズを用いて光学機能層2への照射位置においてスポット径150μmに集光し、複合材10の分断予定線(格子状に設定された複数の分断予定線)DLに沿って光学機能層2に照射した。複合材10に対するレーザ光L1の相対的な移動速度(加工速度)は400mm/secとした。これにより、光学機能層2を形成する樹脂を除去し、分断予定線DLに沿った第1加工溝21を形成した。この際、光学機能層2を形成する樹脂の一部が第1加工溝21の底部に残渣(厚み:10~20μm)として残るように樹脂を除去した。
 [加工溝形成工程(第2加工溝31の形成)]
 次に、保護層3に第2加工溝31を形成した。具体的には、第1加工溝21を形成する場合と同様に、第2レーザ光源30及びレーザ光L2の走査を制御する光学系や制御装置を備えたレーザ加工装置として、武井電機社製のTLSUシリーズ(発振波長9.4μmのCOレーザ光源、パルス発振の繰り返し周波数12.5kHz、レーザ光L2のパワー250W)を用い、図7に示すように、第2レーザ光源30から発振したレーザ光L2の出力を10.5Wにし、集光レンズを用いて保護層3への照射位置においてスポット径120~130μmに集光し、複合材10の分断予定線(格子状に設定された複数の分断予定線)DLに沿って保護層3に照射した。複合材10に対するレーザ光L2の相対的な移動速度(加工速度)は400mm/secとした。そして、剥離法を適用することで、図7に示すように、幅が200μmの第2加工溝31を形成した。なお、レーザ光L2を保護層3に照射する際には、図7に示すように、照射位置において保護層3を形成する樹脂の一部が残渣として残らない(厚み:0μm)ように樹脂を除去した。
 [加工痕形成工程]
 上記の加工溝形成工程の後、加工痕形成工程を実行した。具体的には、超短パルスレーザ光源40として、発振波長1064nm、レーザ光L3のパルス幅10ピコ秒、パルス発振の繰り返し周波数50kHz 、平均パワー10Wのものを用い、超短パルスレーザ光源40から発振したレーザ光L3をマルチ焦点光学系を介して、第2加工溝31側から複合材10の脆性材料層1に照射した。レーザ光L3の脆性材料層1への照射位置におけるスポット径Dは、100μmとした。複合材10に対するレーザ光L3の相対的な移動速度(加工速度)を100mm/secとし、分断予定線DLに沿ってレーザ光L3を走査したところ、加工痕11として、ピッチが2μmのミシン目状の貫通孔(直径1~2μm程度)が形成された。 
 [複合材分断工程]
 上記の加工痕形成工程の後、複合材分断工程を実行した。具体的には、COレーザ光源及びレーザ光の走査を制御する光学系や制御装置を備えたレーザ加工装置として、キーエンス社製のMLG-9300(発振波長10.6μm、レーザ光のパワー30W)を用い、レーザ光源から発振したレーザ光の出力を80%(すなわち、出力24W)にして、集光レンズを用いてスポット径0.7mmに集光し(このときのエネルギー密度は62W/m)、複合材10の分断予定線DLに沿って保護層3側から脆性材料層1に照射した。この際、複合材10に対するレーザ光の相対的な移動速度を500mm/secとした。
 最後に、複合材10に機械的な外力を加えて、加工溝形成工程後に第1加工溝21の底部に残った樹脂の残渣を分断し、複合材10を分断した。
 実施例1に係る分断方法で分断された複合材10(複合材片)の脆性材料層1の端面を目視で観察したところ、図7に示すように、脆性材料層1が問題なく分断できており、クラックが生じていなかった。
 <実施例2>
 図7に示すように、第2加工溝31を形成する際、第2レーザ光源30から発振したレーザ光L2の出力を8.0Wにし、照射位置において保護層3を形成する樹脂(粘着剤層3b)の一部が残渣(厚み:10μm)として残るように樹脂を除去した点を除き、実施例1と同じ条件で複合材10を分断した。
 実施例2に係る分断方法で分断された複合材10(複合材片)の脆性材料層1の端面を目視で観察したところ、図7に示すように、脆性材料層1が問題なく分断できており、クラックが生じていなかった。
 <比較例1>
 第2加工溝31を形成する際、第2レーザ光源30から発振したレーザ光L2を複合材10の分断予定線(格子状に設定された複数の分断予定線)DL上において保護層3に1回だけ照射した(剥離法を適用しなかった)点を除き、実施例1と同じ条件で複合材10の分断を試みた。図7に示すように、比較例1で形成された第2加工溝31の幅は30μmであり、加工痕形成工程で超短パルスレーザ光源40から発振したレーザ光L3の脆性材料層1への照射位置におけるスポット径D(100μm)よりも小さかった。
 図7に示すように、比較例1に係る分断方法では、脆性材料層1を貫通する加工痕11が形成されず、複合材10を分断することができなかった。
 <実施例3>
 以下の(1)~(3)に示す点を除き、実施例1と同じ条件で複合材10を作製し、その複合材10を分断した。
 (1)図8に示すように、保護層3として、ウレタン系粘着剤層を有する表面保護フィルム(日東電工社製、商品名「AW700EC」)を用意した。
 この保護層3の基材層3aは、ポリエステル樹脂からなる基材「ルミラーS10」(厚み38μm、東レ社製)から形成されている。
 また、この保護層3の粘着剤層3bは、以下のようにして作製されている。まず、ポリオールとして、OH基を3個有するポリオールであるプレミノールS3011(旭硝子社製、Mn=10000)、OH基を3個有するポリオールであるサンニックスGP-3000(三洋化成社製、Mn=3000)、OH基を3個有するポリオールであるサンニックスGP-1000(三洋化成社製、Mn=1000)を用いる。また、多官能イソシアネート化合物として、多官能脂環族系イソシアネート化合物であるコロネートHX(日本ポリウレタン工業社製)を用いる。また、触媒として、日本化学産業社製の商品名「ナーセム第2鉄」を用いる。また、劣化防止剤として、Irganox1010(BASF製)を用いる。また、脂肪酸エステルとして、ミリスチン酸イソプロピル(花王社製、商品名「エキセパールIPM」、Mn=270)又は、2-エチルヘキサン酸セチル(日清オイリオグループ社製、商品名「サラコス816T」、Mn=368)を用いる。そして、これらに、1-エチル-3-メチルイミダゾリウムビス(フルオロメタンスルホニル)イミド(第一工業製薬社製、商品名「AS110」)と、両末端型のポリエーテル変性シリコーンオイル(信越化学工業社製、商品名「KF-6004」)と、希釈溶剤として酢酸エチルとを加えて混合攪拌を行うことで、ウレタン系粘着剤組成物を作製する。そして、作製したウレタン系粘着剤組成物を、上記の基材層3a上に、ファウンテンロールで乾燥後の厚みが10μmとなるように塗布し、乾燥温度130℃、乾燥時間30秒の条件でキュアーして乾燥させて、粘着剤層3bを形成する。
 保護層3(AW700EC)は、以上のようにして作製された基材層3a及び粘着剤層3bを具備する。そして、この保護層3の粘着剤層3bを介して、保護層3と、実施例1と同じ脆性材料層1及び光学機能層2の積層体の脆性材料層1とを貼り合わせることで、複合材10を作製した。
 (2)第2加工溝31を形成する際、オフセット法を適用した。
 (3)図8に示すように、第2加工溝31を形成する際、第2レーザ光源30から発振したレーザ光L2の出力を4.3Wにし、照射位置において保護層3を形成する樹脂(粘着剤層3b)の一部が残渣(厚み:7.5μm)として残るように樹脂を除去した。
 実施例3に係る分断方法で分断された複合材10(複合材片)の脆性材料層1の端面を目視で観察したところ、図8に示すように、脆性材料層1が問題なく分断できており、クラックが生じていなかった。
 <実施例4>
 図8に示すように、第2加工溝31を形成する際、第2レーザ光源30から発振したレーザ光L2の出力を4.9Wにし、照射位置において保護層3を形成する樹脂(粘着剤層3b)の一部が厚み2.1μmの残渣として残るように樹脂を除去した点を除き、実施例3と同じ条件で複合材10を分断した。
 実施例4に係る分断方法で分断された複合材10(複合材片)の脆性材料層1の端面を目視で観察したところ、図8に示すように、脆性材料層1が問題なく分断できており、クラックが生じていなかった。
 <実施例5>
 図8に示すように、第2加工溝31を形成する際、第2レーザ光源30から発振したレーザ光L2の出力を5.1Wにし、照射位置において保護層3を形成する樹脂の一部が残渣として残らない(厚み:0μm)ように樹脂を除去した点を除き、実施例3と同じ条件で複合材10を分断した。
 実施例5に係る分断方法で分断された複合材10(複合材片)の脆性材料層1の端面を目視で観察したところ、図8に示すように、脆性材料層1が問題なく分断できており、クラックが生じていなかった。
 <比較例2>
 第2加工溝31を形成する際、第2レーザ光源30から発振したレーザ光L2を複合材10の分断予定線(格子状に設定された複数の分断予定線)DL上において保護層3に1回だけ照射した(オフセット法を適用しなかった)点を除き、実施例5と同じ条件で複合材10の分断を試みた。図8に示すように、比較例2で形成された第2加工溝31の幅は30μmであり、加工痕形成工程で超短パルスレーザ光源40から発振したレーザ光L3の脆性材料層1への照射位置におけるスポット径D(100μm)よりも小さかった。
 図8に示すように、比較例2に係る分断方法では、脆性材料層1を貫通する加工痕11が形成されず、複合材10を分断することができなかった。
 1・・・脆性材料層
 2・・・光学機能層
 3・・・保護層
 3a・・・基材層
 3b・・・粘着剤層
 10・・・複合材
 11・・・加工痕
 20・・・第1レーザ光源
 21・・・第1加工溝
 30・・・第2レーザ光源
 31・・・第2加工溝
 40・・・超短パルスレーザ光源
 D・・・スポット径
 DL・・・分断予定線
 L1、L2、L3・・・レーザ光
 W・・・第2加工溝の幅

Claims (8)

  1.  脆性材料層の一方の面側に樹脂製の光学機能層が積層され、前記脆性材料層の他方の面側に樹脂製の保護層が積層された複合材を分断する方法であって、
     第1レーザ光源から発振したレーザ光を前記複合材の分断予定線に沿って前記光学機能層に照射して前記光学機能層を形成する樹脂を除去することで、前記分断予定線に沿った第1加工溝を形成すると共に、第2レーザ光源から発振したレーザ光を前記分断予定線に沿って前記保護層に照射して前記保護層を形成する樹脂を除去することで、前記分断予定線に沿った第2加工溝を形成する加工溝形成工程と、
     前記加工溝形成工程の後、超短パルスレーザ光源から発振したレーザ光を前記第2加工溝側から前記分断予定線に沿って前記脆性材料層に照射して前記脆性材料層を形成する脆性材料を除去することで、前記分断予定線に沿った加工痕を形成する加工痕形成工程と、を含み、
     前記加工溝形成工程において、前記第2加工溝の幅が、前記加工痕形成工程で前記超短パルスレーザ光源から発振したレーザ光の前記脆性材料層への照射位置におけるスポット径以上となるように、前記保護層を形成する樹脂を除去する、
    複合材の分断方法。
  2.  前記加工溝形成工程において、前記第2レーザ光源から発振したレーザ光の前記保護層への照射位置を前記分断予定線に直交する方向にずらして、各照射位置で前記分断予定線に沿って前記レーザ光を前記保護層に照射した後、前記各照射位置の間に存在する前記保護層を形成する樹脂を剥離することで、前記第2加工溝を形成する、
    請求項1に記載の複合材の分断方法。
  3.  前記加工溝形成工程において、前記第2レーザ光源から発振したレーザ光の前記保護層への照射位置を前記分断予定線に直交する方向に順次ずらして、各照射位置で前記分断予定線に沿って前記レーザ光を前記保護層に照射することで、前記第2加工溝を形成する、
    請求項1に記載の複合材の分断方法。
  4.  前記加工溝形成工程において、前記第2加工溝の幅が100μm以上となるように、前記保護層を形成する樹脂を除去する、
    請求項1から3の何れかに記載の複合材の分断方法。
  5.  前記保護層は、基材層と、前記脆性材料層側に配置された粘着剤層と、を具備し、
     前記加工溝形成工程において、前記粘着剤層の厚み方向の一部が残存するように、前記保護層を形成する樹脂を除去する、
    請求項1から4の何れかに記載の複合材の分断方法。
  6.  前記保護層は、基材層と、前記脆性材料層側に配置されたウレタン系粘着剤層と、を具備する、
    請求項1から5の何れかに記載の複合材の分断方法。
  7.  前記第2レーザ光源がCOレーザ光源である、
    請求項1から6の何れかに記載の複合材の分断方法。
  8.  前記脆性材料層がガラスを含み、前記光学機能層が偏光フィルムを含む、
    請求項1から7の何れかに記載の複合材の分断方法。
PCT/JP2020/044790 2020-03-11 2020-12-02 複合材の分断方法 WO2021181766A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022505761A JPWO2021181766A1 (ja) 2020-03-11 2020-12-02
CN202080099699.5A CN115485097A (zh) 2020-03-11 2020-12-02 复合材料的截断方法
KR1020227031053A KR20220148197A (ko) 2020-03-11 2020-12-02 복합재의 분단 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-042084 2020-03-11
JP2020042084 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021181766A1 true WO2021181766A1 (ja) 2021-09-16

Family

ID=77672005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044790 WO2021181766A1 (ja) 2020-03-11 2020-12-02 複合材の分断方法

Country Status (5)

Country Link
JP (1) JPWO2021181766A1 (ja)
KR (1) KR20220148197A (ja)
CN (1) CN115485097A (ja)
TW (1) TW202134702A (ja)
WO (1) WO2021181766A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211796A1 (en) * 2022-04-28 2023-11-02 Meta Platforms Technologies, Llc Glass-film lamination and cutting method to mitigate orange peel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609711B (zh) * 2022-03-09 2023-07-18 业成科技(成都)有限公司 光学元件的制造方法、夹持装置、显示模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043363A (ja) * 2012-08-24 2014-03-13 Hamamatsu Photonics Kk 強化ガラス部材加工方法
JP2017145188A (ja) * 2017-03-14 2017-08-24 日東電工株式会社 可撓性フィルムの製造方法
JP2018170475A (ja) * 2017-03-30 2018-11-01 三星ダイヤモンド工業株式会社 金属膜付き脆性材料基板の分断方法並びに分断装置
JP2019025539A (ja) * 2017-08-04 2019-02-21 株式会社ディスコ レーザー加工装置
JP2019122966A (ja) * 2018-01-12 2019-07-25 日東電工株式会社 複合材の分断方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688716B1 (ko) 2012-05-23 2016-12-21 코니카 미놀타 가부시키가이샤 편광판, 편광판의 제조 방법 및 화상 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043363A (ja) * 2012-08-24 2014-03-13 Hamamatsu Photonics Kk 強化ガラス部材加工方法
JP2017145188A (ja) * 2017-03-14 2017-08-24 日東電工株式会社 可撓性フィルムの製造方法
JP2018170475A (ja) * 2017-03-30 2018-11-01 三星ダイヤモンド工業株式会社 金属膜付き脆性材料基板の分断方法並びに分断装置
JP2019025539A (ja) * 2017-08-04 2019-02-21 株式会社ディスコ レーザー加工装置
JP2019122966A (ja) * 2018-01-12 2019-07-25 日東電工株式会社 複合材の分断方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211796A1 (en) * 2022-04-28 2023-11-02 Meta Platforms Technologies, Llc Glass-film lamination and cutting method to mitigate orange peel

Also Published As

Publication number Publication date
CN115485097A (zh) 2022-12-16
JPWO2021181766A1 (ja) 2021-09-16
TW202134702A (zh) 2021-09-16
KR20220148197A (ko) 2022-11-04

Similar Documents

Publication Publication Date Title
JP7449995B2 (ja) 複合材の分断方法
US8168514B2 (en) Laser separation of thin laminated glass substrates for flexible display applications
US20100116800A1 (en) Optical film cutting method and optical film
EP2065119A1 (en) Optical film cutting method, and optical film
WO2021181766A1 (ja) 複合材の分断方法
JP7426942B2 (ja) 偏光性光学機能フィルム積層体及びこれに用いる偏光フィルム
KR20240046469A (ko) 광학 적층체, 그리고 그 광학 적층체를 사용한 광학 필름편의 제조 방법
JP7316297B2 (ja) 偏光性光学機能フィルム積層体のレーザー切断加工方法
JP2010110818A (ja) 加工対象物分断方法および対象物製造方法
US20220259092A1 (en) Method for dividing composite material
WO2015182558A1 (ja) ガラス基板の製造方法、及び電子デバイス
WO2021009960A1 (ja) 複合材の分断方法
WO2022264623A1 (ja) 複合材の分断方法
JP2019148744A (ja) 偏光板およびその製造方法
JP2023128345A (ja) 脆性材料チップ、脆性材料シート、脆性材料シートの製造方法及び脆性材料チップの製造方法
CN116802010A (zh) 多层结构体及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505761

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031053

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924170

Country of ref document: EP

Kind code of ref document: A1