TW202134702A - 複合材之分斷方法 - Google Patents

複合材之分斷方法 Download PDF

Info

Publication number
TW202134702A
TW202134702A TW109143306A TW109143306A TW202134702A TW 202134702 A TW202134702 A TW 202134702A TW 109143306 A TW109143306 A TW 109143306A TW 109143306 A TW109143306 A TW 109143306A TW 202134702 A TW202134702 A TW 202134702A
Authority
TW
Taiwan
Prior art keywords
laser light
layer
light source
composite material
processing groove
Prior art date
Application number
TW109143306A
Other languages
English (en)
Inventor
篠崎貴博
伊藤賢
菅野敏弘
仲井宏太
大峰俊樹
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW202134702A publication Critical patent/TW202134702A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本發明提供一種不會於脆性材料層之端面產生裂痕之複合材之分斷方法。 本發明係將於脆性材料層之各面側分別積層有光學功能層與保護層的複合材予以分斷的方法,其包含以下步驟:加工槽形成步驟,係將從第1雷射光源振盪出之雷射光沿著複合材之分斷預定線照射於光學功能層,形成第1加工槽,且將從第2雷射光源振盪出之雷射光沿著複合材之分斷預定線照射於保護層,形成第2加工槽;及脆性材料去除步驟,係於加工槽形成步驟之後,將從超短脈衝雷射光源振盪出之雷射光沿著分斷預定線照射於脆性材料層,形成加工痕;並且,以第2加工槽之寬度為於加工痕形成步驟中從超短脈衝雷射光源振盪出之雷射光朝脆性材料層之照射位置處之光點直徑以上之方式,去除形成保護層之樹脂。

Description

複合材之分斷方法
本發明係關於將複合材分斷之方法,該複合材係於脆性材料層之一面側積層有樹脂製光學功能層(例如偏光薄膜)、於脆性材料層之另一面側積層有樹脂製保護層(例如保護薄膜)者。本發明尤其關於可在不使脆性材料層之端面產生裂痕下分斷複合材之方法。
背景技術 近年來,液晶面板除了朝薄型化及高精細化進展外,為了使介面具有多樣性而於畫面上搭載有觸控感測器功能的液晶面板被使用於行動電話到資訊顯示器的廣泛領域中。 最近,由薄型化及輕量化之觀點,出現具有內置式液晶單元之液晶面板,該內置式液晶單元係於液晶單元之玻璃基板組裝有觸控感測器。
另一方面,被稱為薄玻璃之薄膜狀玻璃正作為配置於液晶面板之最表面的前面板而受到注目。薄玻璃由於可捲成捲筒狀,故具有亦可應用於所謂捲對捲方式之製程的優點,有人提出有與偏光薄膜一體化的玻璃偏光薄膜(例如參照專利文獻1)。 玻璃偏光薄膜由於只要貼合於內置式液晶單元即可獲得搭載有觸控感測器功能的液晶面板,故與使用強化玻璃作為前面板的一般液晶面板相比,可大幅簡化製程。
專利文獻2提出有一種將複合材根據用途分斷成期望的形狀、尺寸之方法,該複合材如同上述玻璃偏光薄膜般,積層有由玻璃等形成之脆性材料層與由偏光薄膜等形成之光學功能層。 專利文獻2所記載之方法係如下所述:將從CO2 雷射光源等雷射光源振盪出之雷射光沿著複合材之分斷預定線照射至複合材之光學功能層(於專利文獻2中為樹脂層),將形成光學功能層之樹脂去除後,將從超短脈衝雷射光源振盪出之雷射光(超短脈衝雷射光)沿著複合材之分斷預定線照射至脆性材料層,將形成脆性材料層之脆性材料去除,藉此將複合材予以分斷。 根據專利文獻2記載之方法,具有不會於分斷後之脆性材料層之端面產生裂痕的優點。
此處,如同上述玻璃偏光薄膜般,積層有由玻璃等形成之脆性材料層與由偏光薄膜等形成之光學功能層的複合材,通常是於分斷後的複合材片中之脆性材料層之與積層有光學功能層的面為相反側的面上,積層保護薄膜等保護層後出貨。由於對每個分斷後的複合材片執行積層保護層之步驟很費時,故為了解決此問題以減少工時,期望一次性將複合材分斷的方法,該複合材係於脆性材料層之一面側積層有光學功能層且於脆性材料層之另一面側積層有保護層者。
然而,於專利文獻2中並沒有提出將於脆性材料層之一面側積層有光學功能層、於脆性材料層之另一面側積層有保護層的複合材一次性分斷的方法。
再者,於非專利文獻1中記載:於使用超短脈衝雷射光之加工技術中,利用超短脈衝雷射光之光絲現象,或於超短脈衝雷射光源應用多焦點光學系統或貝索光束光學系統。 先行技術文獻 專利文獻
[專利文獻1]國際公開第2013/175767號 [專利文獻2]日本特開2019-122966號公報 [非專利文獻]
[非專利文獻1] 約翰·洛佩茲(John Lopez)等人、“使用超短脈衝貝索光束之玻璃切断(GLASS CUTTING USING ULTRASHORT PULSED BESSEL BEAMS)”、[online]、2015年10月、International Congress on Applications of Lasers & Electro-Optics (ICALEO)、[令和1年7月8日檢索]、網址(URL:https://www.researchgate.net/publication/284617626_GLASS_CUTTING_USING_ULTRASHORT_PULSED_BESSEL_BEAMS)
發明概要 發明欲解決之課題 本發明係為解決上述先前技術之問題而完成者,其課題提供一種複合材之分斷方法,係將於脆性材料層之一面側積層有樹脂製光學功能層、於脆性材料層之另一面側積層有樹脂製保護層的複合材予以分斷的方法,且於脆性材料層之端面不產生裂痕。 用以解決課題之手段
為解決前述課題,本發明人等對應用前述專利文獻2記載之方法進行檢討。 具體而言,考慮於脆性材料層之一面側積層有樹脂製光學功能層、於脆性材料層之另一面側積層有樹脂製保護層的複合材中,藉由從CO2 雷射光源等振盪出之雷射光沿著複合材之分斷預定線於光學功能層形成加工槽(第1加工槽),且藉由從CO2 雷射光源等振盪出之雷射光沿著複合材之分斷預定線於保護層形成加工槽(第2加工槽)。然後,為了使分斷後之光學功能層之端面不產生嚴重的熱劣化(伴隨熱劣化之變色區域較少),認為可將從超短脈衝雷射光源振盪出之雷射光(超短脈衝雷射光)通過第2加工槽沿著複合材之分斷預定線照射於脆性材料層。
然而,本發明人等實際上就上述方法進行試驗,結果發現:若形成第2加工槽之雷射光之輸出較小、第2加工槽之深度較小,在將超短脈衝雷射光照射於脆性材料層時,無法於脆性材料層形成貫通其厚度方向之加工痕,無法分斷複合材。另一方面,已知若形成第2加工槽之雷射光之輸出過大,脆性材料層會受到熱損傷,在將超短脈衝雷射光照射於脆性材料層時,會以受到熱損傷之處為起點,於脆性材料層之端面產生裂痕。然後,已知為了可於脆性材料層形成加工痕,且不於脆性材料層之端面產生裂痕,在將用以形成第2加工槽之雷射光之輸出設定為適當值時,需要極微妙的調整,難以進行自動化。
因此,本發明人等進而專心致力於研究,結果發現:只要以第2加工槽之寬度為超短脈衝雷射光朝脆性材料層的照射位置處的光點直徑以上之方式形成第2加工槽,就不需要微妙地調整用以形成第2加工槽之雷射光之輸出,可在不使脆性材料層之端面產生裂痕下分斷複合材,而完成本發明。
本發明係基於上述本發明人等之發現而完成者。 即,為了解決前述課題,本發明提供一種複合材之分斷方法,係將於脆性材料層之一面側積層有樹脂製光學功能層、於前述脆性材料層之另一面側積層有樹脂製保護層的複合材予以分斷的方法,其包含以下步驟:加工槽形成步驟,係將從第1雷射光源振盪出之雷射光沿著前述複合材之分斷預定線照射於前述光學功能層,去除形成前述光學功能層之樹脂,藉此形成沿循前述分斷預定線之第1加工槽,且將從第2雷射光源振盪出之雷射光沿著前述分斷預定線照射於前述保護層,去除形成前述保護層之樹脂,藉此形成沿循前述分斷預定線之第2加工槽;及加工痕形成步驟,係於前述加工槽形成步驟之後,將從超短脈衝雷射光源振盪出之雷射光從前述第2加工槽側沿著前述分斷預定線照射於前述脆性材料層,去除形成前述脆性材料層之脆性材料,藉此形成沿循前述分斷預定線之加工痕;並且,於前述加工槽形成步驟中,以前述第2加工槽之寬度為於前述加工痕形成步驟中從前述超短脈衝雷射光源振盪出之雷射光朝前述脆性材料層之照射位置處之光點直徑以上之方式,去除形成前述保護層之樹脂。
根據本發明之方法,藉由於加工槽形成步驟中去除形成光學功能層之樹脂及形成保護層之樹脂,形成沿循分斷預定線之第1加工槽及第2加工槽後,於加工痕形成步驟中從第2加工槽側去除形成脆性材料層之脆性材料,藉此形成沿循相同的分斷預定線之加工痕。然後,於加工槽形成步驟中形成之第2加工槽,係以其寬度為於加工痕形成步驟中從超短脈衝雷射光源振盪出之雷射光(超短脈衝雷射光)朝脆性材料層之照射位置處之光點直徑以上之方式形成。藉此,如同前述本發明人等之見解,可在不使脆性材料層之端面產生裂痕下分斷脆性材料層。 如本發明之方法,藉由將第2加工槽之寬度設為在超短脈衝雷射光朝脆性材料層之照射位置處之光點直徑以上,則超短脈衝雷射光之能量不易被消耗在去除形成保護層之樹脂,而是充分地使用在去除形成脆性材料層之脆性材料,故可於脆性材料層形成加工痕,且可不使脆性材料層之端面產生裂痕。
再者,於本發明之方法中,所謂「將雷射光沿著前述複合材之分斷預定線照射於前述光學功能層」係指從複合材之厚度方向(光學功能層、脆性材料層及保護層之積層方向)觀看,沿著分斷預定線將雷射光照射於光學功能層。又,於本發明之方法中,所謂「將雷射光沿著前述分斷預定線照射於前述保護層」係指從複合材之厚度方向(光學功能層、脆性材料層及保護層之積層方向)觀看,沿著分斷預定線將雷射光照射於保護層。進而,所謂「將雷射光從前述第2加工槽側沿著前述分斷預定線照射於前述脆性材料層」係指從複合材之厚度方向(光學功能層、脆性材料層及保護層之積層方向)觀看,沿著分斷預定線將雷射光從第2加工槽側照射於保護層。 又,於本發明之方法中,所謂「沿著分斷預定線照射於…」係指照射於分斷預定線上、或於分斷預定線之附近位置,與分斷預定線平行地照射。 進而,於本發明之方法中,所謂「第2加工槽之寬度」係指與分斷預定線垂直之方向上的第2加工槽底部的尺寸。
又,於本發明之方法中,於加工槽形成步驟中使用之第1雷射光源及第2雷射光源之種類,只要屬可以振盪出之雷射光去除樹脂者,則無特別限定。惟,由可提高雷射光相對於複合材之相對移動速度(加工速度)之觀點,宜使用振盪出紅外區域之波長之雷射光的CO2 雷射光源或CO雷射光源。第1雷射光源及第2雷射光源可為相同種類、亦可為不同種類。又,第1雷射光源及第2雷射光源不一定需要獨立準備,亦可將第1雷射光源兼用作為第2雷射光源。 在獨立準備第1雷射光源及第2雷射光源時,只要將第1雷射光源配置於光學功能層側、將第2雷射光源配置於保護層側,使用第1雷射光源於光學功能層形成第1加工槽後,使用第2雷射光源於保護層形成第2加工槽即可。又,亦可使用第2雷射光源於保護層形成第2加工槽後,使用第1雷射光源於光學功能層形成第1加工槽。進而,亦可使用第1雷射光源及第2雷射光源同時形成第1加工槽及第2加工槽。 又,在將第1雷射光源兼用作為第2雷射光源時,亦可於與光學功能層及保護層中之任一者對向之側配置第1雷射光源(第2雷射光源),使用第1雷射光源(第2雷射光源)於光學功能層形成第1加工槽(或於保護層形成第2加工槽)後,將複合材反轉,使第1雷射光源(第2雷射光源)與光學功能層及保護層中之另一者對向,使用第1雷射光源(第2雷射光源)於保護層形成第2加工槽(或於光學功能層形成第1加工槽)。
進而,於本發明之方法中,關於於加工痕形成步驟中形成之加工痕,可例示譬如專利文獻2記載之沿循分斷預定線之點線狀貫通孔。此時,於加工痕形成步驟後,可藉由沿著分斷預定線施加外力而分斷複合材。作為朝複合材施加外力之方法,可例示:機械性破裂(山摺)、利用紅外區域雷射光加熱切斷預定線之附近部位、利用超音波滾筒施加振動、利用吸盤吸附及拉起等。關於朝複合材施加外力之方法,在使用利用紅外區域雷射光加熱切斷預定線之附近部位之情形下,利用於脆性材料層產生之熱應力,會以連接點線狀貫通孔之方式沿著分斷預定線發生龜裂,使得脆性材料層被分斷(割斷)。再者,於第1加工槽之底部殘存樹脂之殘渣時,只要如上所述施加外力將脆性材料層分斷後,例如對光學功能層進一步施加機械性外力來將複合材分斷即可。即使對光學功能層乃至於脆性材料層進一步施加機械性外力,由於此時脆性材料層已經被分斷,故不會於脆性材料層之端面產生裂痕。 於本發明之方法中,於加工痕形成步驟中形成之加工痕不一定限於點線狀貫通孔。若於加工痕形成步驟中,將從超短脈衝雷射光源振盪出之雷射光與脆性材料層之沿循分斷預定線之相對移動速度設定為小、或將超短脈動雷射光源之脈衝振盪之重複頻率設定為大,可形成沿著分斷預定線連接成一體之貫通孔(長孔)作為加工痕。此時,於加工痕形成步驟後,即使不沿著分斷預定線施加外力,亦可分斷脆性材料層。其中,於第1加工槽之底部殘存樹脂之殘渣時,只要將脆性材料層分斷後,例如對光學功能層施加機械性外力來將複合材分斷即可。
於本發明之方法中,為了使於加工槽形成步驟中形成之第2加工槽之寬度為於加工痕形成步驟中從超短脈衝雷射光源振盪出之雷射光(超短脈衝雷射光)朝脆性材料層之照射位置處之光點直徑以上,考慮例如使從第2雷射光源振盪出之雷射光之照射位置於與分斷預定線垂直之方向上移動,於各照射位置將雷射光照射於保護層後,將存在於各照射位置之間的形成保護層之樹脂剝離。若將該剝離樹脂之部分之尺寸(與分斷預定線垂直之方向之尺寸)設為超短脈衝雷射光朝脆性材料層之照射位置處之光點直徑以上,則可使第2加工槽之寬度成為超短脈衝雷射光朝脆性材料層之照射位置處之光點直徑以上。 即,較佳為於前述加工槽形成步驟中,將從前述第2雷射光源振盪出之雷射光朝前述保護層之照射位置於與前述分斷預定線垂直之方向上移動,於各照射位置沿著前述分斷預定線將前述雷射光照射於前述保護層後,將存在於前述各照射位置之間的形成前述保護層之樹脂剝離,藉此形成前述第2加工槽。
根據上述較佳方法(以下適當稱為「剝離法」),例如考慮於加工槽形成步驟中,將從第2雷射光源振盪出之雷射光分別照射於以分斷預定線為基準、於與分斷預定線垂直之方向上等距離之位置,將存在於其等之間之形成保護層之樹脂剝離。藉此,若形成以分斷預定線作為寬度方向之中心的第2加工槽後,朝分斷預定線上照射超短脈衝雷射光,則從第2雷射光源振盪出之雷射光之照射位置與超短脈衝雷射光之照射位置僅偏離第2加工槽之寬度之1/2。 因此,縱使假設於加工槽形成步驟中,將從第2雷射光源振盪出之雷射光之輸出設定為大到一定程度,去除形成保護層之樹脂,使脆性材料層之表面露出而受到一些熱損傷,亦由於超短脈衝雷射光不易照射到相同位置,故於脆性材料層之端面不易產生裂痕。 又,存在於各照射位置之間之形成保護層之樹脂的剝離,可適當使用周知的剝離裝置進行。
於本發明之方法中,使於加工槽形成步驟中形成之第2加工槽之寬度為超短脈衝雷射光朝脆性材料層之照射位置處之光點直徑以上之方法,並不限定於上述剝離法。 例如亦可為如下方法:於前述加工槽形成步驟中,將從前述第2雷射光源振盪出之雷射光朝前述保護層之照射位置於與前述分斷預定線垂直之方向上依序移動,於各照射位置沿著前述分斷預定線將前述雷射光照射於前述保護層,藉此形成前述第2加工槽(以下適當稱為「移動法」)。 若將使從第2雷射光源振盪出之雷射光之照射位置移動之範圍(與分斷預定線垂直之方向之範圍)設為超短脈衝雷射光朝脆性材料層之照射位置處之光點直徑以上,則可使第2加工槽之寬度成為超短脈衝雷射光朝脆性材料層之照射位置處之光點直徑以上。
於本發明中,超短脈衝雷射光朝脆性材料層之照射位置處之光點直徑例如設為100μm。 因此,於前述加工槽形成步驟中,宜以前述第2加工槽之寬度為100μm以上之方式去除形成前述保護層之樹脂,較佳為以前述第2加工槽之寬度為150μm以上之方式去除形成前述保護層之樹脂。 再者,超短脈衝雷射光源朝脆性材料層之照射位置處之光點直徑為100μm時,脆性材料層之光學功能層側之面之光點直徑經聚光後例如為1.2μm。又,超短脈衝雷射光朝脆性材料層之照射位置處之光點直徑為100μm時,在相當於保護層表面(與脆性材料層側之面相反側之面)的位置的光點直徑例如為154μm。
較好的是,前述保護層具備基材層、及配置於前述脆性材料層側之黏著劑層,於前述加工槽形成步驟中,以殘存前述黏著劑層之厚度方向之一部份之方式去除形成前述保護層之樹脂。
根據上述較佳方法,於加工槽形成步驟中,由於以殘存黏著劑層之厚度方向之一部份之方式去除形成保護層之樹脂,故脆性材料層不易受到熱損傷,於脆性材料層之端面更加不易產生裂痕。
關於形成保護層所具備之黏著劑層之黏著劑,例如可使用丙烯酸系黏著劑,但為了防止於加工槽形成步驟中在保護層形成第2加工槽時產生煙霧,宜使用難以產生煙霧之胺基甲酸酯系黏著劑作為黏著劑。 即,較佳為前述保護層具備基材層、及配置於前述脆性材料層側之胺基甲酸酯系黏著劑層。
根據上述較佳方法,可防止於加工槽形成步驟中從保護層所具備之黏著劑層產生煙霧。上述較佳方法於加工槽形成步驟中應用前述移動法時特別有效。即,於應用移動法時,與應用剝離法時相比,由於從第2雷射光源振盪出之雷射光朝保護層之照射位置較多,故成為從保護層所具備之黏著劑層容易產生煙霧之狀況。因此,可防止產生煙霧之上述較佳方法於應用移動法時特別有效。
本發明之方法例如適合使用於前述脆性材料層包含玻璃、且前述光學功能層包含偏光薄膜之情形。 發明效果
根據本發明,可將於脆性材料層之一面側積層有樹脂製光學功能層、於脆性材料層之另一面側積層有樹脂製保護層的複合材,在不使脆性材料層之端面產生裂痕下予以分斷。
用以實施發明之形態 以下,一面適當地參照附圖,一面對本發明一實施形態之複合材之分斷方法進行說明。
<複合材之構造> 首先,對應用本實施形態之分斷方法之複合材之構造進行說明。 圖1係顯示應用本實施形態之分斷方法之複合材之概略構造的剖面圖。 再者,應該注意的是,圖1只是參考性顯示,圖中顯示的構件等的尺寸、比例尺及形狀可能與實際的有所不同。關於其他圖亦相同。 如圖1所示,複合材10具有積層有脆性材料層1、積層於脆性材料層1之一面側(於圖1所示例中為下側)之樹脂製光學功能層2、及積層於脆性材料層1之另一面側(於圖1所示例中為上側)之樹脂製保護層3的構造。保護層3具備基材層3a、與配置於脆性材料層1側之黏著劑層3b。 本實施形態之分斷方法係將該複合材10於厚度方向(光學功能層2、脆性材料層1及保護層3之積層方向、圖1之上下方向、Z方向)上分斷之方法。
脆性材料層1、光學功能層2及保護層3係藉由任意之適當方法積層。例如,脆性材料層1、光學功能層2及保護層3可藉由所謂捲對捲方式積層。例如,可一面將長條之脆性材料層1、長條之光學功能層2之本體(例如構成光學功能層2之由圖1上方起依序為偏光薄膜、黏著劑及離型薄膜。唯,於圖1中省略偏光薄膜、黏著劑及離型薄膜之圖示)於長度方向上搬送、一面對齊彼此的長度方向後,經由接著劑(未圖示)相互貼合,藉此將脆性材料層1與光學功能層2(光學功能層2之本體及接著劑)積層。然後,可一面將長條之脆性材料層1及光學功能層2之積層體、長條之保護層3之基材層3a於長度方向上搬送、一面對齊彼此的長度方向後,經由黏著劑層3b相互貼合,藉此將脆性材料層1、光學功能層2及保護層3積層。然而,亦可將脆性材料層1與光學功能層2之本體分別切割為特定形狀後,再經由接著劑積層。又,亦可將脆性材料層1及光學功能層2之積層體與保護層3之基材層3a分別切割為特定形狀後,經由黏著劑層3b積層。
關於形成脆性材料層1之脆性材料,可例示:玻璃、及單晶或多晶矽。較佳為使用玻璃。 關於玻璃,若根據組成進行分類,可例示:鈉鈣玻璃、硼酸玻璃、氧化鋁矽酸玻璃、石英玻璃及藍寶石玻璃。又,若根據鹼成分進行分類,可例示:無鹼玻璃、低鹼玻璃。玻璃之鹼金屬成分(例如Na2 O、K2 O、Li2 O)之含量宜為15重量%以下、較佳為10重量%以下。
脆性材料層1之厚度宜為150μm以下、較佳為120μm以下、更佳為100μm以下。另一方面,脆性材料層1之厚度宜為30μm以上、較佳為80μm以上。若脆性材料層1之厚度於上述範圍,可利用捲對捲與光學功能層2積層。
形成脆性材料層1之脆性材料為玻璃時,脆性材料層1之波長550nm下之透光率宜為85%以上。形成脆性材料層1之脆性材料為玻璃時,脆性材料層1之波長550nm下之折射率宜為1.4~1.65。形成脆性材料層1之脆性材料為玻璃時,脆性材料層1之密度宜為2.3g/cm3 ~3.0g/cm3 、較佳為2.3g/cm3 ~2.7g/cm3
形成脆性材料層1之脆性材料為玻璃時,可直接使用市售的玻璃板作為脆性材料層1,亦可將市售的玻璃板研磨為期望的厚度後使用。關於市售的玻璃板,可舉例:Corning公司製「7059」、「1737」或「EAGLE2000」、旭硝子公司製「AN100」、NH Techno Glass公司製「NA-35」、日本電氣硝子公司製「OA-10G」、Schott公司製「D263」或「AF45」。
關於光學功能層2之本體,可例示由聚對苯二甲酸乙二酯(PET)、聚乙烯(PE)、聚丙烯(PP)、聚甲基丙烯酸甲酯(PMMA)等丙烯酸樹脂、環狀烯烴聚合物(COP)、環狀烯烴共聚物(COC)、聚碳酸酯(PC)、胺基甲酸酯樹脂、聚乙烯醇(PVA)、聚醯亞胺(PI)、聚四氟乙烯(PTFE)、聚氯乙烯(PVC)、聚苯乙烯(PS)、三醋酸纖維素(TAC)、聚萘二甲酸乙二酯(PEN)、乙烯-乙酸乙烯酯(EVA)、聚醯胺(PA)、聚矽氧樹脂、環氧樹脂、液晶聚合物、各種樹脂製發泡體等塑膠材料形成之單層薄膜、或由複數層構成之積層薄膜。
光學功能層2之本體為由複數層構成之積層薄膜時,亦可於層間存在丙烯酸黏著劑、胺基甲酸酯黏著劑、聚矽氧黏著劑等各種黏著劑或接著劑。 又,亦可於光學功能層2之本體表面形成有氧化銦錫(ITO)、Ag、Au、Cu等導電性無機膜。 本實施形態之分斷方法尤其適用於光學功能層2之本體為用於顯示器的偏光薄膜或相位差薄膜等之情形。 光學功能層2之本體厚度宜為20~500μm、較佳為50~300μm。
於本實施形態中,如前所述,光學功能層2之本體為從圖1上方起依序積層有偏光薄膜、黏著劑及離型薄膜的積層薄膜。光學功能層2之本體係經由接著劑(未圖示)與脆性材料層1積層。於本實施形態中,將光學功能層2之本體(偏光薄膜、黏著劑及離型薄膜)與接著劑之組合稱為光學功能層2。
構成光學功能層2之本體之偏光薄膜具有偏光件與配置於偏光件之至少一側之保護薄膜。偏光件之厚度並無特別限制,可視目的採用適當的厚度。偏光件之厚度通常為1~80μm左右。於一態樣中,偏光件之厚度宜為30μm以下。偏光件為碘系偏光件。更詳細而言,上述偏光件可由包含碘之聚乙烯醇系樹脂薄膜構成。
關於構成上述偏光薄膜之偏光件之製造方法,可舉例以下方法1、2等。 (1)方法1:使聚乙烯醇系樹脂薄膜單體延伸、染色之方法。 (2)方法2:使具有樹脂基材與聚乙烯醇系樹脂層之積層體(i)延伸、染色之方法。 方法1由於為本技術領域者周知慣用的方法,故省略詳細的說明。 方法2宜包含使具有樹脂基材與形成於該樹脂基材單側之聚乙烯醇系樹脂層的積層體(i)延伸、染色後,於前述樹脂基材上製作偏光件之步驟。積層體(i)可於樹脂基材上塗佈包含聚乙烯醇系樹脂之塗佈液並使之乾燥而形成。又,積層體(i)亦可於樹脂基材上轉印聚乙烯醇系樹脂膜而形成。方法2之詳細情形例如記載於日本特開2012-73580號公報,該公報作為參考引用於本說明書中。
構成上述偏光薄膜之保護薄膜係配置於偏光件之一面或兩面。關於保護薄膜,亦可使用三醋酸纖維素系薄膜、丙烯酸系薄膜、環烯烴系薄膜、聚對苯二甲酸乙二酯系薄膜等。又,偏光薄膜亦可適當地進一步具備相位差薄膜。相位差薄膜可視目的,具有任意適當的光學特性及/或機械特性。
在複合材10提供實用之前,構成光學功能層2之本體之離型薄膜具有保護構成光學功能層2之本體的黏著劑層的作用。關於離型薄膜之構成材料,例如可列舉:聚乙烯、聚丙烯、聚對苯二甲酸乙二酯、聚酯薄膜等塑膠薄膜、或紙、布、不織布等多孔質材料、網狀物、發泡片、金屬箔及此等之層壓體等適當的薄片體等,由表面平滑性優異之觀點,宜使用塑膠薄膜。
關於構成光學功能層2之接著劑,例如可使用:聚酯系接著劑、聚胺基甲酸酯系接著劑、聚乙烯醇系接著劑、環氧系接著劑。尤其由獲得良好的密著性之觀點,宜使用環氧系接著劑。 接著劑為熱硬化型接著劑時,可藉由加熱而硬化(固化)來發揮剝離阻力。又,接著劑為紫外線硬化型等光硬化型接著劑時,可藉由照射紫外線等光而使之硬化,來發揮剝離阻力。進而,接著劑為溼氣硬化型接著劑時,因為可與環境中之水分等反應而硬化,故即使放置亦會硬化,而發揮剝離阻力。 關於接著劑,例如可使用市售的接著劑、亦可將各種硬化型樹脂溶解或分散於溶劑中、製備作為接著劑溶液(或分散液)。 接著劑之厚度宜為10μm以下、較佳為1~10μm、更佳為1~8μm、再更佳為1~6μm。
於本實施形態中,保護層3之基材層3a係經由黏著劑層3b積層於脆性材料層1。雖然亦可以自黏著型薄膜構成保護層3之基材層3a、不經由黏著劑層地積層於脆性材料層1,但由保護脆性材料層1之觀點,宜如本實施形態般經由黏著劑層3b積層於脆性材料層1。 由檢查性或管理性等觀點,關於基材層3a係選擇具有各向同性或接近各向同性之薄膜材料。關於其薄膜材料,例如可列舉:聚對苯二甲酸乙二酯薄膜等聚酯系樹脂、纖維素系樹脂、乙酸酯系樹脂、聚醚碸系樹脂、聚碳酸酯系樹脂、聚醯胺系樹脂、聚醯亞胺系樹脂、聚烯烴系樹脂、丙烯酸系樹脂等透明的聚合物。其等之中,較佳為聚酯系樹脂。關於基材層3a,亦可使用1種或2種以上之薄膜材料之層壓體,亦可使用前述薄膜之延伸物。基材層3a之厚度宜為35μm~100μm以下、進而較佳為超過38μm、100μm以下。
關於形成黏著劑層3b之黏著劑,可適當選擇以(甲基)丙烯酸系聚合物、聚矽氧系聚合物、聚酯、聚胺基甲酸酯、聚醯胺、聚醚、氟系或橡膠系等聚合物作為基礎聚合物之黏著劑使用。由透明性、耐候性、耐熱性等觀點,較佳為以丙烯酸系聚合物作為基礎聚合物之丙烯酸系黏著劑。然後,如後所述,為了防止於保護層3形成第2加工槽31時產生煙霧,關於形成黏著劑層3b之黏著劑宜使用以聚胺基甲酸酯作為基礎聚合物之胺基甲酸酯系黏著劑。黏著劑層3b之厚度(乾燥膜厚)係根據所需要之黏著力而決定。通常為1~100μm左右、較佳為5~50μm。
<複合材之分斷方法> 以下,就具有上述構造之複合材10之分斷方法進行說明。 本實施形態之分斷方法包含加工槽形成步驟與加工痕形成步驟。又,本實施形態之分斷方法視需要包含複合材分斷步驟。以下,就各步驟依序說明。
[加工槽形成步驟] 圖2係示意性說明本實施形態之分斷方法之概略程序的說明圖。圖2(a)及(b)係顯示本實施形態之分斷方法之加工槽形成步驟的剖面圖。圖2(c)係顯示本實施形態之分斷方法之加工痕形成步驟的剖面圖。圖2(d)係顯示本實施形態之分斷方法之複合材分斷步驟的剖面圖。 如圖2(a)所示,於加工槽形成步驟中,將從第1雷射光源20振盪出之雷射光L1沿著複合材10之分斷預定線照射於光學功能層2,去除形成光學功能層2之樹脂。藉此,形成沿循分斷預定線之第1加工槽21。 於圖2所示之例中,為求方便,圖示複合材10之面內(XY二維平面內)垂直之2方向(X方向及Y方向)之中、於Y方向延伸之直線DL為分斷預定線之情形,但本發明並不限於此,例如設定有於X方向延伸之複數條直線DL與於Y方向延伸之複數條直線DL而形成格子狀之分斷預定線等,可設定各種分斷預定線。以下,將該直線DL稱為「分斷預定線DL」。 分斷預定線DL亦可實際上描繪於複合材10,作為可視覺性辨識之顯示,亦可於控制雷射光L1與複合材10之XY二維平面上之相對位置關係之控制裝置(未圖示)預先輸入分斷預定線DL之座標。圖2所示之分斷預定線DL係於控制裝置預先輸入其座標、實際上未描繪於複合材10之假想線。再者,分斷預定線DL並不限於直線,亦可為曲線。可根據複合材10之用途決定分斷預定線DL,藉此根據用途將複合材10分斷為任意形狀、尺寸。
於本實施形態中,使用振盪出之雷射光L1之波長為紅外區域之9~11μm的CO2 雷射光源作為第1雷射光源20。 然而,本發明並不限於此,亦可使用振盪出之雷射光L1之波長為5μm的CO雷射光源作為第1雷射光源20。 又,亦可使用可見光及紫外線(UV)脈衝雷射光源作為第1雷射光源20。關於可見光及UV脈衝雷射光源,可例示:振盪出之雷射光L1之波長為532nm、355nm、349nm或266nm(以Nd:YAG、Nd:YLF或YVO4作為介質之固體雷射光源之高次諧波)者、振盪出之雷射光L1之波長為351nm、248nm、222nm、193nm或157nm之準分子雷射光源、振盪出之雷射光L1之波長為157nm之F2雷射光源。 又,關於第1雷射光源20,亦可使用振盪出之雷射光L1之波長為紫外區域以外且脈衝寬為飛秒或皮秒級之脈衝雷射光源。若使用從該脈衝雷射光源振盪之雷射光L1,可基於多光子吸收過程而誘發蝕除加工。 進而,關於第1雷射光源20,亦可使用振盪出之雷射光L1之波長為紅外區域之半導體雷射光源或光纖雷射光源。
關於將雷射光L1沿著複合材10之分斷預定線照射之態樣(掃描雷射光L1之態樣),例如考慮如下方法:將單片狀之複合材10載置於XY雙軸工作台(未圖示),進行固定(例如吸附固定),藉由來自控制裝置之控制信號驅動XY雙軸工作台,藉此改變複合材10相對於雷射光L1於XY二維平面上之相對位置。又,亦考慮如下方法:將複合材10之位置固定、使用利用來自控制裝置之控制信號驅動之檢流計反射鏡或多邊形鏡使從第1雷射光源20振盪出之雷射光L1偏向,藉此改變照射於複合材10之雷射光L1於XY二維平面上之位置。進而,亦可併用上述使用XY雙軸工作台之複合材10之掃描與使用檢流計反射鏡等之雷射光L1之掃描兩者。
第1雷射光源20之振盪形態可為脈衝振盪,亦可為連續振盪。雷射光L1之空間強度分布可為高斯分布,亦可為了抑制作為雷射光L1之去除對象外的脆性材料層1之熱損傷,而使用繞射光學元件(未圖示)等整形為平頂分布。雷射光L1之偏光狀態並無限制,可為直線偏光、圓偏光及不規則偏光中任一者。
藉由將雷射光L1沿著複合材10之分斷預定線DL照射於光學功能層2,形成光學功能層2之樹脂中被雷射光L1照射到的樹脂,伴隨著吸收紅外光而產生局部的溫度上升,該樹脂飛散,藉此從複合材10去除該樹脂,於複合材10形成第1加工槽21。為了抑制從複合材10去除之樹脂之飛散物再度附著於複合材10,宜於分斷預定線DL之附近設置集塵機構。為了抑制第1加工槽21之寬度過大,宜以朝光學功能層2之照射位置處之光點直徑(光學功能層2之與脆性材料層1側之面為相反側之面處的光點直徑)為300μm以下之方式,使雷射光L1聚光,較佳為以光點直徑為200μm以下之方式使雷射光L1聚光。 朝光學功能層2之照射位置處之雷射光L1之光點直徑例如設為150μm左右,此時,光學功能層2之脆性材料層1側之面處之光點直徑經聚光後例如成為30~40μm。藉此,形成寬度(與分斷預定線DL垂直之方向上之第1加工槽21之底部尺寸)為30~40μm之第1加工槽21。 第1加工槽21之寬度例如為100μm以下、較佳為50μm以下。
再者,根據本發明人等之見解,採用以照射到雷射光L1之樹脂伴隨紅外光吸收而局部溫度上升作為原理的樹脂去除方法時,可不管樹脂種類或光學功能層2之層構造,而根據光學功能層2之厚度,粗略估計形成第1加工槽21所必需的輸入能量。具體而言,可根據光學功能層2之厚度,藉由下式(2)估計形成第1加工槽21所必需的以下式(1)表示的輸入能量。 輸入能量[mJ/mm]=雷射光L1之平均功率[mW]/加工速度[mm/sec]...(1) 輸入能量[mJ/mm]=0.5×光學功能層2之厚度[μm]...(2) 實際設定的輸入能量宜設定為上述式(2)所估計的輸入能量的20~180%、較佳為設定為50~150%。如此對估計出的輸入能量設置邊界範圍,其原因為考慮到:根據形成光學功能層2之樹脂之光吸收率(雷射光L1之波長下的光吸收率)或樹脂之熔點、分解點等熱物性的不同,於形成第1加工槽21所必需的輸入能量會產生差異。具體而言,例如可準備應用本實施形態之分斷方法的複合材10的樣品,進行以於上述適當範圍內之複數個輸入能量在該樣品之光學功能層2形成第1加工槽21之預備試驗後,決定適當的輸入能量。
又,如圖2(b)所示,於加工槽形成步驟中,將從第2雷射光源30振盪出之雷射光L2沿著複合材10之分斷預定線照射於保護層3,去除形成保護層3之樹脂。藉此,形成沿循分斷預定線之第2加工槽31(參照圖2(c))。形成第2加工槽31時,於本實施形態中使用剝離法或移動法,關於剝離法或移動法的具體內容容後述。 於本實施形態中,係形成第1加工槽21後再形成第2加工槽31,但本發明並不限於此,亦可於形成第2加工槽31後再形成第1加工槽21。又,如圖2所示,在分別準備第1雷射光源20及第2雷射光源30之情形下,亦可同時形成第1加工槽21及第2加工槽31。
於本實施形態中,使用與第1雷射光源20相同種類的CO2 雷射光源作為第2雷射光源30。然而,本發明並不限於此,與之前關於第1雷射光源20所描述的相同,亦可使用CO雷射光源等其他雷射光源。第2雷射光源30可為與第1雷射光源20相同種類、亦可為不同種類。關於將雷射光L2沿著分斷預定線DL照射之態樣(使雷射光L2相對地掃描之態樣),與之前關於雷射光L1所描述的相同,可採用XY雙軸工作台或檢流計反射鏡等之態樣。 雷射光L2係以朝保護層3之照射位置處的光點直徑(保護層3之與脆性材料層1側之面為相反側之面的光點直徑)為例如120~130μm之方式進行聚光。藉此,形成底部寬度為20~30μm之槽。
第2加工槽31係以其寬度W(參照圖2(c))為於後述加工痕形成步驟中從超短脈衝雷射光源40振盪出之雷射光L3朝脆性材料層1之照射位置處之光點直徑D(參照圖2(c))以上之方式形成。 具體而言,本實施形態之第2加工槽31之寬度W宜為100μm以上、較佳為150μm以上。第2加工槽31之寬度W之上限,例如為1000μm以下、較佳為500μm以下、更佳為300μm以下。 如上所述,第2加工槽31之寬度W宜為100μm以上、較佳為比100μm以下的第1加工槽21之寬度大。
於圖2所示例中,雖然於與光學功能層2對向之側配置第1雷射光源20、於與保護層3對向之側配置與第1雷射光源20不同之第2雷射光源30,但本發明並不限於此,亦可將第1雷射光源20兼用作為第2雷射光源30。 將第1雷射光源20兼用作為第2雷射光源30時,例如圖2(a)所示,可於與光學功能層2對向之側配置第1雷射光源20(第2雷射光源30),使用第1雷射光源20(第2雷射光源30)於光學功能層2形成第1加工槽21後,使用周知之反轉機構使複合材10上下反轉,令第1雷射光源20(第2雷射光源30)與保護層3對向,使用第1雷射光源20(第2雷射光源30)於保護層3形成第2加工槽31。或者,如圖2(b)所示,可於與保護層3對向之側配置第1雷射光源20(第2雷射光源30),使用第1雷射光源20(第2雷射光源30)於保護層3形成第2加工槽31後,使用周知之反轉機構使複合材10上下反轉,令第1雷射光源20(第2雷射光源30)與光學功能層2對向,使用第1雷射光源20(第2雷射光源30)於光學功能層2形成第1加工槽21。
再者,於加工槽形成步驟中,作為較佳態樣,亦可以光學功能層2之厚度方向之一部分作為殘渣殘存之方式,去除形成光學功能層2之樹脂。又,於本實施形態中,作為較佳態樣,以保護層3之黏著劑層3b之厚度方向之一部分作為殘渣殘存之方式,去除形成保護層3之樹脂。關於光學功能層2及保護層3之殘渣厚度,較佳為1~30μm、更佳為1~10μm。 如此,與沿著分斷預定線DL完全地去除形成光學功能層2及保護層3之樹脂時相比,藉由以殘存殘渣之方式去除樹脂,可獲得減低對脆性材料層1造成的熱損傷、於脆性材料層1之端面更加難以產生裂痕的優點。
[加工痕形成步驟] 如圖2(c)所示,於加工痕形成步驟中,係於加工槽形成步驟後,將從超短脈衝雷射光源40振盪(脈衝振盪)出之雷射光(超短脈衝雷射光)L3從第2加工槽31側沿著分斷預定線DL照射於脆性材料層1,去除形成脆性材料層1之脆性材料,藉此形成沿循分斷預定線DL之加工痕11。 關於將雷射光L3沿著分斷預定線DL照射之態樣(使雷射光L3相對地掃描之態樣),由於可採用與前述將雷射光L1沿著分斷預定線DL照射之態樣相同態樣,故此處省略詳細的說明。
形成脆性材料層1之脆性材料係利用從超短脈衝雷射光源40振盪出之雷射光L3之光絲現象,或於超短脈衝雷射光源40應用多焦點光學系統(未圖示)或貝索光束光學系統(未圖示),藉此而去除。 又,關於利用超短脈衝雷射光之光絲現象,或於超短脈衝雷射光源應用多焦點光學系統或貝索光束光學系統係記載於非專利文獻1。又,德國的Trumpf公司販賣有於超短脈衝雷射光源應用多焦點光學系統的與玻璃加工相關的製品。如此,由於關於利用超短脈衝雷射光之光絲現象,或於超短脈衝雷射光源應用多焦點光學系統或貝索光束光學系統為公知,故此處省略詳細的說明。
於本實施形態之加工痕形成步驟中形成之加工痕11,例如係作成專利文獻2記載之沿循分斷預定線DL之點線狀貫通孔。沿循分斷預定線DL之貫通孔之間距取決於脈衝振盪之重複頻率與雷射光L3相對於複合材10之相對移動速度(加工速度)。為了簡便且穩定地進行後述的複合材分斷步驟,貫通孔之間距宜設定為10μm以下。較佳設定為5μm以下。貫通孔之直徑大多以5μm以下形成。 然而,加工痕11並不限於沿循分斷預定線DL之點線狀貫通孔。若將從超短脈衝雷射光源40振盪出之雷射光L3與脆性材料層1之沿循分斷預定線DL之相對移動速度設定為小、或將超短脈動雷射光源40之脈衝振盪之重複頻率設定為大,則會形成沿著分斷預定線DL連接成一體之貫通孔(長孔)作為加工痕11。
在形成脆性材料層1之脆性材料為玻璃時,從超短脈衝雷射光源40振盪出之雷射光L3之波長宜為表示高透光率之500nm~2500nm。為了有效地引起非線形光學現象(多光子吸收),雷射光L3之脈衝寬度宜為100皮秒以下、較佳為50皮秒以下。雷射光L3之振盪形態可為單一脈衝振盪,亦可為突發模式之多脈衝振盪。 如圖2(c)所示,雷射光L3朝脆性材料層1之照射位置處之光點直徑D例如設為100μm,如前所述,第2加工槽31之寬度W成為該光點直徑D以上。
再者,於加工痕形成步驟之前可進一步包含清洗步驟,其藉由應用各種溼式或乾式之清洗將於加工槽形成步驟中所形成之第2加工槽31去除形成保護層3之樹脂殘渣。若於清洗步驟中去除形成保護層3之樹脂殘渣,即使於加工痕形成步驟中從第2加工槽31側對脆性材料層1照射從超短脈衝雷射光源40振盪出之雷射光L3,雷射光L3亦可不受樹脂殘渣影響地於脆性材料層1形成更佳適當的加工痕11。
[複合材分斷步驟] 如圖2(d)所示,於複合材分斷步驟中,係於加工痕形成步驟之後,沿著分斷預定線DL施加外力,藉此而分斷複合材10。於圖2(d)所示例中,複合材10被分斷為複合材片10a、10b。 複合材分斷步驟在如下情形時特別需要:於加工痕形成步驟所形成之加工痕11為沿循分斷預定線DL之點線狀貫通孔時;或以光學功能層2之厚度方向之一部分作為殘渣殘存之方式,去除形成光學功能層2之樹脂(於第1加工槽21之底部殘存殘渣)時。在加工痕11為沿著分斷預定線DL連接成一體之貫通孔(長孔)、且於第1加工槽21之底部未殘存殘渣時,由於可在執行加工痕形成步驟之同時分斷複合材10,故不一定需要複合材分斷步驟。 作為朝複合材10施加外力之方法,可例示:機械性破裂(山摺)、利用紅外區域雷射光加熱切斷預定線DL之附近部位、利用超音波滾筒施加振動、利用吸盤之吸附及拉起等。
以下,依序說明本實施形態之分斷方法之加工槽形成步驟中用於形成第2加工槽31時之剝離法及移動法。
(剝離法) 圖3係示意性說明於加工槽形成步驟中之剝離法之概略程序的剖面圖。剝離法按照圖3(a)、(b)及(d)之順序執行。再者,圖3(c)為由圖3(b)之虛線C包圍之區域之放大圖。 如圖3(a)、(b)所示,於剝離法中,將從第2雷射光源30振盪出之雷射光L2朝保護層3之照射位置於與分斷預定線DL垂直之方向上(於圖3所示例中為X方向)移動,於各照射位置(於圖3(a)所示之A1位置、圖3(b)所示之A2位置)沿著分斷預定線DL將雷射光L2照射於保護層3。具體而言,於本實施形態中,將從第2雷射光源30振盪出之雷射光L2以分斷預定線DL為基準,分別照射於在與分斷預定線DL垂直之方向(X方向)上等距離的位置A1、A2。藉此,於各照射位置A1、A2形成加工槽31a、31b。然後,於X方向上的加工槽31a、31b之間隔距離(各照射位置A1、A2之間隔距離)為於加工痕形成步驟中從超短脈衝雷射光L3朝脆性材料層1之照射位置處之光點直徑D(參照圖2(c))以上。 又,如前所述,於本實施形態中,作為較佳態樣,以保護層3之黏著劑層3b之厚度方向之一部分作為殘渣殘存之方式,藉由將雷射光L2照射於保護層3而去除形成保護層3之樹脂(參照圖3(c))。如前所述,殘渣厚度T宜為1~30μm、較佳為1~10μm。
接著,如圖3(d)所示,於剝離法中,藉由將存在於各照射位置A1、A2之間之形成保護層3之樹脂剝離,形成第2加工槽31。樹脂的剝離可適當使用周知的剝離裝置進行。如前所示,由於加工槽31a、31b之間隔距離為超短脈衝雷射光L3之光點直徑D以上,故第2加工槽31之寬度W(參照圖2(c))亦為超短脈衝雷射光L3之光點直徑D以上。 又,若以剝離法剝離存在於各照射位置A1、A2間之形成保護層3之樹脂,由圖3(c)或(d)可明白,可期待黏著劑層3b之厚度方向之一部分作為殘渣殘存於各照射位置A1、A2附近,而於其他部分,包含黏著劑層3b之保護層3全體被剝離,露出脆性材料層1之表面。
根據以上所說明之剝離法,若於分斷預定線DL上照射超短脈衝雷射光L3(參照圖2(c)),從第2雷射光源30振盪出之雷射光L2之照射位置A1、A2與超短脈衝雷射光L3之照射位置偏移第2加工槽31之寬度W之1/2。 因此,縱使假設於加工槽形成步驟中,將從第2雷射光源30振盪出之雷射光L2之輸出設定為大到一定程度,去除形成保護層3之樹脂,使脆性材料層1之表面露出而受到一些熱損傷,亦由於超短脈衝雷射光L3不易照射到相同位置,故於脆性材料層1之端面不易產生裂痕。
圖4係示意性說明將複合材10分斷為四個矩形複合材片時於加工槽形成步驟中之剝離法及加工痕形成步驟之概略程序的俯視圖。圖4(a)~(c)顯示剝離法之概略程序,圖4(d)顯示加工痕形成步驟之概略程序。再者,於圖4中,為求方便,第2雷射光源30及超短脈衝雷射光源40以立體圖示。 如圖4(a)所示,於剝離法中,將從第2雷射光源30振盪出之雷射光L2朝保護層3之照射位置於與分斷預定線DL垂直之方向上移動,於各照射位置沿著分斷預定線DL將雷射光L2照射於保護層3。具體而言,於圖4(a)所示例中,將雷射光L2照射於較分斷預定線DL向內側偏移第2加工槽31之寬度W(參照圖2(c))的1/2的位置(以實線表示的位置)。圖4(a)中以符號31a、31b表示的部位相當於圖3所示的加工槽31a、31b。
接著,於剝離法中,將存在於各照射位置間之形成保護層3之樹脂剝離,藉此形成第2加工槽31。圖4(b)顯示形成剝離後之保護層3之樹脂,圖4(c)表示剝離後之複合材10。於圖4(b)所示例中,不僅將存在於各照射位置間之形成保護層3之樹脂(存在於圖4(b)十字狀區域之樹脂)剝離,亦同時剝離位於照射位置外側的形成保護層3之樹脂。
接著,如圖4(d)所示,於加工痕形成步驟中,於分斷預定線DL上照射從超短脈衝雷射光源40振盪出之超短脈衝雷射光L3。 藉此(或者進一步執行複合材分斷步驟),可分斷為4個矩形的複合材片。
(移動法) 圖5係示意性說明於加工槽形成步驟中之移動法之概略程序的剖面圖。移動法按照圖5(a)~(d)之順序執行。 如圖5(a)~(c)所示,於移動法中,將從第2雷射光源30振盪出之雷射光L2朝保護層3之照射位置於與分斷預定線DL垂直之方向上(於圖5所示例中為X方向)依序移動,於各照射位置(圖5(a)所示之B1位置、圖5(b)所示之B2位置及圖5(c)所示之B3位置)沿著分斷預定線DL將雷射光L2照射於保護層3。具體而言,於本實施形態中,將從第2雷射光源30振盪出之雷射光L2以特定之間距(例如與雷射光L2之光點直徑相同尺寸之30μm左右之間距)依序移動,分別照射於以分斷預定線DL為基準在與分斷預定線DL垂直之方向(X方向)上等距離的位置B1到位置B3的各位置。藉此,於各照射位置形成之加工槽31c之寬度依序變大,最後如圖5(d)所示形成第2加工槽31。藉由將使雷射光L2之照射位置移動之範圍(照射位置B1、B3之間隔距離)設為加工痕形成步驟中超短脈衝雷射光L3朝脆性材料層1之照射位置處之光點直徑D(參照圖2(c))以上,可使第2加工槽31之寬度W(參照圖2(c))成為超短脈衝雷射光L3之光點直徑D以上。
又,於移動法中亦作為較佳態樣,以保護層3之黏著劑層3b之厚度方向之一部分作為殘渣殘存之方式,藉由將雷射光L2照射於保護層3而去除形成保護層3之樹脂。特別是應用移動法時,與應用剝離法時相比,由於從第2雷射光源30振盪出之雷射光L2朝保護層3之照射位置較多,故為脆性材料層1容易受到熱損傷之狀況。因此,使黏著劑層3b之厚度方向之一部分作為殘渣殘存之方法於應用移動法時特別有效。 又,於應用移動法時,與應用剝離法時相比,由於從第2雷射光源30振盪出之雷射光L2朝保護層3之照射位置較多,故成為從保護層3所具備之黏著劑層3b容易產生煙霧之狀況。因此,於應用移動法時,為了防止煙霧產生,宜將黏著劑層3b設為胺基甲酸酯系黏著劑層。
圖6係示意性說明將複合材10分斷為四個矩形複合材片時於加工槽形成步驟中之移動法及加工痕形成步驟之概略程序的俯視圖。圖6(a)顯示移動法之概略程序,圖6(b)顯示加工痕形成步驟之概略程序。再者,於圖6中,為求方便,第2雷射光源30及超短脈衝雷射光源40以立體圖示。 如圖6(a)所示,於移動法中,將從第2雷射光源30振盪出之雷射光L2朝保護層3之照射位置於與分斷預定線DL垂直之方向上依序移動,於各照射位置沿著分斷預定線DL將雷射光L2照射於保護層3。具體而言,於圖6(a)所示例中,將雷射光L2照射於較分斷預定線DL向內側及外側偏移第2加工槽31之寬度W(參照圖2(c))的1/2的位置(以實線表示的位置)的範圍,使於各照射位置所形成之加工槽31c之寬度依序變大。藉此,如圖6(b)所示,形成有第2加工槽31(於圖6(b)中未賦予斜線影線的區域)。
接著,如圖6(b)所示,於加工痕形成步驟中,於分斷預定線DL上照射從超短脈衝雷射光源40振盪出之超短脈衝雷射光L3。 藉此(或者進一步執行複合材分斷步驟),可分斷為4個矩形的複合材片。
根據以上所說明之本實施形態之分斷方法,藉由於加工槽形成步驟中去除形成光學功能層2之樹脂及形成保護層3之樹脂,而形成沿循分斷預定線DL之第1加工槽21及第2加工槽31後,於加工痕形成步驟中從第2加工槽31側去除形成脆性材料層1之脆性材料,藉此形成沿循相同的分斷預定線DL之加工痕11。然後,於加工槽形成步驟中形成之第2加工槽31,由於以其寬度W為於加工痕形成步驟中從超短脈衝雷射光源40振盪出之雷射光(超短脈衝雷射光)L3朝脆性材料層1之照射位置處之光點直徑D以上之方式形成,故可在不使脆性材料層1之端面產生裂痕下分斷脆性材料層1。
以下,說明使用本實施形態之分斷方法(實施例1~5)及比較例(比較例1、2)之分斷方法進行將複合材10分斷之試驗的結果的一例。 圖7係顯示關於實施例之於加工槽形成步驟中應用剝離法時之主要試驗條件及試驗結果之一例。圖8係顯示關於實施例之於加工槽形成步驟中應用移動法時之主要試驗條件及試驗結果之一例。
<實施例1> [光學功能層2之製作] 使用長條且玻璃轉移溫度(Tg)為約75℃之非晶質之間苯二酸共聚合聚對苯二甲酸乙二酯薄膜(厚度:100μm)作為熱塑性樹脂基材,於該樹脂基材之單面實施電暈處理。 另一方面,於將以9:1混合聚乙烯醇(聚合度4200、皂化度99.2莫耳%)及乙醯乙醯基改質PVA(日本合成化學工業公司製、商品名「GOHSEFIMER」)而成之PVA系樹脂100重量份中添加碘化鉀13重量份後,溶解於水中,製備PVA水溶液(塗佈液)。 然後,於上述樹脂基材之電暈處理面塗佈上述PVA水溶液,於60℃進行乾燥,藉此形成厚度13μm之PVA系樹脂層,製作積層體。
將上述製作之積層體於130℃烘箱內於縱向(長度方向)單軸延伸至2.4倍(空中輔助延伸處理)。 接著,將單軸延伸後之積層體浸漬於液溫40℃之不溶化浴(相對於水100重量份調配硼酸4重量份而獲得之硼酸水溶液)30秒(不溶化處理)。 接著,以最後獲得之偏光件之單體穿透率(Ts)成為所期望值之方式,將上述積層體於液溫30℃之染色浴(相對於水100重量份以1:7重量比調配碘與碘化鉀而獲得之碘水溶液)中一面調整濃度一面浸漬60秒(染色處理)。 接著,將上述積層體浸漬於液溫40℃之交聯浴(相對於水100重量份調配3重量份碘化鉀、5重量份硼酸而得之硼酸水溶液)30秒(交聯處理)。 然後,將上述積層體一面浸漬於液溫70℃之硼酸水溶液(硼酸濃度4重量%、碘化鉀濃度5重量%)、一面於周速不同之滾筒之間於縱向(長度方向)以總延伸倍率成為5.5倍之方式進行單軸延伸(水中延伸處理)。 接著,將上述積層體浸漬於液溫20℃之洗淨浴(相對於水100重量份調配4重量份碘化鉀而得之水溶液)(洗淨處理)。 最後,將上述積層體於保持在約90℃之烘箱中一面乾燥、一面使之接觸表面溫度保持在約75℃之不鏽鋼製加熱滾筒(乾燥收縮處理)。 如上所述,製作於樹脂基材上形成厚度約5μm之偏光件,具有樹脂基材/偏光件之構造的積層體。
接著,於構成上述積層體之偏光件之一面(與樹脂基材側之面為相反側之面)貼合丙烯酸系保護薄膜(厚度:40μm),製作偏光薄膜。然後,從偏光薄膜剝離樹脂基材,於該剝離面經由丙烯酸系黏著劑(厚度:20μm)貼合聚對苯二甲酸乙二酯離型薄膜(厚度:38μm),藉此製作光學功能層2之本體。 又,作為接著劑,準備調配有CELLOXIDE 2021P(DAICEL化學工業公司製)70重量份、EHPE3150 5重量份、ARONE OXETANE OXT-221(東亞合成公司製)19重量份、KBM-403(信越化學工業公司製)4重量份、CPI101A(SANAPRO公司製)2重量份之環氧系接著劑。 上述光學功能層2之本體與上述接著劑之組合構成光學功能層2。
[脆性材料層1及光學功能層2之積層體之製作] 作為脆性材料層1,準備玻璃薄膜(日本電氣硝子公司製、商品名「OA-10G」、厚度:100μm)。 接著,將上述脆性材料層1與上述光學功能層2之本體經由上述接著劑貼合。此時,光學功能層2之本體係以丙烯酸系保護薄膜成為脆性材料層1側之方式配置。接著,利用高壓水銀燈朝上述接著劑照射(500mJ/cm2 )紫外線,使接著劑硬化,藉此製作脆性材料層1及光學功能層2之積層體。硬化後之接著劑厚度為5μm。
[複合材10之製作] 接著,如圖7所示,準備具有丙烯酸系黏著劑層之表面保護薄膜(日東電工公司製、商品名「RP207」)作為保護層3。 該保護層3之基材層3a係由厚度38μm之未處理聚對苯二甲酸乙二酯薄膜(三菱化學聚酯公司製、Diafoil T100 #38)形成。 又,該保護層3之黏著劑層3b係如下所述地製作。首先,於乙酸乙酯中,以單體計為35%之方式使丙烯酸2-乙基己酯100重量份及丙烯酸2-羥乙酯4重量份共聚合,獲得重量平均分子量60萬之含有丙烯酸系聚合物之溶液。接著,於該溶液中,相對於丙烯酸系聚合物(乾燥重量)100重量份調配具有異三聚氰酸酯環之異氰酸酯系交聯劑(日本聚胺酯工業公司製、CORONATE HX)4重量份,進而添加乙酸乙酯,製備固體成分濃度經調整為20%之黏著劑溶液。最後,將該黏著劑溶液以乾燥膜厚度成為20μm之方式塗佈於基材層3a上,於140℃乾燥2分鐘,形成黏著劑層3b。 保護層3(RP207)具備如上所述地製作之基材層3a及黏著劑層3b。然後,藉由經由該保護層3之黏著劑層3b將保護層3與脆性材料層1及光學功能層2之積層體的脆性材料層1貼合,製作複合材10。
[加工槽形成步驟(形成第1加工槽21)] 將如上所述製作之複合材10單片化後,於光學功能層2形成第1加工槽21。具體而言,關於具備第1雷射光源20及控制雷射光L1之掃描之光學系統或控制裝置的雷射加工裝置,係使用武井電機公司製之TLSU系列(振盪波長9.4μm之CO2 雷射光源、脈衝振盪之重複頻率12.5kHz、雷射光L1之功率250W),將從第1雷射光源20振盪出之雷射光L1之輸出設為11.8W,使用聚光透鏡在朝光學功能層2之照射位置上聚光為光點直徑150μm,沿著複合材10之分斷預定線(設定為格子狀之複數條分斷預定線)DL照射於光學功能層2。雷射光L1相對於複合材10之相對移動速度(加工速度)設為400mm/sec。藉此,去除形成光學功能層2之樹脂,形成沿循分斷預定線DL之第1加工槽21。此時,以形成光學功能層2之樹脂之一部分作為殘渣(厚度:10~20μm)殘存於第1加工槽21底部之方式,去除樹脂。
[加工槽形成步驟(形成第2加工槽31)] 接著,於保護層3形成第2加工槽31。具體而言,與形成第1加工槽21時相同,關於具備第2雷射光源30及控制雷射光L2之掃描之光學系統或控制裝置之雷射加工裝置,使用武井電機公司製之TLSU系列(振盪波長9.4μm之CO2 雷射光源、脈衝振盪之重複頻率12.5kHz、雷射光L2之功率250W),如圖7所示,將從第2雷射光源30振盪出之雷射光L2之輸出設為10.5W,使用聚光透鏡在朝保護層3之照射位置上聚光為光點直徑120~130μm,沿著複合材10之分斷預定線(設定為格子狀之複數條分斷預定線)DL照射於保護層3。雷射光L2相對於複合材10之相對移動速度(加工速度)設為400mm/sec。然後,藉由應用剝離法,如圖7所示,形成寬度為200μm之第2加工槽31。再者,將雷射光L2照射於保護層3時,如圖7所示,於照射位置處,以沒有形成保護層3之樹脂之一部分作為殘渣殘存(厚度:0μm)之方式去除樹脂。
[加工痕形成步驟] 上述加工槽形成步驟之後,執行加工痕形成步驟。具體而言,作為超短脈衝雷射光源40使用振盪波長1064nm、雷射光L3之脈衝寬10皮秒、脈衝振盪之重複頻率50kHz 、平均功率10W者,將從超短脈衝雷射光源40振盪出之雷射光L3經由多焦點光學系統從第2加工槽31側照射於複合材10之脆性材料層1。雷射光L3朝脆性材料層1之照射位置處之光點直徑D例如設為100μm。將雷射光L3相對於複合材10之相對移動速度(加工速度)設為100mm/sec,沿著分斷預定線DL掃描雷射光L3後,形成作為加工痕11之間距2μm之點線狀貫通孔(直徑1~2μm左右)。
[複合材分斷步驟] 上述加工痕形成步驟之後,執行複合材分斷步驟。具體而言,使用Keyence公司製之MLG-9300(振盪波長10.6μm、雷射光之功率30W)作為具備CO2 雷射光源及控制雷射光之掃描之光學系統或控制裝置之雷射加工裝置,將從雷射光源振盪出之雷射光之輸出設為80%(即輸出24W),使用聚光透鏡聚光為光點直徑0.7mm(此時之能量密度為62W/m2 ),沿著複合材10之分斷預定線DL從保護層3側照射於脆性材料層1。此時,將雷射光相對於複合材10之相對移動速度設為500mm/sec。 最後,對複合材10施加機械性外力,將於加工槽形成步驟後殘存於第1加工槽21底部的樹脂的殘渣分斷,將複合材10分斷。
以目視觀察利用實施例1之分斷方法分斷後之複合材10(複合材片)之脆性材料層1之端面,其結果:如圖7所示,脆性材料層1可無問題地分斷、不產生裂痕。
<實施例2> 如圖7所示,除了將形成第2加工槽31時,從第2雷射光源30振盪出之雷射光L2之輸出設為8.0W、以於照射位置處形成保護層3之樹脂(黏著劑層3b)之一部分作為殘渣(厚度:10μm)殘存之方式去除樹脂之點外,以與實施例1相同條件將複合材10分斷。 以目視觀察利用實施例2之分斷方法分斷後之複合材10(複合材片)之脆性材料層1之端面,其結果:如圖7所示,脆性材料層1可無問題地分斷、不產生裂痕。
<比較例1> 除了形成第2加工槽31時,將從第2雷射光源30振盪出之雷射光L2於複合材10之分斷預定線(設定為格子狀之複數條分斷預定線)DL上對保護層3僅照射1次(不應用剝離法)之點外,以與實施例1相同條件嘗試複合材10之分斷。如圖7所示,於比較例1形成之第2加工槽31之寬度為30μm、比於加工痕形成步驟中從超短脈衝雷射光源40振盪出之雷射光L3朝脆性材料層1之照射位置處之光點直徑D(100μm)小。 如圖7所示,於比較例1之分斷方法中,未形成貫通脆性材料層1之加工痕11,不能分斷複合材10。
<實施例3> 除了以下(1)~(3)所示點外,以與實施例1相同條件製作複合材10,將該複合材10分斷。 (1)如圖8所示,準備具有胺基甲酸酯系黏著劑層之表面保護薄膜(日東電工公司製、商品名「AW700EC」)作為保護層3。 該保護層3之基材層3a由聚酯樹脂構成之基材「Lumirror S10」(厚度38μm、Toray公司製)形成。 又,該保護層3之黏著劑層3b如下所述地製作。首先,關於多元醇,使用具有3個OH基之多元醇之PREMINOL S3011(旭硝子公司製、Mn=10000)、具有3個OH基之多元醇之SANNIX GP-3000(三洋化成公司製、Mn=3000)、具有3個OH基之多元醇之SANNIX GP-1000(三洋化成公司製、Mn=1000)。又,關於多官能異氰酸酯化合物,使用作為多官能脂環族系異氰酸酯化合物之CORONATE HX(日本聚胺酯工業公司製)。又,關於觸媒,使用日本化學產業公司製之商品名「Nasem Ferric」。又,關於防劣化劑,使用Irganox1010(BASF製)。又,關於脂肪酸酯,使用肉荳蔻酸異丙酯(花王公司製、商品名「EXEPARL IPM」、Mn=270)、或鯨蠟醇乙基己酸酯(日清OilliO Group公司製、商品名「SALACOSPR 816T」、Mn=368)。然後,於其等中添加1-乙基-3-甲基咪唑鎓雙(氟甲烷磺醯基)醯亞胺(第一工業製藥公司製、商品名「AS110」)、兩末端型之聚醚改質聚矽氧油(信越化學工業公司製、商品名「KF-6004」)與作為稀釋溶劑之乙酸乙酯,進行混合攪拌,藉此製作胺基甲酸酯系黏著劑組成物。然後,將製作之胺基甲酸酯系黏著劑組成物以乾燥後厚度成為10μm之方式利用水槽輥塗佈於上述基材層3a上,於乾燥溫度130℃、乾燥時間30秒之條件下固化後使之乾燥,形成黏著劑層3b。 保護層3(AW700EC)具備如上所述製作之基材層3a及黏著劑層3b。然後,藉由經由該保護層3之黏著劑層3b將保護層3與和實施例1相同之脆性材料層1及光學功能層2之積層體的脆性材料層1貼合,製作複合材10。 (2)形成第2加工槽31時應用移動法。 (3)如圖8所示,將形成第2加工槽31時,從第2雷射光源30振盪出之雷射光L2之輸出設為4.3W、以於照射位置處形成保護層3之樹脂(黏著劑層3b)之一部分作為殘渣(厚度:7.5μm)殘存之方式去除樹脂。 以目視觀察利用實施例3之分斷方法分斷後之複合材10(複合材片)之脆性材料層1之端面,其結果:如圖8所示,脆性材料層1可無問題地分斷、不產生裂痕。
<實施例4> 如圖8所示,除了將形成第2加工槽31時,從第2雷射光源30振盪出之雷射光L2之輸出設為4.9W、以於照射位置處形成保護層3之樹脂(黏著劑層3b)之一部分作為厚度2.1μm之殘渣殘存之方式去除樹脂之點外,以與實施例3相同條件將複合材10分斷。 以目視觀察利用實施例4之分斷方法分斷後之複合材10(複合材片)之脆性材料層1之端面,其結果:如圖8所示,脆性材料層1可無問題地分斷、不產生裂痕。
<實施例5> 如圖8所示,除了將形成第2加工槽31時,從第2雷射光源30振盪出之雷射光L2之輸出設為5.1W、以於照射位置處,沒有形成保護層3之樹脂之一部分作為殘渣殘存(厚度:0μm)之方式去除樹脂之點外,以與實施例3相同條件將複合材10分斷。 以目視觀察利用實施例5之分斷方法分斷後之複合材10(複合材片)之脆性材料層1之端面,其結果:如圖8所示,脆性材料層1可無問題地分斷、不產生裂痕。
<比較例2> 除了形成第2加工槽31時,將從第2雷射光源30振盪出之雷射光L2於複合材10之分斷預定線(設定為格子狀之複數條分斷預定線)DL上對保護層3僅照射1次(不應用移動法)之點外,以與實施例5相同條件嘗試複合材10之分斷。如圖8所示,於比較例2形成之第2加工槽31之寬度為30μm、比於加工痕形成步驟中從超短脈衝雷射光源40振盪出之雷射光L3朝脆性材料層1之照射位置處之光點直徑D(100μm)小。 如圖8所示,於比較例2之分斷方法中,未形成貫通脆性材料層1之加工痕11,不能分斷複合材10。
1:脆性材料層 2:光學功能層 3:保護層 3a:基材層 3b:黏著劑層 10:複合材 10a,10b:複合材片 11:加工痕 20:第1雷射光源 21:第1加工槽 30:第2雷射光源 31:第2加工槽 31a,31b,31c:加工槽 40:超短脈衝雷射光源 A1,A2:照射位置 B1,B2,B3:照射位置 C:虛線 D:光點直徑 DL:分斷預定線 L1,L2,L3:雷射光 T:殘渣厚度 W:第2加工槽之寬度
圖1係示意性顯示應用本發明一實施形態之分斷方法之複合材之概略構造的剖面圖。 圖2係示意性說明本發明一實施形態之複合材之分斷方法之概略程序的說明圖。 圖3係示意性說明於加工槽形成步驟中之剝離法之概略程序的剖面圖。 圖4係示意性說明將複合材分斷為四個矩形複合材片時於加工槽形成步驟中之剝離法及加工痕形成步驟之概略程序的俯視圖。 圖5係示意性說明於加工槽形成步驟中之移動法之概略程序的剖面圖。 圖6係示意性說明將複合材分斷為四個矩形複合材片時於加工槽形成步驟中之移動法及加工痕形成步驟之概略程序的俯視圖。 圖7係顯示關於實施例之於加工槽形成步驟中應用剝離法時之結果之一例。 圖8係顯示關於實施例之於加工槽形成步驟中應用移動法時之試驗條件及試驗結果之一例。
(無)

Claims (8)

  1. 一種複合材之分斷方法,係將於脆性材料層之一面側積層有樹脂製光學功能層、於前述脆性材料層之另一面側積層有樹脂製保護層的複合材予以分斷的方法,其包含以下步驟: 加工槽形成步驟,係將從第1雷射光源振盪出之雷射光沿著前述複合材之分斷預定線照射於前述光學功能層,去除形成前述光學功能層之樹脂,藉此形成沿循前述分斷預定線之第1加工槽,且將從第2雷射光源振盪出之雷射光沿著前述分斷預定線照射於前述保護層,去除形成前述保護層之樹脂,藉此形成沿循前述分斷預定線之第2加工槽;及 加工痕形成步驟,係於前述加工槽形成步驟之後,將從超短脈衝雷射光源振盪出之雷射光從前述第2加工槽側沿著前述分斷預定線照射於前述脆性材料層,去除形成前述脆性材料層之脆性材料,藉此形成沿循前述分斷預定線之加工痕; 並且,於前述加工槽形成步驟中,以前述第2加工槽之寬度為於前述加工痕形成步驟中從前述超短脈衝雷射光源振盪出之雷射光朝前述脆性材料層之照射位置處之光點直徑以上之方式,去除形成前述保護層之樹脂。
  2. 如請求項1之複合材之分斷方法,其中於前述加工槽形成步驟中,將從前述第2雷射光源振盪出之雷射光朝前述保護層之照射位置於與前述分斷預定線垂直之方向上移動,於各照射位置沿著前述分斷預定線將前述雷射光照射於前述保護層後,將存在於前述各照射位置之間的形成前述保護層之樹脂剝離,藉此形成前述第2加工槽。
  3. 如請求項1之複合材之分斷方法,其中於前述加工槽形成步驟中,將從前述第2雷射光源振盪出之雷射光朝前述保護層之照射位置於與前述分斷預定線垂直之方向上依序移動,於各照射位置沿著前述分斷預定線將前述雷射光照射於前述保護層,藉此形成前述第2加工槽。
  4. 如請求項1之複合材之分斷方法,其中於前述加工槽形成步驟中,以前述第2加工槽之寬度為100μm以上之方式去除形成前述保護層之樹脂。
  5. 如請求項1之複合材之分斷方法,其中前述保護層具備基材層、及配置於前述脆性材料層側之黏著劑層; 於前述加工槽形成步驟中,以殘存前述黏著劑層之厚度方向之一部份之方式去除形成前述保護層之樹脂。
  6. 如請求項1之複合材之分斷方法,其中前述保護層具備基材層、及配置於前述脆性材料層側之胺基甲酸酯系黏著劑層。
  7. 如請求項1之複合材之分斷方法,其中前述第2雷射光源為CO2 雷射光源。
  8. 如請求項1之複合材之分斷方法,其中前述脆性材料層包含玻璃,前述光學功能層包含偏光薄膜。
TW109143306A 2020-03-11 2020-12-08 複合材之分斷方法 TW202134702A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-042084 2020-03-11
JP2020042084 2020-03-11

Publications (1)

Publication Number Publication Date
TW202134702A true TW202134702A (zh) 2021-09-16

Family

ID=77672005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143306A TW202134702A (zh) 2020-03-11 2020-12-08 複合材之分斷方法

Country Status (5)

Country Link
JP (1) JPWO2021181766A1 (zh)
KR (1) KR20220148197A (zh)
CN (1) CN115485097A (zh)
TW (1) TW202134702A (zh)
WO (1) WO2021181766A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609711B (zh) * 2022-03-09 2023-07-18 业成科技(成都)有限公司 光学元件的制造方法、夹持装置、显示模组及电子设备
WO2023211796A1 (en) * 2022-04-28 2023-11-02 Meta Platforms Technologies, Llc Glass-film lamination and cutting method to mitigate orange peel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150146294A1 (en) 2012-05-23 2015-05-28 Konica Minolta, Inc. Polarizing plate, fabrication method for polarizing plate, and image display device
JP2014043363A (ja) * 2012-08-24 2014-03-13 Hamamatsu Photonics Kk 強化ガラス部材加工方法
JP6355783B2 (ja) * 2017-03-14 2018-07-11 日東電工株式会社 可撓性フィルムの製造方法
JP6888809B2 (ja) * 2017-03-30 2021-06-16 三星ダイヤモンド工業株式会社 金属膜付き脆性材料基板の分断方法並びに分断装置
JP2019025539A (ja) * 2017-08-04 2019-02-21 株式会社ディスコ レーザー加工装置
JP7182362B2 (ja) 2018-01-12 2022-12-02 日東電工株式会社 複合材の分断方法

Also Published As

Publication number Publication date
WO2021181766A1 (ja) 2021-09-16
KR20220148197A (ko) 2022-11-04
JPWO2021181766A1 (zh) 2021-09-16
CN115485097A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP7449995B2 (ja) 複合材の分断方法
US8168514B2 (en) Laser separation of thin laminated glass substrates for flexible display applications
TW202134702A (zh) 複合材之分斷方法
JP2007015169A (ja) スクライブ形成方法、スクライブ形成装置、多層基板
JP2010110818A (ja) 加工対象物分断方法および対象物製造方法
US20220259092A1 (en) Method for dividing composite material
JP2009242185A (ja) レーザ切断方法および被切断物
KR102178118B1 (ko) 액정 배향용 필름의 제조방법
WO2021009960A1 (ja) 複合材の分断方法
WO2022264623A1 (ja) 複合材の分断方法
WO2023166786A1 (ja) 脆性材料チップ、脆性材料シート、脆性材料シートの製造方法及び脆性材料チップの製造方法
KR20230058403A (ko) 복합재의 분단 방법 및 복합재
KR20220132424A (ko) 편광판 및 그의 제조 방법