JP7437505B2 - マルエージング鋼の付加製造のための方法 - Google Patents

マルエージング鋼の付加製造のための方法 Download PDF

Info

Publication number
JP7437505B2
JP7437505B2 JP2022537453A JP2022537453A JP7437505B2 JP 7437505 B2 JP7437505 B2 JP 7437505B2 JP 2022537453 A JP2022537453 A JP 2022537453A JP 2022537453 A JP2022537453 A JP 2022537453A JP 7437505 B2 JP7437505 B2 JP 7437505B2
Authority
JP
Japan
Prior art keywords
argon
powder
laser
metal powder
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022537453A
Other languages
English (en)
Other versions
JP2023506959A (ja
Inventor
マルティネス,アナ
モリ,ラウラ
デル・リオ・フェルナンデス,ラウラ
ファン・ステーンベルヘ,ネレ
デュプレ,ローデ
Original Assignee
アルセロールミタル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルセロールミタル filed Critical アルセロールミタル
Publication of JP2023506959A publication Critical patent/JP2023506959A/ja
Application granted granted Critical
Publication of JP7437505B2 publication Critical patent/JP7437505B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、マルエージング鋼を製造するための方法、特にそれらの付加製造のための方法に関する。本発明はまた、マルエージング鋼を製造するための金属粉末に関する。
重量百分率で、約18%のニッケル、9%のコバルト、5%のモリブデン、0.5%のチタン及び0.1%のアルミニウムを含有し、1800MPaを超える弾性限界を達成するように処理されたマルエージング鋼ストリップから多数の部品が製造される。これらのストリップは、熱間圧延及び冷間圧延によって得られる。次いで、ストリップ又はストリップから切り出された部品は、約500℃の熱処理によって硬化される。残念ながら、この方法によって得られる部品形状は、何らかの形で制限される。
したがって、本発明の目的は、マルエージング鋼を付加製造するための方法を提供することによって、従来技術の欠点を改善することである。
この目的のために、本発明の第1の主題は、重量含有量で表される、以下の元素
6%≦Ni≦14%
5%≦Cr≦10%
0.5%≦Si≦2.5%
0.5%≦Ti≦2%
C≦0.04%
を含み、及び任意選択的に
0.5%≦Cu≦2%
を含有し、残部がFe及び精錬から生じる不可避不純物である組成を有する金属粉末から付加製造部品を製造するための方法であって、
金属粉末が、面積分率で98%を超える体心立方晶相を含む微細構造を有し、
方法が、金属粉末の少なくとも一部がアルゴン以外の1種の不活性ガス又はアルゴン以外の複数種の不活性ガスの組み合わせから実質的に構成される雰囲気中で溶融されるステップを含む、方法からなる。
本発明による方法はまた、個別に又は組み合わせて考慮される、以下に列挙される任意選択的な特徴を有し得る:
- アルゴン以外の不活性ガスは、窒素である、
- 雰囲気は、1000ppm未満の酸素を含む、
- アルゴン以外の1種の不活性ガス又はアルゴン以外の複数種の不活性ガスの組み合わせは、気密封止チャンバ中にある、
- 付加製造部品は、レーザ粉末床融解(LPBF)によって製造される、
-レーザ出力は、80W~200Wである、
- 線形エネルギー密度(LED)は、175~550Nに含まれる、
- 体積エネルギー密度(VED)は、100~510J/mmに含まれる。
本発明の他の特徴及び利点は、次の説明においてより詳細に説明される。
本発明は、純粋に説明の目的で提供され、決して限定的であることを意図しない以下の説明を読むことによってよりよく理解されるであろう。
ニッケルは、6~14重量%の含有量で本発明による組成物中に存在する。最終部品の完全なマルテンサイト構造を得るためには、少なくとも6重量%のNiが必要である。14重量%を超えると、残留オーステナイトが形成される傾向があり、これにより強度が低下する。
クロム含有量は、鋼の耐食性を向上させるために5~10重量%の間に含まれる。
ケイ素含有量は、G相の析出を確実にするために0.5~2.5重量%の間に含まれる。2.5重量%を超えると、Siは、高温でのオーステナイト形成、したがってマルテンサイト形成を防止する傾向がある。
チタン含有量は、0.5~2重量%の間に含まれる。析出強化を確実にするためには、少なくとも0.5重量%が必要である。Tiは、生産性の理由から2重量%に制限される。
炭素は、衝撃強度、延性及び靱性を大幅に低下させる炭化チタンの形成を回避するために、0.04重量%未満に維持される。好ましくは、C含有量は、0.015重量%未満である。
任意選択的に、銅は、0.5~2重量%の間に含まれる含有量で添加される。Tiと0.5重量%を超えるCuとの組み合わせは、析出強化をさらに向上させる。Cuリッチクラスタは、他の金属間化合物の共析出、特にG相の析出を高めると考えられる。
残部は、鉄及び精錬に起因する不可避不純物からなる。アルミニウム、ヒ素、ビスマス、カドミウム、コバルト、マグネシウム、マンガン、窒素、リン、鉛、硫黄、アンチモン、スズ、酸素、バナジウムが主な不純物である。それらは、意図的に添加されていない。それらは、原料として使用される合金鉄及び/又は純粋な元素中に存在する可能性がある。それらの含有量は、好ましくは、微細構造の有害な変化を回避するために、並びに/又は結晶粒径及び脆性の増加を回避するために制御される。したがって、各不純物の含有量は、0.05重量%に制限されるべきである。
金属粉末は、面積分率で98%を超える体心立方晶相を含む微細構造を有する。この相は、マルテンサイト及び/又はフェライトであり得る。それは、XRD又は電子ビーム後方散乱回折(EBDS)によって測定することができる。
粉末の真球度は高い。真球度SPHTは、Camsizerによって測定することができ、4πA/PとしてISO 9276-6で定義され、式中、Aは粒子投影によって覆われた測定面積であり、Pは粒子投影の測定された周囲/円周である。1.0の値は、真球を示す。粉末の平均真球度は、少なくとも0.75である。この真球度のおかげで、金属粉末は、十分に流動性である。その結果、付加製造がより容易になる。
好ましくは、金属粉末粒子の少なくとも80%は、20μm~260μmの範囲のサイズを有する。
ISO13320:2009又はASTM B822-17に従ってレーザ回折によって測定される粒径分布は、好ましくは次の要件(μm)を満たす:
25≦D10≦35
80≦D50≦100
170≦D90≦280
金属粉末は、1.25未満のHausner比及び21%未満のCarr指数を有する良好な流動性を有する。Hausner比(タップ密度/かさ密度)及びCarr指数((タップ密度-かさ密度)/タップ密度×100%)は、ASTM B527-15;ISO 3953:2011に従って測定したタップ密度から得られる。
粉末は、最初に純粋な元素及び/又は合金鉄を原料として混合及び溶融することによって得ることができる。
純粋な元素は、これらの不純物が結晶化を容易にする可能性があるため、合金鉄に由来する不純物が多すぎることを回避するために通常好ましい。それにもかかわらず、本発明の場合、合金鉄に由来する不純物は、微細構造の達成に有害ではないことが観察された。
合金鉄は、クロム、アルミニウム、マンガン、モリブデン、ケイ素、チタンなどの1つ以上の他の元素の高い割合を有する鉄の様々な合金を指す。主な合金は、FeAl(通常40~60重量%のAlを含む)、FeB(通常17.5~20重量%のBを含む)、FeCr(通常50~70重量%のCrを含む)、FeMg、FeMn、FeMo(通常60~75重量%のMoを含む)、FeNb(通常60~70重量%のNbを含む)、FeNi、FeP、FeSi(通常15~90重量%のSiを含む)、FeSiMg、FeTi(通常45~75重量%のTiを含む)、FeV(通常35~85重量%のVを含む)、FeW(通常70~80重量%のMoを含む)である。
純粋な元素は、特に、鉄、銅、ニッケルなどの純粋な金属であり得る。
当業者は、異なる合金鉄及び純粋な元素を混合して標的組成物に到達する方法を知っている。
好ましくは、混合物は、FeCr合金鉄、FeSi合金鉄、FeTi合金鉄、Cu、Ni及びFeを含む。
純粋な元素及び/又は合金鉄の適切な割合での混合によって組成物が得られると、組成物は、その液相線温度より少なくとも210℃高い温度で加熱される。この過熱のおかげで、るつぼ中の溶融物の凝固が回避される。さらに、溶融した組成物の粘度の低下は、その特定の構造と共に、適正な粒径分布を有する、サテライトなしの高い真球度を有する粉末を得るのに役立つ。とはいえ、表面張力が温度と共に増加するので、組成物をその液相線温度より350℃を超える温度で加熱しないことが好ましい。
好ましくは、組成物は、その液相線温度より215~250℃高い温度で加熱される。
本発明の一変形例では、組成物は、1640~1720℃の間で加熱され、これは粘度低下と表面張力上昇との間の良好な妥協点を表す。
次いで、溶融組成物は、溶融金属流をオリフィス、ノズルに中程度の圧力で押し込むことによって、及びガスのジェット(ガス霧化)又は水のジェット(水霧化)を衝突させることによって、微細な金属液滴に霧化される。ガス霧化の場合、ガスは、ノズルを出る直前に金属流に導入され、同伴ガスが(加熱により)膨張して大きな収集体積の霧化塔に出るときに乱流を生成する働きをする。後者は、溶融金属ジェットのさらなる乱流を促進するためにガスで満たされる。金属液滴は、霧化塔において落下する間に冷却される。ガス霧化は、真円度が高く、サテライトの量が少ない粉末粒子の生産に有利であるため好ましい。
霧化ガスは、好ましくは、アルゴン又は窒素である。それらは両方とも、溶融粘度を他のガス、例えばヘリウムよりもゆっくりと増加させ、これにより、より小さい粒径の形成が促進される。それらはまた、化学的性質の純度を制御し、望ましくない不純物を回避し、粉末の良好なモルホロジーにおいて役割を果たす。窒素のモル重量が、アルゴンの39.95g/モルと比較して14.01g/モルであるので、窒素を用いるよりもアルゴンを用いる方がより微細な粒子を得ることができる。一方、窒素の比熱容量は、アルゴンの0.52と比較して1.04J/(gK)である。そのため、窒素は、粒子の冷却速度を増加させる。窒素は、粉末による窒素取り込みによってTiNナノ析出物の形成を向上させることができるので、この場合に好ましい。
ガス圧は、金属粉末の粒径分布及び微細構造に直接影響を及ぼすため、重要である。特に、圧力が高いほど、冷却速度は高くなる。その結果、ガス圧は、粒径分布を最適化し、微細構造の形成を有利にするために、15~30バールの間に設定される。好ましくは、ガス圧は、サイズが付加製造技術と最も適合する粒子の形成を促進するために18~22バールの間に設定される。
ノズル直径は、溶融金属流量、したがって粒径分布及び冷却速度に直接影響を及ぼす。最大ノズル直径は、平均粒径の増加及び冷却速度の低下を制限するために4mmに制限される。ノズル直径は、粒径分布をより正確に制御し、特定の微細構造の形成を有利にするために、好ましくは2.5~3.5mmの間である。
本発明の一変形例によれば、湿度取り込みの場合、霧化によって得られた金属粉末は、その流動性をさらに向上させるために乾燥される。乾燥は、真空チャンバ中で50℃~100℃の間で1時間行うことが好ましい。
霧化によって得られた金属粉末は、そのまま使用することができるか、又は後で使用される付加製造技術によりよく適合するサイズの粒子を保つためにふるい分けすることができる。例えば、レーザ粉末床融解による付加製造の場合、20~63μmの範囲が好ましい。レーザ金属蒸着又は直接金属蒸着による付加製造の場合、45~150μmの範囲が好ましい。
本発明による金属粉末で作製された部品は、レーザ粉末床融解(LPBF)、直接金属レーザ焼結(DMLS)、電子ビーム溶融(EBM)、選択的熱焼結(SHS)、選択的レーザ焼結(SLS)、レーザ金属蒸着(LMD)、直接金属蒸着(DMD)、直接金属レーザ溶融(DMLM)、直接金属印刷(DMP)、レーザクラッディング(LC)、材料噴射、バインダ噴射、熱溶解積層法(FDM)などの付加製造技術によって得ることができる。
驚くべきことに、付加製造によって得られた部品は、製造工程中に使用される不活性ガスに応じて大きく変動する相対密度を示すことが観察された。不活性ガスとは、特に窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン及びラドンを意味し、不活性ガス又は不活性ガスの組み合わせが、不活性化ステップの終了時に残留不純物として1000ppmまでのO2を含むことができることが分かっている。特に、Arが不活性ガスとして使用されるか、又は不活性ガスの混合物の一部として添加されるとすぐに、製造部品の相対密度が低下する。より詳細には、NをArで置き換えることは、相対密度に強く影響し、他のすべての工程パラメータは等しい。
好ましくは、製造工程中に溶融されるすべての金属粉末は、実質的にアルゴン以外の1種の不活性ガス又はアルゴン以外の複数種の不活性ガスの組み合わせから構成される雰囲気中で溶融される。言い換えれば、金属粉末の少なくとも一部が溶融されるすべのステップは、実質的にアルゴン以外の1種の不活性ガス又はアルゴン以外の複数種の不活性ガスの組み合わせから構成される雰囲気中で実行される。
使用される技術に応じて、不活性ガスは、もしあれば、製造工程中に使用される気密封止チャンバ中に存在することができ、又は溶融プールをシュラウドすることができる。
この驚くべき結果は、レーザー粉末床融解(LPBF)によって部品を製造するときに特に観察された。
LPBFは、レイヤーアポンレイヤー付加製造技術である。金属粉末の薄層は、垂直(Z)軸に移動するインデックステーブルに固定された基板プラットフォーム、通常は金属上に、コーティング機構を使用して均一に分配される。これは、厳密に制御された雰囲気を含有するチャンバの内部で起きる。各層が分配されると、部品形状の各2Dスライスは、粉末を選択的に溶融することによって融着される。これは、高出力レーザビーム、通常はイッテルビウムファイバレーザを用いて実現される。レーザエネルギーは、トラック又はストリップの形態の粒子の完全な溶融(溶接)を可能にするのに十分な強度である。基本的に、トラックが完了すると、工程は、ハッチ間隔(h)だけ第1のトラックから分離された次のトラックで繰り返される。この工程は、部品が完成するまで層ごとに繰り返される。オーバーハング形状は、前の層からの未溶融の粉末によって支持される。LPBFで使用される主な工程パラメータは、層厚、ハッチ間隔、走査速度及びレーザ出力である。工程が完了した後、使い残しの粉末は、ふるい分けされて再使用される。
レーザ粉末床融解(LPBF)によって付加製造部品を製造するための方法は、本発明による粉末を用いて粉末層を形成する第1のステップを含む。好ましくは、粉末層は、40μm未満である。40μmを超えると、レーザは、すべての層厚で粉末を溶融しない可能性があり、部品に多孔性をもたらす可能性がある。好ましくは、層厚は、粉末の溶融を最適化するために10~30μmの間に保たれる。
第2のステップでは、集束レーザビームは、以下に詳述する工程条件で粉末層の少なくとも一部を溶融することによって成形層を形成する。
LPBFの場合、印刷部品の各層は、実質的にアルゴン以外の1種の不活性ガス又はアルゴン以外の複数種の不活性ガスの組み合わせから構成される雰囲気中で少なくとも部分的に溶融される。言い換えれば、方法は、集束レーザビームが実質的にアルゴン以外の1種の不活性ガス又はアルゴン以外の複数種の不活性ガスの組み合わせから構成される雰囲気中で金属粉末の少なくとも一部を溶融することによって連続成形層を形成するステップを含む。
レーザ出力は、好ましくは最大200Wに制限される。好ましくは、レーザ出力は、すべての層厚における溶融を容易にするために80Wを超えて設定される。好ましくは、レーザスポットは、約55μm幅である。
走査速度は、好ましくは300mm/s~1000mm/sの間の間に含まれる。300mm/s未満では、レーザによって提供される過剰なエネルギーは、スパッタをもたらす可能性があり、スパッタは、粉末床の外側に適切に引き出されない場合、粉末層上に堆積し、印刷部品に空隙を生成する。1000mm/sを超えると、レーザによって粉末に提供されるエネルギーは、すべての層厚で粉末を溶融するのに十分ではない可能性がある。より好ましくは、走査速度は、0.4~0.9m/sの間に含まれ、これにより、印刷部品の品質がさらに向上される。
線形エネルギー密度(LED)は、好ましくは160~890Nの間に含まれる。LEDは、m/sで表されるレーザ出力と走査速度との比として定義される。160N未満では、LEDは、(キーホリング(keyholing)のために)部品を適切に印刷するのに十分ではない可能性がある。890Nを超えると、レーザによって提供される過剰なエネルギーは、スパッタをもたらす可能性があり、スパッタは、粉末層の外側に適切に引き出されない場合、粉末層上に堆積する。そのような堆積物は、印刷部品に空隙を生成する。LEDは、キーホリング、ボーリング及びスパッタの発生をさらに制限するために、より好ましくは180~550の間、さらにより好ましくは200~425の間に含まれる。
チャンバ中に導入される不活性ガスのガス流量は、粉末溶融に発生する可能性のあるスパッタが粉末床から効率的に引き出されるように、好ましくは2m/sを超える。したがって、印刷部分における多孔性が回避される。より好ましくは、ガス流量は、2~3.5m/sの間に含まれる。
ハッチ間隔は、好ましくは30~100μmの間に含まれる。30μm未満では、印刷部品の各点が複数回再溶融される可能性があり、これは過熱につながる可能性がある。100μmを超えると、未溶融の粉末が2つのトラックの間に閉じ込められる可能性がある。より好ましくは、ハッチ間隔は、70~100μmの間に含まれる。
体積エネルギー密度(VED)は、好ましくは100~510J/mmの間、より好ましくは120~400J/mmの間に含まれる。VEDは、P/(v・h・l)として定義され、式中、Pはレーザ出力、vは走査速度、hはハッチ間隔、lは粉末層の厚さである。そのようなVEDは、印刷部分の空隙を回避するのにさらに役立つ。それはまた、高温割れを引き起こす可能性がある過熱を回避するのに役立つ。
この下に提示される次の実施例及び試験は、本質的に非限定的であり、例示のみを目的として考慮されなければならない。それらは、本発明の有利な特徴、広範な実験後に本発明者らによって選定されたパラメータの重要性を示し、本発明による方法によって達成され得る特性をさらに確立する。
粉末基準1:
1.15重量%のSi、0.56重量%のTi、0.97重量%のCu、7.55重量%のCr、7.07重量%のNi、0.013重量%のCを含む組成物が得られるように純粋な元素を混合し、残部はFe及び精錬から生じる不可避不純物であった。組成物をその液相線温度(すなわち、1685℃で)より215℃高い温度で加熱し、次いで、3mmのノズル直径で、20バールのN中のガス霧化によって霧化した。
得られた金属粉末は、0.79の真球度並びにD10=27.3μm、D50=70.4μm及びD90=179.7μmとなるような粒径分布を有した。金属粉末は、1.129のHausner比及び11.012%のCarr指数を有する良好な流動性を有した。
粉末基準2:
0.97重量%のSi、0.85重量%のTi、1.00重量%のCu、7.73重量%のCr、7.15重量%のNi、0.038重量%のCを含む組成物が得られるように、合金鉄及び純粋な元素を混合し、残部はFe及び精錬から生じる不可避不純物であった。組成物をその液相線温度(すなわち、1683℃で)より215℃高い温度で加熱し、次いで、3mmのノズル直径で、20バールのN中のガス霧化によって霧化した。
得られた金属粉末は、0.82の真球度並びにD10=32.4μm、D50=92.7μm及びD90=250.8μmとなるような粒径分布を有した。金属粉末は、1.098のHausner比及び9.856%のCarr指数を有する優れた流動性を有した。
粉末基準3:
0.95重量%のSi、0.77重量%のTi、1.06重量%のCu、7.97重量%のCr、7.11重量%のNi、0.026重量%のCを含む組成物が得られるように、合金鉄及び純粋な元素を混合し、残部はFe及び精錬から生じる不可避不純物であった。組成物をその液相線温度(すなわち、1698℃で)より236℃高い温度で加熱し、次いで、3mmのノズル直径で、20バールのN中のガス霧化によって霧化した。
得られた金属粉末は、0.77の真球度並びにD10=30.8μm、D50=89.8μm及びD90=246.2μmとなるような粒径分布を有した。金属粉末は、1.109のHausner比及び11.12%のCarr指数を有する良好な流動性を有した。
次いで、1~3で参照される粉末のF2画分(すなわち、20μm~63μmの粒子)を使用して、表1に詳述される工程条件及び20μmの層厚を有するLPBFによって部品を製造した。
印刷部品の相対密度は、最初に、ISO3369:2006に従ってアルキメデス法により絶対密度を測定し、次いで、材料の絶対密度と理論密度との比(おそらく印刷部品と同じ組成で鋳造された部品から得られる)を計算することにより測定した。
得られた相対密度値から明らかなように、N下で製造された部品は、工程条件にかかわらず非常に良好な相対密度を示す。Arが不活性ガスとして使用されるとすぐに、部品の相対密度は、大幅に低下する。
Figure 0007437505000001

Claims (7)

  1. 重量含有量で表される、以下の元素
    6%≦Ni≦14%、
    5%≦Cr≦10%、
    0.5%≦Si≦2.5%、
    0.5%≦Ti≦2%、
    C≦0.04%
    を含み、及び任意選択的に
    0.5%≦Cu≦2%
    を含有し、残部がFe及び精錬から生じる不可避不純物である組成を有する金属粉末から付加製造部品を製造するための方法であって、
    当該金属粉末が、面積分率で98%を超える体心立方晶相を含む微細構造を有し、
    当該方法が、該金属粉末の少なくとも一部がアルゴン以外の1種の不活性ガス又はアルゴン以外の複数種の不活性ガスの組み合わせから構成され、1000ppm未満の酸素を含む雰囲気中で溶融されるステップを含む、方法。
  2. アルゴン以外の1種の不活性ガスが、窒素である、請求項1に記載の方法。
  3. アルゴン以外の1種の不活性ガス又はアルゴン以外の複数種の不活性ガスの組み合わせが、気密封止チャンバ中にある、請求項1又は2に記載の方法。
  4. 付加製造部品が、レーザ粉末床融解(LPBF)によって製造される、請求項1~のいずれか一項に記載の方法。
  5. レーザ出力が、80W~200Wである、請求項に記載の方法。
  6. 線形エネルギー密度(LED)が、175~550Nに含まれる、請求項4又は5に記載の方法。
  7. 体積エネルギー密度(VED)が、100~510J/mmに含まれる、請求項のいずれか一項に記載の方法。
JP2022537453A 2019-12-20 2019-12-20 マルエージング鋼の付加製造のための方法 Active JP7437505B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/061158 WO2021123894A1 (en) 2019-12-20 2019-12-20 Process for the additive manufacturing of maraging steels

Publications (2)

Publication Number Publication Date
JP2023506959A JP2023506959A (ja) 2023-02-20
JP7437505B2 true JP7437505B2 (ja) 2024-02-22

Family

ID=69182552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022537453A Active JP7437505B2 (ja) 2019-12-20 2019-12-20 マルエージング鋼の付加製造のための方法

Country Status (9)

Country Link
US (1) US20230104535A1 (ja)
EP (1) EP4076792A1 (ja)
JP (1) JP7437505B2 (ja)
KR (1) KR20220093221A (ja)
CN (1) CN114829655A (ja)
CA (1) CA3163395A1 (ja)
MX (1) MX2022007592A (ja)
WO (1) WO2021123894A1 (ja)
ZA (1) ZA202205723B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174206A1 (en) * 2021-11-01 2023-05-03 QuesTek Innovations LLC Stainless steel powders for additive manufacturing
WO2024084273A1 (en) * 2022-10-19 2024-04-25 Arcelormittal Metal powder for additive manufacturing
WO2024084274A1 (en) * 2022-10-19 2024-04-25 Arcelormittal Metal powder for additive manufacturing
WO2024084272A1 (en) * 2022-10-19 2024-04-25 Arcelormittal Metal powder for additive manufacturing
CN115595462B (zh) * 2022-11-07 2023-11-21 西安建筑科技大学 一种增材制造高致密度Fe-Mn-Al-C轻质高强钢的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248389A (ja) 2001-06-13 2008-10-16 Hoganas Ab 高密度ステンレス鋼製品およびその製造方法
WO2018230421A1 (ja) 2017-06-15 2018-12-20 住友電工焼結合金株式会社 造形物の製造方法、及び造形物
JP2019073752A (ja) 2017-10-13 2019-05-16 株式会社ソディック 金属粉末積層造形用の金属粉末材料
JP6611151B1 (ja) 2019-06-28 2019-11-27 株式会社ソディック 積層造形装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331379A (ja) * 1994-06-13 1995-12-19 Daido Steel Co Ltd 高密度ステンレス鋼焼結品の製造方法
JP3477108B2 (ja) * 1998-05-08 2003-12-10 新日本製鐵株式会社 耐食性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
US7513960B2 (en) * 2005-03-10 2009-04-07 Hitachi Metals, Ltd. Stainless steel having a high hardness and excellent mirror-finished surface property, and method of producing the same
JP6132523B2 (ja) * 2012-11-29 2017-05-24 キヤノン株式会社 金属光造形用の金属粉末、三次元造形物の製造方法および成形品の製造方法
JP6270563B2 (ja) * 2014-03-14 2018-01-31 山陽特殊製鋼株式会社 焼結−時効処理後に高強度が得られる析出硬化型ステンレス鋼粉末およびその製造方法並びにその成形体
WO2017199388A1 (ja) * 2016-05-19 2017-11-23 株式会社ソディック 金属3dプリンタ
JP6376179B2 (ja) * 2016-07-06 2018-08-22 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体
WO2018024892A1 (en) * 2016-08-04 2018-02-08 Rovalma, S.A. Method for the construction of dies or moulds
JP2018197372A (ja) * 2017-05-24 2018-12-13 株式会社エイチ・ティー・エル Sus316lの電子ビーム積層造形方法
DE102017131218A1 (de) * 2017-12-22 2019-06-27 Voestalpine Böhler Edelstahl Gmbh & Co Kg Verfahren zum Herstellen eines Gegenstands aus einem Maraging-Stahl
JP6985940B2 (ja) * 2018-01-09 2021-12-22 山陽特殊製鋼株式会社 造形用のステンレス鋼粉末
EP3533539A1 (en) * 2018-02-28 2019-09-04 Siemens Aktiengesellschaft Improvements relating to the manufacture of metal alloy components
CN108517473B (zh) * 2018-06-29 2019-12-24 钢铁研究总院 基于slm工艺用高强度不锈钢粉末及其制备方法
DE102018127918A1 (de) * 2018-11-08 2020-05-14 Vacuumschmelze Gmbh & Co. Kg Verfahren zum Herstellen eines Teils aus einer weichmagnetischen Legierung
CN110629131A (zh) * 2019-09-26 2019-12-31 上海镭镆科技有限公司 一种3d打印不锈钢材料及制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248389A (ja) 2001-06-13 2008-10-16 Hoganas Ab 高密度ステンレス鋼製品およびその製造方法
WO2018230421A1 (ja) 2017-06-15 2018-12-20 住友電工焼結合金株式会社 造形物の製造方法、及び造形物
JP2019073752A (ja) 2017-10-13 2019-05-16 株式会社ソディック 金属粉末積層造形用の金属粉末材料
JP6611151B1 (ja) 2019-06-28 2019-11-27 株式会社ソディック 積層造形装置

Also Published As

Publication number Publication date
CN114829655A (zh) 2022-07-29
BR112022010218A2 (pt) 2022-09-06
CA3163395A1 (en) 2021-06-24
MX2022007592A (es) 2022-07-19
KR20220093221A (ko) 2022-07-05
US20230104535A1 (en) 2023-04-06
ZA202205723B (en) 2023-01-25
JP2023506959A (ja) 2023-02-20
WO2021123894A1 (en) 2021-06-24
EP4076792A1 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
JP7437505B2 (ja) マルエージング鋼の付加製造のための方法
US11692240B2 (en) Process for manufacturing an aluminum alloy part
CN110621796A (zh) 制造铝合金零件的方法
JP2021531398A (ja) アルミニウム合金からなる部品の製造方法
JP2021514423A (ja) アルミニウム・クロム合金製部品の製造方法
CN113412172B (zh) 制造铝合金零件的方法
US20210230721A1 (en) Process for manufacturing an aluminum alloy part
KR20200096657A (ko) 적층 조형을 위한 알루미늄 함유 합금의 용도
CN114786846B (zh) 增材制造用金属粉末
US20230191488A1 (en) Method for producing an aluminium alloy part
WO2024084339A1 (en) Metal powder for additive manufacturing
RU2797198C1 (ru) Способ аддитивного производства мартенситно-стареющих сталей
JP7503634B2 (ja) 付加製造用の金属粉末
CA3163539C (en) Metal powder for additive manufacturing
WO2024121595A1 (en) Metal powder for additive manufacturing
BR112022010218B1 (pt) Processo para fabricar uma peça fabricada de forma aditiva a partir de um pó de metal
JP7513223B1 (ja) 金属am用銅合金粉末の製造方法
WO2024084273A1 (en) Metal powder for additive manufacturing
WO2024084272A1 (en) Metal powder for additive manufacturing
RU2790710C1 (ru) Металлический порошок для аддитивного производства
RU2806109C1 (ru) Металлический порошок для аддитивного производства

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240209

R150 Certificate of patent or registration of utility model

Ref document number: 7437505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150