JP7386726B2 - ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム - Google Patents

ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム Download PDF

Info

Publication number
JP7386726B2
JP7386726B2 JP2020030852A JP2020030852A JP7386726B2 JP 7386726 B2 JP7386726 B2 JP 7386726B2 JP 2020030852 A JP2020030852 A JP 2020030852A JP 2020030852 A JP2020030852 A JP 2020030852A JP 7386726 B2 JP7386726 B2 JP 7386726B2
Authority
JP
Japan
Prior art keywords
job
settings
learning
setting
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020030852A
Other languages
English (en)
Other versions
JP2021135697A (ja
JP2021135697A5 (ja
Inventor
良太郎 井峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020030852A priority Critical patent/JP7386726B2/ja
Priority to US17/183,551 priority patent/US20210266413A1/en
Publication of JP2021135697A publication Critical patent/JP2021135697A/ja
Publication of JP2021135697A5 publication Critical patent/JP2021135697A5/ja
Application granted granted Critical
Publication of JP7386726B2 publication Critical patent/JP7386726B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00068Calculating or estimating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00042Monitoring, i.e. observation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00058Methods therefor using a separate apparatus
    • H04N1/00061Methods therefor using a separate apparatus using a remote apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00071Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
    • H04N1/00074Indicating or reporting
    • H04N1/00076Indicating or reporting locally
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/0035User-machine interface; Control console
    • H04N1/00405Output means
    • H04N1/00408Display of information to the user, e.g. menus
    • H04N1/00411Display of information to the user, e.g. menus the display also being used for user input, e.g. touch screen

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Facsimiles In General (AREA)
  • Control Or Security For Electrophotography (AREA)
  • User Interface Of Digital Computer (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Description

本発明は、ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラムに関するものである。
従来、画像形成装置は明示的にユーザが設定指示を行わない場合、その画像形成装置で定められたデフォルト設定が採用されてジョブが実行されるようになっている。また、よく使う機能のお勧めや、ユーザが独自に初期設定をカスタマイズするなど、ジョブの設定工程の簡略化やガイダンスする機能が存在する。更に設定禁止や、矛盾がある設定の場合に注意喚起のメッセージを操作部の画面に表示することや、設定を再確認させるための操作を備える画像形成装置が存在する。しかしながら、それでもユーザによる操作ミスや認識ミス等により、誤った設定のままジョブの実行指示が行われる場合がある。このような場合、ジョブの実行中に、その設定の誤りに気付いたユーザによるジョブの中断を受け付けるためのストップボタンが操作部に必ず備えられている。つまり、従来の画像形成装置では、ユーザの認識ミスを判定できないため、誤った設定のままでジョブ実行開始指示を受付けてしまうという状況が発生する。
一方、このようなユーザによる誤操作に対して、装置側で操作誤り状況を推定する技術が提案されている。特許文献1では、ユーザが送信しようとしているデータの中に含まれる情報から送信先に関する情報を抽出し、その送信先に関する情報の個数により、データと送信先の整合性を判定することで送信先指定の誤りを推定している。これは、送信するデータの中には、通常の送信先に関する情報が含まれているという客観的特徴を活用することで、データの送信先の指定の誤りを推定するものである。
特開2016-119502号公報
ここで上記従来技術のように、何かしらの誤操作推定するための特徴というものが予め明らかな操作を対象にする場合は、ルールベースで推定ロジックを決定することができるが、それが不明もしくは不確定な場合がある。例えば、ユーザに固有の間違える癖を取り扱う場合が該当する。ユーザの癖のように、装置としては確定できない未知の特徴に誤操作が分類されるものは、ルールベースの組み込み実装には適さない。そこで、ルールベースの組み込み実装の対極的実装手法として、近年、実用化し普及しつつあるAIによる機械学習技術を活用した推定ロジックの実装方法を製品に適応することが課題となっている。
本発明の目的は、上記従来技術の問題点の少なくとも一つを解決することにある。
本発明の目的は、誤操作状況を効果的に学習し、この学習結果に基づき誤り推定を行いユーザへ通知を行うことで誤操作によるジョブ実行を抑制できる技術を提供することにある。
上記目的を達成するために本発明の一態様に係るジョブ処理装置は以下のような構成を備える。即ち、
ジョブ処理装置であって、
ジョブの設定を受け付ける受付手段と、
前記ジョブのキャンセル指示を受け付ける前に前記受付手段によって受け付けた前記ジョブの第1の設定と、前記キャンセル指示を受け付けた後に前記受付手段によって受け付けた第2の設定を学習データとして用いて、学習済みモデルを生成する生成手段と、
前記生成手段によって生成された前記学習済みモデルと前記受付手段によって受け付けた新たなジョブの新たな設定とを用いて、前記新たな設定の誤りと前記新たなジョブの推奨設定を推定する推定手段と、
前記推定手段によって推定された前記誤りに関する情報と前記新たなジョブの前記推奨設定をユーザに通知する通知手段と、を有することを特徴とする。
本発明によれば、ジョブのキャンセル指示を受け付ける前に受け付けたジョブの第1の設定と、ユーザからキャンセル指示を受け付けた後に受け付けた第2の設定を学習データとして用いて生成した学習済みモデルを用いて、新たなジョブの新たな設定の誤りと新たなジョブの推奨設定を推定し、新たな設定の誤りに関する情報と新たなジョブの推奨設定をユーザに通知できるという効果がある。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
添付図面は明細書に含まれ、その一部を構成し、本発明の実施形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の実施形態1に係るシステムを説明する図。 実施形態1に係る画像形成装置のハードウェア構成を説明するブロック図。 実施形態1に係る機械学習サーバのハードウェア構成を説明するブロック図。 実施形態1に係る画像形成装置、機械学習サーバ及びデータサーバのソフトウェア構成を説明するブロック図。 実施形態1に係る機械学習サーバの機械学習部における学習モデルを用いた入出力の構造を示す概念図。 実施形態1に係る画像形成装置における操作誤りの発生する状況の一例として、コピー時の両面設定を説明する図。 両面設定に関わるユーザの操作設定情報を学習対象とした学習データの一例を示す図。 実施形態1に係る画像形成装置による処理を説明するフローチャート。 図8のS804の推定処理を説明するフローチャート。 実施形態1に係るデータサーバの動作を説明するフローチャート(A)と、実施形態1に係る機械学習サーバの動作を説明するフローチャート(B)。 実施形態1に係る画像形成装置の操作部に表示される画面例を示す図。 実施形態1に係る画像形成装置における誤操作推定結果の通知画面を説明する図。 実施形態1に係る画像形成装置の操作部に表示されるAI処理設定カスタマイズ画面の一例を示す図。 実施形態1に係る画像形成装置の操作部に表示される学習結果を表示する画面の一例を示す図。 本発明の実施形態2に係る画像形成装置のソフトウェア構成を説明する図。 実施形態2に係る画像形成装置の動作を説明するフローチャート。 図16のS1601の処理を説明するフローチャート。
以下、添付図面を参照して本発明の実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでない。実施形態には複数の特徴が記載されているが、これら複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。更に、添付図面においては、同一もしくは同様の構成に同一の参照番号を付し、重複した説明は省略する。また実施形態では、本発明に係る情報処理装置の一例を、例えば複合機などの画像形成装置を例に説明する。
図1は、本発明の実施形態1に係る情報処理システムを説明する図である。
このシステムは、プリンタ、複合機、FAXなどの画像形成装置101、機械学習サーバ102、データサーバ105、画像形成装置101に対するプリントデータの送信等を行う汎用コンピュータ103を有している。これらの機器は、有線LAN等のネットワーク104によって接続されている。画像形成装置101は、AI(artificial intelligence)機能を搭載していて、このAI機能を実現するための学習済みモデルは、機械学習サーバ102が中心的に生成する役割を備えている。データサーバは、機械学習サーバ102において機械学習を行うために使用される学習データを外部機器から収集して機械学習サーバ102へ提供する役割を持っている。画像形成装置101は随時、機械学習サーバ102で生成された学習済みモデルを機械学習サーバ102から受信して特定のAI機能を実現できる。また機械学習サーバ102は、特定のAI機能実現するための学習済みモデルの学習に必要な学習データを、データサーバ105や画像形成装置101、汎用コンピュータ103等の外部機器から受信し、その一部又は全部を用いて学習処理を行うことができる。
このシステムの特徴としては、画像形成装置101を操作するユーザ固有の誤操作状況をデータサーバ105が収集し、そのデータを機械学習サーバ102で学習して学習モデルを生成する。画像形成装置101は、機械学習サーバ102からロードした、ジョブ実行指示の際の誤操作状況を推定する学習モデルを活用したAI機能を備えている。このようなシステム構成により、ユーザに誤り状況の通知が行えるようにすることで操作設定の訂正を促すことができる。
図2は、実施形態1に係る画像形成装置101のハードウェア構成を説明するブロック図である。
画像形成装置101は、使用するユーザが各種の操作を行うための操作部140と、操作部140からの指示に従って画像情報を読み取るスキャナ10と、画像データに基づいて用紙(シート)に画像を印刷するプリンタ20とを有する。スキャナ10は、スキャナ10を制御する図示しないCPUや原稿読取を行うための照明ランプや走査ミラーなどを有する。プリンタ20は、プリンタ20の制御を行う図示しないCPUや画像形成や定着を行うための感光体ドラムや定着器等を有する。また画像形成装置102は、スキャナ10や、プリンタ20、LAN104や、公衆回線(WAN)3001、無線LAN106と接続されている画像形成装置101の動作を統括的に制御するコントローラ2200を備える。
次にコントローラ2200の内部について詳細に説明する。
コントローラ2200は、LAN104を介してLAN上の汎用コンピュータ103から受信した印刷ジョブに含まれるPDLコードをビットマップイメージに展開するラスタイメージプロセッサ(RIP)2260を有する。またコントローラ2200は、スキャナ10から入力された画像データに対し補正、加工、編集を行うスキャナ画像処理部2280を有する。またコントローラ2200は、プリンタ20で出力(印刷)される画像データに対して補正、解像度変換等を行うプリンタ画像処理部2290と、画像データの回転を行う画像回転部2230とを有する。
またコントローラ2200は、多値画像データはJPEG、2値画像データはJBIG、MMR、又はMHの圧縮伸張処理を行う画像圧縮部2240を有する。またコントローラ2200は、スキャナ10及びプリンタ20とコントローラ2200とを接続して画像データの同期系/非同期系の変換を行うデバイスI/F2220を有する。更に、これらを互いに接続して画像データを高速で転送する画像バス2008を備えている。
またコントローラ2200は、画像形成装置101を統括的に制御する制御部としてのCPU2201を有する。またコントローラ2200は、CPU2201が動作するためのシステムワークメモリであり、画像データを一時記憶するための画像メモリでもあるRAM2202を有する。またコントローラ2200は、操作部140のインターフェース部2206を介して、操作部140に表示する画像データを操作部140に対して出力する。また操作部I/F2206は、操作部140から、この画像形成装置101を使用するユーザが入力した情報をCPU2201に伝える役割を有する。
またコントローラ2200は、LAN104に接続され、汎用コンピュータ103やLAN104上の図示しないその他のコンピュータ端末との通信(送受信)を行うネットワークI/F部2210を有する。また公衆回線3001に接続され、図示しない外部のファクシミリ装置とのデータの通信(送受信)を行うモデム2211を有する。また無線106により外部の端末と接続する為の無線通信I/F2270を備える。またコントローラ2200は、CPU2201が実行するブートプログラムが格納されているROM2203と、システムソフトウェア、画像データ、ソフトウェアカウンタ値などを格納するハードディスクドライブ(HDD)2204を備える。またスキャナ10及びプリンタ20と夫々通信を行う内部通信I/F2208と、これらを互いに接続するシステムバス2207とを備える。更に、コントローラ2200は、CPU2201の指示により時間の計時を行うタイマ2209を備える。コントローラ2200は、システムバス2207及び画像バス2008を接続しデータ構造を変換するバスブリッジとして機能するイメージバス/F2205を備える。コントローラ2200は、印刷やコピージョブ実行時の、ユーザ名や印刷部数、カラー印刷等、出力属性情報等をジョブ実行時の履歴をジョブログ情報としてHDD2204或いはRAM2202に記録管理している。
GPU2291は、データをより多く並列処理することで効率的な演算を行うことができるので、ディープラーニングのような学習モデルを用いて複数回に渡り学習を行う場合にはGPU2291で処理を行うことが有効である。そこで実施形態1では、学習モデルを含む学習プログラムを実行する場合に、CPU2201とGPU2291が協働して演算を行うことで学習を行う。また図4を参照して後述する推定処理部405の機能も同様にGPU2291を用いても良い。
図3は、実施形態1に係る機械学習サーバ102のハードウェア構成を説明するブロック図である。
機械学習サーバ102は、それぞれシステムバス3307で相互に接続されているCPU3301、RAM3302、ROM3303、HDD3304、ネットワークI/F部3310、IO部3305、GPU3306を有する。CPU3301は、OS(Operating System)やアプリケーションソフトなどのプログラムをHDD3304から読み出して実行することで種々の機能を提供する。RAM3302はCPU3301がプログラムを実行する際のシステムワークメモリである。ROM3303はBIOS(Basic Input Output System)やOSを起動するためのプログラム、設定ファイルを記憶している。HDD3304はハードディスクドライブで、システムソフトウェアなどを記憶している。ネットワークI/F部3310は、無線LANに接続され、画像形成装置102などの外部機器と通信(送受信)を行う。IO部3305は、マルチタッチセンサ等を備えたディスプレイ入出力デバイスを備える図示しない操作部との間で情報を入出力するインターフェースである。操作部(不図示)にはプログラムが指示する画面情報に基づき所定の解像度や色数等で所定の情報が描画される。例えば、GUI(Graphical User Interface)画面を形成し、操作に必要な各種ウィンドウやデータ等が表示される。
GPU3306は、データをより多く並列処理することで効率的な演算を行うことができるので、ディープラーニングのような学習モデルを用いて複数回に渡り学習を行う場合にはGPU3306で処理を行うことが有効である。そこで実施形態1では、後述する図4の機械学習部414による処理にはCPU3301に加えてGPU3306を用いる。具体的には、学習モデルを含む学習プログラムを実行する場合に、CPU3301とGPU3306が協働して演算を行うことで学習を行う。尚、機械学習部414の処理は、CPU3301又はGPU3306のみにより演算が行われても良い。
画像形成装置101のGPU2291との使い分けについて記載する。
ネットワークの通信やGPU2291の処理に要する負荷、画像形成装置101の省電力モード等に応じて、GPU2291の計算資源を有効活用がされるようになっている。例えば、画像形成装置101が省電力モードに移行する場合、積極的に機械学習サーバ102のGPU3306を活用できるようになっている。
図4は、実施形態1に係る画像形成装置101、機械学習サーバ102及びデータサーバ105のソフトウェア構成を説明するブロック図である。図に示したソフトウェア構成を実現するためのプログラムは、その構成要素ごとにHDD2204に格納されており、そのプログラムがRAM2202に展開され、そのプログラムをCPU2201が実行することにより図4に示す機能が達成される。機械学習サーバ102やデータサーバ105においても、各サーバのCPUがRAMに展開したプログラムを実行することにより、その機能が達成される。また、このソフトウェア構成は、画像形成装置101の操作部140等を介したユーザの操作情報を学習して、ユーザの誤操作状況の推定処理を行う機能を実現するためのものである。
画像形成装置101のソフトウェアは、データ記憶部401、UI表示部402、ジョブ制御部403、画像読み取り部404、推定処理部405を有する。機械学習サーバ102のソフトウェアは、学習データ生成部413、機械学習部414、データ記憶部415を有する。またデータサーバ105は、データ収集・提供部410とデータ記憶部411を有する。
データ記憶部401は、RAM2202やHDD2204に対して、画像データや学習データ、学習モデル等の画像形成装置101が入出力を行うデータの記録を行う機能的役割を有する。UI表示部402は、操作部I/F2206を介して操作部140の表示画面に対するユーザからの操作設定を受け付け、またその操作を受付ける画面を提供する。更に、推定処理部405による推定結果等のユーザへのメッセージを通知するための通知画面を表示する役割を有している。ジョブ制御部403は、ユーザの指示に基づきコピーやファックス、プリント等の画像形成装置101の基本機能の実行や、基本機能の実行に伴う他のソフト構成要素間の指示やデータの送受信を中心的に行う役割を有する。画像読み取り部404は、ジョブ制御部403の指示に基づきコピーやスキャン機能を実行する際に、スキャナ10により原稿を光学的に読み取らせるように制御する。推定処理部405は、CPU2201やGPU2291により実行されるものであり、画像形成装置101が入出力を行うデータに対してAI機能を実現するための推定処理や分類処理等を行う。この推定処理部405は、ジョブ制御部403の指示に基づいて処理を実行し、その推定処理部405による推定結果はジョブ制御部403に送信され、UI表示部402によりメッセージとして操作部140に表示される。こうしてユーザに対して、その推定結果がフィードバックされる。
次にデータサーバ105の機能を説明する。データ収集・提供部410は、機械学習サーバ102で学習するための学習データの収集と、機械学習サーバ102への学習データの提供を行う。ここでは画像形成装置101から、画像形成装置101の操作情報を含む学習データを受信すると、それを機械学習サーバ102へ提供する。また、学習データの収集先は、画像形成装置101以外の他の画像形成装置、或いは汎用コンピュータ103や他のデータサーバであってもよい。いずれにしても、目的の機械学習をさせるために必要なデータの収集が可能になっている。データ記憶部411は、収集した学習データの記録管理を行う。
次に機械学習サーバ102の機能を説明する。
学習データ生成部413は、データサーバ105から受信したデータを目的の学習効果を得るために、ノイズとなる不要なデータを除去するなど効果的な学習結果が得られる形に加工して学習データの最適化を行う。実施形態1では、効果的な学習するためのデータの前処理加工の一例として画像形成装置101から受信した操作情報の中から、操作部140のストップボタンが押下された前後の操作情報をフィルタリングする。それによって、効果的に誤操作状況を学習できるように工夫している。機械学習部414は、学習データ生成部413によって生成された学習データを入力して、GPU3306やCPU3301により、学習モデルによる学習方法を活用して機械学習を行う。データ記憶部415は、データサーバ105から受信したデータや、生成された学習データ、機械学習部414における学習済みモデルをRAM3302やHDD3304へ一時的に記憶する。
図5は、実施形態1に係る機械学習サーバ102の機械学習部414における学習モデルを用いた入出力の構造を示す概念図であり、ここではニューラルネットワークを用いた学習モデルを例に図示している。
このニューラルネットワークにより、操作情報を入力として誤操作状況を予測するための学習モデルの生成に関わる、学習データXをX1~X12で示している。これら学習データの要素として、ここでは一般的な操作設定情報を示しているが、その例外にも、ユーザによって操作設定が可能なものを学習データの要素とすることができる。よって、本発明は、図5に示すような操作設定情報に限定されないことは言うまでもない。尚、AI機能のオン/オフや、設定の有り無し、カラー/モノクロの設定等、設定項目がカテゴライズ変数として表現されるデータは、機械学習で数値として取り扱われる。従って、データの前処理として既知のone hot encoding等の手法によって、これらデータを数値の表現に変換して機械学習処理の入力として利用できるようにしている。
機械学習の具体的なアルゴリズムとしては、ニューラルネットワークの他、最近傍法、ナイーブベイズ法、決定木、サポートベクターマシンなどが挙げられる。また、ニューラルネットワークを利用して、学習するための特徴量、結合重み付け係数を自ら生成する深層学習(ディープラーニング)も挙げられる。適宜、上記アルゴリズムのうち利用できるものを用いて実施形態に適用することができる。
また学習モデルは、誤差検出部と、更新部とを備えてもよい。誤差検出部は、入力層に入力される入力データXに応じて、ニューラルネットワークの出力層から出力される出力データYと、教師データTとの誤差を取得する。そして損失関数を用いて、ニューラルネットワークからの出力データYと教師データTとの誤差を表す損失Lを計算するようにしてもよい。
更新部は、誤差検出部で得られた損失Lに基づいて、その損失が小さくなるように、ニューラルネットワークのノード間の結合重み付け係数等を更新する。この更新部は、例えば、誤差逆伝播法を用いて、結合重み付け係数等を更新する。この誤差逆伝播法は、上記の誤差が小さくなるように、各ニューラルネットワークのノード間の結合重み付け係数等を調整する手法である。
学習モデルWは、「正解値が既知の入力データ」と「正解値」とをセットにした学習データを多数用意し、この正解値に対応する入力データを入力した場合の出力が正解値に極力近づくように、学習モデルW内の重み付け係数を調整する。これにより、精度の高い学習モデルWを得る作業を行う。これを学習工程と呼び、この学習工程を経て調整された学習モデルを学習済モデルと呼ぶ。ここで用意する教師データ(「正解値が既知の入力データ」と「正解値」のセット)は以下のようなものとする。
実施形態1では、操作部140のストップボタン13(図11)が押下された直前の操作設定を操作誤りの「正解値」、その後の操作設定を訂正後の設定とし、これらを対にして学習データの入力とする。そして目的の変数とする誤り率、誤り設定、正しい設定の分類結果を出力データとして定義して学習させる。ここで、ストップボタンが押下された直前の操作設定を操作誤りの正解値として対応付けることで、操作設定項目の誤り方の特徴量を効果的に学習させることが可能になっている。
次に実施形態1において、画像形成装置101で操作誤りが発生する状況に対して学習の方法と操作誤りを推定させる方法について説明する。
図6は、実施形態1に係る画像形成装置101における操作誤りの発生する状況の一例として、コピー時の両面設定を説明する図である。
図6(A)は、両面原稿を両面で印刷する両面両面設定を示し、図6(B)は、片面原稿を両面で印刷する片面両面設定を示し、図6(C)は、両面原稿を片面で印刷する両面片面設定を示している。
図7は、両面設定に関わるユーザの操作設定情報を学習対象とした学習データの一例を示す図である。
ここでは、両面設定に関わる誤操作の学習と推定動作について、ユーザAとユーザBの誤操作の癖を識別可能なように学習させる方法を説明する。
図6に示すように、両面設定とは、原稿の表裏の関係を印刷用紙の表裏の関係にどのように対応付けて印刷を行うか設定を受け付ける機能である。ここでユーザAとユーザBとは異なる固有の間違え方による誤設定が行われる状況を想定して説明を行う。
ユーザ固有の間違え方とは、画像形成装置101の通常の使い方としての志向が異なること要因であることが背景としてある。例えばユーザAは、「片面原稿をコピーする場合、印刷用紙を節約したい」といった志向の持ち主で、通常、片面原稿を両面で印刷する片面両面設定を行う。しかしながら、まれに操作ミスにより両面原稿を両面でコピーする両面両面設定を選択した状態でコピーを実行してしまい、そのコピーの途中で、その誤りに気付いてコピーを中断したことがある。
一方、ユーザBは、「片面原稿の場合、印刷部数が多いときだけ片面両面設定でコピーしたい、1部の時は、原稿のレイアウト通りにコピー取りたい」といった志向の持ち主で、通常は、デフォルトの片面原稿を片面で印刷する片面片面設定でコピーを行う。しかしながらまれに操作ミスにより、部数が多いときに片面両面設定への変更をし忘れてコピーを開始し、コピーの途中で、誤りに気づいてコピーを中断したことがある。このように、ユーザ毎に志向が異なり、また間違え方が異なることが想定される。このような間違えが発生した操作プロセスを記録した一例として、ユーザAの操作及び設定データのを図7(A)に、ユーザBの操作及び設定データの例を図7(B)に示している。
また、ユーザ毎に共通する点としては、いずれもユーザ自身で間違いに気づき、ストップボタンを押下して、コピージョブの中断操作を行い、設定を適正化して、そのジョブを再実行している。画像形成装置101では、少なくともこの時、ジョブの中断と再実行の過程で入力した設定データを学習データとして機械学習を行うように構成されている。図7は、その学習データの一例を示している。
図7(A)は、ユーザAの操作状況に対する学習データの一例を示している。図7(A)は、縦軸に図5に示した機械学習部414に入力される学習データの構成要素を示しており、入力データとして学習項目X、出力データとして推定結果Y、推定結果に対応する教師データ項目Tを含んでいる。また横軸に操作順(n)に対応した操作履歴が記録されている。これら学習データの3つの要素について、図5で説明したように機械学習部414学習させる。
画像形成装置101において、操作誤りを推定するために操作の誤りが発生したことを直接的に示す操作入力としてストップボタンが押下された状態と、その他の操作設定項目と、その後適正化された操作設定情報をセットで学習動作を積み重ねていく。その学習プロセスの一例を操作順(n)~操作順(n+100)で示している。
操作順(n)では、ユーザAは、図示の学習項目記載の設定に対して、ストップボタンを押下してジョブを中断した。この時点では、学習済みモデルとしては初期状態であり、誤操作推定モデルの誤操作率推定結果は0%である。
操作順(n)で、ストップボタンが押下されているため、教師データ項目の誤操作率T1は100%として、誤操作率の推定結果Y1との誤差を得て損失を計算する。こうして図5で説明したように、この損失が小さくなるように、ニューラルネットワークのノード間の結合重み付け係数等を更新する。この一連の動作を操作順(n)が更新される毎に行う。
次に操作順(n+1)では、操作順(n)の設定に対して、誤り設定を適正化した設定に変更されている。ここではジョブの実行中にストップボタンは押下されていない。この設定項目に対しては、教師データ誤操作率T1は0%として、操作順(n)と同様に学習させる。
次に操作順(n+2)の場合、誤操作率Y1が20%として出力されている。これは、操作順(n+2)に至るまでの学習により、ニューラルネットワークのノード間の結合重みづけ係数等が更新されている。この結果、学習済みモデルが、操作順(n+2)の操作設定(X2~X12)までの説明変数に対して推定した誤操作率を示している。
このように、操作順(n+3)~操作順(n+100)までを学習させた結果、操作順(n+100)の時点の誤操作率の推定結果は80%となっている。このように、初期の学習済みモデルから学習を重ねることで、誤操作の特徴を示す設定の場合に推定率が徐々に高いレベルで収束するようになっていく。
また図示の例では、推定結果として「誤り操作設定Y2」「正しい操作設定Y3」という分類結果を目的変数として学習済みモデルが出力できることを示している。これは、ユーザが、操作部140を介して誤操作推定結果の通知の仕方を目的に応じて、変更することができるようにするためである。例えば、正誤の結果のみでよい場合と、その正確らしさの閾値を考慮して、ユーザへの通知判定を行えるようにしても良い。このようにして、誤操作の抑制効果と、通知の頻度のバランスが調整できる。これにより、ある程度の推定誤差が存在する機械学習を前提とした誤操作推定通知機能として使い勝手がよくなると考えられる。尚、図示の学習結果やその経過は、誤操作推定モデルの学習方法や学習データの特徴を示す一例であり、本発明は、図示の例に限定されることがないことは言うまでもない。
図11は、実施形態1に係る画像形成装置101の操作部140に表示される画面例を示す図である。
操作部140の操作パネル11は、例えば液晶とタッチパネルを組み合わせたものであり、操作画面を表示するとともに、表示キーがユーザにより押されるとその情報をコントローラ2200に送る。スタートボタン12は、原稿画像の読み取り印刷の動作を開始するときや、その他機能の開始指示に用いられる。スタートボタン12には、緑色と赤色の2色のLEDが組み込まれ、緑色点灯時には開始可能を示し、赤色点灯時には開始不可であることを示す。ストップボタン13は、稼動中の動作を止める働きをする。ハードキー群14には、テンキー、クリアキー、リセットキー18、設定キー16が設けられる。また節電キー15は画像形成装置を操作部140からスリープモードに移行、又はスリープモードから復帰させる際に用いられる。画像形成装置101は、通常モードで節電キー15がユーザによって押下されるとスリープモードへ移行し、スリープモードで節電キー15がユーザによって押下されると通常モードへ移行する。設定キー16は、AI機能設定等の設定を行う際に用いられる。また操作部140は、ユーザが操作パネル11を用いて入力したユーザ名や印刷枚数、出力属性情報といったジョブ情報作成に必要な情報を操作部I/F2206に送信する。
図11(A)における操作パネル11の表示はホーム画面の一例を示している。ユーザは、このホーム画面を介して画像形成装置101が提供する機能を選択可能になっている。またここでは、AI機能のステータスを表示するAI機能アイコン17を表示させて、ユーザがAI機能の稼働状態を識別できるようになっている。ユーザが、このAI機能アイコン17にタッチすることによって、図13に示すAI機能設定の選択画面に遷移させることができる。また図11(B)は、コピーの初期設定画面例を示す。ここでもユーザは、AI機能アイコン17にタッチすることによって、図13に示すAI機能設定のカスタマイズ画面に遷移させることができる。
図13は、実施形態1に係る画像形成装置101の操作部140に表示されるAI処理設定カスタマイズ画面の一例を示す図である。
このAI処理設定画面1300は、AI処理の詳細設定が行えるようになっている。例えばAI機能のオン/オフ設定選択1301がチェックボックスのチェックにより受付可能になっている。また、学習と推定をそれぞれ独立してオン/オフできるように、それぞれ学習欄1302と推定欄1303が選択項目として備えられている。このAI処理の処理内容の選択は、学習と推定のいずれか一方または両方を禁止処理として選択を受付可能になっている。操作誤り率閾値設定値1304は、ユーザが操作誤りの通知の頻度や通知内容の確度を考慮して、期待する操作感に調整可能なように操作誤り率の閾値(所定値)を設定できる。ミス印刷枚数閾値設定値1305は、ユーザが操作誤りの通知の頻度や通知内容の確度を考慮して、ミスした印刷枚数がこの閾値(所定値)になると操作誤りを通知するように設定できる。これら設定値は、後述する図9の推定処理で参照される。このミスした印刷枚数は、ユーザの操作の誤りにより発生した事象の数を表す一例である。
図8は、実施形態1に係る画像形成装置101による処理を説明するフローチャートである。この処理は、操作入力の受付から、誤操作の推定処理を行って、それを通知するまでの処理を示している。尚、このフローチャートで示す処理は、CPU2201がRAM2202に展開したプログラムを実行することにより達成される。
まずS801でCPU2201は、操作部140から、或いは、不図示のICカードリーダ等を介して認証コードの入力を受け付けることによりユーザの認証を行う。こうしてユーザの認証に成功するとS802に進みCPU2201は、その認証されたユーザからのジョブの設定の入力を受け付ける。次にS803に進みCPU2201は、そのユーザによりジョブの実行開始を指示するスタートボタン12が押下されるのを待って、スタートボタン12が押下されるとS804に進みCPU2201は推定処理を行う。このS804の推定処理は、図9のフローチャートを参照して後述する。
次にS805ジョブに進みCPU2201は、設定された条件に基づいてジョブを実行する。次にS806に進みCPU2201は、操作部140のストップボタン13が押下されて、ジョブの実行がキャンセル(中断)されたか否かを判定する。ここでストップボタン13が押下されていないときはS807に進みCPU2201は、そのジョブが終了したか否か判定し、ジョブが終了したと判定したときはこの処理を終了し、そうでないときはS806に進む。
S806でストップボタン13が押下されてジョブがキャンセルされたときはS808に進みCPU2201は、ジョブがキャンセルされるまでに印刷した用紙の枚数をデータ記部41に、ログインしているユーザの情報と対応付けて記録する。このS808での記録内容が、後述する推定処理で活用される。次にS809に進みCPU2201は、ジョブの設定がリセットされたか否か判定する。ここでジョブの設定がリセットされたと判定するとS801に戻り、ジョブの設定がリセットされていないと判定するとS810に進む。
S810でCPU2201は、タイマ2209によるタイムアウトが発生しているか否か判定する。これは、操作設定値の初期化を行うまでのタイマ2209の時間設定に基づきタイムアウトしたか否かを判定するものである。不図示のUI操作画面を介してユーザは、任意のタイマ値を設定可能になっている。ここでタイムアウトしていないと判定するとS811に進みCPU2201は、ユーザがログアウトしたか否かを判定する。ここでユーザがログアウトしたと判定した場合はS801のユーザの認証受付状態に戻る。
一方、ユーザがログアウトしていないと判定するとS812に進みCPU2201は、ジョブの設定変更を受け付ける。そしてS813に進みCPU2201は、ジョブの実行開始を指示するスタートボタン12が押下されたか否かを判定する。ここでスタートボタン12が押下されたと判定するとS814に進みCPU2201は、誤操作推定モデルにおける学習データとしてジョブ設定情報をデータ記憶部401へ記録する。そしてS815に進みCPU2201は、その記録した学習データをデータサーバ105に送信してS804の推定処理に戻る。
図9は、図8のS804の推定処理を説明するフローチャートである。
先ずS901でCPU2201は、機械学習サーバ102から学習済みモデルを受信しているか判定する。ここで受信していると判定するとS902に進みCPU2201は、学習モデルの記録を行うとともに、推定処理に使用する学習済みモデルを更新してS903に進む。一方、S901で学習済みモデルを受信していないときはS903に進む。S903でCPU2201は、学習済みモデルにデータの入力を行う。次にS904に進みCPU2201は、この入力に対して学習済みモデルが出力する操作誤りの推定結果を取得する。次にS905に進みCPU2201は、この取得した推定結果が、予め定めた閾値Xより大きいかを判定する。
この閾値Xは、前述の図13に示すAI処理設定カスタマイズ画面において、設定された操作誤り率閾値設定1304と比較するものである。これは、ユーザが操作誤りの通知の頻度や通知内容の確度を考慮して期待する操作感に調整可能なように操作誤り率の閾値を設定可能になっている。
S905で、設定されている閾値Xよりも小さい操作誤り率であれば、この処理を終了となる。一方、その推定結果が閾値X以上であればS906に進みCPU2201は、それまでに印刷した印刷枚数と閾値Yとを比較する。尚、この印刷枚数は、前述のS808で取得した印刷枚数である。
これは、過去にジョブ実行を途中で中断した時点で出力した印刷枚数を、前述の図13に示したAI処理設定カスタマイズ画面におけるミス印刷枚数閾値設定値1305と比較する。ここで印刷枚数が閾値Yよりも多いときはS907に進むが、閾値Y以下であれば、この推定処理を終了する。S907でCPU2201は、その推定結果を、例えば図12に示すような通知画面を操作部140に表示する。そしてS908に進みCPU2201は、操作部140に表示された通知画面を介してユーザの操作を受付けてS909に処理を進める。そしてCPU2201は、ジョブの実行開始を指示するスタートボタン12が押下されたかを判定し、スタートボタン12が押下されると、この推定処理を終了する。
ここでミス印刷枚数を閾値と比較して通知画面の誤操作推定結果通知画面の表示条件としている目的は、誤操作による影響度を反映した形で通知の仕方を調整できるようにするためである。ミス印刷の枚数は、直接、誤操作状況の推定と相関のないパラメータであり誤操作推定の学習の要素にならない。しかし、ミス印刷の枚数の判定を行うのは、通知の頻度等を考慮して実用上の誤操作通知の重要度を加味する場合、別途調整のパラメータを選択的に調整できるようにもなっている方が好ましいと考えられるためである。
このように、操作誤り率に対する閾値設定やミス印刷枚数に対する閾値設定は、実施形態における特徴部分の付加的要素として図示した。
図12は、実施形態1に係る画像形成装置101における誤操作推定結果の通知画面を説明する図である。ここでは図12(A)と図12(B)は、その通知画面例を示している。
ここで通知にかかわる構成要素としては、メッセージ表示部1200、AI推定設定アイコン1201、誤操作推定精度表示部1202を含む。図示の例では、メッセージ表示部1200に表示されている通知メッセージが、誤操作推定精度値に連動して変わっている様子を示している。つまり、図12(B)に示す誤操作推定精度が高い方「80%」では、通知メッセージの内容が操作設定の間違えを断定的に表現するようになっている。これに対して図12(A)では、相対的に推定精度が小さい「50%」ため、表現を和らげて「推奨設定があります」というように通知している。このような表示形態は、学習結果には、推定誤差が存在すること、及び学習の習熟度が変化するという性質があるので、最終判定をユーザが行う判定材料として通知結果を定量的、定性的情報として把握可能にしている。尚、通知結果を、ユーザが定量的、定性的に把握可能であれば、他の提示方法でもよい。
図12(C)は、AI推定設定アイコン1201の押下により表示される画面の一例を図12(C)に示している。図12(C)は、誤操作推定モデルによって推定した誤設定内容を反映した表示画面の一例を示す。AI推奨設定画面は、設定項目表示部1203、現状設定内容表示部1204、推奨設定表示部1205とを有している。そして更に、現状の設定を選択するアイコン1206、推奨設定を選択するアイコン1207が配置されている。これによりユーザは、通知内容を確認して、その設定内容を変更するか否かを指示でき、或いはどのように変更すれば現状の不具合を解消できるか等を把握できる。図12(C)の例では、現状の設定に対して、両面設定として「片面/両面」を推奨設定とする例を示している。
図10(A)は、実施形態1に係るデータサーバ105の動作を説明するフローチャートである。尚、このフローチャートで示す処理は、データサーバ105のCPU(不図示)が、同じくデータサーバ105のRAM(不図示)に展開したプログラムを実行することにより達成される。
先ずS1001でデータサーバ105のCPUは、データ通信要求の受信を待機しており、その通信要求を受信するとS1002に進む。その通信要求の種類が画像形成装置101からのデータ保存を示す送信要求である場合はS1003に進み、画像形成装置101からデータを受信して、データ記憶部401により記憶して、この処理を終了する。
一方、S1002で通信要求が機械学習サーバ102からの要求であると判定するとS1005に進み、記憶されているデータのうち、機械学習サーバ102に未提供のデータを機械学習サーバ102に送信して、この処理を終了する。
図10(B)は、実施形態1に係る機械学習サーバ102の動作を説明するフローチャートである。尚、このフローチャートで示す処理は、機械学習サーバ102のCPU3301がRAM3302に展開したプログラムを実行することにより達成される。
先ずS1010でCPU3301は、データサーバ105に対して機械学習用のデータの送信要求を送信する。次にS1011に進みCPU3301は、その要求に応答して、データサーバ105から送信されたデータを受信したかどうか判定し、データを受信するとS1012に進みCPU3301は、誤操作の推定用学習データを生成する。次にS1013に進みCPU3301は、その生成された推定用学習データを学習モデルに入力する。これにより機械学習部414は、その入力された推定用学習データに基づいて学習を行う。そしてS1015に進みCPU3301は、受信した学習用のデータの全ての処理を終了するまで繰り返し学習を行い、全ての学習用データの学習を終了すると学習済みモデルを画像形成装置101に送信して、この処理を終了する。
このように機械学習サーバ102は、データサーバ105から提供される機械学習用のデータに基づいて学習を行って学習済のデータを作成する。ここまで実施形態1に係る画像形成装置101、データサーバ105、機械学習サーバ102の動作の特徴を説明した。
図14は、実施形態1に係る画像形成装置101の操作部140に表示される学習結果を表示する画面1400の一例を示す図である。
この学習結果の表示画面1400は、AI処理における学習データの量と、その学習精度とを、ユーザが把握するための情報を表示する。図示のようにAI学習データ量欄1401に「480」、AI学習予測精度欄1402には、図5で示した学習モデルによる学習結果の評価指標として、100分率などの数値(図14では90%)を表示している。これによりユーザは、学習データ量や予測精度を把握することができる。また、これら数値に代えて、例えばグラフ形式で表示してもよい。
以上説明したように実施形態1によれば、少なくともストップボタンの押下状態と、その前後の操作情報を学習データとして、その操作情報を学習して、操作の誤り状況を推定処理する学習済みモデルを作成する。そして、その生成された学習済みモデルを使用して、ユーザの操作の誤り状況を推定することができる。そして、ユーザの操作の誤りであると推定される場合は、ユーザに通知することができる。
更に、その通知の頻度を、例えば誤り率や、ミス印刷の枚数などの閾値設定により調整できる。これによりユーザは、操作誤りの通知の頻度や、通知内容の確度を考慮して、期待する操作感に調整できる。
[実施形態2]
以下、本発明を実施するための実施形態2について図面を用いて説明する。実施形態1では、画像形成装置101が、実施形態1に係るデータ収集サーバ105と機械学習サーバ102の機能を有することにより、画像形成装置101単体で学習用データの収集、及び学習用データに基づく学習処理を実行することができる。尚、画像形成装置101のハードウェア構成は、前述の実施形態1と同様であるため、その説明を省略する。
図15は、本発明の実施形態2に係る画像形成装置101のソフトウェア構成を説明する図である。図15において、前述の図4と共通する機能は同じ参照番号を付して、その説明を省略する。
前述の実施形態1との相違点は、実施形態2に係る画像形成装置101が、実施形態1に係るデータ収集サーバ105と機械学習サーバ102の機能を有している点である。つまり、CPU2201やGPU2209により、この図15に示す機能ブロックが実行される。
図16は、本発明の実施形態2に係る画像形成装置101の動作を説明するフローチャートである。このフローチャートにおいて、実施形態1の図8のフローチャートと共通する処理は同じ参照番号で示している。
図16のフローチャートでは、S1601で画像形成装置101で学習処理を行う。
図17は、図16のS1601の処理を説明するフローチャートで、実施形態1の図10(B)のフローチャートのS1012~S1015と共通する処理で示している。この処理の説明は図10(B)と同であるため省略する。
このように実施形態2によれば、画像形成装置101だけで実施形態1と同様の効果が得られる。
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
本発明は上記実施形態に制限されるものではなく、本発明の精神及び範囲から逸脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
101…画像形成装置、102…機械学習サーバ、103…データサーバ、405…推定処理部、413…学習データ生成部、414…機械学習部

Claims (10)

  1. ジョブ処理装置であって、
    ジョブの設定を受け付ける受付手段と、
    前記ジョブのキャンセル指示を受け付ける前に前記受付手段によって受け付けた前記ジョブの第1の設定と、前記キャンセル指示を受け付けた後に前記受付手段によって受け付けた第2の設定を学習データとして用いて、学習済みモデルを生成する生成手段と、
    前記生成手段によって生成された前記学習済みモデルと前記受付手段によって受け付けた新たなジョブの新たな設定とを用いて、前記新たな設定の誤りと前記新たなジョブの推奨設定を推定する推定手段と、
    前記推定手段によって推定された前記誤りに関する情報と前記新たなジョブの前記推奨設定をユーザに通知する通知手段と、
    を有することを特徴とするジョブ処理装置。
  2. 前記推定手段は、前記受付手段が前記新たなジョブを受け付けたことに応じて、前記新たな設定の誤りと前記新たなジョブの推奨設定を推定する処理を開始することを特徴とする請求項1に記載のジョブ処理装置。
  3. 前記推定手段は、少なくとも前記受付手段によって受け付けた設定の正誤の分類や、前記受付手段によって受け付けた設定の誤り率の予測を用いて、前記新たなジョブの前記新たな設定の前記誤りを推定することを特徴とする請求項1又は2に記載のジョブ処理装置。
  4. 前記推定手段によって推定された前記誤りに関する情報を前記ユーザに通知するための条件を設定する設定手段を、更に有することを特徴とする請求項1乃至3のいずれか一項に記載のジョブ処理装置。
  5. 前記条件は、前記受付手段によって受け付けた設定の誤り率が所定値よりも大きい場合を含むことを特徴とする請求項に記載のジョブ処理装置。
  6. 前記条件は、前記受付手段によって受け付けた設定の誤りにより発生した事象の数が所定値よりも大きい場合を含むことを特徴とする請求項に記載のジョブ処理装置。
  7. 前記通知手段は、前記推定手段によって推定された前記誤りの確度をさらに通知することを特徴とする請求項1乃至のいずれか項に記載のジョブ処理装置。
  8. スキャナとプリンタをさらに有し、
    前記ジョブは前記スキャナと前記プリンタを使うコピージョブであり、
    前記設定は前記コピージョブのコピー設定であることを特徴とする請求項1乃至のいずれか項に記載のジョブ処理装置。
  9. ジョブ処理装置を制御するジョブ処理装置の制御方法であって、
    ジョブの設定を受け付ける受付工程と、
    前記ジョブのキャンセル指示を受け付ける前に前記受付工程で受け付けた前記ジョブの第1の設定と、前記キャンセル指示を受け付けた後に前記受付工程で受け付けた第2の設定を学習データとして用いて、学習済みモデルを生成する生成工程と、
    前記生成工程で生成された前記学習済みモデルと前記受付工程で受け付けた新たなジョブの新たな設定とを用いて、前記新たな設定の誤りと前記新たなジョブの推奨設定を推定する推定工程と、
    前記推定工程で推定された前記誤りに関する情報と前記新たなジョブの前記推奨設定をユーザに通知する通知工程と、
    を有することを特徴とするジョブ処理装置の制御方法。
  10. 請求項9に記載のジョブ処理装置の制御方法を、前記ジョブ処理装置に実行させるためのプログラム。
    である。
JP2020030852A 2020-02-26 2020-02-26 ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム Active JP7386726B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020030852A JP7386726B2 (ja) 2020-02-26 2020-02-26 ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム
US17/183,551 US20210266413A1 (en) 2020-02-26 2021-02-24 Information processing system, information processing apparatus, and method of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030852A JP7386726B2 (ja) 2020-02-26 2020-02-26 ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム

Publications (3)

Publication Number Publication Date
JP2021135697A JP2021135697A (ja) 2021-09-13
JP2021135697A5 JP2021135697A5 (ja) 2023-03-02
JP7386726B2 true JP7386726B2 (ja) 2023-11-27

Family

ID=77366595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030852A Active JP7386726B2 (ja) 2020-02-26 2020-02-26 ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム

Country Status (2)

Country Link
US (1) US20210266413A1 (ja)
JP (1) JP7386726B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11922314B1 (en) * 2018-11-30 2024-03-05 Ansys, Inc. Systems and methods for building dynamic reduced order physical models
CN116540918B (zh) * 2023-06-30 2023-12-01 深圳市欧度利方科技有限公司 一种平板电脑分屏控制系统与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001075695A (ja) 1999-09-08 2001-03-23 Toshiba Corp データ処理システム
JP2006229652A (ja) 2005-02-18 2006-08-31 Sharp Corp データ処理装置、誤操作報知方法、プログラム、及び記録媒体
JP2008269119A (ja) 2007-04-18 2008-11-06 Hitachi Ltd 情報処理装置
JP2009182908A (ja) 2008-02-01 2009-08-13 Murata Mach Ltd 複合機
JP2019016142A (ja) 2017-07-06 2019-01-31 日本電信電話株式会社 入力内容確認画面表示装置、入力内容確認画面表示方法及び入力内容確認画面表示プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459180B2 (ja) * 2014-02-10 2019-01-30 富士ゼロックス株式会社 障害予測システム、障害予測装置、ジョブ実行装置およびプログラム
US10311670B2 (en) * 2017-07-08 2019-06-04 Gaming Analytics Inc Machine-learning platform for operational decision making
US11165948B2 (en) * 2018-06-29 2021-11-02 Canon Kabushiki Kaisha Imaging apparatus for controlling an imaging function that affects an imaging result
US10542159B1 (en) * 2018-11-20 2020-01-21 Kyocera Document Solutions Inc. System and method for diagnosing parts of a printing device to be replaced based on an incident rate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001075695A (ja) 1999-09-08 2001-03-23 Toshiba Corp データ処理システム
JP2006229652A (ja) 2005-02-18 2006-08-31 Sharp Corp データ処理装置、誤操作報知方法、プログラム、及び記録媒体
JP2008269119A (ja) 2007-04-18 2008-11-06 Hitachi Ltd 情報処理装置
JP2009182908A (ja) 2008-02-01 2009-08-13 Murata Mach Ltd 複合機
JP2019016142A (ja) 2017-07-06 2019-01-31 日本電信電話株式会社 入力内容確認画面表示装置、入力内容確認画面表示方法及び入力内容確認画面表示プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丸山 佑哉,入力内容確認および入力正誤情報を利用した業務システムにおける誤入力防止手法 ,電子情報通信学会技術研究報告,日本,一般社団法人電子情報通信学会,2016年03月03日,Vol.115 No.507,第95頁

Also Published As

Publication number Publication date
JP2021135697A (ja) 2021-09-13
US20210266413A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP5252910B2 (ja) 入力装置、入力装置の制御方法、及びプログラム
US20140285845A1 (en) Operation control method, image processing apparatus and non-transitory computer-readable storage medium
JP7386726B2 (ja) ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム
JP6216235B2 (ja) 画像形成装置及びその制御方法とプログラム
US11481266B2 (en) Diagnosing an information processing system malfunction via diagnostic modeling
JP6332927B2 (ja) 情報処理装置及びその制御方法、並びにプログラム
JP4952821B2 (ja) 画像形成システム、画像形成装置、画像形成方法および画像形成プログラム
JP2023164539A (ja) 画像処理装置、その制御方法及びプログラム
US20240056534A1 (en) Image formation apparatus, control method, and storage medium
JP6097535B2 (ja) 画像形成装置及びその制御方法とプログラム
JP2008177817A (ja) 画像形成装置
JP2021179686A (ja) 画像形成装置、その制御方法、及びプログラム
JP4337900B2 (ja) 画像形成システム、サーバ装置、画像形成装置、画像形成装置制御方法及び同制御プログラム
JP5752066B2 (ja) 画像形成装置および画像形成システム
JP7459488B2 (ja) 機器、表示制御方法およびプログラム
WO2015182436A1 (ja) セキュリティ管理システム、セキュリティ管理装置、および画像処理装置
JP7480251B1 (ja) インクジェットプリンタ、インクジェットプリンタの制御方法、およびプログラム
JP7415705B2 (ja) 画像形成装置、画像形成方法、画像形成プログラムおよび画像形成システム
JP2002052784A (ja) 画像形成装置
JP2024063520A (ja) インクジェットプリンタ、インクジェットプリンタの制御方法、およびプログラム
JP7218159B2 (ja) 情報処理装置、その制御方法、及びプログラム
JP5315190B2 (ja) 操作装置,画像処理装置
JP2022158579A (ja) 画像形成装置、制御方法、及びプログラム
JP2024024292A (ja) 制御装置、制御装置の制御方法、およびプログラム
JP5447081B2 (ja) 画像形成装置及びその制御プログラム

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231114

R151 Written notification of patent or utility model registration

Ref document number: 7386726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151