JP7361116B2 - 電気化学デバイス用組成物、正極合剤、正極構造体および二次電池 - Google Patents

電気化学デバイス用組成物、正極合剤、正極構造体および二次電池 Download PDF

Info

Publication number
JP7361116B2
JP7361116B2 JP2021529152A JP2021529152A JP7361116B2 JP 7361116 B2 JP7361116 B2 JP 7361116B2 JP 2021529152 A JP2021529152 A JP 2021529152A JP 2021529152 A JP2021529152 A JP 2021529152A JP 7361116 B2 JP7361116 B2 JP 7361116B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
group
composition
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021529152A
Other languages
English (en)
Other versions
JPWO2021002369A1 (ja
JPWO2021002369A5 (ja
Inventor
千紘 篠田
隆宏 北原
純平 寺田
ミハイル ルドルフォビッチ プレデチェンスキー
オレグ フィリポヴィッチ ボブレノック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
MCD Technologies SARL
Original Assignee
Daikin Industries Ltd
MCD Technologies SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, MCD Technologies SARL filed Critical Daikin Industries Ltd
Publication of JPWO2021002369A1 publication Critical patent/JPWO2021002369A1/ja
Publication of JPWO2021002369A5 publication Critical patent/JPWO2021002369A5/ja
Application granted granted Critical
Publication of JP7361116B2 publication Critical patent/JP7361116B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、電気化学デバイス用組成物、正極合剤、正極構造体および二次電池に関する。
リチウムイオン二次電池等の二次電池は、高電圧、高エネルギー密度で、自己放電が少ない、メモリー効果が少ない、超軽量化が可能である、等の理由から、ノート型パソコン、携帯電話、スマートフォン、タブレットパソコン、ウルトラブック等小型で携帯に適した電気・電子機器等に用いられるとともに、さらには、自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源として実用化されつつある。
たとえば、特許文献1には、正極および負極と共に電解液を備え、前記負極は、第1負極活物質と、第2負極活物質と、負極結着剤とを含み、前記第1負極活物質は、ケイ素(Si)を構成元素として含む材料を含有する中心部と、その中心部の表面に設けられると共に塩化合物および導電性物質を含有する被覆部とを含み、前記塩化合物は、ポリアクリル酸塩およびカルボキシメチルセルロース塩のうちの少なくとも一方を含有し、前記導電性物質は、炭素材料および金属材料のうちの少なくとも一方を含有し、前記第2負極活物質は、炭素(C)を構成元素として含む材料を含有し、前記負極結着剤は、ポリフッ化ビニリデン、ポリイミドおよびアラミドのうちの少なくとも1種を含有する、二次電池が記載されている。さらに、特許文献1では、炭素材料として、シングルウォールカーボンナノチューブが例示されている。
特許文献2には、カーボンナノチューブを含む導電層を備える表面を有する金属箔であって、カーボンナノチューブが箔の表面に、100ng/cm~10μg/cmの量で、ランダムに配置されるように、導電層が施されている金属箔が記載されている。
国際公開第2018/146865号 欧州特許出願公開第3147919号明細書
本開示では、調製から長時間が経過した後であっても、粘度が上昇しにくい電極合剤を得ることができる電気化学デバイス用組成物であって、さらには、抵抗の低い電極合剤層を形成できると同時に、集電体との密着性および柔軟性の両方に優れており、スプリングバックも起きにくい電極合剤層を形成できる電気化学デバイス用組成物を提供することを目的とする。
本開示によれば、単層カーボンナノチューブ、結着剤および溶媒を含有する電気化学デバイス用組成物であって、前記結着剤が、ビニリデンフルオライド単位およびフッ素化単量体単位(ただし、ビニリデンフルオライド単位を除く)を含有する含フッ素共重合体を含有し、前記含フッ素共重合体におけるビニリデンフルオライド単位の含有量が、全単量体単位に対して、50.0モル%以上である電気化学デバイス用組成物が提供される。
前記単層カーボンナノチューブの平均外径が、2.5nm以下であることが好ましい。
前記単層カーボンナノチューブの平均G/D比が、2以上であることが好ましい。
前記含フッ素共重合体における前記フッ素化単量体単位の含有量が、全単量体単位に対して、1.0モル%以上であることが好ましい。
前記フッ素化単量体単位が、テトラフルオロエチレン単位、クロロトリフルオロエチレン単位、フルオロアルキルビニルエーテル単位およびヘキサフルオロプロピレン単位からなる群より選択される少なくとも1種であることが好ましい。
前記フッ素化単量体単位が、テトラフルオロエチレン単位およびヘキサフルオロプロピレン単位からなる群より選択される少なくとも1種であることがより好ましい。
前記含フッ素共重合体の動的粘弾性測定による30℃における貯蔵弾性率(E’)が100~1200MPaであり、かつ、60℃における貯蔵弾性率(E’)が50~600MPaであることが好ましい。
前記結着剤が、ポリビニリデンフルオライドをさらに含有することが好ましい。
前記溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンおよびβ-アルコキシプロピオンアミド類からなる群より選択される少なくとも1種であることが好ましい。
本開示の電気化学デバイス用組成物は、電気化学デバイスの電極またはセパレータを形成するために好適に用いることができる。
また、本開示によれば、上記の電気化学デバイス用組成物、および、正極活物質を含有する正極合剤が提供される。
前記正極合剤における前記単層カーボンナノチューブの含有量が、前記正極活物質100質量部に対して、0.001~10質量部であることが好ましい。
前記正極合剤における前記結着剤の含有量が、前記正極活物質100質量部に対して、0.1~5.0質量部であることが好ましい。
また、本開示によれば、集電体と、前記集電体の片面または両面に設けられており、上記の正極合剤により形成された正極合剤層と、を備える正極構造体が提供される。
また、本開示によれば、上記の正極構造体を備える二次電池が提供される。
本開示によれば、調製から長時間が経過した後であっても、粘度が上昇しにくい電極合剤を得ることができる電気化学デバイス用組成物であって、さらには、抵抗の低い電極合剤層を形成できると同時に、集電体との密着性および柔軟性の両方に優れており、スプリングバックも起きにくい電極合剤層を形成できる電気化学デバイス用組成物を提供することができる。
以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
電気化学デバイス用組成物
本開示の電気化学デバイス用組成物は、単層カーボンナノチューブ、結着剤および溶媒を含有する。
単層カーボンナノチューブ
本開示の電気化学デバイス用組成物は、単層カーボンナノチューブを含有する。単層カーボンナノチューブ(SWCNTs)は、一次元材料として知られる特別な種類の炭素材料である。単層カーボンナノチューブはグラフェンのシートからなり、1原子分の厚さの壁を有する中空の管を形成するように巻かれている。そのような化学構造および大きさを有することにより、単層カーボンナノチューブは優れた機械的、電気的、熱的、および光学的特性を示す。本開示の電気化学デバイス用組成物は、単層カーボンナノチューブを含有することから、本開示の電気化学デバイス用組成物を用いて電極合剤を調製し、得られた電極合剤を用いて電極合剤層を形成することによって、低抵抗の電極合剤層を形成することができる。したがって、従来の電極合剤層と同じ抵抗を有する電極合剤層を形成する場合には、アセチレンブラックなどの導電助剤の総量を減少させ、活物質量を増加させることができるので、エネルギー密度の高い電気化学デバイスを実現することができる。さらには、単層カーボンナノチューブを、後述する特定の共重合体とともに用いることによって、電極合剤層と集電体との密着性、ならびに、電極合剤層および集電体を備える電極構造体の柔軟性の両立を図ることができる。
しかも、本開示の電気化学デバイス用組成物を用いて得られる電極合剤層は、スプリングバックが起きにくいという効果も奏する。電気化学デバイスが備える電極を形成する際には、電極を薄く平たんにしたり、電極密度を向上させたりするために、プレス加工が行われ、プレス加工後には熱処理が行われることがある。従来の技術では、プレス加工によるプレス荷重を解放し、熱処理をすると、電極の厚みが大きくなったり、電極密度が小さくなったりする現象(スプリングバック)が起きる問題がある。単層カーボンナノチューブを、後述する特定の共重合体とともに用いることによって、スプリングバックを有効に抑制することができる。
さらに、本開示の電気化学デバイス用組成物を用いることにより、出力特性、サイクル特性および60℃貯蔵特性に優れる電池を得ることができる。
単層カーボンナノチューブの平均外径は、好ましくは1.0~2.5nmであり、より好ましくは1.1~2.0nmであり、さらに好ましくは1.2~1.8nmである。単層カーボンナノチューブの平均外径は、紫外可視近赤外分光法(UV-Vis-NIR)により得られた単層カーボンナノチューブの光吸収スペクトル、ラマンスペクトル、または透過型電子顕微鏡(TEM)画像から求めることができる。
単層カーボンナノチューブの平均長さは、好ましくは0.1~50μmであり、より好ましくは0.5~20μmであり、さらに好ましくは1~10μmである。単層カーボンナノチューブの平均長さは、原子間力顕微鏡(AFM)を用いて、単層カーボンナノチューブのAFM像を得て、又は透過型電子顕微鏡(TEM)を用いて、単層カーボンナノチューブのTEM画像を得て、各単層カーボンナノチューブの長さを測定し、長さの合計値を、測定した単層カーボンナノチューブの個数で除することにより、求めることができる。
単層カーボンナノチューブのラマン分光分析(波長532nm)によって測定される平均G/D比は、好ましくは2~250であり、より好ましくは5~250であり、さらに好ましくは10~220であり、特に好ましくは40~180である。G/D比とは、単層カーボンナノチューブのラマンスペクトルのGバンドとDバンドとの強度比(G/D)である。単層カーボンナノチューブの平均G/D比が高いほど、単層カーボンナノチューブの結晶性が高く、不純物カーボンや欠陥のあるカーボンナノチューブが少ないことを意味する。
本開示の電気化学デバイス用組成物における単層カーボンナノチューブの含有量は、組成物の質量に対して、好ましくは0.01~3質量%であり、より好ましくは0.01~2質量%であり、さらに好ましくは0.01~1質量%であり、特に好ましくは0.1~0.8質量%であり、最も好ましくは0.2~0.5質量%である。単層カーボンナノチューブの含有量が上記範囲内にある場合、電気化学デバイス用組成物が適度な粘度を有し、過度なせん断力を与えることなく、各成分が十分に分散した電極合剤を調製できる。したがって、得られる電極合剤層中で、単層カーボンナノチューブの三次元ネットワークを十分に形成して、一層低抵抗の電極合剤層を得ることができる。
結着剤
本開示の電気化学デバイス用組成物は、結着剤として、ビニリデンフルオライド単位およびフッ素化単量体単位(ただし、ビニリデンフルオライド単位を除く)を含有する含フッ素共重合体を含有する。本開示の電気化学デバイス用組成物は、上記含フッ素共重合体を含有することから、調製から長時間が経過した後であっても、粘度が上昇しにくい電極合剤を調製することができる。特に、本開示の電気化学デバイス用組成物は、Niの含有量が大きい正極活物質と混合した場合であっても、得られる正極合剤の粘度が上昇しにくい。また、本開示の電気化学デバイス用組成物は、上記単層カーボンナノチューブとともに、上記含フッ素共重合体を含有することから、本開示の電気化学デバイス用組成物を用いて電極合剤を調製し、得られた電極合剤を用いて電極合剤層を形成することによって、電極合剤層と集電体との密着性および電極構造体の柔軟性の両立を図ることができ、電極合剤層のスプリングバックを有効に抑制することができる。
上記含フッ素共重合体としては、フッ素樹脂であることが好ましい。上記フッ素樹脂とは、部分結晶性フルオロポリマーであり、フッ素ゴムではなく、フルオロプラスチックスである。上記フッ素樹脂は、融点を有し、熱可塑性を有するが、溶融加工性であっても、非溶融加工性であってもよい。上記フッ素樹脂としては、溶融加工性のフッ素樹脂であることが好ましい。
フッ素化単量体(ただし、VdFを除く)としては、電極合剤の粘度の上昇を一層抑制することができ、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、テトラフルオロエチレン(TFE)、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン(CTFE)、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン(HFP)、(パーフルオロアルキル)エチレン、2,3,3,3-テトラフルオロプロペンおよびトランス-1,3,3,3-テトラフルオロプロペンからなる群より選択される少なくとも1種が好ましく、TFE、CTFE、フルオロアルキルビニルエーテルおよびHFPからなる群より選択される少なくとも1種がより好ましく、TFE、フルオロアルキルビニルエーテルおよびHFPからなる群より選択される少なくとも1種がさらに好ましく、TFEおよびHFPからなる群より選択される少なくとも1種が特に好ましく、電極合剤層の電解液に対する膨潤が抑制され、出力特性、サイクル特性、低抵抗性などの電池特性の向上ができる点でTFEが最も好ましい。
フッ素化単量体単位(ただし、VdF単位を除く)は、極性基を有していても有していなくてもよい。
フルオロアルキルビニルエーテル(FAVE)としては、
一般式:CF=CFO(CFCFXO)-(CFCFCFO)-Rf
(式中、XはFまたはCFを表し、Rfは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)で表される単量体、および、
一般式:CFX=CXOCFORf
(式中、Xは、同一または異なり、H、FまたはCFを表し、Rfは、直鎖または分岐した、H、Cl、BrおよびIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が1~6のフルオロアルキル基、若しくは、H、Cl、BrおよびIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が5または6の環状フルオロアルキル基を表す。)で表される単量体からなる群より選択される少なくとも1種を挙げることができる。
FAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)およびパーフルオロ(プロピルビニルエーテル)(PPVE)からなる群より選択される少なくとも1種がより好ましい。
含フッ素共重合体のVdF単位の含有量は、全単量体単位に対して、50.0モル%以上であり、電極合剤の粘度の上昇を一層抑制することができ、一層低抵抗で、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、好ましくは55.0モル%以上であり、より好ましくは60.0モル%以上であり、好ましくは99.0モル%以下であり、より好ましくは97.0モル%以下であり、さらに好ましくは95.0モル%以下であり、特に好ましくは90.0モル%以下である。
含フッ素共重合体のフッ素化単量体単位(ただし、VdF単位を除く)の含有量は、電極合剤の粘度の上昇を一層抑制することができ、一層低抵抗で、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、全単量体単位に対して、好ましくは1.0モル%以上であり、より好ましくは2.5モル%以上であり、さらに好ましくは5.0モル%以上であり、特に好ましくは8.0モル%以上であり、最も好ましくは10.0モル%以上であり、好ましくは50.0モル%以下であり、より好ましくは49.5モル%以下であり、さらに好ましくは45.0モル%以下であり、特に好ましくは40.0モル%以下である。
本明細書において、含フッ素共重合体の組成は、たとえば、19F-NMR測定により測定できる。
含フッ素共重合体は、非フッ素化単量体単位をさらに含有してもよい。上記非フッ素化単量体としては、エチレン、プロピレンなどの極性基を有しない非フッ素化単量体、極性基を有する非フッ素化単量体(以下、極性基含有単量体ということがある)などが挙げられる。
非フッ素化単量体として、極性基を有するものを用いると、含フッ素共重合体に極性基が導入され、これによって、電極合剤層と集電体とのより一層優れた密着性が得られる。含フッ素共重合体が有し得る極性基としては、カルボニル基含有基、エポキシ基、ヒドロキシ基、スルホン酸基、硫酸基、リン酸基、アミノ基、アミド基およびアルコキシ基からなる群より選択される少なくとも1種が好ましく、カルボニル基含有基、エポキシ基およびヒドロキシ基からなる群より選択される少なくとも1種がより好ましく、カルボニル基含有基がさらに好ましい。上記ヒドロキシ基には、上記カルボニル基含有基の一部を構成するヒドロキシ基は含まれない。また、上記アミノ基とは、アンモニア、第一級または第二級アミンから水素を除去した1価の官能基である。
上記カルボニル基含有基とは、カルボニル基(-C(=O)-)を有する官能基である。上記カルボニル基含有基としては、電極合剤層と集電体とのさらに優れた密着性が得られることから、一般式:-COOR(Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基またはカルボン酸無水物基が好ましく、一般式:-COORで表される基がより好ましい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。一般式:-COORで表される基として、具体的には、-COOCHCHOH、-COOCHCH(CH)OH、-COOCH(CH)CHOH、-COOH、-COOCH、-COOC等が挙げられる。一般式:-COORで表される基が、-COOHであるか、-COOHを含む場合、-COOHは、カルボン酸金属塩基、カルボン酸アンモニウム塩基等のカルボン酸塩基であってもよい。
上記アミド基としては、一般式:-CO-NRR’(RおよびR’は、独立に、水素原子または置換もしくは非置換のアルキル基を表す。)で表される基、または、一般式:-CO-NR”-(R”は、水素原子、置換もしくは非置換のアルキル基または置換もしくは非置換のフェニル基を表す。)で表される結合が好ましい。
上記極性基含有単量体としては、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;マレイン酸、無水マレイン酸、シトラコン酸、無水シトラコン酸等の不飽和二塩基酸;メチリデンマロン酸ジメチル等のアルキリデンマロン酸エステル;ビニルカルボキシメチルエーテル、ビニルカルボキシエチルエーテル等のビニルカルボキシアルキルエーテル;2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート等のカルボキシアルキル(メタ)アクリレート;アクリロイルオキシエチルコハク酸、メタクリロイルオキシエチルコハク酸、アクリロイルオキシエチルフタル酸、メタクリロイルオキシエチルフタル酸等の(メタ)アクリロイルオキシアルキルジカルボン酸エステル;マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等の不飽和二塩基酸のモノエステル;一般式(2):
Figure 0007361116000001
(式中、R~Rは、独立に、水素原子、塩素原子または炭素数1~8の炭化水素基を表す。Rは、単結合、炭素数1~8の炭化水素基、ヘテロ原子または酸素原子、硫黄原子、窒素原子およびリン原子からなる群より選択される少なくとも1種のヘテロ原子を含み、かつ原子数1~20の主鎖を含む分子量500以下の原子団を表す。Yは、無機カチオンおよび/または有機カチオンを表す。)で表される単量体(2);等が挙げられる。なお、本開示において、「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸のいずれかを意味する。その他の化合物名中の「(メタ)」も同様に解釈される。また、原子団の主鎖の原子数は、直鎖の骨格部分の原子数であり、カルボニル基を構成する酸素原子や、メチレン基を構成する水素原子は主鎖の原子数に含まない。たとえば、単量体(2)がアクリロイロキシエチルフタル酸である場合には、直鎖の骨格部分は-C-OCCO-C-CC-であり、その原子数は8である。
含フッ素共重合体は、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、上記極性基含有単量体として、一般式(2)で表される単量体(2)に基づく単位を含有することが好ましい。
一般式(2)において、Yは、無機カチオンおよび/または有機カチオンを表す。無機カチオンとしては、H、Li、Na、K、Mg、Ca、Al、Fe等のカチオンが挙げられる。有機カチオンとしては、NH、NH、NH 、NHR 、NR (Rは、独立に、炭素数1~4のアルキル基を表す。)等のカチオンが挙げられる。Yとしては、H、Li、Na、K、Mg、Ca、Al、NHが好ましく、H、Li、Na、K、Mg、Al、NHがより好ましく、H、Li、Al、NHがさらに好ましく、Hが特に好ましい。なお、無機カチオンおよび有機カチオンの具体例は、便宜上、符号および価数を省略して記載している。
一般式(2)において、R~Rは、独立に、水素原子、塩素原子または炭素数1~8の炭化水素基を表す。上記炭化水素基は、1価の炭化水素基である。上記炭化水素基の炭素数は4以下が好ましい。上記炭化水素基としては、上記炭素数のアルキル基、アルケニル基、アルキニル基等が挙げられ、メチル基またはエチル基が好ましい。RおよびRは、独立に、水素原子、メチル基またはエチル基であることが好ましく、Rは、水素原子またはメチル基であることが好ましい。
一般式(2)において、Rは、単結合、炭素数1~8の炭化水素基、ヘテロ原子または酸素原子、硫黄原子、窒素原子およびリン原子からなる群より選択される少なくとも1種のヘテロ原子を含み、かつ原子数1~20の主鎖を含む分子量500以下の原子団を表す。
上記炭化水素基は、2価の炭化水素基である。上記炭化水素基の炭素数は4以下が好ましい。上記炭化水素基としては、上記炭素数のアルキレン基、アルケニレン基等が挙げられ、なかでも、メチレン基、エチレン基、エチリデン基、プロピリデン基およびイソプロピリデン基からなる群より選択される少なくとも1種が好ましく、メチレン基およびエチレン基からなる群より選択される少なくとも1種がより好ましい。
がヘテロ原子である場合、該ヘテロ原子としては、酸素原子、硫黄原子、窒素原子およびリン原子からなる群より選択される少なくとも1種が好ましく、酸素原子がより好ましい。
が原子団である場合、該原子団中のヘテロ原子としては、酸素原子が好ましい。
が原子団である場合、一般式(2)中の一般式:-R-COで表される側鎖としては、以下のいずれかであることが好ましい。
一般式:-CO-R-COで表される側鎖
(式中、Rは、原子数1~19の主鎖を含む分子量472以下の原子団を表す。Yは、上記のとおりである。)
一般式:-O-R-COで表される側鎖
(式中、Rは、原子数1~19の主鎖を含む分子量484以下の原子団を表す。Yは、上記のとおりである。)
一般式:-COO-R-COで表される側鎖、
(Rは、原子数1~18の主鎖を含む分子量456以下の原子団である。Yは、上記のとおりである。)
が原子団である場合、単量体(2)としては、N-カルボキシエチル(メタ)アクリルアミドなどの(メタ)アクリルアミド系化合物;カルボキシエチルチオ(メタ)アクリレートなどのチオ(メタ)アクリレート化合物;ビニルカルボキシメチルエーテル、ビニルカルボキシエチルエーテルなどのビニルカルボキシアルキルエーテル類;2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、アクリロイロキシエチルコハク酸、メタクリロイロキシエチルコハク酸、アクリロイロキシプロピルコハク酸、メタクリロイロキシプロピルコハク酸、アクリロイロキシエチルフタル酸、メタクリロイロキシエチルフタル酸;などが挙げられる。Rが原子団である場合、単量体(2)としては、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、アクリロイロキシエチルコハク酸、メタクリロイロキシエチルコハク酸、アクリロイロキシプロピルコハク酸、メタクリロイロキシプロピルコハク酸が好ましい。
単量体(2)としては、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、一般式(2)において、Rが単結合または炭素数1~8の炭化水素基である単量体(2)が好ましい。
単量体(2)としては、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、(メタ)アクリル酸およびその塩、ビニル酢酸(3-ブテン酸)およびその塩、3-ペンテン酸およびその塩、4-ペンテン酸およびその塩、3-ヘキセン酸およびその塩、4-ヘプテン酸およびその塩、ならびに、5-ヘキセン酸およびその塩からなる群より選択される少なくとも1種がより好ましく、3-ブテン酸およびその塩、ならびに、4-ペンテン酸およびその塩からなる群より選択される少なくとも1種がさらに好ましい。
含フッ素共重合体の上記極性基含有単量体単位の含有量は、電極合剤の粘度の上昇を一層抑制することができ、一層低抵抗で、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、全単量体単位に対して、好ましくは0.05~2.0モル%であり、より好ましくは0.10モル%以上であり、さらに好ましくは0.25モル%以上であり、特に好ましくは0.40モル%以上であり、より好ましくは1.5モル%以下である。
本明細書において、含フッ素共重合体における極性基含有単量体単位の含有量は、たとえば、極性基がカルボン酸等の酸基である場合、酸基の酸-塩基滴定によって測定できる。
含フッ素共重合体としては、たとえば、VdF/TFE共重合体、VdF/HFP共重合体、VdF/TFE/HFP共重合体、VdF/TFE/(メタ)アクリル酸共重合体、VdF/HFP/(メタ)アクリル酸共重合体、VdF/CTFE共重合体、VdF/TFE/4-ペンテン酸共重合体、VdF/TFE/3-ブテン酸共重合体、VdF/TFE/HFP/(メタ)アクリル酸共重合体、VdF/TFE/HFP/4-ペンテン酸共重合体、VdF/TFE/HFP/3-ブテン酸共重合体、VdF/FAVE共重合体、VdF/FAVE/(メタ)アクリル酸共重合体、VdF/FAVE/カルボキシアルキル(メタ)アクリレート共重合体、VdF/HFP/カルボキシアルキル(メタ)アクリレートなどが挙げられる。
含フッ素共重合体としては、VdF単位およびTFE単位を含有する共重合体、VdF単位およびHFP単位を含有する共重合体、ならびに、VdF単位およびFAVE単位を含有する共重合体からなる群より選択される少なくとも1種が好ましい。
含フッ素共重合体としては、なかでも、VdF単位、TFE単位、および、任意の非フッ素化単量体単位のみからなり、VdF単位とTFE単位とのモル比(VdF単位/TFE単位)が、50/50~90/10である含フッ素共重合体が好ましい。すなわち、含フッ素共重合体は、VdF単位およびTFE単位のみからなる二元の共重合体、または、VdF単位、TFE単位および非フッ素化単量体単位のみからなる三元以上の共重合体であって、VdF単位およびTFE単位以外のフッ素化単量体単位を含まないことが好ましい。本開示の電気化学デバイス用組成物が上記の含フッ素共重合体を含有することによって、電極合剤の粘度の上昇を一層抑制することができ、一層低抵抗で、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できる。
含フッ素共重合体がVdF単位およびTFE単位を含有する場合の、VdF単位とTFE単位とのモル比(VdF単位/TFE単位)は、50/50~90/10であることが好ましく、より好ましくは55/45~89/11であり、さらに好ましくは60/40~88/12である。
含フッ素共重合体がVdF単位およびTFE単位を含有する場合の、非フッ素化単量体単位の含有量は、含フッ素共重合体の全単量体単位に対して、好ましくは0~2.0モル%である。
非フッ素化単量体としては、なかでも、極性基含有単量体が好ましく、単量体(2)がより好ましく、(メタ)アクリル酸およびその塩、ビニル酢酸(3-ブテン酸)およびその塩、3-ペンテン酸およびその塩、4-ペンテン酸およびその塩、3-ヘキセン酸およびその塩、4-ヘプテン酸およびその塩、ならびに、5-ヘキセン酸およびその塩からなる群より選択される少なくとも1種がさらに好ましく、3-ブテン酸およびその塩、ならびに、4-ペンテン酸およびその塩からなる群より選択される少なくとも1種が特に好ましい。
VdF単位、TFE単位、および、任意の非フッ素化単量体単位のみからなる含フッ素共重合体としては、VdF/TFE共重合体、VdF/TFE/HFP共重合体、VdF/TFE/(メタ)アクリル酸共重合体、VdF/TFE/4-ペンテン酸共重合体、VdF/TFE/3-ブテン酸共重合体、VdF/TFE/HFP/(メタ)アクリル酸共重合体、VdF/TFE/HFP/4-ペンテン酸共重合体およびVdF/TFE/HFP/3-ブテン酸共重合体からなる群より選択される少なくとも1種が好ましい。
含フッ素共重合体は、VdF/HFP共重合体であってもよい。VdF/HFP共重合体は、VdF単位およびHFP単位を含有する。VdF単位の含有量としては、VdF/HFP共重合体の全単量体単位に対して、好ましくは55.0モル%以上であり、より好ましくは60.0モル%以上であり、さらに好ましくは80.0モル%以上であり、特に好ましくは90.0モル%以上であり、好ましくは99.0モル%以下であり、より好ましくは97.0モル%以下である。HFP単位の含有量としては、VdF/HFP共重合体の全単量体単位に対して、好ましくは1.0モル%以上であり、より好ましくは3.0モル%以上であり、好ましくは45.0モル%以下であり、より好ましくは40.0モル%以下であり、さらに好ましくは20.0モル%以下であり、特に好ましくは10.0モル%以下である。
VdF/HFP共重合体は、VdF単位およびHFP単位の他に、VdFおよびHFPと共重合可能な単量体(ただし、VdFおよびHFPを除く)に基づく単位を含むものであってもよい。VdFおよびHFPと共重合可能な単量体に基づく単位の含有量は、VdF/HFP共重合体の全単量体単位に対して、好ましくは0~2.0モル%であり、より好ましくは0.05~2.0モル%である。
VdFおよびHFPと共重合可能な単量体としては、上述したフッ素化単量体、上述した非フッ素化単量体などが挙げられる。VdFおよびHFPと共重合可能な単量体としては、なかでも、フッ素化単量体および極性基含有単量体からなる群より選択される少なくとも1種が好ましく、TFE、2,3,3,3-テトラフルオロプロペンおよび単量体(2)からなる群より選択される少なくとも1種がより好ましく、単量体(2)がさらに好ましい。
含フッ素共重合体は、VdF/FAVE共重合体であってもよい。VdF/FAVE共重合体は、VdF単位およびFAVE単位を含有する。VdF単位の含有量としては、VdF/FAVE共重合体の全単量体単位に対して、好ましくは55.0モル%以上であり、より好ましくは70.0モル%以上であり、さらに好ましくは90.0モル%以上であり、特に好ましくは95.0モル%以上であり、好ましくは99.0モル%以下であり、より好ましくは98.5モル%以下である。FAVE単位の含有量としては、VdF/FAVE共重合体の全単量体単位に対して、好ましくは1.0モル%以上であり、より好ましくは1.5モル%以上であり、好ましくは45.0モル%以下であり、より好ましくは30.0モル%以下であり、さらに好ましくは10.0モル%以下であり、特に好ましくは5.0モル%以下である。
FAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)およびパーフルオロ(プロピルビニルエーテル)(PPVE)からなる群より選択される少なくとも1種が好ましい。
VdF/FAVE共重合体は、VdF単位およびFAVE単位の他に、VdFおよびFAVEと共重合可能な単量体(ただし、VdFおよびFAVEを除く)に基づく単位を含むものであってもよい。VdFおよびFAVEと共重合可能な単量体に基づく単位の含有量は、VdF/FAVE共重合体の全単量体単位に対して、好ましくは0~2.0モル%であり、より好ましくは0.05~2.0モル%である。
VdFおよびFAVEと共重合可能な単量体としては、上述したフッ素化単量体、上述した非フッ素化単量体などが挙げられる。VdFおよびFAVEと共重合可能な単量体としては、なかでも、フッ素化単量体および極性基含有単量体からなる群より選択される少なくとも1種が好ましく、極性基含有単量体がより好ましく、(メタ)アクリル酸およびその塩、ならびに、カルボキシアルキル(メタ)アクリレートおよびその塩からなる群より選択される少なくとも1種がさらに好ましい。
含フッ素共重合体の重量平均分子量(ポリスチレン換算)は、好ましくは160000~2760000であり、より好ましくは200000~2530000であり、さらに好ましくは300000~2000000である。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。
含フッ素共重合体の数平均分子量(ポリスチレン換算)は、好ましくは70000~1200000であり、より好ましくは140000~1100000である。上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。
含フッ素共重合体の融点は、好ましくは100~200℃である。上記融点は、示差走査熱量測定(DSC)装置を用い、10℃/分の速度で昇温したときの融解熱曲線における極大値に対する温度として求めることができる。
含フッ素共重合体の平均粒子径としては、含フッ素共重合体を溶媒に容易に溶解または分散させることができることから、好ましくは1000μm以下であり、より好ましくは50~350μmである。
含フッ素共重合体は、30℃における貯蔵弾性率(E’)が100~1200MPaであり、かつ、60℃における貯蔵弾性率(E’)が50~600MPaであることが好ましい。
含フッ素共重合体の30℃における貯蔵弾性率(E’)は、より好ましくは150MPa以上であり、さらに好ましくは200MPa以上であり、より好ましくは800MPa以下であり、さらに好ましくは600MPa以下である。
含フッ素共重合体の60℃における貯蔵弾性率(E’)は、より好ましくは80MPa以上であり、さらに好ましくは130MPa以上であり、より好ましくは450MPa以下であり、さらに好ましくは350MPa以下である。
含フッ素共重合体の貯蔵弾性率(E’)が上記範囲内であると、柔軟性により一層優れる電極合剤層を形成できる。
貯蔵弾性率(E’)は、長さ30mm、巾5mm、厚み50~100μmのサンプルについて、アイティー計測制御社製動的粘弾性装置DVA220で動的粘弾性測定により引張モード、つかみ巾20mm、測定温度-30℃から160℃、昇温速度2℃/min、周波数1Hzの条件で測定した際の30℃および60℃での測定値である。
本開示の電気化学デバイス用組成物は、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、ポリビニリデンフルオライド(PVdF)をさらに含有することが好ましい。特に、本開示の電気化学デバイス用組成物がPVdFをさらに含有する場合には、より一層低抵抗の電極合剤層を形成することができる。
ポリビニリデンフルオライド(PVdF)は、ビニリデンフルオライド(VdF)に基づく単位(以下、VdF単位という)を含有する重合体であり、VdF単位のみからなるVdFホモポリマーであってよいし、VdF単位およびVdFと共重合可能な単量体に基づく単位を含有するものであってもよい。
上記PVdFにおいて、VdFと共重合可能な単量体としては、テトラフルオロエチレン(TFE)とは異なる単量体であることが好ましい。すなわち、PVdFは、TFE単位を含有しないことが好ましい。
上記PVdFにおいて、VdFと共重合可能な単量体としては、フッ素化単量体、非フッ素化単量体等が挙げられ、フッ素化単量体が好ましい。上記フッ素化単量体としては、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン(CTFE)、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン(HFP)、(パーフルオロアルキル)エチレン、2,3,3,3-テトラフルオロプロペン、トランス-1,3,3,3-テトラフルオロプロペン等が挙げられる。上記非フッ素化単量体としては、エチレン、プロピレン等が挙げられる。
上記PVdFにおいて、VdFと共重合可能な単量体としては、CTFE、フルオロアルキルビニルエーテル、HFPおよび2,3,3,3-テトラフルオロプロペンからなる群より選択される少なくとも1種のフッ素化単量体が好ましく、CTFE、HFPおよびフルオロアルキルビニルエーテルからなる群より選択される少なくとも1種のフッ素化単量体がより好ましい。
上記PVdFにおいて、VdFと共重合可能な単量体単位の含有量は、全単量体単位に対して、好ましくは0.10~8.0モル%であり、より好ましくは0.50モル%以上5.0モル%未満であり、さらに好ましくは0.50~3.0モル%である。また、上記フッ素化単量体単位の含有量は、全単量体単位に対して、好ましくは0.10~8.0モル%であり、より好ましくは0.50モル%以上5.0モル%未満である。また、VdFと共重合可能な単量体単位の含有量は、全単量体単位に対して、1.0モル%未満であってもよい。
本明細書において、PVdFの組成は、たとえば、19F-NMR測定により測定できる。
上記PVdFは、極性基を有していてもよく、これによって、電極合剤層と集電体とのより一層優れた密着性が得られる。上記極性基としては、極性を有する官能基であれば特に限定されないが、電極合剤層と集電体とのさらに優れた密着性が得られることから、カルボニル基含有基、エポキシ基、ヒドロキシ基、スルホン酸基、硫酸基、リン酸基、アミノ基、アミド基およびアルコキシ基からなる群より選択される少なくとも1種が好ましく、カルボニル基含有基、エポキシ基およびヒドロキシ基からなる群より選択される少なくとも1種がより好ましく、カルボニル基含有基がさらに好ましい。上記ヒドロキシ基には、上記カルボニル基含有基の一部を構成するヒドロキシ基は含まれない。また、上記アミノ基とは、アンモニア、第一級または第二級アミンから水素を除去した1価の官能基である。
上記カルボニル基含有基とは、カルボニル基(-C(=O)-)を有する官能基である。上記カルボニル基含有基としては、電極合剤層と集電体とのさらに優れた密着性が得られることから、一般式:-COOR(Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基またはカルボン酸無水物基が好ましく、一般式:-COORで表される基がより好ましい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。一般式:-COORで表される基として、具体的には、-COOCHCHOH、-COOCHCH(CH)OH、-COOCH(CH)CHOH、-COOH、-COOCH、-COOC等が挙げられる。一般式:-COORで表される基が、-COOHであるか、-COOHを含む場合、-COOHは、カルボン酸金属塩、カルボン酸アンモニウム塩等のカルボン酸塩であってもよい。
上記アミド基としては、一般式:-CO-NRR’(RおよびR’は、独立に、水素原子または置換もしくは非置換のアルキル基を表す。)で表される基、または、一般式:-CO-NR”-(R”は、水素原子、置換もしくは非置換のアルキル基または置換もしくは非置換のフェニル基を表す。)で表される結合が好ましい。
上記極性基は、VdFと上記極性基を有する単量体(以下、極性基含有単量体という)とを重合させることにより、PVdFに導入することもできるし、PVdFと上記極性基を有する化合物とを反応させることにより、PVdFに導入することもできるが、生産性の観点からは、VdFと上記極性基含有単量体とを重合させることが好ましい。
VdFと上記極性基含有単量体とを重合させると、VdF単位および極性基含有単量体単位を含有するPVdFが得られる。すなわち、PVdFとしては、電極合剤層と集電体とのさらに優れた密着性が得られることから、上記極性基含有単量体単位を含有することが好ましい。上記極性基含有単量体単位の含有量は、全単量体単位に対して、好ましくは0.001~8.0モル%であり、より好ましくは0.01~5.0モル%であり、さらに好ましくは0.10~3.0モル%であり、特に好ましくは0.15~3.0モル%であり、最も好ましくは0.30~1.5モル%である。また、上記極性基含有単量体単位の含有量は、全単量体単位に対して、1.0モル%未満であってもよい。
本開示において、PVdFにおける極性基含有単量体単位の含有量は、たとえば、極性基がカルボン酸等の酸基である場合、酸基の酸-塩基滴定によって測定できる。
上記極性基含有単量体としては、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;マレイン酸、無水マレイン酸、シトラコン酸、無水シトラコン酸等の不飽和二塩基酸;メチリデンマロン酸ジメチル等のアルキリデンマロン酸エステル;ビニルカルボキシメチルエーテル、ビニルカルボキシエチルエーテル等のビニルカルボキシアルキルエーテル;2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート等のカルボキシアルキル(メタ)アクリレート;アクリロイルオキシエチルコハク酸、メタクリロイルオキシエチルコハク酸、アクリロイルオキシエチルフタル酸、メタクリロイルオキシエチルフタル酸等の(メタ)アクリロイルオキシアルキルジカルボン酸エステル;マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等の不飽和二塩基酸のモノエステル;一般式(2):
Figure 0007361116000002
(式中、R~Rは、独立に、水素原子、塩素原子または炭素数1~8の炭化水素基を表す。Rは、単結合、炭素数1~8の炭化水素基、ヘテロ原子または酸素原子、硫黄原子、窒素原子およびリン原子からなる群より選択される少なくとも1種のヘテロ原子を含み、かつ原子数1~20の主鎖を含む分子量500以下の原子団を表す。Yは、無機カチオンおよび/または有機カチオンを表す。)で表される単量体(2);等が挙げられる。
単量体(2)は、含フッ素共重合体を構成する単量体(2)として上述したとおりである。PVdFを構成する極性基含有単量体としては、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、アクリル酸、メタクリル酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、アクリロイロキシエチルコハク酸、メタクリロイロキシエチルコハク酸、アクリロイロキシプロピルコハク酸、メタクリロイロキシプロピルコハク酸が好ましい。
PVdFと上記極性基を有する化合物とを反応させて、上記極性基をPVdFに導入する場合には、上記極性基を有する化合物として、上記極性基含有単量体、または、PVdFと反応性の基と加水分解性基とを有するシラン系カップリング剤もしくはチタネート系カップリング剤を用いることができる。上記加水分解性基としては、好ましくはアルコキシ基である。カップリング剤を用いる場合には、溶媒に溶解または膨潤させたPVdFとカップリング剤とを反応させることによって、カップリング剤をPVdFに付加させることができる。
PVdFとしては、また、PVdFを塩基で部分的に脱フッ化水素処理した後、部分的に脱フッ化水素処理されたPVdFを酸化剤とさらに反応させて得られたものを用いることもできる。上記酸化剤としては、過酸化水素、次亜塩素酸塩、ハロゲン化パラジウム、ハロゲン化クロム、過マンガン酸アルカリ金属、過酸化合物、過酸化アルキル、過硫酸アルキル等が挙げられる。
PVdFのVdF単位の含有量は、電極合剤層と集電体とのさらに優れた密着性を得ることができることから、全単量体単位に対して、好ましくは84.0~99.999モル%であり、より好ましくは90.0モル%以上であり、さらに好ましくは92.0モル%以上であり、特に好ましくは95.0モル%以上であり、最も好ましくは97.0モル%以上である。好ましい上限は、順に、99.99モル%以下であり、99.90モル%以下であり、99.899モル%以下であり、99.70モル%以下であり、99.50モル%以下であり、99.49モル%以下であり、99.20モル%以下である。
PVdFの重量平均分子量(ポリスチレン換算)は、好ましくは160000~2760000であり、より好ましくは200000以上、さらに好ましくは300000以上であり、より好ましくは2530000以下、さらに好ましくは2000000以下である。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。
PVdFの数平均分子量(ポリスチレン換算)は、好ましくは70000~1200000であり、より好ましくは140000以上であり、より好ましくは1100000以下である。上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。
PVdFの融点は、好ましくは100~240℃であり、さらに好ましくは130~200℃であり、特に好ましくは140~180℃である。上記融点は、示差走査熱量測定(DSC)装置を用い、10℃/分の速度で昇温したときの融解熱曲線における極大値に対する温度として求めることができる。
PVdFの平均粒子径としては、PVdFを溶媒に容易に溶解または分散させることができることから、好ましくは1000μm以下であり、より好ましくは750μm以下であり、さらに好ましくは350μm以下であり、好ましくは0.1μm以上であり、より好ましくは0.2μm以上である。
PVdFは、たとえば、VdFおよび上記極性基含有単量体や、重合開始剤、重合乳化剤等の添加剤を適宜混合して、溶液重合や懸濁重合や乳化重合を行う等の従来公知の方法により製造することができる。
本開示の電気化学デバイス用組成物における含フッ素共重合体とPVdFとの質量比(含フッ素共重合体/PVdF)は、電極合剤の粘度の上昇を一層抑制することができ、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい電極合剤層を形成できることから、好ましくは99/1~1/99であり、より好ましくは95/5~3/97であり、さらに好ましくは90/10~5/95であり、特に好ましくは70/30~7/93であり、最も好ましくは50/50~10/90である。
本開示の電気化学デバイス用組成物は、含フッ素共重合体およびPVdFの他に、結着剤として、その他の重合体を含んでいてもよい。その他の重合体としては、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネート、スチレンゴム、ブタジエンゴムなどが挙げられる。
本開示の電気化学デバイス用組成物における結着剤の含有量は、電気化学デバイス用組成物の粘度を適正に保つことができ、電極合剤層を形成させた場合に、高い結着性が得られることから、組成物の質量に対して、好ましくは0.01~10質量%であり、より好ましくは0.2~5.0質量%であり、さらに好ましくは0.5~3.0質量%であり、特に好ましくは0.8~2.5質量%である。結着剤の含有量が上記範囲内にある場合、電気化学デバイス用組成物が適度な粘度を有し、過度なせん断力を与えることなく、各成分が十分に分散した電極合剤を調製できる。したがって、得られる電極合剤層中で、単層カーボンナノチューブの三次元ネットワークを十分に形成しながら、電極合剤層と集電体との一層優れた密着性および電極構造体の一層優れた柔軟性の両立を図ることができる。
本開示の電気化学デバイス用組成物の光学濃度(光学密度)は、0.3~0.7吸光度単位が好ましく、0.40~0.65吸光度単位がより好ましく、0.42~0.62吸光度単位がさらに好ましい。光学濃度は、NMP溶液をリファレンスとし、0.001質量%の単層カーボンナノチューブを含む溶液について、光路長10mmの分光光度計セルを用いて波長500nmの光の吸収を測定することによって得られる。
本開示の電気化学デバイス用組成物を必要に応じて希釈または濃縮することにより、単層カーボンナノチューブの濃度を0.001質量%に調整することにより得られる溶液による波長500nmの光の吸収が上記範囲内であると、電極合剤の分散性に優れ、過度のせん断力をかけずに電極合剤を調製することができる。そのため、得られる電極合剤層中に単層カーボンナノチューブの三次元網目構造を十分に形成しつつ、電極合剤層と集電体との密着性と電極構造の柔軟性とを両立させることができる。
溶媒
本開示の電気化学デバイス用組成物は、溶媒をさらに含有する。溶媒としては、有機溶剤が好ましく、たとえば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミド等の含窒素系有機溶剤;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;β-メトキシ-N,N-ジメチルプロピオンアミド、β-n-ブトキシ-N,N-ジメチルプロピオンアミド、β-n-ヘキシルオキシ-N,N-ジメチルプロピオンアミド等のβ-アルコキシプロピオンアミド類;さらに、それらの混合溶剤等の低沸点の汎用有機溶剤を挙げることができる。なかでも、溶媒としては、塗布性に優れている点から、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンおよびβ-アルコキシプロピオンアミド類からなる群より選択される少なくとも1種が好ましく、N-メチル-2-ピロリドンおよびN,N-ジメチルアセトアミドからなる群より選択される少なくとも1種がより好ましい。
本開示の電気化学デバイス用組成物の粘度は、好ましくは5~8000mPa・sであり、より好ましくは100~5000mPa・sであり、さらに好ましくは100~2000mPa・sである。上記粘度は、B型粘度計(ブルックフィールド社製、LV-DV2T)を用いて、25℃、ロータNo.SC4-21、回転速度20rpmの条件にて測定する。本開示の電気化学デバイス用組成物の粘度が上記範囲内にある場合、過度なせん断力を与えることなく、各成分が十分に分散した電極合剤を調製できる。したがって、得られる電極合剤層中で、単層カーボンナノチューブの三次元ネットワークを十分に形成しながら、電極合剤層と集電体との一層優れた密着性および電極構造体の一層優れた柔軟性の両立を図ることができる。
本開示の電気化学デバイス用組成物は、電気化学デバイスを構成する部材の形成に用いる組成物である。電気化学デバイスとしては、電気エネルギーと化学エネルギーとを変換するデバイスであれば特に限定されないが、リチウムイオン二次電池、リチウムイオンキャパシタ、ハイブリットキャパシタ、電気二重層キャパシタ、アルミ電解コンデンサなどがあげられる。電気化学デバイスとしては、リチウムイオン二次電池またはリチウムイオンキャパシタが好ましい。電気化学デバイスの構成部材としては、たとえば、電極、セパレータなどがあげられる。本開示の電気化学デバイス用組成物は、なかでも、リチウムイオン二次電池またはリチウムイオンキャパシタの電極を形成するために用いることが好ましい。本開示の電気化学デバイス用組成物は、たとえば、正極合剤層、負極合剤層、正極合剤層と集電体との間に設けられる導電層または接着層(アンダーコート)、負極合剤層と集電体の間に設けられる導電層または接着層(アンダーコート)などを形成するために用いることができる。さらに、本開示の電気化学デバイス用組成物は、調製から長時間が経過した後であっても、粘度が上昇しにくい正極合剤を得ることができ、抵抗の低い正極合剤層を形成できると同時に、集電体との密着性および柔軟性の両方に優れており、スプリングバックも起きにくい正極合剤層を形成できることから、リチウムイオン二次電池の正極を形成するために用いることがより好ましく、リチウムイオン二次電池の正極の正極合剤層を形成するために用いることがさらに好ましい。本開示の電気化学デバイス用組成物は、正極活物質を含まないことが好ましく、正極活物質を含有しない点で後述の正極合剤と区別することができる。
本開示の電気化学デバイス用組成物は、各成分を混合することにより調製することができる。各成分を混合する順序は、特に限定されない。たとえば、単層カーボンナノチューブおよび溶媒を混合した後、得られた分散液および結着剤を混合する方法により、電気化学デバイス用組成物を調製することができる。
混合には、公知の撹拌機を用いることができる。また、ホモジナイザーを用いることにより、溶媒中に単層カーボンナノチューブおよび結着剤が均一に分散した電気化学デバイス用組成物を、容易に得ることができる。
ホモジナイザーとして、回転式ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザーなどを用いることができる。超音波ホモジナイザーの出力は、5~50kWであってよい。超音波ホモジナイザーにより分散液または電気化学デバイス用組成物に与えるエネルギー量は、分散液または電気化学デバイス用組成物の1kgあたり、0.1~1kWhであってよい。高圧ホモジナイザーによる混合時の圧力は、100~2000バールであってよい。分散液または電気化学デバイス用組成物を、高圧ホモジナイザーに複数回通過させてもよく、2~20回通過させてもよい。
本開示の電気化学デバイス用組成物は、たとえば、超音波ホモジナイザーを用いて、単層カーボンナノチューブと溶媒とを混合した後、高圧ホモジナイザーを用いて、得られた分散液と結着剤とを混合する方法により、調製することができる。スターラーを用いて攪拌させながら、超音波ホモジナイザーを用いて、単層カーボンナノチューブと溶媒とを混合してもよい。
正極合剤
本開示の正極合剤は、上記の電気化学デバイス用組成物および正極活物質を含有する。したがって、本開示の正極合剤は、上記の電気化学デバイス用組成物に含まれる単層カーボンナノチューブ、結着剤および溶媒、ならびに、正極活物質を含有する。本開示の正極合剤は、調製から長時間が経過した後であっても、粘度が上昇しにくく、抵抗の低い正極合剤層を形成できると同時に、集電体との密着性および柔軟性の両方に優れており、スプリングバックも起きにくい正極合剤層を形成できる。
本開示の正極合剤における単層カーボンナノチューブの含有量としては、正極活物質100質量部に対して、0.001~10質量部であってよく、好ましくは0.001~2質量部であり、より好ましくは0.005質量部以上であり、さらに好ましくは0.01質量部以上であり、特に好ましくは0.05質量部以上であり、より好ましくは1.0質量部以下であり、さらに好ましくは0.2質量部以下であり、特に好ましくは0.1質量部以下である。
本開示の正極合剤における結着剤の含有量としては、正極活物質100質量部に対して、好ましくは0.1~5.0質量部であり、より好ましくは0.3質量部以上であり、さらに好ましくは0.5質量部以上であり、より好ましくは3.0質量部以下であり、さらに好ましくは2.0質量部以下である。本開示の正極合剤中の結着剤は、含フッ素共重合体を含有するものであれば、含フッ素共重合体のみを含有するものであっても、含フッ素共重合体およびPVdFを含有するものであってもよい。結着剤が含フッ素共重合体およびPVdFを含有する場合の、含フッ素共重合体とPVdFとの質量比(含フッ素共重合体/PVdF)は、正極合剤の粘度の上昇を一層抑制することができ、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい正極合剤層を形成できることから、好ましくは99/1~1/99であり、より好ましくは95/5~3/97であり、さらに好ましくは90/10~5/95であり、特に好ましくは70/30~7/93であり、最も好ましくは50/50~10/90である。
正極活物質
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はない。正極活物質としては、リチウムと少なくとも1種の遷移金属を含有する物質が好ましく、たとえば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物などが挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。上記置換したものとしては、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物、リチウム・マンガン・アルミニウム複合酸化物、リチウム・チタン複合酸化物等が挙げられる。置換されたものの具体例としては、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.82Co0.15Al0.03、LiNi0.80Co0.15Al0.05、LiNi1/3Co1/3Mn1/3、LiMn1.8Al0.2、LiMn1.5Ni0.5、LiTi12等が挙げられる。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましい。リチウム含有遷移金属リン酸化合物の具体例としては、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム含有遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
正極活物質としては、出力特性、サイクル特性および60℃貯蔵特性に優れる電池が得られることから、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リン酸鉄類、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物およびリチウム・ニッケル・コバルト・アルミニウム複合酸化物からなる群より選択される少なくとも1種が好ましく、LiCoO、LiNiO、LiMn、LiFePO、LiNi0.33Mn0.33Co0.33、LiNi0.5Mn0.3Co0.2、LiNi0.82Co0.15Al0.03、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、および、LiNi0.90Mn0.05Co0.05からなる群より選択される少なくとも1種がさらに好ましい。
正極活物質としては、リチウム・ニッケル複合酸化物であってよく、
一般式(1):LiNi1-x
(式中、xは、0.01≦x≦0.5、yは、0.9≦y≦1.2であり、Mは金属原子(但しNiを除く)を表す。)で表されるリチウム・ニッケル複合酸化物であってよい。このようにNiを多く含有する正極活物質は、二次電池の高容量化に有益である。本開示の正極合剤は、Niを多く含有する正極活物質を含有する場合であっても、粘度が上昇しにくく、抵抗の低い正極合剤層を形成できると同時に、集電体との密着性および柔軟性の両方に優れており、スプリングバックも起きにくい正極合剤層を形成できる。
一般式(1)において、xは、0.01≦x≦0.5を充足する係数であり、さらに高容量の二次電池を得ることができることから、好ましくは0.05≦x≦0.4であり、さらに好ましくは0.10≦x≦0.3である。
一般式(1)において、Mの金属原子としては、V、Ti、Cr、Mn、Fe、Co、Cu、Al、Zn、Mg、Ga、Zr、Si等が挙げられる。Mの金属原子としては、V、Ti、Cr、Mn、Fe、Co、Cu等の遷移金属、または、上記遷移金属と、Al、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Mg、Ga、Zr、Si等の他の金属との組み合わせが好ましい。
一般式(1)で表されるリチウム・ニッケル複合酸化物としては、LiNi0.82Co0.15Al0.03、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、および、LiNi0.90Mn0.05Co0.05からなる群より選択される少なくとも1種が好ましく、LiNi0.82Co0.15Al0.03、および、LiNi0.8Mn0.1Co0.1からなる群より選択される少なくとも1種がより好ましい。
一般式(1)で表されるリチウム・ニッケル複合酸化物とともに、これとは異なる正極活物質を組み合わせて用いてもよい。異なる正極活物質として具体的には、LiCoO2、LiMnO、LiMn、LiMnO3、LiMn1.8Al0.24、LiTi12、LiFePO、LiFe(PO、LiFeP7、LiCoPO、Li1.2Fe0.4Mn0.4、LiNiO、LiNi0.5Mn0.3Co0.2等が挙げられる。
また、正極活物質として、正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
これら表面付着物質は、たとえば、溶媒に溶解または懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解または懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。
表面付着物質の量としては、正極活物質に対して質量で、好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での非水電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、なかでも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電助剤との混合においても、均一に混合されやすいため好ましい。
正極活物質のタップ密度は、通常1.3g/cm以上、好ましくは1.5g/cm以上、さらに好ましくは1.6g/cm以上、最も好ましくは1.7g/cm以上である。正極活物質のタップ密度が上記下限を下回ると、正極合剤層形成時に、必要な分散媒量が増加すると共に、導電助剤やバインダーの必要量が増加し、正極合剤層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い正極活物質を用いることにより、高密度の正極合剤層を形成することができる。タップ密度は一般に大きいほど好ましく特に上限はないが、大きすぎると、正極合剤層内における非水電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、通常2.5g/cm以下、好ましくは2.4g/cm以下である。
正極活物質のタップ密度は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(たとえば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、最も好ましくは3μm以上で、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高嵩密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作製すなわち正極活物質と導電助剤やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ正極活物質を2種類以上混合することで、正極作製時の充填性をさらに向上させることもできる。
なお、本開示におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、正極活物質の平均一次粒子径としては、通常0.01μm以上、好ましくは0.05μm以上、さらに好ましくは0.08μm以上、最も好ましくは0.1μm以上で、通常3μm以下、好ましくは2μm以下、さらに好ましくは1μm以下、最も好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、通常0.2m/g以上、好ましくは0.3m/g以上、さらに好ましくは0.4m/g以上で、通常4.0m/g以下、好ましくは2.5m/g以下、さらに好ましくは1.5m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極合剤の塗布性に問題が発生しやすい場合がある。
BET比表面積は、表面積計(たとえば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、たとえば、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、また、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法等が挙げられる。
なお、正極活物質は1種を単独で用いてもよく、異なる組成または異なる粉体物性の2種以上を任意の組み合わせおよび比率で併用してもよい。
導電助剤
本開示の正極合剤は、より一層高いエネルギー密度を示す電気化学デバイスを実現可能な正極を形成できることから、単層カーボンナノチューブ以外の導電助剤を含まないことが好ましい。
また、本開示の正極合剤は、出力特性、サイクル特性に優れた電気化学デバイスを実現可能な正極を形成できることから、単層カーボンナノチューブ以外の導電助剤をさらに含有することが好ましい。上記導電助剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック類やグラファイト、グラフェン等の炭素材料、カーボンファイバー、多層カーボンナノチューブ、カーボンナノホーン等が挙げられる。
本開示の正極合剤における導電助剤(但し、単層カーボンナノチューブを除く)の含有量としては、正極活物質100質量部に対して、好ましくは0.01~5質量部であり、より好ましくは0.05~3質量部であり、さらに好ましくは0.1~1.0質量部である。
添加剤
正極合剤は、正極合剤の粘度の上昇を抑制するために、有機酸、カルボン酸などの添加剤をさらに含有してもよい。正極合剤は、なかでも、有機酸を含有することが好ましい。
有機酸としては、アクリル酸、ギ酸、クエン酸、酢酸、シュウ酸、乳酸、ピルビン酸、マロン酸、プロピオン酸、マレイン酸、シトラコン酸、酪酸などが挙げられる。
正極合剤の添加剤の含有量は、結着剤および正極活物質の合計質量に対して、好ましくは0.001~5質量%であり、より好ましくは0.005質量%以上であり、さらに好ましくは0.01質量%以上であり、より好ましくは3質量%以下であり、さらに好ましくは2質量%以下である。添加剤の含有量を上記範囲とすることにより、正極合剤の粘度の上昇を一層抑制することができる。
正極合剤は、正極合剤の粘度の安定性を高めるために、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、メチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ポリアクリル酸、ポリメタクリル酸メチル、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリロニトリルなどを含有してもよい。
正極合剤の粘度は、塗布が容易であり、所望の厚みを有する正極合剤層を得ることも容易であることから、好ましくは1000~80000mPa・sであり、より好ましくは2000~70000mPa・sであり、さらに好ましくは3000~60000mPa・sである。前記粘度は、B型粘度計(ブルックフィールド社製、LV-DV2T)を用いて、25℃、ロータNo.LV-4、回転速度6rpmの条件にて測定する。
正極合剤における単層カーボンナノチューブ、結着剤、正極活物質、溶媒および任意で含有する導電助剤の含有量は、集電体への塗布性、乾燥後の薄膜形成性等を考慮して決定される。正極合剤における単層カーボンナノチューブ、結着剤、正極活物質および任意で含有する導電助剤の合計含有量は、好ましくは50~90質量%であり、より好ましくは60~80質量%である。
本開示の正極合剤は、各成分を混合することにより調製することができる。この際、各成分を混合する順序は、特に限定されない。たとえば、本開示の電気化学デバイス用組成物がPVdFを含有しない場合は、本開示の電気化学デバイス用組成物とPVdFとを混合した後、正極活物質などのその他の成分を混合してもよいし、本開示の電気化学デバイス用組成物と正極活物質とを混合した後、PVdFなどのその他の成分を混合してもよい。
正極構造体
本開示の正極構造体は、集電体と正極合剤層とを備えている。正極合剤層は、上記の正極合剤を用いて形成される。正極集電体の片面に設けられていてもよいし、両面に設けられていてもよい。
正極合剤層の密度は、好ましくは3.0~5.0g/cmであり、より好ましくは3.2~5.0g/cmであり、さらに好ましくは3.5~5.0g/cmである。従来の高密度の正極合剤層は、熱処理をすると厚みが大きくなる現象(スプリングバック)が生じることがあった。本開示の正極構造体は、正極合剤層が上記の正極合剤を用いて形成されるものであることから、正極合剤層が高密度であっても、スプリングバックが起きにくく、柔軟性にも優れている。
正極合剤層の密度は、正極合剤層の質量および体積から算出できる。
正極合剤層の厚みは、好ましくは20μm以上であり、より好ましくは45μm以上であり、さらに好ましくは70μm以上であり、特に好ましくは75μm以上であり、最も好ましくは80μm以上であり、好ましくは170μm以下であり、より好ましくは150μm以下である。本開示の正極合剤を用いて形成される正極合剤層は、厚みが比較的大きい場合であっても、柔軟性に優れている。
正極合剤層の厚みは、マイクロメーターにより測定できる。本開示における正極合剤層の厚みは、正極合剤層が正極集電体の両面に設けられている場合には、片面当たりの厚みである。
正極合剤層中の正極活物質の含有量は、正極合剤の粘度の上昇を一層抑制することができ、一層低抵抗で、集電体との密着性および柔軟性に一層優れており、スプリングバックが一層起きにくい正極合剤層を形成できることから、正極合剤層の質量に対して、好ましくは96.0~99質量%であり、より好ましくは96.5~98.9質量%であり、さらに好ましくは97.0~98.8質量%である。
集電体
本開示の正極構造体は、集電体を備えている。本開示の正極構造体が備える集電体としては、たとえば、鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等が挙げられ、なかでも、アルミニウム箔が好ましい。
正極構造体の製造方法
本開示の正極構造体は、少なくとも単層カーボンナノチューブ、結着剤、溶媒および正極活物質を含有する正極合剤を調製する工程、および、得られた正極合剤を集電体に塗布する工程を含む製造方法により、好適に製造することができる。正極合剤を塗布した後、さらに、塗膜を乾燥させ、得られた乾燥塗膜をプレスしてもよい。
正極合剤の、集電体への塗布量としては、リチウムイオン二次電池の高容量化を実現可能であることから、好ましくは20mg/cm以上であり、より好ましくは22mg/cm以上であり、さらに好ましくは25mg/cm以上であり、特に好ましくは28mg/cm以上であり、また、正極合剤層の割れを抑制する観点から、好ましくは60mg/cm以下であり、より好ましくは50mg/cm以下である。正極合剤の塗布量は、単位面積当たりの正極合剤の乾燥重量である。本開示の正極合剤を集電体上に比較的多量に塗布し、比較的厚い正極合剤層を形成させた場合であっても、得られる正極合剤層は、柔軟性に優れている。また、本開示の正極合剤を集電体上に比較的多量に塗布し、高い圧力でプレスし、高密度の正極合剤層を形成させた場合であっても、スプリングバックが起きにくい。
二次電池
また、本開示によれば、上記の正極構造体を備える二次電池が提供される。本開示の二次電池は、上述した正極構造体に加えて、負極構造体および非水電解液をさらに備えることが好ましい。本開示の二次電池は、上記の正極構造体を備えることから、出力特性、サイクル特性および60℃貯蔵特性に優れている。
上記非水電解液は特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の公知の溶媒の1種もしくは2種以上が使用できる。電解質も従来公知のものがいずれも使用でき、LiClO、LiAsF、LiPF、LiBF、LiCl、LiBr、CHSOLi、CFSOLi、炭酸セシウム等を用いることができる。
本開示の正極構造体は、柔軟性に優れており、正極合剤層と集電体とが十分に密着していることから、捲回型二次電池用正極構造体として、好適に利用できる。また、本開示の二次電池は、捲回型二次電池であってよい。
本開示の正極構造体は、非水電解液二次電池用として、以上に説明した液状電解質を用いたリチウムイオン二次電池だけでなく、ポリマー電解質リチウム二次電池にも有用である。また、電気二重層キャパシタ用としても有用である。
以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
<含フッ素共重合体の組成>
(VdF単位とTFE単位との比率)
VdF単位とTFE単位との比率については、NMR分析装置(アジレント・テクノロジー社製、VNS400MHz)を用いて、含フッ素共重合体のDMF-d溶液の19F-NMR測定により測定した。
19F-NMR測定にて、下記のピークの面積(A、B、C、D)を求め、VdF単位とTFE単位との比率を計算した。
A:-86ppm~-98ppmのピークの面積
B:-105ppm~-118ppmのピークの面積
C:-119ppm~-122ppmのピークの面積
D:-122ppm~-126ppmのピークの面積
VdF単位の割合:(4A+2B)/(4A+3B+2C+2D)×100[モル%]
TFE単位の割合:(B+2C+2D)/(4A+3B+2C+2D)×100[モル%]
(VdF単位とHFP単位との比率およびVdF単位とPMVE単位との比率)
VdF単位とHFP単位との比率およびVdF単位とPMVE単位との比率については、NMR分析装置(アジレント・テクノロジー社製、VNS400MHz)を用いて、含フッ素共重合体のDMF-d溶液の19F-NMR測定により測定した。
(極性基含有単量体単位の含有量)
含フッ素共重合体における極性基含有単量体単位(4-ペンテン酸単位、3-ブテン酸単位、アクリル酸単位など)の含有量については、カルボキシ基の酸-塩基滴定によって測定した。約0.5gの含フッ素共重合体を70~80℃の温度でアセトンに溶解させた。5mlの水を、含フッ素共重合体が凝固しないよう加えた。約-270mVでの中性転移で、酸性度の完全な中和まで0.1Nの濃度を有するNaOH水溶液での滴定を実施した。測定した酸当量に基づいて、含フッ素共重合体1g中に含まれる極性基含有単量体単位の含有物質量を求め、極性基含有単量体単位の含有量を算出した。
<PVdFの組成>
(極性基含有単量体単位の含有量)
PVdFにおける極性基含有単量体単位(アクリル酸単位、マレイン酸単位、3-ブテン酸単位など)の含有量は、カルボン酸基の酸-塩基滴定によって測定した。約0.5gのPVdFを、70~80℃の温度でアセトンに溶解させた。5mlの水を、PVdFが凝固しないように加えた。約-270mVでの中性転移で、酸性度の完全な中和まで0.1Nの濃度を有するNaOH水溶液での滴定を実施した。測定した酸当量に基づいて、測定結果から、PVdF1g中に含まれる極性基含有単量体単位の含有物質量を求め、極性基含有単量体単位の含有量を算出した。
<重量平均分子量>
ゲルパーミエーションクロマトグラフィ(GPC)により測定した。東ソー社製のAS-8010、CO-8020、カラム(GMHHR-Hを3本直列に接続)、および、島津製作所社製RID-10Aを用い、溶媒としてジメチルホルムアミド(DMF)を流速1.0ml/分で流して測定したデータ(リファレンス:ポリスチレン)より算出した。
<融点>
示差走査熱量測定(DSC)装置を用い、30℃から220℃まで10℃/分の速度で昇温し、その後10℃/分で30℃まで降下させ、再度10℃/分の速度で220℃まで昇温したときの融解熱曲線における極大値に対する温度を、融点として求めた。
<貯蔵弾性率(E’)>
貯蔵弾性率は、動的粘弾性測定により30℃または60℃で測定する値であり、アイティー計測制御社製動的粘弾性装置DVA220で長さ30mm、巾5mm、厚み50~100μmの試験片を引張モード、つかみ幅20mm、測定温度-30℃から160℃、昇温速度2℃/min、周波数1Hzの条件で測定した。
測定に用いる試験片は、含フッ素共重合体を濃度が10~20質量%になるように、N-メチル-2-ピロリドン(NMP)に溶解させて得た含フッ素共重合体溶液を、ガラス板上にキャストし100℃で12時間乾燥し、更に真空下で100℃で12時間乾燥し、得られた厚さ50~100μmのフィルムを、長さ30mm、巾5mmにカットすることで作製した。
<粘度>
組成物の粘度は、B型粘度計(ブルックフィールド社製、LV-DV2T)を用いて、25℃、ロータNo.SC4-21、回転速度20rpmの条件にて測定し、測定開始から10分経過後の測定値を粘度とした。正極合剤の粘度は、B型粘度計(ブルックフィールド社製、LV-DV2T)を用いて、25℃、ロータNo.LV-4、回転速度6rpmの条件にて測定し、測定開始から10分経過後の測定値を粘度とした。
<正極合剤の安定性>
合剤調製時の粘度(η0)、合剤調製から24時間経過後の粘度(ηn)をそれぞれ測定し、粘度変化率(Xn)を下記の式により求めた。
Xn=ηn/η0×100[%]
得られた粘度変化率(Xn)に基づいて、以下の基準により評価した。
〇:Xnが200%以下
△:Xnが200%超300%以下
×:Xnが300%超
粘度変化率(Xn)が200%以下である正極合剤を用いると、良好な特性を示す正極の作成が可能である。粘度変化率(Xn)が200%超300%以下である正極合剤を用いると、平滑な表面を有する正極合剤層を形成できないなどの不都合が生じる。粘度変化率(Xn)が300%を超える正極合剤は塗布が困難である。
<正極合剤層の密度>
ロールプレス機を用いてプレスすることにより得られた両面塗工の正極構造体を切り取ることにより、試験片を作製し、試験片の質量および面積を測定した。そして、試験片および正極集電体の質量、試験片の面積ならびにマイクロメーターにより測定した正極合剤層の厚みから、正極合剤層の密度を算出した。
<塗膜抵抗>
正極合剤をPETフィルム上にドクターブレードを用いて塗布した後、乾燥し、塗膜の表面抵抗を測定した。測定にはロレスタ-GP(三菱化学アナリテック社製)を用いた(JIS K7194に準ずる)。
<正極合剤層と集電体との密着性>
ロールプレス機を用いてプレスすることにより得られた片面塗工の正極構造体を切り取ることにより、1.2cm×7.0cmの試験片を作製した。試験片の電極側を両面テープで可動式治具に固定した後、正極集電体の表面にテープを張り、100mm/分の速度でテープを90度に引っ張った時の応力(N/cm)をオートグラフにて測定した。オートグラフのロードセルには50Nを用いた。
<正極柔軟性>
ロールプレス機を用いてプレスすることにより得られた両面塗工の正極構造体を切り取ることにより、2cm×20cmの試験片を作製した。
円筒形マンドレル屈曲試験器(オールグッド社製)を用いて、直径3mmのマンドレルをセットとした試験器に、試験片を本体クランプで挟みこみ固定した後、ローラーを試験片に近づけ、ハンドルを1~2秒の時間をかけて均等に180°回した際の正極合剤層を目視で確認し、以下の基準で評価した。
〇:ひび割れが観察されなかった。
△:ひび割れが観察されたが、正極合剤層の破断は観察されなかった。
×:正極合剤層が破断していた。
<スプリングバック>
ロールプレス機を用いてプレスすることにより得られた両面塗工の正極構造体をΦ13mmサイズのハンドパンチを用いて打ち抜き、試験片を作製し、試験片の質量および面積を測定した。そして、試験片および正極集電体の質量、試験片の面積ならびにマイクロメーターにより測定した正極合剤層の厚みから、正極合剤層の密度を算出しこれを密度(D)とした。同試験片を120℃の真空乾燥機で12時間乾燥した後に同様に正極合剤層の密度を算出した密度(D)とした。求めた値からスプリングバック率(Y)を下記の式により求めた。スプリングバック率が大きい方が、熱処理による正極合剤層の密度の減少が小さいことから好ましい。
=D/D×100(%)
実施例および比較例では、次の重合体を用いた。
<含フッ素共重合体(A)>
(A-1):VdF単位およびTFE単位を含有する含フッ素共重合体
VdF/TFE=81/19(モル%)
重量平均分子量 1230000
融点 128℃
30℃での貯蔵弾性率510MPa
60℃での貯蔵弾性率270MPa
(A-2):VdF単位、TFE単位および4-ペンテン酸単位を含有する含フッ素共重合体
VdF/TFE=62/38(モル%)
4-ペンテン酸単位の含有量 0.5モル%
重量平均分子量 930000
融点 148℃
30℃での貯蔵弾性率450MPa
60℃での貯蔵弾性率190MPa
(A-3):VdF単位およびHFP単位を含有する含フッ素共重合体
VdF/HFP=95/5(モル%)
重量平均分子量 700000
融点 135℃
30℃での貯蔵弾性率320MPa
60℃での貯蔵弾性率155MPa
(A-4):VdF単位、PMVE単位およびアクリル酸単位を含有する含フッ素共重合体
VdF/PMVE/アクリル酸=97.1/1.9/1.0(モル%)
重量平均分子量 1070000
融点 147℃
<PVdF(B)>
(B-1):VdFホモポリマー
重量平均分子量 780000
融点 162℃
(B-2):アクリル酸単位を含有するPVdF
アクリル酸単位の含有量 1.0モル%
重量平均分子量 1100000
融点 161℃
(B-3):VdFホモポリマー
重量平均分子量 1820000
融点 167℃
また、実施例および比較例では、次の正極活物質を用いた。
NMC811:LiNi0.8Mn0.1Co0.1
NCA:LiNi0.82Co0.15Al0.03
NMC622:LiNi0.6Mn0.2Co0.2
LCO:LiCoO
また、実施例および比較例では、次の単層カーボンナノチューブを用いた。
単層カーボンナノチューブ(商品名「TUBALL BATT SWCNT」、OCSiAl社製)
平均外径:1.6±0.4nm
長さ:5μm以上
平均G/D比:86.5±7.1
また、実施例および比較例では、次の多層カーボンナノチューブを用いた。
平均外径:11nm±4nm
長さ:5μm以上
平均G/D比: 1.3
実施例1
(組成物の調製)
0.4kgの単層カーボンナノチューブ、98.6kgのN-メチル-2-ピロリドン(NMP)および1kgの含フッ素共重合体(A-1)を、100リットルタンク内で、75rpmの回転速度を有するオーバーヘッドスターラーおよび30kWの出力を有するホモジナイザーを使用して混合した。均質に混合するために加えたエネルギー量は混合物1kg当たり0.2kWhであった。得られた混合物を高圧ホモジナイザーで処理した(混合物をホモジナイザーに700バールの圧力で10回通過させた)。均質化後、懸濁液を取り出し、50μmメッシュのフィルターを用いて濾過することにより、0.4質量%の単層カーボンナノチューブを含有する100kgの組成物を調製した。光学密度(0.001質量%の単層カーボンナノチューブを含有する組成物による500nmの波長での発光の吸収)は0.51吸光度単位、粘度は750mPa・sであり、これらは電気化学デバイス用組成物に要求される品質の達成を示す。
(正極合剤の調製)
得られた組成物を単層カーボンナノチューブの含有量が表1の通りになるように1L容器に加えた後、含フッ素共重合体(A)/PVdF(B)の質量比、結着剤の含有量が表1の通りになるように、あらかじめNMPに溶解させた含フッ素共重合体(A-1)とPVdF(B-1)とをそれぞれを後入れし混合することで溶液を得た。前述で得られた溶液、NMC811およびアセチレンブラックを、撹拌機を用いて混合し、混合液を得た。得られた混合液に、NMPをさらに加えて混合して、固形分濃度が71質量%の正極合剤を調製した。得られた正極合剤の組成を表1に示す。
(正極構造体の作製)
得られた正極合剤を、正極集電体(厚さ20μmのアルミ箔)の片面に均一に塗布し、120℃で60分間乾燥させることにより、NMPを完全に揮発させた後、ロールプレス機を用いて、10tの圧力を印加してプレスすることにより、正極構造体を作製した。正極合剤の塗布量は、22.5mg/cmであり、正極合剤層の密度は3.6g/cmであった。
また、得られた正極合剤を、正極集電体(厚さ20μmのアルミ箔)の両面に均一に塗布し、120℃で60分間乾燥させることにより、NMPを完全に揮発させた後、ロールプレス機を用いて、10tの圧力を印加してプレスすることにより、正極構造体を作製した。正極合剤の片面当たりの塗布量は、28.5mg/cmであり、正極合剤層の密度は3.6g/cmであった。
得られた正極構造体を上記した方法により評価した。結果を表1に示す。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性エマルジョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を用い、活物質、増粘剤、結着剤の固形分比が97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。負極合剤スラリーを、厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮成形して、負極とした。
(リチウムイオン二次電池の作製)
上記のとおり製造した正極(正極構造体)、負極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した。ついで、電解液(エチレンカーボネートとエチルメチルカーボネートを体積比3/7で混合した溶媒にLiPFを1モル/リットルの濃度で溶解したもの)を1.2gそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
<出力特性>
上記で作製したリチウムイオン二次電池を、25℃において、0.2Cに相当する電流で4.2Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.2Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。ここで、1.0Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。初期放電容量の評価が終了した電池を、25℃にて、0.2Cの定電流で充電した後、5.0Cの定電流で3Vまで放電させた。初期放電容量に対する5.0Cの放電容量の割合を求め、これを5.0Cにおける放電容量比(%)とした。
(5.0Cの放電容量)÷(0.2Cの初期放電容量)×100=5.0Cの放電容量比(%)
比較例1の値を1として算出した結果を表1および表3に示す。
<サイクル特性>
上記で作製したリチウムイオン二次電池を、25℃において、1.0Cに相当する電流で4.2VまでCC/CV充電(0.1Cカット)した後、1.0Cの定電流で3Vまで放電し、これを1サイクルとし放電容量から初期放電容量を求めた。再度サイクルを行い、300サイクル後の放電容量を測定した。初期放電容量に対する300サイクル後の放電容量の割合を求め、これを容量維持率(%)とした。
(300サイクル後の放電容量)÷(1.0Cの初期放電容量)×100=容量維持率(%)
比較例1の値を1として算出した結果を表1および表3に示す。
<60℃貯蔵特性>
初期放電容量の評価が終了した電池を、再度4.2VまでCC/CV充電(0.1Cカット)をおこなった後、60℃7日間の条件で高温保存を行った。次に、25℃において0.2Cで3Vまで放電させ、高温保存後の残存容量を測定し、初期放電容量に対する残存容量の割合を求め、これを保存容量維持率(%)とした。
(残存容量)÷(初期放電容量)×100=保存容量維持率(%)
比較例1の値を1として算出した結果を表1および表3に示す。
実施例2~11
含フッ素共重合体(A)およびPVdF(B)の種類、結着剤の組成、正極合剤の組成などを、表1に記載のとおりに変更した以外は、実施例1と同様にして、正極合剤を調製した。得られた正極合剤を用いて、実施例1と同じ塗布量で正極合剤を塗布し、同じ密度の正極合剤層を備える正極構造体を作製し、実施例1と同様に評価した。結果を表1に示す。
比較例1
(正極合剤の調製)
含フッ素共重合体(A-1)およびPVdF(B-1)を、N-メチル-2-ピロリドン(NMP)に溶解させ、表1に記載の質量比(含フッ素共重合体(A-1)/PVdF(B-1))で結着剤を含有する溶液を調製した。得られた溶液、NMC811およびアセチレンブラックを、撹拌機を用いて混合し、混合液を得た。得られた混合液に、NMPをさらに加えて混合して、固形分濃度が71質量%の正極合剤を調製した。得られた正極合剤の組成を表1に示す。
(正極構造体の作製)
上記で得られた正極合剤を用いた以外は、実施例1と同様にして、正極構造体を作製し、実施例1と同様に評価した。結果を表1に示す。
比較例2
含フッ素共重合体(A-1)およびPVdF(B-1)に代えて、PVdF(B-1)のみを用いた以外は、比較例1と同様にして、正極合剤を調製し、正極構造体を作製し、実施例1と同様に評価した。結果を表1に示す。
Figure 0007361116000003
表1に示す各実施例の結果が示すように、単層カーボンナノチューブおよび特定の結着剤を用いることによって、正極合剤層と集電体との十分な密着性を維持したまま、十分に低い塗膜抵抗を示し、柔軟性に優れ、スプリングバックも生じにくい正極構造体が得られることが分かった。
たとえば、実施例2では、比較的少量の単層カーボンナノチューブを用いているが、単層カーボンナノチューブを特定の結着剤とともに用いることによって、十分に低い塗膜抵抗が得られると同時に、正極合剤層と集電体との密着性および正極構造体の柔軟性の両立が図られており、正極合剤層のスプリングバックも十分に抑制されている。
また、実施例6では、比較例2よりも結着剤の使用量が少ないにも関わらず、単層カーボンナノチューブを特定の結着剤とともに用いることによって、十分に低い塗膜抵抗が得られると同時に、正極合剤層と集電体との密着性および正極構造体の柔軟性の両立が図られており、正極合剤層のスプリングバックも十分に抑制されている。
一方、比較例2の結果が示すように、単層カーボンナノチューブおよび特定の結着剤を用いない場合には、得られる正極構造体は、正極合剤層と集電体とが十分に密着していたとしても、塗膜抵抗が高く、柔軟性に劣り、大きなスプリングバックが生じている。
さらに、表1に示す各実施例の結果が示すように、単層カーボンナノチューブおよび特定の結着剤を含有する組成物を用いて得られた正極構造体を備えるリチウムイオン二次電池は、出力特性、サイクル特性および60℃貯蔵特性のいずれにも優れていることが分かった。
また、比較例1の結果が示すように、特定の結着剤を用いた場合であっても、単層カーボンナノチューブを用いない場合には、塗膜抵抗が高いばかりか、正極合剤層と集電体との密着性および正極構造体の柔軟性が両立できず、得られる正極構造体には大きなスプリングバックが生じている。さらに、このような正極構造体を備えるリチウムイオン二次電池は、十分な出力特性、サイクル特性および60℃貯蔵特性を示さなかった。
実施例12
実施例1で調製した組成物(0.4質量%の単層カーボンナノチューブを含有する組成物)を単層カーボンナノチューブの含有量が表2の通りになるように1L容器に加えた後、含フッ素共重合体(A)/PVdF(B)の質量比、結着剤の含有量が表2の通りになるように、あらかじめNMPに溶解させた含フッ素共重合体(A-1)とPVdF(B-1)とをそれぞれを後入れし混合することで溶液を得た。前述で得られた溶液、NCAおよびアセチレンブラックを、撹拌機を用いて混合し、混合液を得た。得られた混合液に、NMPをさらに加えて混合して、固形分濃度が71質量%の正極合剤を調製した。得られた正極合剤の組成を表2に示す。得られた正極合剤の安定性を上記した方法により評価した。結果を表2に示す。
実施例13
実施例4で調製した組成物(0.4質量%の単層カーボンナノチューブを含有する組成物)を用い、含フッ素共重合体(A)およびPVdF(B)の種類、正極合剤の組成などを、表2に記載のとおりに変更した以外は、実施例12と同様にして、正極合剤を調製した。得られた正極合剤の組成を表2に示す。得られた正極合剤の安定性を上記した方法により評価した。結果を表2に示す。
比較例3
正極活物質をNCAに変更した以外は、比較例2と同様にして、正極合剤を調製した。得られた正極合剤の組成を表2に示す。得られた正極合剤の安定性を上記した方法により評価した。結果を表2に示す。
Figure 0007361116000004
実施例14~21
含フッ素共重合体(A)およびPVdF(B)の種類、正極活物質の種類、結着剤の組成、正極合剤の組成、粘度などを、表3に記載のとおりに変更した以外は、実施例1と同様にして、正極合剤を調製した。得られた正極合剤を用いて、実施例1と同じ塗布量で正極合剤を塗布し、同じ密度の正極合剤層を備える正極構造体を作製し、実施例1と同様に評価した。結果を表3に示す。
比較例4~7
正極活物質の種類、結着剤の組成、正極合剤の組成、粘度などを、表3に記載のとおりに変更した以外は、比較例1と同様にして、正極合剤を調製し、正極構造体を作製し、実施例1と同様に評価した。結果を表3に示す。
Figure 0007361116000005
表3に示す各実施例の結果が示すように、正極活物質の種類を変更しても、正極合剤層と集電体との十分な密着性を維持したまま、十分に低い塗膜抵抗を示し、柔軟性に優れ、スプリングバックも生じにくい正極構造体が得られることが分かった。さらに、得られた正極構造体を備えるリチウムイオン二次電池は、出力特性、サイクル特性および60℃貯蔵特性のいずれにも優れていることが分かった。
さらに、表1および表3に示す各実施例の結果が示すように、単層カーボンナノチューブおよび特定の結着剤を用いることによって、単層カーボンナノチューブが少量である場合であっても、十分に所望の効果が得られるのに対して、多層カーボンナノチューブを用いた場合には、十分な密着性および十分に低い塗膜抵抗を得ることができず、得られた正極構造体を備えるリチウムイオン二次電池は、十分な出力特性、サイクル特性および60℃貯蔵特性を示さなかった(比較例6)。また、多層カーボンナノチューブの含有量を増加させても、十分に低い塗膜抵抗が得られず、十分な出力特性を示すリチウムイオン二次電池も得られなかった(比較例7)。

Claims (11)

  1. 単層カーボンナノチューブ、結着剤および溶媒を含有する電気化学デバイス用組成物であって、前記電気化学デバイス用組成物が、正極活物質を含有しておらず、前記結着剤が、ビニリデンフルオライド単位およびフッ素化単量体単位(ただし、ビニリデンフルオライド単位を除く)を含有する含フッ素共重合体を含有し、前記フッ素化単量体単位が、テトラフルオロエチレン単位およびヘキサフルオロプロピレン単位からなる群より選択される少なくとも1種であり、前記含フッ素共重合体におけるビニリデンフルオライド単位の含有量が、全単量体単位に対して、50.0モル%以上であり、前記含フッ素共重合体における前記フッ素化単量体単位の含有量が、全単量体単位に対して、1.0モル%以上であり、前記溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンおよびβ-アルコキシプロピオンアミド類からなる群より選択される少なくとも1種である電気化学デバイス用組成物。
  2. 前記単層カーボンナノチューブの平均外径が、2.5nm以下である請求項1に記載の電気化学デバイス用組成物。
  3. 前記単層カーボンナノチューブの平均G/D比が、2以上である請求項1または2に記載の電気化学デバイス用組成物。
  4. 前記含フッ素共重合体の動的粘弾性測定による30℃における貯蔵弾性率(E’)が100~1200MPaであり、かつ、60℃における貯蔵弾性率(E’)が50~600MPaである請求項1~のいずれかに記載の電気化学デバイス用組成物。
  5. 前記結着剤が、ポリビニリデンフルオライドをさらに含有する請求項1~のいずれかに記載の電気化学デバイス用組成物。
  6. 電気化学デバイスの電極またはセパレータを形成するために用いる請求項1~のいずれかに記載の電気化学デバイス用組成物。
  7. 請求項1~のいずれかに記載の電気化学デバイス用組成物、および、正極活物質を含有し、前記正極活物質が、
    一般式(1):LiNi1-x
    (式中、xは、0.01≦x≦0.5、yは、0.9≦y≦1.2であり、Mは金属原子(但しNiを除く)を表す。)で表されるリチウム・ニッケル複合酸化物である正極合剤。
  8. 前記正極合剤における前記単層カーボンナノチューブの含有量が、前記正極活物質100質量部に対して、0.001~10質量部である請求項に記載の正極合剤。
  9. 前記正極合剤における前記結着剤の含有量が、前記正極活物質100質量部に対して、0.1~5.0質量部である請求項またはに記載の正極合剤。
  10. 集電体と、前記集電体の片面または両面に設けられており、請求項のいずれかに記載の正極合剤により形成された正極合剤層と、を備える正極構造体。
  11. 請求項10に記載の正極構造体を備える二次電池。
JP2021529152A 2019-07-01 2020-06-30 電気化学デバイス用組成物、正極合剤、正極構造体および二次電池 Active JP7361116B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019123210 2019-07-01
JP2019123210 2019-07-01
PCT/JP2020/025721 WO2021002369A1 (ja) 2019-07-01 2020-06-30 電気化学デバイス用組成物、正極合剤、正極構造体および二次電池

Publications (3)

Publication Number Publication Date
JPWO2021002369A1 JPWO2021002369A1 (ja) 2021-01-07
JPWO2021002369A5 JPWO2021002369A5 (ja) 2022-03-11
JP7361116B2 true JP7361116B2 (ja) 2023-10-13

Family

ID=74100715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021529152A Active JP7361116B2 (ja) 2019-07-01 2020-06-30 電気化学デバイス用組成物、正極合剤、正極構造体および二次電池

Country Status (6)

Country Link
US (1) US20220376261A1 (ja)
EP (1) EP3996167A4 (ja)
JP (1) JP7361116B2 (ja)
KR (1) KR20220024870A (ja)
CN (1) CN114008825A (ja)
WO (1) WO2021002369A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349508B2 (ja) * 2019-04-26 2023-09-22 ダウ グローバル テクノロジーズ エルエルシー リチウムイオン電池のカソード生産のための分散剤としてのポリビニルピロリドン
JP7267142B2 (ja) * 2019-08-06 2023-05-01 株式会社日本触媒 二次電池電極用バインダー及びその利用
JP2022550742A (ja) * 2019-10-04 2022-12-05 矢崎総業株式会社 リチウムイオン電池の性能向上のための高純度swcnt添加剤
TW202314738A (zh) * 2021-06-29 2023-04-01 日商大金工業股份有限公司 電極形成用組成物、電極及二次電池
WO2023136218A1 (ja) * 2022-01-17 2023-07-20 ダイキン工業株式会社 組成物、電極および二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221672A (ja) 2011-04-07 2012-11-12 Hitachi Chem Co Ltd リチウムイオン二次電池正極用導電剤及びこれを用いたリチウムイオン二次電池
WO2016147909A1 (ja) 2015-03-16 2016-09-22 日本電気株式会社 繊維状のカーボンナノホーン集合体及びその製造方法
JP2017084759A (ja) 2015-10-30 2017-05-18 大阪瓦斯株式会社 電極活物質−カーボンナノチューブコンポジット及びその製造方法
WO2019087652A1 (ja) 2017-10-30 2019-05-09 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
WO2019088171A1 (ja) 2017-11-01 2019-05-09 日本電気株式会社 リチウムイオン二次電池
WO2019093332A1 (ja) 2017-11-07 2019-05-16 株式会社 東芝 非水電解質電池用正極及び非水電解質電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147919U (ja) 2008-10-20 2009-01-29 株式会社メイルリバー ベルトルーパー
JP2011070994A (ja) * 2009-09-28 2011-04-07 Sumitomo Chemical Co Ltd 正極合剤、正極および非水電解質二次電池
JP2013020769A (ja) * 2011-07-08 2013-01-31 Teijin Ltd 非水電解質電池用セパレータ及び非水電解質電池
RU2572840C2 (ru) 2014-05-22 2016-01-20 Мсд Текнолоджис Частная Компания С Ограниченной Ответственностью Металлическая фольга с проводящим слоем и способ ее изготовления
JP6166235B2 (ja) * 2014-08-26 2017-07-19 大日精化工業株式会社 塗工液、塗工膜、及び複合材料
JP2017050465A (ja) * 2015-09-03 2017-03-09 住友電気工業株式会社 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
WO2018092675A1 (ja) * 2016-11-15 2018-05-24 株式会社クレハ フッ化ビニリデン共重合体、バインダー組成物、電極合剤、電極及び非水電解質二次電池
CN110521029B (zh) 2017-02-09 2022-11-29 株式会社村田制作所 二次电池、电池包、电动车辆、电动工具以及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221672A (ja) 2011-04-07 2012-11-12 Hitachi Chem Co Ltd リチウムイオン二次電池正極用導電剤及びこれを用いたリチウムイオン二次電池
WO2016147909A1 (ja) 2015-03-16 2016-09-22 日本電気株式会社 繊維状のカーボンナノホーン集合体及びその製造方法
JP2017084759A (ja) 2015-10-30 2017-05-18 大阪瓦斯株式会社 電極活物質−カーボンナノチューブコンポジット及びその製造方法
WO2019087652A1 (ja) 2017-10-30 2019-05-09 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
WO2019088171A1 (ja) 2017-11-01 2019-05-09 日本電気株式会社 リチウムイオン二次電池
WO2019093332A1 (ja) 2017-11-07 2019-05-16 株式会社 東芝 非水電解質電池用正極及び非水電解質電池

Also Published As

Publication number Publication date
EP3996167A4 (en) 2023-08-16
JPWO2021002369A1 (ja) 2021-01-07
CN114008825A (zh) 2022-02-01
EP3996167A1 (en) 2022-05-11
TW202109952A (zh) 2021-03-01
US20220376261A1 (en) 2022-11-24
WO2021002369A1 (ja) 2021-01-07
KR20220024870A (ko) 2022-03-03

Similar Documents

Publication Publication Date Title
JP6733796B2 (ja) 正極構造体および二次電池
JP7361116B2 (ja) 電気化学デバイス用組成物、正極合剤、正極構造体および二次電池
JP5279047B2 (ja) リチウム二次電池用負極材料組成物及びリチウム二次電池
JP7120257B2 (ja) 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極の製造方法および電気化学素子の製造方法
CN110383546B (zh) 电化学元件电极用导电材料分散液、浆料组合物及其制造方法、电极以及电化学元件
WO2013176093A1 (ja) 電極合剤
WO2013176092A1 (ja) 電極合剤
JP2015162384A (ja) リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
JP7212291B2 (ja) 電池用結着剤、電極合剤、電極および二次電池
US20240088392A1 (en) Electrode mixture, secondary battery, and composition
TWI843868B (zh) 電化學裝置用組成物、正極合劑、正極結構體及二次電池
RU2787681C1 (ru) Композиция для электрохимического устройства, смесь положительного электрода, конструкция положительного электрода и аккумуляторная батарея
TWI830995B (zh) 電極合劑、電極及二次電池
JP7331276B2 (ja) 組成物、電極および二次電池
JP7420978B2 (ja) 電気化学デバイス用組成物、電極および二次電池
WO2022138004A1 (ja) 電気化学素子正極用組成物、電気化学素子正極用スラリー組成物、電気化学素子用正極、および電気化学素子
WO2023277055A1 (ja) 電極形成用組成物、電極および二次電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20220120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7361116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150