JP7331276B2 - 組成物、電極および二次電池 - Google Patents

組成物、電極および二次電池 Download PDF

Info

Publication number
JP7331276B2
JP7331276B2 JP2023001093A JP2023001093A JP7331276B2 JP 7331276 B2 JP7331276 B2 JP 7331276B2 JP 2023001093 A JP2023001093 A JP 2023001093A JP 2023001093 A JP2023001093 A JP 2023001093A JP 7331276 B2 JP7331276 B2 JP 7331276B2
Authority
JP
Japan
Prior art keywords
group
vdf
mol
composition
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023001093A
Other languages
English (en)
Other versions
JP2023104895A (ja
Inventor
千紘 細田
穣輝 山崎
純平 寺田
俊晴 下岡
佑磨 市瀬
由美 西山
ミハイル ルドルフォビッチ プレデチェンスキー
オレグ フィリポヴィッチ ボブレノック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
MCD Technologies SARL
Original Assignee
Daikin Industries Ltd
MCD Technologies SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, MCD Technologies SARL filed Critical Daikin Industries Ltd
Publication of JP2023104895A publication Critical patent/JP2023104895A/ja
Application granted granted Critical
Publication of JP7331276B2 publication Critical patent/JP7331276B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、組成物、電極および二次電池に関する。
リチウムイオン電池などの電気化学デバイスが備える電極は、たとえば、電極材料および結着剤を溶媒に溶解させ、得られた組成物を集電体に塗布することにより形成することができる。
このような組成物として、特許文献1には、単層カーボンナノチューブ、結着剤および溶媒を含有する電気化学デバイス用組成物であって、前記結着剤が、ビニリデンフルオライド単位およびフッ素化単量体単位(ただし、ビニリデンフルオライド単位を除く)を含有する含フッ素共重合体を含有し、前記含フッ素共重合体におけるビニリデンフルオライド単位の含有量が、全単量体単位に対して、50.0モル%以上である電気化学デバイス用組成物が記載されている。
国際公開第2021/002369号
本開示では、出力特性、サイクル特性および60℃貯蔵特性に優れ、高温保存後のガス発生率が低減された電池を得ることができる組成物を提供することを目的とする。
本開示によれば、単層カーボンナノチューブ、結着剤および一般式(1)で表される溶媒を含有する組成物であって、前記結着剤が、ビニリデンフルオライド単位を含有する含フッ素重合体を含有する組成物が提供される。
一般式(1):
Figure 0007331276000001
(式中、R、RおよびRは、独立に、Hまたは1価の置換基であり、ただし、R、RおよびRの合計炭素数は6以上であり、R、RおよびRの少なくとも1つはカルボニル基を有する有機基である。R、RおよびRは、いずれか2つが結合して環を形成してもよい。)
前記溶媒が、一般式(1a)で表される溶媒であることが好ましい。
一般式(1a):
Figure 0007331276000002
(式中、R1aは1価の置換基であり、R2aおよびR3aは、独立に、Hまたは1価の置換基であり、ただし、R1a、R2aおよびR3aの合計炭素数は5以上である。R1a、R2aおよびR3aは、いずれか2つが結合して環を形成してもよい。)
前記溶媒が、一般式(1b-1)で表される溶媒および一般式(1b-2)で表される溶媒からなる群より選択される少なくとも1種であることが好ましい。
一般式(1b-1):
Figure 0007331276000003
(式中、R1bは、アルキル基、アルコキシアルキル基、アシルアルキル基、アルケニル基、アミノ基またはアミノアルキル基であり、R2bおよびR3bは、独立に、アルキル基またはアルコキシアルキル基であり、R1b、R2bおよびR3bの合計炭素数は5以上である。R2bおよびR3bは、お互いに結合して、R2bおよびR3bが結合する窒素原子とともに環を形成してもよく、環の構成原子として酸素原子を含んでもよい。)
一般式(1b-2):
Figure 0007331276000004
(式中、環Aは、5員または6員のアミド環であり、R4bは、アルキル基、シクロアルキル基、または、アルケニル基であり、環AおよびR4bの合計炭素数は5以上である。)
前記溶媒が、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドンおよびN-ブチル-2-ピロリドンからなる群より選択される少なくとも1種であることが好ましい。
前記単層カーボンナノチューブの平均外径が、2.5nm以下であることが好ましい。
前記単層カーボンナノチューブの平均G/D比が、2以上であることが好ましい。
前記結着剤が、前記含フッ素重合体として、ポリビニリデンフルオライドを含有することが好ましい。
前記結着剤が、前記含フッ素重合体として、ビニリデンフルオライド単位およびビニリデンフルオライド以外の他の単量体単位を含有する含フッ素共重合体を含有することが好ましい。
他の単量体が、フッ素化単量体(ただし、ビニリデンフルオライドを除く)であることが好ましい。
他の単量体が、テトラフルオロエチレン、クロロトリフルオロエチレン、(メタ)アクリル酸、2,3,3,3-テトラフルオロプロペン、ヘキサフルオロプロピレン、および、フルオロアルキルビニルエーテルからなる群より選択される少なくとも1種であることが好ましい。
前記結着剤が、前記含フッ素重合体として、ポリビニリデンフルオライド、ならびに、ビニリデンフルオライド単位およびビニリデンフルオライド以外の他の単量体単位を含有する含フッ素共重合体を含有することが好ましい。
前記ポリビニリデンフルオライドと前記含フッ素共重合体との質量比(ポリビニリデンフルオライド/含フッ素重合体)が、99/1~1/99であることが好ましい。
本開示の組成物は、電気化学デバイスの電極を形成するために用いることができる。
本開示の組成物は、粉末電極材料(ただし、前記単層カーボンナノチューブを除く)をさらに含有することが好ましい。
前記粉末電極材料が、正極活物質として、リチウム複合酸化物を含有することが好ましい。
前記粉末電極材料が、Liと合金化した場合またはLiと結合した場合に、Li基準で2.5V以下の電位を示す負極活物質を含有することが好ましい。
また、本開示によれば、集電体と、前記集電体の片面または両面に設けられており、上記の組成物により形成された電極材料層と、を備える電極が提供される。
また、本開示によれば、上記の電極を備える二次電池が提供される。
本開示によれば、出力特性、サイクル特性および60℃貯蔵特性に優れ、高温保存後のガス発生率が低減された電池を得ることができる組成物を提供することができる。
以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
本開示の組成物は、単層カーボンナノチューブ、結着剤および溶媒を含有する。
特許文献1には、単層カーボンナノチューブ、特定の結着剤および溶媒を含有する電気化学デバイス用組成物を用いて電極を形成することによって、出力特性、サイクル特性および60℃貯蔵特性に優れる二次電池が得られることが記載されている。
二次電池の性能をさらに向上するための手段を鋭意検討したところ、極めて限定された溶媒を含有する組成物を用いて電極を形成することによって、出力特性に優れるだけでなく、サイクル特性および60℃貯蔵特性がより一層向上しており、高温保存後のガス発生率が低減された二次電池が得られることが見出された。以下に、本開示の組成物が含有する各成分について詳述する。
(溶媒)
本開示の組成物は、単層カーボンナノチューブおよび結着剤とともに、一般式(1)で表される溶媒を含有する。本開示で用いる溶媒は、好適には20℃で液体の溶媒である。
一般式(1):
Figure 0007331276000005
(式中、R、RおよびRは、独立に、Hまたは1価の置換基であり、ただし、R、RおよびRの合計炭素数は6以上であり、R、RおよびRの少なくとも1つはカルボニル基を有する有機基である。R、RおよびRは、いずれか2つが結合して環を形成してもよい。)
、RおよびRの合計炭素数は6以上である。すなわち、R、RおよびRは、合計の炭素数が6以上となるように、それぞれ、基の種類が選択される。R、RおよびRの合計炭素数の上限は限定されないが、16以下、14以下または12以下であってよい。
、RおよびRは、独立に、Hまたは1価の置換基である。1価の置換基としては、アルキル基、アルコキシアルキル基、アシルアルキル基、アルケニル基、アミノ基、アミノアルキル基またはシクロアルキル基が好ましい。
、RおよびRの少なくとも1つはカルボニル基を有する有機基である。カルボニル基を有する有機基としては、アシル基が好ましい。アシル基としては、一般式:-CO-R(式中、Rは炭素数1~6のアルキル基である)で表される基が好ましい。アルキル基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。Rのアルキル基の炭素数が2以上である場合、炭素-炭素原子間に、酸素原子、窒素原子などのヘテロ原子またはカルボニル基を含んでもよい。
、RおよびRは、いずれか2つが結合して環を形成してもよい。また、環の構成原子として、酸素原子などのヘテロ原子を含んでもよい。環は飽和環であることが好ましい。環の員数は特に限定されないが、5員また6員が好ましい。環としては、ピロリジン環、オキサゾリン環、ピペリジン環またはモルホリン環が好ましい。
溶媒としては、一般式(1a)で表される溶媒が好ましい。
一般式(1a):
Figure 0007331276000006
(式中、R1aは1価の置換基であり、R2aおよびR3aは、独立に、Hまたは1価の置換基であり、ただし、R1a、R2aおよびR3aの合計炭素数は5以上である。R1a、R2aおよびR3aは、いずれか2つが結合して環を形成してもよい。)
一般式(1a)において、R1a、R2aおよびR3aの合計炭素数は5以上である。すなわち、R1a、R2aおよびR3aは、合計の炭素数が5以上となるように、それぞれ、基の種類が選択される。R1a、R2aおよびR3aの合計炭素数の上限は限定されないが、15以下、13以下または11以下であってよい。
一般式(1a)において、R1aは1価の置換基である。1価の置換基としては、アルキル基、アルコキシアルキル基、アシルアルキル基、アルケニル基、アミノ基、アミノアルキル基またはシクロアルキル基が好ましく、アルキル基、アルコキシアルキル基、アシルアルキル基、アルケニル基、アミノ基またはアミノアルキル基がより好ましい。
一般式(1a)において、R2aおよびR3aは、独立に、Hまたは1価の置換基である。R2aおよびR3aとしては、独立に、1価の置換基が好ましい。1価の置換基としては、アルキル基、アルコキシアルキル基、アシルアルキル基、アルケニル基、アミノ基、アミノアルキル基またはシクロアルキル基が好ましく、アルキル基、アルコキシアルキル基、シクロアルキル基またはアルケニル基がより好ましい。
1a、R2aおよびR3aは、いずれか2つが結合して環を形成してもよい。特に、R2aおよびR3aが結合して、R2aおよびR3aが結合する窒素原子とともに、環を形成することが好ましい。また、環の構成原子として、酸素原子などのヘテロ原子を含んでもよい。環は飽和環であることが好ましい。環の員数は特に限定されないが、5員また6員が好ましい。環としては、ピロリジン環、オキサゾリン環、ピペリジン環またはモルホリン環が好ましい。
溶媒としては、一般式(1b-1)で表される溶媒および一般式(1b-2)で表される溶媒からなる群より選択される少なくとも1種がより好ましい。
一般式(1b-1):
Figure 0007331276000007
(式中、R1bは、アルキル基、アルコキシアルキル基、アシルアルキル基、アルケニル基、アミノ基またはアミノアルキル基であり、R2bおよびR3bは、独立に、アルキル基またはアルコキシアルキル基であり、R1b、R2bおよびR3bの合計炭素数は5以上である。R2bおよびR3bは、お互いに結合して、R2bおよびR3bが結合する窒素原子とともに環を形成してもよく、環の構成原子として酸素原子を含んでもよい。)
一般式(1b-2):
Figure 0007331276000008
(式中、環Aは、5員または6員のアミド環であり、R4bは、アルキル基、シクロアルキル基、または、アルケニル基であり、環AおよびR4bの合計炭素数は5以上である。)
一般式(1b-1)において、R1b、R2bおよびR3bの合計炭素数は5以上である。すなわち、R1b、R2bおよびR3bは、合計の炭素数が5以上となるように、それぞれ、基の種類が選択される。R1b、R2bおよびR3bの合計炭素数の上限は限定されないが、15以下、13以下または11以下であってよい。
一般式(1b-1)において、R1bは、アルキル基、アルコキシアルキル基、アシルアルキル基、アルケニル基、アミノ基またはアミノアルキル基である。
1bのアルキル基としては、炭素数1~10のアルキル基が好ましい。アルキル基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。
1bのアルコキシアルキル基としては、一般式:-R1b1-O-R1b2(式中、R1b1は炭素数1~5のアルキレン基、R1b2は炭素数1~5のアルキル基である)で表される基が好ましい。アルキル基およびアルキレン基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。
1bのアシルアルキル基としては、一般式:-R1b3-CO-R1b4(式中、R1b3は炭素数1~5のアルキレン基、R1b4は炭素数1~5のアルキル基である)で表される基が好ましい。アルキル基およびアルキレン基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。
1bのアルケニル基としては、一般式:-R1b5-CR1b6=CR1b7(式中、R1b5は単結合または炭素数1~5のアルキレン基、R1b6およびR1b7は、独立に、Hまたは炭素数1~5のアルキル基である)で表される基が好ましい。アルキル基およびアルキレン基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。アルケニル基としては、ビニル基が好ましい。
1bのアミノ基およびアミノアルキル基が有するアミノ基は、アンモニア、第一級または第二級アミンから水素を除去した1価の官能基である。R1bがアミノ基である場合は、R1bが結合するカルボニル基とともに、アミド結合を形成し得る。
1bのアミノ基としては、一般式:-N-(R1b8(式中、R1b8はHまたは炭素数1~5のアルキル基である)で表される基が好ましい。アルキル基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。アミノ基としては、-N-(CHまたは-N-(Cが好ましい。
1bのアミノアルキル基としては、一般式:-R1b9-N-(R1b8(式中、R1b9は炭素数1~5のアルキレン基、R1b8はHまたは炭素数1~5のアルキル基である)で表される基が好ましい。アルキル基およびアルキレン基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。
一般式(1b-1)において、R2bおよびR3bは、独立に、アルキル基またはアルコキシアルキル基である。
2bおよびR3bのアルキル基としては、炭素数1~10のアルキル基が好ましい。アルキル基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。
2bおよびR3bのアルコキシアルキル基としては、一般式:-R2b1-O-R2b2(式中、R2b1は炭素数1~5のアルキレン基、R2b2は炭素数1~5のアルキル基である)で表される基が好ましい。アルキル基およびアルキレン基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。
2bおよびR3bは、お互いに結合して、R2bおよびR3bが結合する窒素原子とともに環を形成してもよく、環の構成原子として酸素原子を含んでもよい。環は飽和環であることが好ましい。環の員数は特に限定されないが、5員また6員が好ましい。環としては、ピロリジン環、オキサゾリン環、ピペリジン環またはモルホリン環が好ましい。
一般式(1b-2)において、環AおよびR4bの合計炭素数は5以上である。すなわち、環AおよびR4bは、合計の炭素数が5以上となるように、環および基の種類が選択される。環AおよびR4bの合計炭素数の上限は限定されないが、15以下、13以下または11以下であってよい。
環Aは、5員または6員のアミド環である。したがって、環Aは、炭素原子および窒素原子とともに、炭素数3~4のアルキレン基により構成される。環Aを構成するアルキレン基の炭素原子に結合する水素原子は、置換基により置換されていてもよいし、置換基により置換されていなくてもよいが、置換基により置換されていないことが好ましい。置換基としては、メチル基などのアルキル基が挙げられる。
4bは、アルキル基、シクロアルキル基、または、アルケニル基である。
4bのアルキル基としては、炭素数1~10のアルキル基が好ましい。アルキル基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。
4bのシクロアルキル基としては、炭素数3~10のシクロアルキル基が好ましい。シクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基またはシクロオクチル基が好ましい。
4bのアルケニル基としては、一般式:-R4b1-CR4b2=CR4b3(式中、R4b1は単結合または炭素数1~5のアルキレン基、R4b2およびR4b3は、独立に、Hまたは炭素数1~5のアルキル基である)で表される基が好ましい。アルキル基およびアルキレン基の炭素数が3以上の場合は、直鎖状であっても、分岐鎖状であってもよい。アルケニル基としては、ビニル基が好ましい。
溶媒としては、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドン(NEP)、N-ブチル-2-ピロリドン(NBP)、アクリロイルモルフォリン、N-シクロヘキシル-2-ピロリドン、N-ビニル-2-ピロリドン、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N,N’,N’-テトラエチルウレア、N,N-ジメチルアセトアセタミド、N-オクチル-2-ピロリドンおよびN,N-ジエチルアセタミドからなる群より選択される少なくとも1種が好ましい。
溶媒としては、なかでも、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドンおよびN-ブチル-2-ピロリドンからなる群より選択される少なくとも1種がより好ましい。
組成物中の溶媒の量は、集電体への塗布性、乾燥後の薄膜形成性等を考慮して決定される。通常、結着剤と溶媒との割合は、質量比で0.5:99.5~20:80である。
(単層カーボンナノチューブ)
単層カーボンナノチューブ(SWNTs)は、一次元材料として知られる特別な種類の炭素材料である。単層カーボンナノチューブはグラフェンのシートからなり、1原子分の厚さの壁を有する中空の管を形成するように巻かれている。そのような化学構造および大きさを有することにより、単層カーボンナノチューブは優れた機械的、電気的、熱的、および光学的特性を示す。本開示の組成物は、単層カーボンナノチューブを含有することから、本開示の組成物を用いることによって、出力特性、サイクル特性および60℃貯蔵特性に優れ、ガス発生率が低減された電池を得ることができる。
単層カーボンナノチューブの平均外径は、好ましくは2.5nm以下であり、より好ましくは2.0nm以下であり、さらに好ましくは1.8nm以下であり、好ましくは1.0nm以上であり、より好ましくは1.1nm以上であり、さらに好ましくは1.2nm以上である。単層カーボンナノチューブの平均外径は、紫外可視近赤外分光法(UV-Vis-NIR)により得られた単層カーボンナノチューブの光吸収スペクトル、ラマンスペクトル、または透過型電子顕微鏡(TEM)画像から求めることができる。
単層カーボンナノチューブのラマン分光分析(波長532nm)によって測定される平均G/D比は、好ましくは2以上であり、より好ましくは5以上であり、さらに好ましくは10以上であり、特に好ましくは30以上であり、最も好ましくは40以上であり、好ましくは250以下であり、より好ましくは220以下であり、さらに好ましくは180以下である。G/D比とは、単層カーボンナノチューブのラマンスペクトルのGバンドとDバンドとの強度比(G/D)である。単層カーボンナノチューブの平均G/D比が高いほど、単層カーボンナノチューブの結晶性が高く、不純物カーボンや欠陥のあるカーボンナノチューブが少ないことを意味する。
単層カーボンナノチューブの平均長さは、好ましくは0.1~50μmであり、より好ましくは0.5~20μmであり、さらに好ましくは1~10μmである。単層カーボンナノチューブの平均長さは、原子間力顕微鏡(AFM)を用いて、単層カーボンナノチューブのAFM像を得て、又は透過型電子顕微鏡(TEM)を用いて、単層カーボンナノチューブのTEM画像を得て、各単層カーボンナノチューブの長さを測定し、長さの合計値を、測定した単層カーボンナノチューブの個数で除することにより、求めることができる。
本開示の組成物における単層カーボンナノチューブの含有量は、組成物の質量に対して、好ましくは0.01~3質量%であり、より好ましくは0.01~2質量%であり、さらに好ましくは0.01~1質量%であり、特に好ましくは0.1~0.8質量%であり、最も好ましくは0.2~0.5質量%である。単層カーボンナノチューブの含有量が上記範囲内にある場合、組成物が適度な粘度を有し、過度なせん断力を与えることなく、各成分が十分に分散した電極合剤を調製できる。したがって、得られる電極材料層中で、単層カーボンナノチューブの三次元ネットワークを十分に形成することができる。
(結着剤)
本開示の組成物が含有する結着剤は、ビニリデンフルオライド(VdF)単位を含有する含フッ素重合体を含有する。
含フッ素重合体としては、ポリビニリデンフルオライド(PVdF)およびVdF単位およびVdF以外の他の単量体単位を含有する含フッ素共重合体からなる群より選択される少なくとも1種が好ましい。
含フッ素共重合体は、VdF単位およびVdF以外の他の単量体単位を含有する。他の単量体は、フッ素化単量体であってもよいし、非フッ素化単量体であってもよい。
フッ素化単量体(ただし、VdFを除く)としては、たとえば、テトラフルオロエチレン(TFE)、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン(CTFE)、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン(HFP)、(パーフルオロアルキル)エチレン、2,3,3,3-テトラフルオロプロペンおよびトランス-1,3,3,3-テトラフルオロプロペンが挙げられる。
フルオロアルキルビニルエーテルとしては、炭素数1~5のフルオロアルキル基を有するフルオロアルキルビニルエーテルが好ましく、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)およびパーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種がより好ましい。
フッ素化単量体としては、TFE、CTFE、2,3,3,3-テトラフルオロプロペン、HFPおよびフルオロアルキルビニルエーテルからなる群より選択される少なくとも1種が好ましく、TFEおよびHFPからなる群より選択される少なくとも1種がより好ましく、TFEが特に好ましい。
フッ素化単量体(ただし、VdFを除く)は、極性基を有していても有していなくてもよい。
非フッ素化単量体としては、エチレン、プロピレン等の極性基を有しない非フッ素化単量体、極性基を有する非フッ素化単量体(以下、極性基含有単量体ということがある)等が挙げられる。
非フッ素化単量体として、極性基を有するものを用いると、含フッ素共重合体に極性基が導入され、これによって、塗布層と金属箔とのより一層優れた密着性が得られる。極性基としては、カルボニル基含有基、エポキシ基、ヒドロキシ基、スルホン酸基、硫酸基、リン酸基、アミノ基、アミド基およびアルコキシ基からなる群より選択される少なくとも1種が好ましく、カルボニル基含有基、エポキシ基およびヒドロキシ基からなる群より選択される少なくとも1種がより好ましく、カルボニル基含有基がさらに好ましい。上記ヒドロキシ基には、上記カルボニル基含有基の一部を構成するヒドロキシ基は含まれない。また、上記アミノ基とは、アンモニア、第一級または第二級アミンから水素を除去した1価の官能基である。
上記カルボニル基含有基とは、カルボニル基(-C(=O)-)を有する官能基である。上記カルボニル基含有基としては、一般式:-COOR(Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基またはカルボン酸無水物基が好ましく、一般式:-COORで表される基がより好ましい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。一般式:-COORで表される基として、具体的には、-COOCHCHOH、-COOCHCH(CH)OH、-COOCH(CH)CHOH、-COOH、-COOCH、-COOC等が挙げられる。一般式:-COORで表される基が、-COOHであるか、-COOHを含む場合、-COOHは、カルボン酸金属塩、カルボン酸アンモニウム塩等のカルボン酸塩であってもよい。
また、上記カルボニル基含有基としては、一般式:-X-COOR(Xは主鎖が原子数1~20で構成される分子量500以下の原子団であり、Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基であってもよい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。
上記アミド基としては、一般式:-CO-NRR’(RおよびR’は、独立に、水素原子または置換もしくは非置換のアルキル基を表す。)で表される基、または、一般式:-CO-NR”-(R”は、水素原子、置換もしくは非置換のアルキル基または置換もしくは非置換のフェニル基を表す。)で表される結合が好ましい。
上記極性基含有単量体としては、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;メチリデンマロン酸ジメチル等のアルキリデンマロン酸エステル;ビニルカルボキシメチルエーテル、ビニルカルボキシエチルエーテル等のビニルカルボキシアルキルエーテル;2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート等のカルボキシアルキル(メタ)アクリレート;アクリロイルオキシエチルコハク酸、アクリロイルオキシプロピルコハク酸、メタクリロイルオキシエチルコハク酸、アクリロイルオキシエチルフタル酸、メタクリロイルオキシエチルフタル酸等の(メタ)アクリロイルオキシアルキルジカルボン酸エステル;マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等の不飽和二塩基酸のモノエステル;一般式(4):
Figure 0007331276000009
(式中、R11~R13は、独立に、水素原子または炭素数1~8の炭化水素基を表す。R14は、単結合または炭素数1~8の炭化水素基を表す。Yは、無機カチオンおよび/または有機カチオンを表す。)で表される単量体(4);マレイン酸、無水マレイン酸、シトラコン酸、無水シトラコン酸等の不飽和二塩基酸;等が挙げられる。
含フッ素共重合体が含有し得る上記極性基含有単量体単位としては、一般式(4)で表される単量体(4)に基づく単位が好ましい。
一般式(4)において、Yは、無機カチオンおよび/または有機カチオンを表す。無機カチオンとしては、H、Li、Na、K、Mg、Ca、Al、Fe等のカチオンが挙げられる。有機カチオンとしては、NH、NH15、NH15 、NHR15 、NR15 (R15は、独立に、炭素数1~4のアルキル基を表す。)等のカチオンが挙げられる。Yとしては、H、Li、Na、K、Mg、Ca、Al、NHが好ましく、H、Li、Na、K、Mg、Al、NHがより好ましく、H、Li、Al、NHがさらに好ましく、Hが特に好ましい。なお、無機カチオンおよび有機カチオンの具体例は、便宜上、符号および価数を省略して記載している。
一般式(4)において、R11~R13は、独立に、水素原子または炭素数1~8の炭化水素基を表す。上記炭化水素基は、1価の炭化水素基である。上記炭化水素基の炭素数は4以下が好ましい。上記炭化水素基としては、上記炭素数のアルキル基、アルケニル基、アルキニル基等が挙げられ、メチル基またはエチル基が好ましい。R11およびR12は、独立に、水素原子、メチル基またはエチル基であることが好ましく、R13は、水素原子またはメチル基であることが好ましい。
一般式(4)において、R14は、単結合または炭素数1~8の炭化水素基を表す。上記炭化水素基は、2価の炭化水素基である。上記炭化水素基の炭素数は4以下が好ましい。上記炭化水素基としては、上記炭素数のアルキレン基、アルケニレン基等が挙げられ、なかでも、メチレン基、エチレン基、エチリデン基、プロピリデン基およびイソプロピリデン基からなる群より選択される少なくとも1種が好ましく、メチレン基がより好ましい。
単量体(4)としては、(メタ)アクリル酸およびその塩、ビニル酢酸(3-ブテン酸)およびその塩、3-ペンテン酸およびその塩、4-ペンテン酸およびその塩、3-ヘキセン酸およびその塩、4-ヘプテン酸およびその塩、ならびに、5-ヘキセン酸およびその塩からなる群より選択される少なくとも1種が好ましい。
他の単量体としては、TFE、CTFE、(メタ)アクリル酸、2,3,3,3-テトラフルオロプロペン、HFP、および、フルオロアルキルビニルエーテルからなる群より選択される少なくとも1種が好ましい。(メタ)アクリル酸には、アクリル酸およびメタクリル酸が含まれる。
含フッ素共重合体の他の単量体単位の含有量は、全単量体単位に対して、好ましくは0.0001~50.0モル%であり、より好ましくは0.01モル%以上であり、さらに好ましくは0.10モル%以上であり、より好ましくは45.0モル%以下であり、さらに好ましくは40.0モル%以下であり、特に好ましくは35.0モル%以下である。
含フッ素共重合体のVdF単位の含有量は、全単量体単位に対して、50.0~99.9999モル%であり、より好ましくは55.0モル%以上であり、さらに好ましくは60.0モル%以上であり、特に好ましくは65.0モル%以上であり、より好ましくは99.99モル%以下であり、さらに好ましくは99.90モル%以下である。
含フッ素共重合体が他の単量体単位としてフッ素化単量体単位を含有する場合、フッ素化単量体単位の含有量は、全単量体単位に対して、好ましくは0.0001~50.0モル%であり、より好ましくは2.0モル%以上であり、さらに好ましくは3.0モル%以上であり、特に好ましくは4.0モル%以上であり、より好ましくは45.0モル%以下であり、さらに好ましくは40.0モル%以下であり、特に好ましくは35.0モル%以下である。
含フッ素共重合体が他の単量体単位としてフッ素化単量体単位を含有する場合、含フッ素共重合体のVdF単位の含有量は、全単量体単位に対して、50.0~99.999モル%であり、より好ましくは55.0モル%以上であり、さらに好ましくは60.0モル%以上であり、特に好ましくは65.0モル%以上であり、より好ましくは98.0モル%以下であり、さらに好ましくは97.0モル%以下であり、特に好ましくは96.0モル%以下である。
含フッ素共重合体が他の単量体単位として、極性基含有単量体などの非フッ素化単量体単位を含有する場合、非フッ素化単量体単位の含有量は、全単量体単位に対して、好ましくは0.0001~50.0モル%であり、より好ましくは0.01モル%以上であり、さらに好ましくは0.10モル%以上であり、より好ましくは5.0モル%以下であり、さらに好ましくは3.0モル%以下であり、特に好ましくは1.5モル%以下である。
含フッ素共重合体が他の単量体単位として非フッ素化単量体単位を含有する場合、含フッ素共重合体のVdF単位の含有量は、全単量体単位に対して、好ましくは50.0~99.999モル%であり、より好ましくは95.0モル%以上であり、さらに好ましくは97.0モル%以上であり、特に好ましくは98.5モル%以上であり、より好ましくは99.99モル%以下であり、さらに好ましくは99.90モル%以下である。
本開示において、含フッ素共重合体の組成は、たとえば、19F-NMR測定により測定できる。また、含フッ素共重合体が他の単量体単位として極性基含有単量体単位を含有する場合、極性基含有単量体単位の含有量は、たとえば、極性基がカルボン酸等の酸基である場合、酸基の酸-塩基滴定によって測定できる。
含フッ素共重合体の重量平均分子量(ポリスチレン換算)は、好ましくは10000~3000000であり、より好ましくは30000以上であり、さらに好ましくは50000以上であり、特に好ましくは200000以上であり、より好ましくは2400000以下であり、さらに好ましくは2200000以下であり、特に好ましくは2000000以下である。重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。
含フッ素共重合体の数平均分子量(ポリスチレン換算)は、好ましくは7000~1500000であり、より好ましくは21000以上であり、さらに好ましくは35000以上であり、より好ましくは1400000以下であり、さらに好ましくは1200000以下であり、特に好ましくは1100000以下である。数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。
含フッ素共重合体としては、たとえば、VdF/(メタ)アクリル酸共重合体、VdF/TFE共重合体、VdF/HFP共重合体、VdF/フルオロアルキルビニルエーテル共重合体、VdF/TFE/HFP共重合体、VdF/2,3,3,3-テトラフルオロプロペン共重合体、VdF/TFE/2,3,3,3-テトラフルオロプロペン共重合体、VdF/TFE/(メタ)アクリル酸共重合体、VdF/HFP/(メタ)アクリル酸共重合体、VdF/CTFE共重合体、VdF/TFE/4-ペンテン酸共重合体、VdF/TFE/3-ブテン酸共重合体、VdF/TFE/HFP/(メタ)アクリル酸共重合体、VdF/TFE/HFP/4-ペンテン酸共重合体、VdF/TFE/HFP/3-ブテン酸共重合体、VdF/TFE/2-カルボキシエチルアクリレート共重合体、VdF/TFE/HFP/2-カルボキシエチルアクリレート共重合体、VdF/TFE/アクリロイルオキシエチルコハク酸共重合体、VdF/TFE/HFP/アクリロイルオキシエチルコハク酸共重合体等が挙げられる。
含フッ素共重合体としては、なかでも、VdF/TFE共重合体、VdF/CTFE共重合体、VdF/(メタ)アクリル酸共重合体、VdF/2,3,3,3-テトラフルオロプロペン共重合体、VdF/HFP共重合体およびVdF/フルオロアルキルビニルエーテル共重合体からなる群より選択される少なくとも1種が好ましい。
VdF/TFE共重合体は、VdF単位およびTFE単位を含有する。共重合体としてVdF/TFE共重合体を用いることにより、組成物を非常に容易に形成できるとともに、スラリー安定性に非常に優れる組成物が得られ、柔軟性に非常に優れる塗布層を形成することができる。VdF単位の含有量としては、VdF/TFE共重合体の全単量体単位に対して、好ましくは50.0~95.0モル%であり、より好ましくは55.0モル%以上であり、さらに好ましくは60.0モル%以上であり、より好ましくは92.0モル%以下であり、さらに好ましくは89.0モル%以下である。TFE単位の含有量としては、VdF/TFE共重合体の全単量体単位に対して、好ましくは50.0~5.0モル%であり、より好ましくは45.0モル%以下であり、さらに好ましくは40.0モル%以下であり、より好ましくは8.0モル%以上であり、さらに好ましくは11.0モル%以上である。
VdF/TFE共重合体は、VdF単位およびTFE単位の他に、VdFおよびTFEと共重合可能な単量体(ただし、VdFおよびTFEを除く)に基づく単位を含むものであってもよい。VdFおよびTFEと共重合可能な単量体に基づく単位の含有量は、耐電解液膨潤性の観点から、VdF/TFE共重合体の全単量体単位に対して、好ましくは3.0モル%以下である。
VdFおよびTFEと共重合可能な単量体としては、上述したフッ素化単量体、上述した非フッ素化単量体などが挙げられる。VdFおよびTFEと共重合可能な単量体としては、なかでも、フッ素化単量体および極性基含有単量体からなる群より選択される少なくとも1種が好ましく、HFP、2,3,3,3-テトラフルオロプロペンおよび単量体(4)からなる群より選択される少なくとも1種がより好ましい。
VdF/TFE共重合体の重量平均分子量(ポリスチレン換算)としては、好ましくは50000~2000000であり、より好ましくは80000~1700000であり、さらに好ましくは100000~1500000である。
VdF/TFE共重合体の数平均分子量(ポリスチレン換算)としては、35000~1400000であり、より好ましくは40000~1300000であり、さらに好ましくは50000~1200000である。
VdF/CTFE共重合体は、VdF単位およびCTFE単位を含有する。共重合体としてVdF/CTFE共重合体を用いることにより、組成物を非常に容易に形成できるとともに、金属箔と極めて強固に密着する塗布層を形成することができる。VdF単位の含有量としては、VdF/CTFE共重合体の全単量体単位に対して、好ましくは80.0~98.0モル%であり、より好ましくは85.0モル%以上であり、さらに好ましくは90.0モル%以上であり、より好ましくは97.5モル%以下であり、さらに好ましくは97.0モル%以下である。CTFE単位の含有量としては、VdF/CTFE共重合体の全単量体単位に対して、好ましくは20.0~2.0モル%であり、より好ましくは15.0モル%以下であり、さらに好ましくは10.0モル%以下であり、より好ましくは2.5モル%以上であり、さらに好ましくは3.0モル%以上である。
VdF/CTFE共重合体は、VdF単位およびCTFE単位の他に、VdFおよびCTFEと共重合し得る単量体(ただし、VdFおよびCTFEを除く)に基づく単位を含むものであってもよい。VdFおよびCTFEと共重合し得る単量体に基づく単位の含有量は、耐電解液膨潤性の観点から、VdF/CTFE共重合体の全単量体単位に対して、好ましくは3.0モル%以下である。
VdFおよびCTFEと共重合可能な単量体としては、上述したフッ素化単量体、上述した非フッ素化単量体などが挙げられる。VdFおよびCTFEと共重合可能な単量体としては、なかでも、フッ素化単量体および極性基含有単量体からなる群より選択される少なくとも1種が好ましく、TFE、HFP、2,3,3,3-テトラフルオロプロペンおよび単量体(4)からなる群より選択される少なくとも1種がより好ましく、TFEがさらに好ましい。
VdF/CTFE共重合体の重量平均分子量(ポリスチレン換算)としては、好ましくは50000~2000000であり、より好ましくは80000~1700000であり、さらに好ましくは100000~1500000である。
VdF/CTFE共重合体の数平均分子量(ポリスチレン換算)としては、好ましくは35000~1400000であり、より好ましくは40000~1300000であり、さらに好ましくは50000~1200000である。
VdF/(メタ)アクリル酸共重合体は、VdF単位および(メタ)アクリル酸単位を含有する。共重合体としてVdF/(メタ)アクリル酸共重合体を用いることにより、組成物を非常に容易に形成できるとともに、金属箔と極めて強固に密着する塗布層を形成することができる。(メタ)アクリル酸単位の含有量は、全単量体単位に対して、好ましくは0.0001~5.0モル%であり、より好ましくは0.01~3.0モル%であり、さらに好ましくは0.10~1.5モル%である。
VdF/(メタ)アクリル酸共重合体のVdF単位の含有量は、全単量体単位に対して、好ましくは95.0~99.9999モル%であり、より好ましくは97.0~99.99モル%であり、さらに好ましくは98.5~99.90モル%である。
VdF/(メタ)アクリル酸共重合体の重量平均分子量(ポリスチレン換算)は、好ましくは50000~3000000であり、より好ましくは80000以上であり、さらに好ましくは100000以上であり、特に好ましくは200000以上であり、より好ましくは2400000以下であり、さらに好ましくは2200000以下であり、特に好ましくは2000000以下である。
VdF/(メタ)アクリル酸共重合体の数平均分子量(ポリスチレン換算)は、好ましくは20000~1500000であり、より好ましくは40000以上であり、さらに好ましくは70000以上であり、特に好ましくは140000以上であり、より好ましくは1400000以下であり、さらに好ましくは1200000以下であり、特に好ましくは1100000以下である。
VdF/2,3,3,3-テトラフルオロプロペン共重合体は、VdF単位および2,3,3,3-テトラフルオロプロペン単位を含有する。共重合体としてVdF/2,3,3,3-テトラフルオロプロペン共重合体を用いることにより、組成物を非常に容易に形成できるとともに、柔軟性および導電性に非常に優れる塗布層を形成することができる。VdF単位の含有量としては、VdF/2,3,3,3-テトラフルオロプロペン共重合体の全単量体単位に対して、好ましくは50.0~98.0モル%であり、より好ましくは55.0モル%以上であり、さらに好ましくは60.0モル%以上であり、特に好ましくは65.0モル%以上であり、より好ましくは97.0モル%以下であり、さらに好ましくは96.0モル%以下である。2,3,3,3-テトラフルオロプロペン単位の含有量としては、VdF/TFE共重合体の全単量体単位に対して、好ましくは2.0~50.0モル%であり、より好ましくは3.0モル%以上であり、さらに好ましくは4.0モル%以上であり、より好ましくは45.0モル%以下であり、さらに好ましくは40.0モル%以下であり、特に好ましくは35.0モル%以下である。
VdF/2,3,3,3-テトラフルオロプロペン共重合体は、VdF単位および2,3,3,3-テトラフルオロプロペン単位の他に、VdFおよび2,3,3,3-テトラフルオロプロペンと共重合し得る単量体(ただし、VdFおよび2,3,3,3-テトラフルオロプロペンを除く)に基づく単位を含むものであってもよい。VdFおよび2,3,3,3-テトラフルオロプロペンと共重合し得る単量体に基づく単位の含有量は、耐電解液膨潤性の観点から、VdF/2,3,3,3-テトラフルオロプロペン共重合体の全単量体単位に対して、好ましくは3.0モル%以下である。
VdFおよび2,3,3,3-テトラフルオロプロペンと共重合し得る単量体としては、上述したフッ素化単量体、上述した非フッ素化単量体などが挙げられる。VdFおよび2,3,3,3-テトラフルオロプロペンと共重合可能な単量体としては、なかでも、フッ素化単量体および極性基含有単量体からなる群より選択される少なくとも1種が好ましく、TFE、HFPおよび単量体(4)からなる群より選択される少なくとも1種がより好ましい。
VdF/2,3,3,3-テトラフルオロプロペン共重合体の重量平均分子量(ポリスチレン換算)としては、好ましくは10000~2000000であり、より好ましくは30000~1700000であり、さらに好ましくは5000~1500000である。
VdF/2,3,3,3-テトラフルオロプロペン共重合体の数平均分子量(ポリスチレン換算)としては、好ましくは7000~1400000であり、より好ましくは21000~1300000であり、さらに好ましくは35000~1200000である。
VdF/HFP共重合体は、VdF単位およびHFP単位を含有する。共重合体としてVdF/HFP共重合体を用いることにより、組成物を非常に容易に形成できるとともに、金属箔と極めて強固に密着する塗布層を形成することができる。VdF単位の含有量としては、VdF/HFP共重合体の全単量体単位に対して、好ましくは80.0~98.0モル%であり、より好ましくは83.0モル%以上であり、さらに好ましくは85.0モル%以上であり、より好ましくは97.0モル%以下であり、さらに好ましくは96.0モル%以下である。HFP単位の含有量としては、VdF/HFP共重合体の全単量体単位に対して、好ましくは20.0~2.0モル%であり、より好ましくは17.0モル%以下であり、さらに好ましくは15.0モル%以下であり、より好ましくは3.0モル%以上であり、さらに好ましくは4.0モル%以上である。
VdF/HFP共重合体は、VdF単位およびHFP単位の他に、VdFおよびHFPと共重合可能な単量体(ただし、VdFおよびHFPを除く)に基づく単位を含むものであってもよい。VdFおよびHFPと共重合可能な単量体に基づく単位の含有量は、耐電解液膨潤性の観点から、VdF/HFP共重合体の全単量体単位に対して、好ましくは3.0モル%以下である。
VdFおよびHFPと共重合可能な単量体としては、上述したフッ素化単量体、上述した非フッ素化単量体などが挙げられる。VdFおよびHFPと共重合可能な単量体としては、なかでも、フッ素化単量体および極性基含有単量体からなる群より選択される少なくとも1種が好ましく、TFE、2,3,3,3-テトラフルオロプロペンおよび単量体(4)からなる群より選択される少なくとも1種がより好ましく、単量体(4)がさらに好ましい。
VdF/HFP共重合体の重量平均分子量(ポリスチレン換算)としては、好ましくは50000~2000000であり、より好ましくは80000~1700000であり、さらに好ましくは100000~1500000である。
VdF/HFP共重合体の数平均分子量(ポリスチレン換算)としては、好ましくは35000~1400000であり、より好ましくは40000~1300000であり、さらに好ましくは50000~1200000である。
VdF/フルオロアルキルビニルエーテル共重合体は、VdF単位およびフルオロアルキルビニルエーテル単位を含有する。VdF単位の含有量としては、VdF/フルオロアルキルビニルエーテル共重合体の全単量体単位に対して、好ましくは80.0~98.0モル%であり、より好ましくは83.0モル%以上であり、さらに好ましくは85.0モル%以上であり、より好ましくは97.0モル%以下であり、さらに好ましくは96.0モル%以下である。フルオロアルキルビニルエーテル単位の含有量としては、VdF/フルオロアルキルビニルエーテル共重合体の全単量体単位に対して、好ましくは20.0~2.0モル%であり、より好ましくは17.0モル%以下であり、さらに好ましくは15.0モル%以下であり、より好ましくは3.0モル%以上であり、さらに好ましくは4.0モル%以上である。
VdF/フルオロアルキルビニルエーテル共重合体は、VdF単位およびフルオロアルキルビニルエーテル単位の他に、VdFおよびフルオロアルキルビニルエーテルと共重合可能な単量体(ただし、VdFおよびフルオロアルキルビニルエーテルを除く)に基づく単位を含むものであってもよい。VdFおよびフルオロアルキルビニルエーテルと共重合可能な単量体に基づく単位の含有量は、耐電解液膨潤性の観点から、VdF/フルオロアルキルビニルエーテル共重合体の全単量体単位に対して、好ましくは3.0モル%以下である。
VdFおよびフルオロアルキルビニルエーテルと共重合可能な単量体としては、上述したフッ素化単量体、上述した非フッ素化単量体などが挙げられる。VdFおよびフルオロアルキルビニルエーテルと共重合可能な単量体としては、なかでも、フッ素化単量体および極性基含有単量体からなる群より選択される少なくとも1種が好ましく、TFE、2,3,3,3-テトラフルオロプロペンおよび単量体(4)からなる群より選択される少なくとも1種がより好ましく、単量体(4)がさらに好ましい。
VdF/フルオロアルキルビニルエーテル共重合体の重量平均分子量(ポリスチレン換算)としては、好ましくは50000~2000000であり、より好ましくは80000~1700000であり、さらに好ましくは100000~1500000である。
VdF/フルオロアルキルビニルエーテル共重合体の数平均分子量(ポリスチレン換算)としては、好ましくは35000~1400000であり、より好ましくは40000~1300000であり、さらに好ましくは50000~1200000である。
結着剤は、PVdFを含有することも好ましい。PVdFは、VdF単位を含有する重合体であって、上記の含フッ素共重合体とは異なる重合体である。PVdFは、VdF単位のみからなるVdFホモポリマーであってよいし、VdF単位およびVdFと共重合可能な単量体に基づく単位を含有する重合体であってもよい。
上記PVdFにおいて、VdFと共重合可能な単量体としては、テトラフルオロエチレン(TFE)とは異なる単量体であることが好ましい。すなわち、PVdFは、TFE単位を含有しないことが好ましい。
上記PVdFにおいて、VdFと共重合可能な単量体としては、フッ素化単量体、非フッ素化単量体等が挙げられ、フッ素化単量体が好ましい。上記フッ素化単量体としては、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン(CTFE)、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン(HFP)、(パーフルオロアルキル)エチレン、2,3,3,3-テトラフルオロプロペン、トランス-1,3,3,3-テトラフルオロプロペン等が挙げられる。上記非フッ素化単量体としては、エチレン、プロピレン等が挙げられる。
上記PVdFにおいて、VdFと共重合可能な単量体としては、CTFE、フルオロアルキルビニルエーテル、HFPおよび2,3,3,3-テトラフルオロプロペンからなる群より選択される少なくとも1種のフッ素化単量体が好ましく、CTFE、HFPおよびフルオロアルキルビニルエーテルからなる群より選択される少なくとも1種のフッ素化単量体がより好ましい。
上記PVdFにおいて、VdFと共重合可能な単量体単位の含有量は、全単量体単位に対して、好ましくは0~5.0モル%であり、より好ましくは0~3.0モル%である。上記PVdFにおいて、VdFと共重合可能なフッ素化単量体単位の含有量は、全単量体単位に対して、好ましくは5.0モル%未満であり、より好ましくは3.0モル%未満であり、さらに好ましくは1.0モル%未満である。
本開示において、PVdFの組成は、たとえば、19F-NMR測定により測定できる。
上記PVdFは、極性基を有していてもよい。上記極性基としては、極性を有する官能基であれば特に限定されないが、カルボニル基含有基、エポキシ基、ヒドロキシ基、スルホン酸基、硫酸基、リン酸基、アミノ基、アミド基およびアルコキシ基からなる群より選択される少なくとも1種が好ましく、カルボニル基含有基、エポキシ基およびヒドロキシ基からなる群より選択される少なくとも1種がより好ましく、カルボニル基含有基がさらに好ましい。上記ヒドロキシ基には、上記カルボニル基含有基の一部を構成するヒドロキシ基は含まれない。また、上記アミノ基とは、アンモニア、第一級または第二級アミンから水素を除去した1価の官能基である。
上記カルボニル基含有基とは、カルボニル基(-C(=O)-)を有する官能基である。上記カルボニル基含有基としては、一般式:-COOR(Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基またはカルボン酸無水物基が好ましく、一般式:-COORで表される基がより好ましい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。一般式:-COORで表される基として、具体的には、-COOCHCHOH、-COOCHCH(CH)OH、-COOCH(CH)CHOH、-COOH、-COOCH、-COOC等が挙げられる。一般式:-COORで表される基が、-COOHであるか、-COOHを含む場合、-COOHは、カルボン酸金属塩、カルボン酸アンモニウム塩等のカルボン酸塩であってもよい。
また、上記カルボニル基含有基としては、一般式:-X-COOR(Xは主鎖が原子数2~15で構成され、Xで示される原子団の分子量は350以下が好ましい。Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基であってもよい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。
上記アミド基としては、一般式:-CO-NRR’(RおよびR’は、独立に、水素原子または置換もしくは非置換のアルキル基を表す。)で表される基、または、一般式:-CO-NR”-(R”は、水素原子、置換もしくは非置換のアルキル基または置換もしくは非置換のフェニル基を表す。)で表される結合が好ましい。
上記極性基は、VdFと上記極性基を有する単量体(以下、極性基含有単量体という)とを重合させることにより、PVdFに導入することもできるし、PVdFと上記極性基を有する化合物とを反応させることにより、PVdFに導入することもできるが、生産性の観点からは、VdFと上記極性基含有単量体とを重合させることが好ましい。
VdFと上記極性基含有単量体とを重合させると、VdF単位および極性基含有単量体単位を含有するPVdFが得られる。すなわち、PVdFは、上記極性基含有単量体単位を含有することが好ましい。上記極性基含有単量体単位の含有量は、全単量体単位に対して、好ましくは0.001~5.0モル%であり、より好ましくは0.01~3.0モル%であり、さらに好ましくは0.10~1.5モル%である。
本開示において、PVdFにおける極性基含有単量体単位の含有量は、たとえば、極性基がカルボン酸等の酸基である場合、酸基の酸-塩基滴定によって測定できる。
上記極性基含有単量体としては、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;(メタ)アクリル酸、クロトン酸、ビニル酢酸(3-ブテン酸)、3-ペンテン酸、4-ペンテン酸、3-ヘキセン酸、4-ヘプテン酸等の不飽和一塩基酸;マレイン酸、無水マレイン酸、シトラコン酸、無水シトラコン酸等の不飽和二塩基酸;メチリデンマロン酸ジメチル等のアルキリデンマロン酸エステル;ビニルカルボキシメチルエーテル、ビニルカルボキシエチルエーテル等のビニルカルボキシアルキルエーテル;2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート等のカルボキシアルキル(メタ)アクリレート;アクリロイルオキシエチルコハク酸、メタクリロイルオキシエチルコハク酸、アクリロイルオキシエチルフタル酸、アクリロイルオキシプロピルコハク酸、メタクリロイルオキシエチルフタル酸等の(メタ)アクリロイルオキシアルキルジカルボン酸エステル;マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等の不飽和二塩基酸のモノエステル;等が挙げられる。
PVdFと上記極性基を有する化合物とを反応させて、上記極性基をPVdFに導入する場合には、上記極性基を有する化合物として、上記極性基含有単量体、または、PVdFと反応性の基と加水分解性基とを有するシラン系カップリング剤もしくはチタネート系カップリング剤を用いることができる。上記加水分解性基としては、好ましくはアルコキシ基である。カップリング剤を用いる場合には、溶媒に溶解または膨潤させたPVdFと反応させることによって、PVdFに極性基を付加させることができる。
PVdFとしては、また、PVdFを塩基で部分的に脱フッ化水素処理した後、部分的に脱フッ化水素処理されたPVdFを酸化剤とさらに反応させて得られたものを用いることもできる。上記酸化剤としては、過酸化水素、次亜塩素酸塩、ハロゲン化パラジウム、ハロゲン化クロム、過マンガン酸アルカリ金属、過酸化合物、過酸化アルキル、過硫酸アルキル等が挙げられる。
PVdFのVdF単位の含有量は、全単量体単位に対して、好ましくは95.0モル%超であり、より好ましくは97.0モル%超であり、さらに好ましくは99.0モル%超である。
また、PVdFのVdF単位の含有量は、全単量体単位に対して、好ましくは95.0~99.999モル%であり、より好ましくは97.0モル%以上であり、さらに好ましくは98.5モル%以上であり、より好ましくは99.99モル%以下であり、さらに好ましくは99.90モル%以下である。
PVdFの重量平均分子量(ポリスチレン換算)は、好ましくは50000~3000000であり、より好ましくは80000以上であり、さらに好ましくは100000以上であり、特に好ましくは200000以上であり、より好ましくは2400000以下であり、さらに好ましくは2200000以下であり、特に好ましくは2000000以下である。重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用いて測定することができる。また、PVdFの重量平均分子量は、1000000以上であってもよく、1500000以上であってもよい。
PVdFの数平均分子量(ポリスチレン換算)は、好ましくは20000~1500000であり、より好ましくは40000以上であり、さらに好ましくは70000以上であり、特に好ましくは140000以上であり、より好ましくは1400000以下であり、さらに好ましくは1200000以下であり、特に好ましくは1100000以下である。数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。
PVdFの融点は、好ましくは100~240℃である。上記融点は、示差走査熱量測定(DSC)装置を用い、10℃/分の速度で昇温したときの融解熱曲線における極大値に対する温度として求めることができる。
結着剤は、含フッ素重合体として、PVdFならびにVdF単位およびVdF以外の他の単量体単位を含有する含フッ素共重合体を含有することも好ましい。
結着剤がPVdFおよび含フッ素共重合体を含有する場合、結着剤におけるPVdFと含フッ素共重合体との質量比(PVdF/含フッ素共重合体)は、好ましくは99/1~1/99であり、より好ましくは97/3~3/97であり、さらに好ましくは95/5~5/95であり、ことさらに好ましくは90/10~10/90であり、特に好ましくは85/15~15/85であり、最も好ましくは80/20~40/60である。
結着剤は、PVdFおよび含フッ素共重合体の他に、その他の重合体を含んでいてもよい。その他の重合体としては、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネート、スチレンゴム、ブタジエンゴム等が挙げられる。
結着剤における含フッ素共重合体の含有量としては、結着剤の質量に対し、好ましくは1質量%以上であり、より好ましくは3質量%以上であり、さらに好ましくは5質量%以上であり、特に好ましくは10質量%以上であり、最も好ましくは15質量%以上であり、100質量%以下であってよい。
本開示の組成物における結着剤の含有量としては、組成物の質量に対して、好ましくは0.1~20質量%であり、より好ましくは0.2~10質量%であり、さらに好ましくは0.5~3質量%である。
本開示の組成物の粘度は、好ましくは5~8000mPa・sであり、より好ましくは100~5000mPa・sであり、さらに好ましくは100~2000mPa・sである。上記粘度は、B型粘度計(ブルックフィールド社製、LV-DV2T)を用いて、25℃、ロータNo.SC4-21、回転速度20rpmの条件にて測定することができる。
(用途)
本開示の組成物は、電気化学デバイスの電極を形成するために好適に用いることができる。本開示の組成物は、電極形成用組成物であってよい。
本開示の組成物は、二次電池、キャパシタなどの電池の電極を形成する材料として好適に用いることができる。電池は、一次電池であってもよく、蓄電池(二次電池)または蓄電素子であってもよい。電池は非水電解液電池であってもよい。非水電解液電池には、電解液および発電素子を備える電池が全て含まれる。非水電解液電池としては、たとえば、リチウムイオン一次電池、リチウムイオン二次電池、ニッケル水素電池、リチウムイオンキャパシタ、電気二重層キャパシタ、ナトリウムイオン二次電池などが挙げられる。
本開示の組成物は、正極の作製に用いる正極形成用組成物であってもよく、負極の作製に用いる負極形成用組成物であってもよい。本開示の組成物から形成される電極材料層は、正極材料層であってもよいし、負極材料層であってもよい。
(その他の成分)
本開示の組成物は、粉末電極材料(ただし、前記単層カーボンナノチューブを除く)をさらに含有することが好ましい。
粉末電極材料は、電池に用いられる粉末電極材料であり、電極活物質を含むことが好ましい。電極活物質は、正極活物質および負極活物質に分けられる。
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものを用いることができ、リチウム複合酸化物が好ましく、リチウム遷移金属複合酸化物がより好ましい。上記正極活物質としては、リチウム含有遷移金属リン酸化合物も好ましい。上記正極活物質が、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物等の、リチウムと少なくとも1種の遷移金属を含有する物質であることも好ましい。
リチウム遷移金属複合酸化物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。上記置換したものとしては、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物、リチウム・マンガン・アルミニウム複合酸化物、リチウム・チタン複合酸化物等が挙げられ、より具体的には、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiMn1.8Al0.2、LiMn1.5Ni0.5、LiTi12、LiNi0.82Co0.15Al0.03等が挙げられる。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム含有遷移金属リン酸化合物の具体例としては、たとえば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
特に、高電圧、高エネルギー密度、あるいは、充放電サイクル特性等の観点から、LiCoO、LiNiO、LiMn、LiNi0.82Co0.15Al0.03、LiNi0.33Mn0.33Co0.33、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiFePOが好ましい。
また、リチウム遷移金属複合酸化物としては、リチウム・ニッケル系複合酸化物が好ましく、一般式(7):
一般式(7):LiNi1-x
(式中、xは、0.01≦x≦0.5、yは、0.9≦y≦1.2であり、Mは金属原子(但しLiおよびNiを除く)を表す。)
で表されるリチウム・ニッケル系複合酸化物がより好ましい。このようにニッケル含有率が高いリチウム遷移金属複合酸化物は、二次電池の高容量化に有益である。
一般式(7)において、xは、0.01≦x≦0.5を充足する係数であり、さらに高容量の二次電池を得ることができることから、好ましくは0.05≦x≦0.4であり、さらに好ましくは0.10≦x≦0.3である。
一般式(7)において、Mの金属原子としては、V、Ti、Cr、Mn、Fe、Co、Cu、Al、Zn、Mg、Ga、Zr、Si等が挙げられる。Mの金属原子としては、V、Ti、Cr、Mn、Fe、Co、Cu等の遷移金属、または、上記遷移金属と、Al、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Mg、Ga、Zr、Si等の他の金属との組み合わせが好ましい。
ニッケル含有率が高いリチウム遷移金属複合酸化物としては、LiNi0.80Co0.15Al0.05、LiNi0.82Co0.15Al0.03、LiNi0.33Mn0.33Co0.33、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、および、LiNi0.90Mn0.05Co0.05からなる群より選択される少なくとも1種が好ましく、LiNi0.82Co0.15Al0.03、LiNi0.6Mn0.2Co0.2、および、LiNi0.8Mn0.1Co0.1からなる群より選択される少なくとも1種がより好ましい。
また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
これら表面付着物質は、たとえば、溶媒に溶解または懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解または懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。
表面付着物質の量としては、正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での非水電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電剤との混合においても、均一に混合されやすいため好ましい。
正極活物質のタップ密度は、通常1.3g/cm以上、好ましくは1.5g/cm以上、さらに好ましくは1.6g/cm以上、最も好ましくは1.7g/cm以上である。正極活物質のタップ密度が上記下限を下回ると正極材料層形成時に、必要な分散媒量が増加すると共に、導電剤や共重合体の必要量が増加し、正極材料層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極材料層を形成することができる。タップ密度は一般に大きいほど好ましく特に上限はないが、大きすぎると、正極材料層内における非水電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、通常2.5g/cm以下、好ましくは2.4g/cm以下である。
正極活物質のタップ密度は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(たとえば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、最も好ましくは3μm以上で、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高嵩密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作製すなわち活物質と導電剤や共重合体等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引いたりする等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ正極活物質を2種類以上混合することで、正極作製時の充填性をさらに向上させることもできる。
なお、本開示におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、正極活物質の平均一次粒子径としては、通常0.01μm以上、好ましくは0.05μm以上、さらに好ましくは0.08μm以上、最も好ましくは0.1μm以上で、通常3μm以下、好ましくは2μm以下、さらに好ましくは1μm以下、最も好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、0.2m/g以上、好ましくは0.3m/g以上、さらに好ましくは0.4m/g以上で、4.0m/g以下、好ましくは2.5m/g以下、さらに好ましくは1.5m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極材料層形成時の塗布性に問題が発生しやすい場合がある。
BET比表面積は、表面積計(たとえば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、たとえば、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、また、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法等が挙げられる。
なお、本開示において、正極活物質は1種を単独で用いても良く、異なる組成または異なる粉体物性の2種以上を任意の組み合わせおよび比率で併用しても良い。
本開示の組成物が正極活物質を含有する場合、単層カーボンナノチューブの含有量は、正極活物質100質量部に対して、好ましくは0.001~10質量部である。
本開示の組成物が正極活物質を含有する場合、結着剤の含有量は、正極活物質100質量部に対して、好ましくは0.01~5.0質量部である。
負極活物質としては、Liと合金化した場合またはLiと結合した場合に、Li基準で2.5V以下の電位を示す負極活物質が挙げられる。
負極活物質として、金属を含有する負極活物質を用いることができる。負極活物質に含まれる金属は、通常、Li、Naなどのアルカリ金属と電気化学的に合金化可能な金属である。
負極活物質としては、Si、Zn、Sn、W、Al、Sb、Ge、Bi、InなどのLiと電気化学的に合金化可能な金属単体;Si、Zn、Sn、W、Al、Sb、Ge、Bi、Inなどを含む合金;リチウムアルミニウム合金、リチウムスズ合金などのリチウム合金;酸化錫や酸化ケイ素などの金属酸化物;チタン酸リチウム;などが挙げられる。負極活物質として、これらのなかから、1種または2種以上を用いることができる。
負極活物質としては、Si、Sn、V、NbおよびTiからなる群より選択される少なくとも1種の元素を含有する化合物が好ましく、Si(Si単体)、Siの酸化物、Siを含有する合金、Sn(Sn担体)、Snの酸化物およびSnを含有する合金がより好ましく、SiおよびSiO(0<x<2)からなる群より選択される少なくとも1種がさらに好ましい。
また、負極活物質として、黒鉛粉末などの炭素質材料を用いてもよい。炭素質材料は、金属を含有する負極活物質とともに用いることができる。炭素質材料としては、天然黒鉛、人造炭素質物質、人造黒鉛質物質、炭素質物質{たとえば天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、或いはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークスおよびこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ケッチェンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物(たとえば、軟ピッチから硬ピッチまでのコールタールピッチ、或いは乾留液化油等の石炭系重質油、常圧残油、減圧残油の直留系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、さらにアセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等のN環化合物、チオフェン、ビチオフェン等のS環化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクリロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂)およびこれらの炭化物、または炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-ヘキサン等の低分子有機溶媒に溶解させた溶液およびこれらの炭化物}を400から3200℃の範囲で一回以上熱処理された炭素質材料などが挙げられる。
負極合剤が金属を含有する負極活物質および炭素質材料を含有する場合、金属を含有する負極活物質と炭素質材料との質量比は、好ましくは1/99~99/1であり、より好ましくは5/95~95/5であり、さらに好ましくは10/10~90/10である。
本開示の組成物が負極活物質を含有する場合、単層カーボンナノチューブの含有量は、負極活物質100質量部に対して、好ましくは0.001~10質量部である。
本開示の組成物が負極活物質を含有する場合、結着剤の含有量は、正極活物質100質量部に対して、好ましくは0.01~20.0質量部である。
電極活物質(正極活物質または負極活物質)の含有量は、得られる電極の容量を増やすために、組成物中40質量%以上が好ましい。
上記粉末電極材料は、さらに導電剤を含んでもよい。導電剤としては、たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック類やグラファイト等の炭素材料、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン、グラフェン等が挙げられる。
組成物中の粉末電極材料(活物質および導電剤)と上述した共重合体との割合は、通常、質量比で80:20~99.5:0.5程度であり、粉体成分の保持、集電体への密着性、電極の導電性を考慮して決められる。
組成物は、たとえば、ポリアクリル酸、ポリメタクリレート、ポリメチルメタアクリレート等のアクリル系樹脂、ポリイミド、ポリアミドおよびポリアミドイミド系樹脂、スチレンゴム、ブタジエンゴム、スチレンブタジエンゴム等を含有してもよい。
組成物は、スラリー安定性を向上させるために、界面活性作用等を有する樹脂系やカチオン性界面活性剤、ノニオン性界面活性剤等の分散剤を含有してもよい。
組成物は、単層カーボンナノチューブ、結着剤および溶媒を混合することにより調製することができる。得られた組成物に対して、粉末電極材料をさらに分散または混合してもよい。そして、得られた組成物を、金属箔、金属網等の集電体に均一に塗布、乾燥、必要に応じてプレスして集電体上へ薄い電極材料層を形成し薄膜状電極とする。そのほか、単層カーボンナノチューブ、結着剤および粉末電極材料を先に混合した後、溶媒を添加し組成物を調製してもよい。
(電極)
本開示の電極は、集電体と電極材料層とを備えている。電極材料層は、本開示の組成物を用いて形成され、集電体の片面に設けられていてもよいし、両面に設けられていてもよい。本開示の電極は、正極材料層を備える正極であってもよいし、負極材料層を備える負極であってもよい。
本開示の電極は、本開示の組成物を用いて形成される電極材料層を備えるため、本開示の電極を電池に用いることによって、出力特性、サイクル特性および60℃貯蔵特性に優れ、ガス発生率が低減された電池を得ることができる。
電極材料層の密度は、好ましくは2.0~5.0g/cmであり、より好ましくは2.5~4.5g/cmである。
電極材料層の密度は、電極材料層の質量および体積から算出できる。
電極材料層の厚みは、より一層高い電池特性が得られることから、好ましくは20μm以上であり、より好ましくは30μm以上であり、さらに好ましくは40μm以上であり、特に好ましくは45μm以上であり、好ましくは170μm以下であり、より好ましくは150μm以下である。また、電極材料層の厚みは、85μm以下であってもよく、69μm未満であってもよい。
電極材料層の厚みは、マイクロメーターにより測定できる。本開示における電極材料層の厚みは、電極材料層が集電体の両面に設けられている場合には、片面当たりの厚みである。
本開示の電極が備える集電体としては、たとえば、鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等が挙げられ、なかでも、アルミニウム箔が好ましい。
本開示の電極は、本開示の組成物を集電体に塗布する製造方法により、好適に製造することができる。組成物を塗布した後、さらに、塗膜を乾燥させ、得られた乾燥塗膜をプレスしてもよい。
組成物の、集電体への塗布量としては、好ましくは10mg/cm以上であり、より好ましくは17.5mg/cm以上であり、好ましくは60mg/cm以下であり、より好ましくは50mg/cm以下である。組成物の塗布量は、単位面積当たりの組成物の乾燥重量である。
(二次電池)
また、本開示によれば、上記の電極を備える二次電池が提供される。
本開示の二次電池は、本開示の組成物を用いて形成される電極を備えるため、出力特性、サイクル特性および60℃貯蔵特性に優れ、ガス発生率が低い。
本開示の二次電池は、正極、負極、非水電解液を備え、正極および負極の一方または両方が、上記の電極であるものが好ましい。また、本開示の二次電池は、正極、負極、非水電解液を備え、正極が、上記の電極であるものが好ましい。また、正極と負極との間にセパレータを介在させてもよい。
非水電解液は、特に限定されないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の公知の溶媒の1種もしくは2種以上が使用できる。電解質も従来公知のものがいずれも使用でき、LiClO、LiAsF、LiPF、LiBF、LiCl、LiBr、CHSOLi、CFSOLi、炭酸セシウム等を用いることができる。
本開示の電極は、柔軟性および導電性に優れ、集電体と電極材料層とが十分に密着しているものであり、かつ、電池特性に優れた二次電池を形成することができるものであることから、捲回型二次電池用電極として、好適に利用できる。また、本開示の二次電池は、捲回型二次電池であってよい。
本開示の電極は、非水電解液二次電池用として、以上に説明した液状電解質を用いたリチウムイオン二次電池だけでなく、ポリマー電解質リチウム二次電池にも有用である。また、電気二重層キャパシタ用としても有用である。
以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
(含フッ素共重合体におけるVdF単位とTFE単位との比率)
含フッ素共重合体におけるVdF単位とTFE単位との比率は、NMR分析装置(アジレント・テクノロジー社製、VNS400MHz)を用いて、19F-NMR測定でポリマーのDMF-d溶液状態にて測定した。
19F-NMR測定にて、下記のピークの面積(A、B、C、D)を求め、VdF単位とTFE単位との比率を計算した。
A:-86ppm~-98ppmのピークの面積
B:-105ppm~-118ppmのピークの面積
C:-119ppm~-122ppmのピークの面積
D:-122ppm~-126ppmのピークの面積
VdF単位の割合:(4A+2B)/(4A+3B+2C+2D)×100[モル%]
TFE単位の割合:(B+2C+2D)/(4A+3B+2C+2D)×100[モル%]
(重量平均分子量)
ゲルパーミエーションクロマトグラフィ(GPC)により測定した。東ソー社製のHLC-8320GPCおよびカラム(SuperAWM-Hを3本直列に接続)を用い、溶媒としてジメチルホルムアミド(DMF)を流速0.3ml/分で流して測定したデータ(リファレンス:ポリスチレン)より、重量平均分子量を算出した。
(融点)
示差走査熱量測定(DSC)装置を用い、30℃から220℃まで10℃/分の速度で昇温し、その後10℃/分で30℃まで降下させ、再度10℃/分の速度で220℃まで昇温したときの融解熱曲線における極大値に対する温度を、融点として求めた。
(粘度)
組成物の粘度は、B型粘度計(ブルックフィールド社製、LV-DV2T)を用いて、25℃、ロータNo.SC4-21、回転速度20rpmの条件にて測定し、測定開始から10分経過後の測定値を粘度とした。
実施例および比較例では、結着剤として、次の物性を有する重合体を用いた。
含フッ素共重合体(A):VdF単位およびTFE単位を含有する含フッ素共重合体
VdF/TFE=81/19(モル%)
重量平均分子量 1230000
融点 128℃
PVdF(B):VdFホモポリマー
重量平均分子量 1800000
融点 171℃
また、実施例および比較例では、次の正極活物質を用いた。
NMC811:LiNi0.8Mn0.1Co0.1
また、実施例および比較例では、次の単層カーボンナノチューブを用いた。
単層カーボンナノチューブ(商品名「TUBALL BATT SWCNT」、OCSiAl社製)
平均外径:1.6±0.4nm
長さ:5μm以上
平均G/D比:86.5±7.1
実施例1
(組成物の調製)
単層カーボンナノチューブ、含フッ素共重合体(A)および3-メトキシ-N,N-ジメチルプロパンアミドを混合して、表1に記載の組成を有する組成物を調製した。得られた組成物の粘度を測定した。結果を表1に示す。
(正極合剤の調製)
得られた組成物とPVdF(B)とを、含フッ素共重合体(A)/PVdF(B)の質量比が表1に記載のとおりとなるように混合した。得られた混合液、NMC811、アセチレンブラックおよび3-メトキシ-N,N-ジメチルプロパンアミドを混合し、固形分濃度が71質量%の正極合剤を調製した。得られた正極合剤の組成を表1に示す。
(正極の作製)
得られた正極合剤を、正極集電体(厚さ20μmのアルミ箔)の片面に均一に塗布し、120℃で60分間乾燥させることにより、3-メトキシ-N,N-ジメチルプロパンアミドを完全に揮発させた後、ロールプレス機を用いて、10tの圧力を印加してプレスすることにより、正極材料層および正極集電体を備える正極を作製した。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性エマルジョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を用い、活物質、増粘剤、結着剤の固形分比が97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。負極合剤スラリーを、厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮成形して、負極とした。
(リチウムイオン二次電池の作製)
正極、負極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した。ついで、電解液(エチレンカーボネートとエチルメチルカーボネートを体積比3/7で混合した溶媒にLiPFを1モル/リットルの濃度で溶解し、さらにビニレンカーボネートを2質量%添加したもの)を1.2gそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
(出力特性)
上記で作製したリチウムイオン二次電池を、25℃において、0.2Cに相当する電流で4.2Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.2Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。ここで、1.0Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。初期放電容量の評価が終了した電池を、25℃にて、0.2Cの定電流で充電した後、5.0Cの定電流で3Vまで放電させた。初期放電容量に対する5.0Cの放電容量の割合を求め、これを5.0Cにおける放電容量比(%)とした。
(5.0Cの放電容量)÷(0.2Cの初期放電容量)×100=5.0Cの放電容量比(%)
比較例1の値を100として算出した結果を表1に示す。
(サイクル特性)
上記で作製したリチウムイオン二次電池を、25℃において、1.0Cに相当する電流で4.2VまでCC/CV充電(0.1Cカット)した後、1.0Cの定電流で3Vまで放電し、これを1サイクルとし放電容量から初期放電容量を求めた。再度サイクルを行い、300サイクル後の放電容量を測定した。初期放電容量に対する300サイクル後の放電容量の割合を求め、これを容量維持率(%)とした。
(300サイクル後の放電容量)÷(1.0Cの初期放電容量)×100=容量維持率(%)
比較例1の値を100として算出した結果を表1に示す。
(60℃貯蔵特性)
初期放電容量の評価が終了した電池を、再度4.2VまでCC/CV充電(0.1Cカット)をおこなった後、60℃7日間の条件で高温保存を行った。次に、25℃において0.2Cで3Vまで放電させ、高温保存後の残存容量を測定し、初期放電容量に対する残存容量の割合を求め、これを保存容量維持率(%)とした。
(残存容量)÷(初期放電容量)×100=保存容量維持率(%)
比較例1の値を100として算出した結果を表1に示す。
(ガス発生率)
初期放電容量の評価が終了した電池を、再度4.2VまでCC/CV充電(0.1Cカット)をおこなった後、60℃7日間の条件で高温保存を行った。電池を十分に冷却させた後、アルキメデス法により電池の体積を測定し、高温保存前後の体積変化から、ガス発生率を求めた。
ガス発生率(%)=(高温保存後の体積(ml))/(高温保存前の体積(ml))×100
比較例1の値を100として算出した結果を表1に示す。
実施例2~4、比較例1~2
結着剤の種類および量、ならびに、溶媒の種類を表1に記載のとおりに変更した以外は実施例1と同様にして、組成物を調製し、得られた組成物の粘度を測定した。結果を表1に示す。
さらに、実施例および比較例で調製した組成物を用いた以外は実施例1と同様にして、正極合剤の調製し、正極を作製し、実施例1と同様にして評価した。結果を表1に示す。
Figure 0007331276000010
実施例5
(組成物の調製)
単層カーボンナノチューブ、含フッ素共重合体(A)および3-メトキシ-N,N-ジメチルプロパンアミドを混合して、表2に記載の組成を有する組成物を調製した。得られた組成物の粘度を測定した。結果を表2に示す。
(負極合剤の調製)
得られた組成物とPVdF(B)とを、含フッ素共重合体(A)/PVdF(B)の質量比が表2に記載のとおりとなるように混合した。得られた混合液、黒鉛粉末および3-メトキシ-N,N-ジメチルプロパンアミドを混合し、負極合剤を調製した。得られた負極合剤の組成を表2に示す。
(負極材料層を備える負極の作製)
得られた負極合剤を、銅箔からなる負極集電体の片面に塗布し、これを乾燥した。これを所定の電極サイズに切り取り、ロールプレスを用いて圧延することにより、負極材料層および負極集電体を備える負極を作製した。
(正極の作製)
正極活物質にLiNi0.8Mn0.1Co0.1(NMC811)97質量部と、導電助剤にアセチレンブラック(AB)1.5質量部、結着剤にPVDF(B)8質量%NMP溶液1.5質量部を混合し、固形分濃度が71質量%の正極合剤を調製した。得られた正極合剤を、正極集電体(厚さ20μmのアルミ箔)の片面に均一に塗布し、120℃で60分間乾燥させることにより、N-メチル-2-ピロリドンを完全に揮発させた後、ロールプレス機を用いて、10tの圧力を印加してプレスすることにより、正極材料層および正極集電体を備える正極を作製した。
(リチウムイオン二次電池の作製)
正極、負極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した。ついで、電解液(エチレンカーボネートとエチルメチルカーボネートを体積比3/7で混合した溶媒にLiPFを1モル/リットルの濃度で溶解し、さらにビニレンカーボネートを2質量%添加したもの)を1.2gそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
(電池特性の測定)
上記で作製したリチウムイオン二次電池について、実施例1と同様にして、出力特性、サイクル特性、60℃貯蔵特性およびガス発生率を評価した。比較例3の値を100として算出した結果を表2に示す。
実施例6~10、比較例3~5
結着剤の種類および量、ならびに、溶媒の種類を表2に記載のとおりに変更した以外は実施例5と同様にして、組成物を調製し、得られた組成物の粘度を測定した。結果を表2に示す。
さらに、実施例および比較例で調製した組成物を用いた以外は実施例5と同様にして、負極合剤の調製し、負極を作製し、実施例5と同様にして評価した。比較例3の値を100として算出した結果を表2に示す。
Figure 0007331276000011

Claims (15)

  1. 単層カーボンナノチューブ、結着剤および溶媒を含有する、電気化学デバイスの電極を形成するために用いる組成物であって、前記結着剤が、ビニリデンフルオライド単位を含有する含フッ素重合体を含有し、前記溶媒が、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、アクリロイルモルフォリン、N-シクロヘキシル-2-ピロリドン、N-ビニル-2-ピロリドン、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N,N’,N’-テトラエチルウレア、N,N-ジメチルアセトアセタミド、N-オクチル-2-ピロリドンおよびN,N-ジエチルアセタミドからなる群より選択される少なくとも1種である組成物。
  2. 前記溶媒が、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドンおよびN-ブチル-2-ピロリドンからなる群より選択される少なくとも1種である請求項1に記載の組成物。
  3. 前記単層カーボンナノチューブの平均外径が、2.5nm以下である請求項1または2に記載の組成物。
  4. 前記単層カーボンナノチューブの平均G/D比が、2以上である請求項1または2に記載の組成物。
  5. 前記結着剤が、前記含フッ素重合体として、ポリビニリデンフルオライドを含有する請求項1または2に記載の組成物。
  6. 前記結着剤が、前記含フッ素重合体として、ビニリデンフルオライド単位およびビニリデンフルオライド以外の他の単量体単位を含有する含フッ素共重合体を含有する請求項1または2に記載の組成物。
  7. 他の単量体が、フッ素化単量体(ただし、ビニリデンフルオライドを除く)である請求項に記載の組成物。
  8. 他の単量体が、テトラフルオロエチレン、クロロトリフルオロエチレン、(メタ)アクリル酸、2,3,3,3-テトラフルオロプロペン、ヘキサフルオロプロピレン、および、フルオロアルキルビニルエーテルからなる群より選択される少なくとも1種である請求項に記載の組成物。
  9. 前記結着剤が、前記含フッ素重合体として、ポリビニリデンフルオライド、ならびに、ビニリデンフルオライド単位およびビニリデンフルオライド以外の他の単量体単位を含有する含フッ素共重合体を含有する請求項に記載の組成物。
  10. 前記ポリビニリデンフルオライドと前記含フッ素共重合体との質量比(ポリビニリデンフルオライド/含フッ素重合体)が、99/1~1/99である請求項に記載の組成物。
  11. 粉末電極材料(ただし、前記単層カーボンナノチューブを除く)をさらに含有する請求項1または2に記載の組成物。
  12. 前記粉末電極材料が、正極活物質として、リチウム複合酸化物を含有する請求項11に記載の組成物。
  13. 前記粉末電極材料が、Liと合金化した場合またはLiと結合した場合に、Li基準で2.5V以下の電位を示す負極活物質を含有する請求項11に記載の組成物。
  14. 集電体と、前記集電体の片面または両面に設けられており、請求項1または2に記載の組成物により形成された電極材料層と、を備える電極。
  15. 請求項14に記載の電極を備える二次電池。
JP2023001093A 2022-01-17 2023-01-06 組成物、電極および二次電池 Active JP7331276B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022005318 2022-01-17
JP2022005318 2022-01-17

Publications (2)

Publication Number Publication Date
JP2023104895A JP2023104895A (ja) 2023-07-28
JP7331276B2 true JP7331276B2 (ja) 2023-08-22

Family

ID=87279080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023001093A Active JP7331276B2 (ja) 2022-01-17 2023-01-06 組成物、電極および二次電池

Country Status (3)

Country Link
JP (1) JP7331276B2 (ja)
TW (1) TW202338864A (ja)
WO (1) WO2023136218A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507496A (ja) 2010-12-21 2014-03-27 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 粉末形態のポリマー/カーボンナノチューブ混合物の製造方法
CN107394202A (zh) 2017-08-22 2017-11-24 山东精工电子科技有限公司 一种高比能量锂离子电池及其制备方法
WO2021002369A1 (ja) 2019-07-01 2021-01-07 ダイキン工業株式会社 電気化学デバイス用組成物、正極合剤、正極構造体および二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507496A (ja) 2010-12-21 2014-03-27 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 粉末形態のポリマー/カーボンナノチューブ混合物の製造方法
CN107394202A (zh) 2017-08-22 2017-11-24 山东精工电子科技有限公司 一种高比能量锂离子电池及其制备方法
WO2021002369A1 (ja) 2019-07-01 2021-01-07 ダイキン工業株式会社 電気化学デバイス用組成物、正極合剤、正極構造体および二次電池

Also Published As

Publication number Publication date
JP2023104895A (ja) 2023-07-28
TW202338864A (zh) 2023-10-01
WO2023136218A1 (ja) 2023-07-20

Similar Documents

Publication Publication Date Title
JP7184076B2 (ja) カーボンナノチューブ分散液、二次電池電極用スラリー、二次電池電極用スラリーの製造方法、二次電池用電極および二次電池
JP5949915B2 (ja) 電極合剤
JP5949914B2 (ja) 電極合剤
WO2013111822A1 (ja) 結着剤、正極合剤及び負極合剤
JP7361116B2 (ja) 電気化学デバイス用組成物、正極合剤、正極構造体および二次電池
JP7212291B2 (ja) 電池用結着剤、電極合剤、電極および二次電池
JP2024026579A (ja) ポリビニリデンフルオライド、結着剤、電極合剤、電極および二次電池
US20240088392A1 (en) Electrode mixture, secondary battery, and composition
JP7331276B2 (ja) 組成物、電極および二次電池
JP7288216B2 (ja) 固体二次電池用スラリー、固体二次電池用層形成方法及び固体二次電池
JP7334721B2 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
JP7332970B2 (ja) 電気化学デバイス用組成物、電極および二次電池
JP7420978B2 (ja) 電気化学デバイス用組成物、電極および二次電池
JP7389397B1 (ja) 電極合剤、電極および二次電池
WO2023277055A1 (ja) 電極形成用組成物、電極および二次電池
JP2024074842A (ja) 電極合剤、電極および二次電池
JPWO2010082240A1 (ja) 複合酸化物およびその製造方法、ならびにその複合酸化物を用いた非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20230127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230809

R150 Certificate of patent or registration of utility model

Ref document number: 7331276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150