JP7347757B2 - 圧力スイング吸着装置用の増圧弁ユニット、圧力スイング吸着装置、圧力スイング吸着装置の制御方法 - Google Patents

圧力スイング吸着装置用の増圧弁ユニット、圧力スイング吸着装置、圧力スイング吸着装置の制御方法 Download PDF

Info

Publication number
JP7347757B2
JP7347757B2 JP2020040471A JP2020040471A JP7347757B2 JP 7347757 B2 JP7347757 B2 JP 7347757B2 JP 2020040471 A JP2020040471 A JP 2020040471A JP 2020040471 A JP2020040471 A JP 2020040471A JP 7347757 B2 JP7347757 B2 JP 7347757B2
Authority
JP
Japan
Prior art keywords
pressure
gas
increase valve
compressor
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020040471A
Other languages
English (en)
Other versions
JP2021142447A (ja
Inventor
宏光 矢嶋
知郁子 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Instruments Inc
Original Assignee
Kojima Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Instruments Inc filed Critical Kojima Instruments Inc
Priority to JP2020040471A priority Critical patent/JP7347757B2/ja
Publication of JP2021142447A publication Critical patent/JP2021142447A/ja
Application granted granted Critical
Publication of JP7347757B2 publication Critical patent/JP7347757B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、圧力スイング吸着(PSA:Pressure Swing Adsorption)装置用の増圧弁ユニット、PSA装置、および、PSA装置の制御方法に関する。
圧力スイング吸着装置(以下、PSA装置)は、原料ガスから特定のガスを吸着し目的のガスを生成する。PSA装置は、装置本体と圧縮機とを備える。装置本体は、ガス生成部とガス提供部とを備える。
ガス生成部は、特定のガスに対して高い吸着力を示す吸着剤が充填された吸着タンクを備える。ガス生成部は、原料ガスを吸着タンクに導入して吸着タンク内を加圧することで、原料ガス中の特定のガスを吸着剤に吸着させて目的のガスを生成し、また、吸着タンク内を減圧して、吸着剤に吸着したガスを吸着タンク外に放出させることで、吸着剤を再生させる。ガス生成部は、目的のガスの生成と吸着剤の再生を繰り返す。
特許文献1のPSA装置のガス生成部は、2つの吸着タンクを備え、一方の吸着タンクで目的のガスを生成しつつ他方の吸着タンクで吸着剤を再生し、これを所定の時間単位で交互に繰り返す。これにより、目的のガスを連続して生成することができる。特許文献2のPSA装置のガス生成部は、複数の吸着タンクで1つのグループを構成し、そのようなグループの増減によってガス生成能力を調整することができる。
ガス提供部は、ガス生成部によって生成された目的のガスをPSA装置の外部に提供する。ガス提供部は、目的のガスを貯留するバッファタンクなどを含む。
圧縮機は、原料ガスを圧縮してガス生成部に供給する。PSA装置では、各種の圧縮機が使用可能である。圧縮機は、一般的に、その吐出側の圧力が所定の圧力(アンロード開始圧力)に上昇すると、アンロード運転に移行する(例えば、特許文献3)。
圧縮機がアンロード運転に移行すると、その消費電力はロード運転に比べて小さくなる。しかしながら、この間、圧縮機は、圧縮された原料ガスを生成しない。したがって、アンロード運転への移行は、PSA装置全体としてみれば、エネルギーを無駄に消費しているといえる。
圧縮機がアンロード運転に移行しないようにしつつも、原料ガスを可能な限り高い圧力でガス生成部に供給できるようにすることが望ましい。したがって、PSA法によるガス生成の一連の工程において圧縮機の吐出側の最大圧力が上記アンロード開始圧力よりわずかに低くなるように調整されることが望ましい。しかしながら、圧縮機のメーカによって同一の出力でも圧縮された原料ガスの生成能力にばらつきがあり、上記のような調整は簡単ではない。
特開第2010-75778号公報 特開第2001-327829号公報 特開第2020-15021号公報
本発明は、圧縮機のアンロード運転への移行を防止してPSA装置の効率的な運転に貢献し得る増圧弁ユニットを提供することを目的する。また、本発明は、増圧弁ユニットを備えたPSA装置、および、増圧弁ユニットを用いたPSA装置の制御方法を提供することを目的とする。
本発明によれば、原料ガスを圧力スイング吸着装置の圧縮機から前記圧力スイング吸着装置のガス生成部へ中継するための増圧弁ユニットが提供され、
前記増圧弁ユニットは、
前記圧縮機から吐出された前記原料ガスを受け入れるための入口および前記原料ガスを前記ガス生成部へ送り出すための出口を備える第1流路と、
前記第1流路から分岐して再び前記第1流路に合流する第2流路と、
前記第2流路に設けられた増圧弁と、
前記圧縮機の吐出側の圧力を検出するための圧力検出手段と、
前記第2流路を開閉するための開閉手段と、を備え、
前記圧力検出手段が第1圧力を検出すると前記第2流路が前記開閉手段により開かれて、前記原料ガスが前記入口を通じて前記増圧弁に導入可能になりかつ前記増圧弁により増圧される前記原料ガスが前記出口を通じて放出可能になる。
前記圧力検出手段が、前記第2流路の開状態の時に、前記第1圧力未満である第2圧力を検出すると、前記第2流路が前記開閉手段により閉じられてよい。前記圧力検出手段は、前記第1圧力でONになり前記第2圧力でOFFになるヒステリシス特性を有する圧力センサでよい。前記増圧弁ユニットは、前記第2流路の分岐点と合流点との間において前記第1流路の逆流を防止する逆流防止手段をさらに備えてよい。
さらに、本発明によれば、PSA装置が提供され、
前記PSA装置は、
圧力スイング吸着法によって原料ガスから特定のガスを吸着して目的のガスを生成するガス生成部と、
前記原料ガスを圧縮して吐出する圧縮機であって、その吐出側の圧力がアンロード開始圧力に上昇するとアンロード運転に移行する圧縮機と、
前記原料ガスを前記圧縮機から前記ガス生成部へ中継するために前記圧縮機と前記ガス生成部とに接続された増圧弁ユニットと、を備え、
前記増圧弁ユニットは、
増圧弁と、
前記圧縮機の吐出側の圧力を検出するための圧力検出手段と、を備え、
前記圧力検出手段が、前記アンロード開始圧力未満である第1圧力を検出すると、前記圧縮機からの前記原料ガスを前記増圧弁に導入し前記増圧弁を作動させて、前記圧縮機の吐出側の圧力を低下させつつ前記増圧弁により増圧された前記原料ガスを前記ガス生成部へ供給する。
前記増圧弁ユニットは、前記増圧弁の作動時に、前記圧力検出手段が前記第1圧力未満である第2圧力を検出すると、前記原料ガスの前記増圧弁への導入を止め前記増圧弁を作動停止して、前記原料ガスを前記増圧弁に導入することなく前記圧縮機から前記ガス生成部へ中継してよい。前記ガス生成部は、前記特定のガスを前記目的のガスより優先的に吸着する吸着剤が充填された吸着タンクを複数備え、前記原料ガスをある吸着タンクに導入し当該ある吸着タンク内を加圧し前記特定のガスを当該ある吸着タンク内の前記吸着材に吸着させて前記目的のガスを生成しつつ、別の吸着タンクを減圧して当該別の吸着タンク内の前記吸着剤を再生する加圧・再生工程と、前記加圧・再生工程後に前記ある吸着タンクと前記別の吸着タンクとを均圧にする均圧工程と、を実施してよい。そして、前記増圧弁が前記加圧・再生工程の間に作動され、前記均圧工程の間に作動停止されてよい。
また、PSA装置を制御する制御方法が提供され、
前記制御方法は、
前記圧力検出手段が前記アンロード開始圧力未満である第1圧力を検出する前、前記原料ガスを前記増圧弁に導入することなく前記圧縮機から前記増圧弁ユニットを介して前記ガス生成部に供給し、
前記圧力検出手段が前記第1圧力を検出すると、前記原料ガスを前記圧縮機から前記増圧弁に導入し前記増圧弁を作動させて、前記圧縮機の吐出側の圧力を低下させつつ前記増圧弁により増圧された前記原料ガスを前記ガス生成部に供給し、
前記圧力検出手段が、前記増圧弁の作動時に、前記第1圧力未満である第2圧力を検出すると、前記増圧弁への前記原料ガスの導入を止め前記増圧弁を作動停止して、前記原料ガスを前記増圧弁に導入することなく前記圧縮機から前記増圧弁ユニットを介して前記ガス生成部へ供給する。
前記制御方法は、
前記圧縮機からの前記原料ガスをある吸着タンクに導入し当該ある吸着タンク内を加圧し前記特定のガスを当該ある吸着タンク内の前記吸着材に吸着させて前記目的のガスを生成しつつ、別の吸着タンクを減圧して当該別の吸着タンク内の前記吸着剤を再生する第1加圧・再生工程と、
前記圧縮機からの前記原料ガスを前記別の吸着タンクに導入し当該別の吸着タンク内を加圧し前記特定のガスを当該別の吸着タンク内の前記吸着材に吸着させて前記目的のガスを生成しつつ、前記ある吸着タンクを減圧して当該ある吸着タンク内の前記吸着剤を再生する第2加圧・再生工程と、
前記第1および第2加圧・再生工程後に、前記ある吸着タンクと前記別の吸着タンクとを均圧にする均圧工程を備え、
前記制御方法は、さらに、
前記増圧弁を、前記第1および第2加圧・再生工程の間に作動させ、前記均圧工程の間に作動停止してよい。
PSA装置は、圧力検出手段に代えて流量検出手段を用いてよい。前記増圧弁ユニットは、前記流量検出手段が、前記加圧・再生工程中の前記原料ガスの圧力の上昇に伴って前記原料ガスの流量が所定の流量まで低下したことを検出すると、前記圧縮機からの前記原料ガスを前記増圧弁に導入し前記増圧弁を作動させて、前記圧縮機の吐出側の圧力を低下させつつ前記増圧弁により増圧された前記原料ガスを前記ガス生成部へ供給する。ここで、前記所定の流量は、前記アンロード開始圧力に対応する流量より大きい。前記増圧弁ユニットは、前記均圧工程の開始に応答して、前記増圧弁を作動停止させてもよい。
本発明に係る増圧弁ユニットは、圧縮機のアンロード運転への移行を防止し、PSA装置の効率的な運転に貢献し得る。
本発明の例示のPSA装置の概略図である。 図1のPSA装置の増圧弁ユニットの概略図である。 圧力センサのヒステリシス特性を説明する。 図4A-図4Dは、ガス生成サイクルと圧力変化を示す。 図5A、図5Bは、風量と圧力の関係を示す。 比較例に係るPSA装置の概略図である。 ガス生成部の他の例示である。 本発明の別の例示のPSA装置の概略図である。
以下、図面を参照して、本発明の実施形態が説明される。図1は、例示のPSA装置を示す。PSA装置は、PSA法によって、原料ガスから特定のガスを吸着して、目的のガスを生成する。例えば、PSA装置は、空気を原料ガスとする。この場合、PSA装置は、窒素を吸着して酸素を生成する酸素PSA装置、酸素を吸着して窒素を生成する窒素PSA装置、及び、水分を吸着してドライエアを生成するPSAドライヤなどがある。
PSA装置は、装置本体1と、圧縮機2と、増圧弁ユニット3とを備える。装置本体1は、PSA法により原料ガスから特定のガスを吸着して目的のガスを生成するガス生成部10と、ガス生成部10により生成された目的のガスを製品ガスとして貯留しかつ外部に提供するガス提供部11とを備える。
ガス生成部10は、互いに並列する複数の吸着タンクT1,T2(実施形態では2つ)を備える。不図示の吸着剤が吸着タンクT1,T2内に充填されている。吸着剤は、特定のガスを目的のガス(製品ガス)より優先して吸着する性質を有する。酸素PSA装置の場合、例えば、窒素ガスを酸素ガスより優先して吸着するゼオライト吸着剤が用いられる。窒素PSA装置の場合、例えば、酸素ガスを窒素ガスより優先して吸着する分子篩活性炭吸着剤が用いられる。PSAドライヤの場合、乾燥剤が吸着剤として用いられる。
ガス生成部10は、吸着タンクT1,T2のそれぞれの一次側に接続された第1流路群12と、吸着タンクT1,T2のそれぞれの二次側に接続された第2流路群13と、第1および第2流路群12,13の所定の位置に設けられた複数の開閉弁SV1-SV8を備える。第1流路群13は、原料ガスを取り込むための入口14および特定のガスを外部に排出するため排出口15を含む。
ガス提供部11は、第2流路群13から延長する流路16と、当該流路16に設けられて第2流路群13からの目的のガスを貯留するバッファタンクBTなどを備える。流路16は、目的のガスを製品ガスとして外部に提供するための製品出口17を含む。実施形態では、ガス生成部10の入口14およびガス提供部11の製品出口17は、装置本体1の入口および製品出口として機能する。
装置本体1(10,11)の構造は、特許文献1などと同様の構成であるためその詳細は省略される。
図1、図4Aを参照して、ガス生成部10が原料ガスからPSA法で目的のガスを生成する方法について説明される。図4A<1>において、開閉弁SV1-SV8のうち、開状態のものは白塗り、閉状態のものは黒塗りされている。
<1>の通り、開閉弁SV1の開により、原料ガスが後述の圧縮機2からガス生成部10に供給され、吸着タンクT1に導入されて、吸着タンクT1内の圧力が次第に上昇し、所定の圧力を超えると、原料ガス中の特定のガスが吸着剤に吸着されて、目的のガスが生成され始める。このとき、開閉弁SV5が開かれているが、吸着タンクT1内の圧力がバッファタンクBT内の圧力を超えるまでバッファタンクBTへは流れない。一方、開閉弁SV4の開により吸着タンクT2内が減圧されて、吸着タンクT2内の吸着剤に吸着された特定のガスは脱着され、吸着タンクT2から排出口15から放出される。すなわち、吸着剤の再生が行われている。
<2>の通り、吸着タンクT1内の圧力がバッファタンクBT内の圧力を超えると、目的のガスは、吸着タンクT1の2次側から第2流路群13を通じてバッファタンクBTへ流れ、それから、製品ガスとして製品出口17を通じて外部へ提供される。一方、吸着タンクT2では、吸着剤の再生が継続している。図4A<1><2>は、以下、第1加圧・再生工程と称する。
<3>の通り、第1加圧・再生工程後、ガス生成部10は、開閉弁SV1,SV4,SV5を閉じ、開閉弁SV7,SV8を開き、吸着タンクT1,T2を互いに連通させて、両吸着タンクT1,T2を均圧にする。図4<3>は、以下で均圧工程と称する。
<4><5>の通り、均圧工程後に、ガス生成部10は、開閉弁SV1-SV8の制御によって、今度は、圧縮機2からの原料ガスを吸着タンクT2に導入して吸着タンクT2内を加圧し目的のガスを生成する一方で、吸着タンクT1内を減圧して吸着タンクT1内の吸着剤を再生する。図4A<4><5>は、第2加圧・再生工程とされる。
<6>の通り、第2加圧・再生工程後に再び均圧工程が実施される。したがって、ガス生成部10は、図4A<1>-<3>および<4>―<6>をそれぞれ半サイクルとし、<1>-<6>を1サイクルとし、これを繰り返し、連続的に目的のガスを生成する。
図1の通り、圧縮機2は、後述の増圧弁ユニット3を介してガス生成部10に接続されている。圧縮機2は、原料ガスを、取り込み、圧縮し、吐出するように構成されている。また、圧縮機2は、その吐出側の圧力(すなわち、吐出される圧縮された原料ガスの圧力)が所定の圧力(以下、アンロード開始圧力とする)に上昇するとアンロード運転に移行するように構成されている。
圧縮機2として、例えば、特許文献3に開示されているものが用いられてよい。圧縮機2は、原料ガスを圧縮するように(圧縮された原料ガスを生成するように)構成された圧縮部20と、原料ガスを圧縮部20に取り込むための不図示の吸気口と、圧縮された原料ガスを外部へ吐出するための吐出口21とを有する。圧縮部20は、原料ガスの圧縮のための駆動源となるモータまたはエンジンなどを含む。
圧縮機2は、その吐出側の圧力がアンロード開始圧力にまで上昇すると、不図示の吸気制御弁を閉じて吸気口を閉じ、それにより圧縮部20に対する吸気を停止し、原料ガスの圧縮(圧縮された原料ガスの生成)を停止する。一方で、圧縮機2は、圧縮部20のモータまたはエンジンなどの駆動源を完全に停止しない。こうして、アンロード運転(無負荷運転・空転)が実施される。
圧縮機2は、上記の他、供給する原料ガスの量に応じてモータの回転数を制御可能なインバータ式であってもよい。圧縮機2は、その他に周知の様々のものが採用されてよい。
増圧弁ユニット3は、図1の通り、原料ガスを圧縮機2からガス生成部10へ中継するために圧縮機2とガス生成部10とに接続されている。増圧弁ユニット3は、筐体30と、第1流路31、第2流路32とを含む。第1流路31は、原料ガスを圧縮機2から受け入れるために圧縮機2の吐出口21に接続された入口33と、原料ガスをガス生成部10へ送り出すためにガス生成部10の入口14に接続された出口34とを含む。第2流路32は、第1流路31から分岐して再び第1流路32に合流する。
図2を通り、増圧弁ユニット3は、さらに、第2流路32に設けられた増圧弁35を備える。増圧弁35は、公知のものが利用されてよい。増圧弁35は、その一次側(入口33側)に原料ガスが導入されたときに作動して、その二次側(出口34側)において原料ガスを増圧するものである。増圧弁35として、周知のものを用いることができる。
さらに、増圧弁ユニット3は、圧縮機2の吐出側の圧力を検出するための圧力検出手段を備える。実施形態の圧力検出手段は、圧力センサ36である。第2流路32の分岐点320より上流で第1流路31に接続され、圧縮機2の吐出側(増圧弁35の一次側)の圧力を検出する。圧力センサ36は、上記アンロード開始圧力未満である第1圧力P1と、第1圧力P1未満である第2圧力P2とを少なくとも検出することができるように構成されている。圧力センサ36は、周知のものが用いられてよい。例えば、図3の通り、第1圧力P1でONになり、ONになった後に第2圧力P2でOFFになるヒステリシス特性を有するものでよい。
さらに、増圧弁ユニット3は、第2流路32を開閉するための開閉手段を備える。実施形態の開閉手段は、開閉弁37であり、増圧弁35より上流において第2流路32に設けられている。
さらに、増圧弁ユニット3は、第2流路32の分岐点320と合流点321との間において第1流路31の逆流を防止する逆流防止手段を備える。実施形態の逆流防止手段は、逆止弁38であり、分岐点320と合流点321との間で第1流路31に設けられている。
増圧弁ユニット3は、通常、第2流路32を開閉弁37によって閉じている。このとき、原料ガスは、入口33を通じて導入され、第2流路32を経ることなく(増圧弁35を作動させることなく)第1流路31を流れ、出口34を通じて放出可能である。
増圧弁ユニット3は、圧力センサ36が第1圧力P1を検出すると、開閉弁37を開きそれにより第2流路32を開く。これにより、原料ガスが入口33を通じて増圧弁35の一次側に導入可能になり(増圧弁35が原料ガスを動力として作動可能になり)、かつ、増圧弁35によって増圧される増圧弁35の二次側の原料ガスが出口34を通じて放出可能となる。なお、逆止弁38は、二次側において増圧された原料ガスが、第1流路31を逆流することを防止する。
圧力センサ36が、第2流路32の開状態の時(増圧弁35の作動時)に、第2圧力P2を検出すると、増圧弁ユニット3は、開閉弁37を閉じて第2流路32を閉じる。これにより、再び、原料ガスが入口33を通じて増圧弁35を経由させることなく第1流路31を流れ、出口34を通じて放出可能となる。
図4A,C,Dを参照して、PSA装置全体の制御方法が説明される。図4Cは、圧縮機2の吐出側の圧力変化を示し、図4Dは、加圧される吸着タンクT1またはT2の圧力変化を示す。図4C,Dにおいて、アンロード開始圧力は0.8Mpa、第1圧力P1は、0.8MPaよりわずかに小さい0.78Mpaに、第2圧力は0.55Mpaに設定されているものとする。なお、これらの値は、例示にすぎない。以下の増圧弁ユニット3の各構成要素の動作制御は、増圧弁ユニット3中の不図示の制御部(例えばPLCなど)によって行われている。
圧縮機2が、圧縮された原料ガスを、増圧弁ユニット3を介してガス生成部10に供給する。ガス生成部10が、圧縮機2からの原料ガスを用いて第1加圧・再生工程(図4A<1><2>)を実施する。圧力が、第1加圧・再生工程の開始とともに上昇し始める(図4C,D参照)。第1加圧・再生工程の開始において、圧縮機2の吐出側の圧力は第1圧力P1より小さく、増圧弁ユニット3は、第2流路32を閉じており、増圧弁35を作動させることなく原料ガスを圧縮機2からガス生成部10に中継するだけである。
圧縮機2の吐出側の圧力がP1に上昇すると、これが圧力センサ36によって検出される。すると、増圧弁ユニット3は、開閉弁37を開いて第2流路32を開き、圧縮機2からの原料ガスを増圧弁35に導入して増圧弁35を作動させる。増圧弁35への原料ガスの導入により、吐出側の圧力が減少する(図4C)。そして、原料ガスは、増圧弁35の作動によって増圧弁35の二次側で増圧され、出口34を通じてガス生成部10に供給され、吸着タンクT1に導入される。すなわち、吐出側の圧力は減少するものの、吸着タンクT1内の圧力は緩やかではあるが上昇し続ける(図4D)。したがって、アンロード開始圧力を超える圧力を吸着タンクT1に提供することも可能である。
原料ガスの一部が増圧弁35の作動に用いられるので、圧縮機2からの全原料ガスがガス生成部10へ供給されるわけではないが、原料ガスの一部を増圧した状態で供給することができる。圧縮機2からガス生成部10への原料ガスの供給割合は、増圧弁35などの性能に依存する。
その後に、ガス生成部10は、均圧工程を実施する(図4A<3>)。このときに、圧力降下が生じ、第2圧力P2(<P1)が圧力センサ36によって検出される。すると、増圧弁ユニット3は、開閉弁37を閉じて第2流路32を閉じて、増圧弁35を作動停止させる。
次いで、ガス生成部10は、第2加圧・減圧工程および均圧工程(図4A<3>-<6>)を実施する。このときの増圧弁ユニット3の作動は先の半サイクルと同じであるのでその説明は省略される。
以上のように、実施形態は、増圧弁ユニット3を用いて、圧縮機2がアンロード運転に移行することを防止しつつ、増圧弁35により増圧された原料ガスをガス生成部10に供給する。
図4B、図6は、増圧弁ユニット3を含まない比較例を示す。図6は、従来の構成と同様であるため同様の符号を付しその説明は省略される。圧縮機2が、図4Bの通りアンロード運転に移行してしまうと、その消費電力は全ロード運転時よりも減少する。とわいえ、圧縮された原料ガスを生産することなく運転が継続されていることから、無駄に電力を消費しているといえる。
例えば、非インバータ式の圧縮機では、アンロード運転時の消費電力は、一般的に、全ロード運転時の約70%であり、全ロード運転時の約70%もの電力を無駄に消費している。また、インバータ式の圧縮機では、アンロード運転時の消費電力は、一般的に、全ロード運転時の約30%の消費電力であり、非インバータ式より低いものの、全ロード運転時の約30%もの電力を無駄に消費している。
一方、増圧弁ユニット3は、圧縮機2がアンロード運転に移行して圧縮された原料ガスを全く生成しない状態をなくすことができるので、PSA装置の効率的に実施に貢献し得る。
図5A,図5Bは、比較例(図5A)と本願の実施形態(図5B)におけるガス生成部10への風量と圧力の関係を、アンロード開始圧力を0.80Mpaとして示す。本願の実施形態は、風量増S1から風量減S2の差分を、アンロード開始圧力よりも大きい圧力で提供することができる。
増圧弁ユニット3は、既存のPSA装置に組み込んで使用することができるという利点がある。なお、増圧弁ユニット3は、図7および特許文献2に示されるように、複数の吸着タンク(実施形態では2つ)で1つのグループを構成し、そのようなグループU1-U5の増減によってガス生成能力を調整することができる装置本体1のガス生成部10に適用されてもよい。また、増圧弁ユニット3は、図1のように装置本体1とは別体として設けられてもよいし、装置本体1内に設けられてもよい。
工場の省エネ対策として、圧縮空気(原料ガスの一例)の低圧化が一般的になっている。工場の圧縮空気の圧力が、装置本体1が必要とする設計圧力に満たない時でも、本機能により、工場の圧縮空気を、増圧弁ユニット3を用いて、装置本体1が必要とする設計圧力まで昇圧して供給する事ができる。増圧弁ユニット3の仕組みにより、増圧弁の作動させるために圧縮空気を余分に使用することとなるが、PSA装置専用の圧縮機を購入する既存の方法と、圧縮機の設置面積、整備費用等を含めた工場全体としての設備費用の低減が見込まれるメリットとを鑑み、顧客が選択できるようにしてよい。
上記から明らかなように、第1圧力P1は、アンロード開始圧力未満に設定されるものであるが、アンロード開始圧力に近い値に設定されることが好ましい。例えば、第1圧力P1は、好ましくはアンロード開始圧力の80%以上に、より好ましくは90%以上の値に設定される。当然、第1圧力P1がアンロード開始圧力の80%未満の値に設定されてもよい。
<実験例>
ガス発生装置としての性能の1つとして、JIS B9951 5.2.2項にて、製品ガスの回収率が明記されている。製品ガスの回収率(%)は、(製品として取り出された目的のガス体積)÷(原料に含まれる目的のガス体積)×100とされる。単純に、回収率を固定すると、(原料に含まれる目的のガス体積)(分母)を増量すれば、(製品として取り出された目的のガス体積)(分子)が増える。原料ガスを空気とすると、原料の空気の体積を増量すれば、製品ガスも増量する。増圧弁ユニットは、圧縮機が圧縮空気を生成していない状態(アンロード運転)を無くし、圧縮空気の増量により目的のガスを増量できる。すなわち、増圧弁ユニットの機能により、圧縮機はアンロード運転に移行することなく全運転し続け、圧縮空気を増量させ、結果的に、製品ガスを増量させる。
増圧弁ユニットを含まない比較例のPSA装置と、増圧弁ユニットを含む本願の実施形態のPSA装置とで、実験を行った。原料ガスは空気であり、目的のガス(製品ガス)は窒素とした。
理論値
圧縮機の風量 1600L/分(26.6L/秒)
窒素ガスの回収率 約20% (空気比)
窒素純度 (窒素+アルゴン)99.99%条件
60秒の周期(図4Aの半サイクル)毎に加圧と減圧を交互に繰り返す。
増圧弁ユニットなし(比較例)
圧縮機のアンロード運転 7秒/分
圧縮機の圧縮空気生成量 (60秒-7秒)×26.6L/秒=1410L/分
窒素ガス発生量 1410×20%=282L/分
増圧弁ユニットあり(本願の実施形態)
圧縮機のアンロード時間 無し
増圧弁の駆動時間 7秒/分
7秒間の増圧弁による圧縮空気量
増圧弁を作動させる為に消費する空気量は供給空気量の約50%
26.6L/秒×7秒×50%≒93L/分増加
全運転時間(53秒)の空気生成量1410L/分に増量分を足すと1503L/分となる。
窒素ガス発生量 1503×20%=300.6L/分
窒素ガス取出量の増加
300.6L/分-282L/分=18.6L/分
百分率での増加は、106%となる。
したがって、増圧弁ユニットを用いることで、窒素ガス(目的のガス)の取出量が約6%増加した。これは、比較例では、圧縮機が、半サイクルの度にアンロード運転に移行し、約7秒間、圧縮空気を全く生成せず、一方の本願の実施形態では、圧縮機が、アンロード運転に移行せず、圧縮空気を常時生成しているからである。
消費電力について考察すると、比較例では、アンロード時間(秒)は,前述した圧力スイングの周期(60秒)に対し、11.6%=(7/60)×100であり、圧縮機の動作時間中、約11%の動作時間は、窒素ガスの生成に使用されていない。この間、圧縮機は無駄に運転されていることになる。アンロード運転への移行により、圧縮機の消費電力が全ロード運転時の70%程度であると仮定すると、以下の式の通り、全電力消費量のうち約8.46%の電力が,無駄に消費されていることになる。
(7秒×70%)/{(53秒×100%)+(7秒×70%)}×100=8.46%
一方、本願の実施形態では、比較例において無駄に消費されていた約8.46%の電力を圧縮空気の生成に有効に利用することできる。従って、電力を無駄なく消費することができる。
図8は、別の例示のPSA装置を示す。増圧弁ユニット3は、圧力検出手段(圧力センサ36)に代えて、圧縮機2からガス生成部10へ流れる原料ガスの流量(風量)を検出するための流量検出手段として、流量センサ39を備える。流量センサ39は、周知のものが用いられてよい。
ガス生成部10が第1/第2加圧・再生工程(図4A<1><2>/<4><5>)を実施すると、図4C,Dの通り、圧縮機2の吐出側の圧力および吸着タンクT1/T2の圧力が上昇する。圧力の上昇に伴い、圧縮機2からの原料ガスの流量は次第に減少する。すなわち、第1/第2加圧・再生工程を実施中において、原料ガスの圧力と流量に反比例の関係があり、したがってアンロード開始圧力に対応する流量(アンロード開始流量と称する)がある。
第1/第2加圧・再生工程中の吐出側および吸着タンクT1/T2内の原料ガスの圧力の上昇に伴って原料ガスの流量が低下していく。原料ガスが、アンロード開始流量より大きい所定の流量にまで低下すると、これが流量センサ39によって検出される。
この検出を受けて、増圧弁ユニット3は、先の実施形態と同様に、開閉弁37を開いて第2流路32を開き、圧縮機2からの原料ガスを増圧弁35に導入して増圧弁35を作動させ、それによって、圧縮機2の吐出側の圧力を低下させつつ増圧弁35により増圧された原料ガスをガス生成部10へ供給する。
その後、ガス生成部10は、均圧工程(図4A<3>/<6>)を実施する。増圧弁ユニット3は、ガス生成部10が均圧工程を開始することに応答して、開閉弁37を閉じて第2流路32を閉じて、増圧弁35を作動停止させる。均圧工程は、開閉弁SV7,SV8(均圧弁とも称される)を開くことによって開始される。したがって、例えば、増圧弁ユニット3は、開閉弁SV7/SV8の閉から開への切り替えに応答して、増圧弁35を作動停止させてよい。
この実施形態でも、先に実施形態と同様に、圧縮機2のアンロード運転への移行を防止でき、PSA装置の効率的な運転を可能にし得る。なお、均圧工程の開始(均圧弁の開)に応答して増圧弁35を作動停止させる構成は、圧力センサ36を用いた先に実施形態で採用されてもよい。前記所定の流量は、上述の段落0057欄に記載した第1圧力P1の範囲に対応する流量の範囲で設定されることが好ましいが、これに限定されるものではない。
1 装置本体
10 ガス生成部
T1,T2 吸着タンク
2 圧縮機
3 増圧弁ユニット
31 第1流路
32 第2流路
320 分岐点
321 合流点
33 入口
34 出口
35 増圧弁
36 圧力検出手段としての圧力センサ
37 開閉手段としての開閉弁
38 逆流防止手段としての逆止弁
39 流量検出手段としての流量センサ
P1 第1圧力
P2 第2圧力

Claims (11)

  1. 原料ガスを圧力スイング吸着装置の圧縮機から前記圧力スイング吸着装置のガス生成部へ中継するための増圧弁ユニットであって、
    前記圧縮機から吐出された前記原料ガスを受け入れるための入口および前記原料ガスを前記ガス生成部へ送り出すための出口を備える第1流路と、
    前記第1流路から分岐して再び前記第1流路に合流する第2流路と、
    前記第2流路に設けられた増圧弁と、
    前記圧縮機の吐出側の圧力を検出するための圧力検出手段と、
    前記第2流路を開閉するための開閉手段と、を備え、
    前記圧力検出手段が第1圧力を検出すると前記第2流路が前記開閉手段により開かれて、前記原料ガスが前記入口を通じて前記増圧弁に導入可能になりかつ前記増圧弁により増圧される前記原料ガスが前記出口を通じて放出可能になる、
    ことを特徴とする増圧弁ユニット。
  2. 前記圧力検出手段が、前記第2流路の開状態の時に、前記第1圧力未満である第2圧力を検出すると、前記第2流路が前記開閉手段により閉じられる、
    請求項1に記載の増圧弁ユニット。
  3. 前記圧力検出手段は、前記第1圧力でONになり前記第2圧力でOFFになるヒステリシス特性を有する圧力センサである、
    請求項2に記載の増圧弁ユニット。
  4. 前記第2流路の分岐点と合流点との間において前記第1流路の逆流を防止する逆流防止手段をさらに備える、
    請求項1から請求項3のいずれか1項に記載の増圧弁ユニット。
  5. 圧力スイング吸着法によって原料ガスから特定のガスを吸着して目的のガスを生成するガス生成部と、
    前記原料ガスを圧縮して吐出する圧縮機であって、その吐出側の圧力がアンロード開始圧力に上昇するとアンロード運転に移行する圧縮機と、
    前記原料ガスを前記圧縮機から前記ガス生成部へ中継するために前記圧縮機と前記ガス生成部とに接続された増圧弁ユニットと、を備え、
    前記増圧弁ユニットは、
    増圧弁と、
    前記圧縮機の吐出側の圧力を検出するための圧力検出手段と、を備え、
    前記圧力検出手段が前記アンロード開始圧力未満である第1圧力を検出すると、前記圧縮機からの前記原料ガスを前記増圧弁に導入し前記増圧弁を作動させて、前記圧縮機の吐出側の圧力を低下させつつ前記増圧弁により増圧された前記原料ガスを前記ガス生成部へ供給する、
    ことを特徴とする圧力スイング吸着装置。
  6. 前記増圧弁ユニットは、前記増圧弁の作動時に、前記圧力検出手段が前記第1圧力未満である第2圧力を検出すると、前記原料ガスの前記増圧弁への導入を止め前記増圧弁を作動停止して、前記原料ガスを前記増圧弁に導入することなく前記圧縮機から前記ガス生成部へ中継する、
    請求項5に記載の圧力スイング吸着装置。
  7. 前記ガス生成部は、
    前記特定のガスを前記目的のガスより優先的に吸着する吸着剤が充填された吸着タンクを複数備え、
    前記原料ガスをある吸着タンクに導入し当該ある吸着タンク内を加圧し前記特定のガスを当該ある吸着タンク内の前記吸着材に吸着させて前記目的のガスを生成しつつ、別の吸着タンクを減圧して当該別の吸着タンク内の前記吸着剤を再生する加圧・再生工程と、
    前記加圧・再生工程後に前記ある吸着タンクと前記別の吸着タンクとを均圧にする均圧工程と、を実施し、
    前記増圧弁は、前記加圧・再生工程の間に作動され、前記均圧工程の間に作動停止される、
    ことを特徴とする請求項6に記載の圧力スイング吸着装置。
  8. 圧力スイング吸着装置を制御する制御方法であって、
    前記圧力スイング吸着装置は、
    圧力スイング吸着法によって原料ガスから特定のガスを吸着して目的のガスを生成するガス生成部と、
    前記原料ガスを圧縮して吐出する圧縮機であって、その吐出側の圧力がアンロード開始圧力に上昇するとアンロード運転に移行する圧縮機と、
    前記原料ガスを前記圧縮機から前記ガス生成部へ中継するために前記圧縮機と前記ガス生成部とに接続された増圧弁ユニットと、を備え、
    前記増圧弁ユニットは、
    増圧弁と、
    前記圧縮機の吐出側の圧力を検出するための圧力検出手段と、を備え、
    前記制御方法は、
    前記圧力検出手段が前記アンロード開始圧力未満である第1圧力を検出する前、前記原料ガスを前記増圧弁に導入することなく前記圧縮機から前記増圧弁ユニットを介して前記ガス生成部に供給し、
    前記圧力検出手段が前記第1圧力を検出すると、前記原料ガスを前記圧縮機から前記増圧弁に導入し前記増圧弁を作動させて、前記圧縮機の吐出側の圧力を低下させつつ前記増圧弁により増圧された前記原料ガスを前記ガス生成部に供給し、
    前記圧力検出手段が前記増圧弁の作動時に前記第1圧力未満である第2圧力を検出すると、前記増圧弁への前記原料ガスの導入を止め前記増圧弁を作動停止して、前記原料ガスを前記増圧弁に導入することなく前記圧縮機から前記増圧弁ユニットを介して前記ガス生成部へ供給する、
    ことを特徴とする制御方法。
  9. 前記ガス生成部は、
    前記特定のガスを前記目的のガスより優先的に吸着する吸着剤が充填された吸着タンクを複数備え、
    前記制御方法は、
    前記圧縮機からの前記原料ガスをある吸着タンクに導入し当該ある吸着タンク内を加圧し前記特定のガスを当該ある吸着タンク内の前記吸着材に吸着させて前記目的のガスを生成しつつ、別の吸着タンクを減圧して当該別の吸着タンク内の前記吸着剤を再生する第1加圧・再生工程と、
    前記圧縮機からの前記原料ガスを前記別の吸着タンクに導入し当該別の吸着タンク内を加圧し前記特定のガスを当該別の吸着タンク内の前記吸着材に吸着させて前記目的のガスを生成しつつ、前記ある吸着タンクを減圧して当該ある吸着タンク内の前記吸着剤を再生する第2加圧・再生工程と、
    前記第1および第2加圧・再生工程後に、前記ある吸着タンクと前記別の吸着タンクとを均圧にする均圧工程を備え、
    前記制御方法は、さらに、
    前記増圧弁を、前記第1および第2加圧・再生工程の間に作動させ、前記均圧工程の間に作動停止する、
    請求項8に記載の制御方法。
  10. 圧力スイング吸着法によって原料ガスから特定のガスを吸着して目的のガスを生成するガス生成部と、
    前記原料ガスを圧縮して吐出する圧縮機であって、その吐出側の圧力がアンロード開始圧力に上昇するとアンロード運転に移行する圧縮機と、
    前記原料ガスを前記圧縮機から前記ガス生成部へ中継するために前記圧縮機と前記ガス生成部とに接続された増圧弁ユニットと、を備え、
    前記ガス生成部は、
    前記特定のガスを前記目的のガスより優先的に吸着する吸着剤が充填された吸着タンクを複数備え、
    前記原料ガスをある吸着タンクに導入し当該ある吸着タンク内を加圧し前記特定のガスを当該ある吸着タンク内の前記吸着材に吸着させて前記目的のガスを生成しつつ、別の吸着タンクを減圧して当該別の吸着タンク内の前記吸着剤を再生する加圧・再生工程と、
    前記加圧・再生工程後に前記ある吸着タンクと前記別の吸着タンクとを均圧にする均圧工程と、を実施し、
    前記増圧弁ユニットは、
    前記増圧弁と、
    前記圧縮機から前記ガス生成部へ流れる前記原料ガスの流量を検出するための流量検出手段と、を備え、
    前記流量検出手段が、前記加圧・再生工程中の前記原料ガスの圧力の上昇に伴って前記原料ガスの流量が所定の流量まで低下したことを検出すると、前記圧縮機からの前記原料ガスを前記増圧弁に導入し前記増圧弁を作動させて、前記圧縮機の吐出側の圧力を低下させつつ前記増圧弁により増圧された前記原料ガスを前記ガス生成部へ供給するものであり、
    前記所定の流量は、前記アンロード開始圧力に対応する流量より大きい、
    ことを特徴とする圧力スイング吸着装置。
  11. 前記増圧弁ユニットは、前記均圧工程の開始に応答して前記増圧弁を作動停止する、
    請求項10に記載の圧力スイング吸着装置。
JP2020040471A 2020-03-10 2020-03-10 圧力スイング吸着装置用の増圧弁ユニット、圧力スイング吸着装置、圧力スイング吸着装置の制御方法 Active JP7347757B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040471A JP7347757B2 (ja) 2020-03-10 2020-03-10 圧力スイング吸着装置用の増圧弁ユニット、圧力スイング吸着装置、圧力スイング吸着装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040471A JP7347757B2 (ja) 2020-03-10 2020-03-10 圧力スイング吸着装置用の増圧弁ユニット、圧力スイング吸着装置、圧力スイング吸着装置の制御方法

Publications (2)

Publication Number Publication Date
JP2021142447A JP2021142447A (ja) 2021-09-24
JP7347757B2 true JP7347757B2 (ja) 2023-09-20

Family

ID=77765558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040471A Active JP7347757B2 (ja) 2020-03-10 2020-03-10 圧力スイング吸着装置用の増圧弁ユニット、圧力スイング吸着装置、圧力スイング吸着装置の制御方法

Country Status (1)

Country Link
JP (1) JP7347757B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197096A (en) 1978-08-22 1980-04-08 Boc Limited Fluid supply system including a pressure-swing adsorption plant
JP2001205030A (ja) 2000-01-26 2001-07-31 Osaka Gas Co Ltd Psa装置への原料ガス供給方法
JP2001276550A (ja) 2000-03-30 2001-10-09 Nippon Sanso Corp 圧力変動吸着分離方法及び装置
JP2013154292A (ja) 2012-01-30 2013-08-15 Hitachi Industrial Equipment Systems Co Ltd 気体分離装置
JP2017177067A (ja) 2016-03-31 2017-10-05 大阪瓦斯株式会社 圧力変動吸着式ガス製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092453A (ja) * 1996-09-12 1998-04-10 Fuji Electric Co Ltd 水素貯蔵発電システム
JP4203716B2 (ja) * 2002-09-02 2009-01-07 株式会社日立製作所 気体分離装置
JP7236069B2 (ja) * 2018-07-27 2023-03-09 コフロック株式会社 圧力スイング吸着装置の制御方法及び圧力スイング吸着装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197096A (en) 1978-08-22 1980-04-08 Boc Limited Fluid supply system including a pressure-swing adsorption plant
JP2001205030A (ja) 2000-01-26 2001-07-31 Osaka Gas Co Ltd Psa装置への原料ガス供給方法
JP2001276550A (ja) 2000-03-30 2001-10-09 Nippon Sanso Corp 圧力変動吸着分離方法及び装置
JP2013154292A (ja) 2012-01-30 2013-08-15 Hitachi Industrial Equipment Systems Co Ltd 気体分離装置
JP2017177067A (ja) 2016-03-31 2017-10-05 大阪瓦斯株式会社 圧力変動吸着式ガス製造装置

Also Published As

Publication number Publication date
JP2021142447A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
JP4958366B2 (ja) 多数床圧力スイング吸着方法及び装置
KR101511803B1 (ko) 산소 농축 장치
KR100288568B1 (ko) 공기로부터 산소를 회수하기 위한 단일층 압력 순환 흡착 방법
JP3325167B2 (ja) 改良された圧力スイング吸着方法
KR20000076622A (ko) 압력 스윙 흡착 가스 흐름 제어 방법 및 그 시스템
WO2013114637A1 (ja) 窒素富化ガス製造方法、ガス分離方法および窒素富化ガス製造装置
KR19990062850A (ko) 흡착제 베드의 상층 및 바닥의 동시 진공화를 이용한 압력 순환 흡착식 방법 및 시스템
KR101773437B1 (ko) 흡착제가 복합 충진된 산소발생기용 흡착탑
JPWO2020196530A5 (ja)
JPWO2020196491A5 (ja)
JP5789449B2 (ja) 気体分離装置
JP7347757B2 (ja) 圧力スイング吸着装置用の増圧弁ユニット、圧力スイング吸着装置、圧力スイング吸着装置の制御方法
JP5814145B2 (ja) 気体分離装置
JP7236069B2 (ja) 圧力スイング吸着装置の制御方法及び圧力スイング吸着装置
JP5022785B2 (ja) 気体分離装置
KR102268136B1 (ko) 공급 에어 절감과 성능 향상을 위한 산소 발생기 제어방법 및 제어장치
JP5864994B2 (ja) 気体分離装置および方法
JP2003117330A (ja) 気体分離装置
JP4594223B2 (ja) 窒素ガス発生装置
JP2006015221A (ja) 気体分離装置
JP4203716B2 (ja) 気体分離装置
JP5325937B2 (ja) 気体分離装置
JP6239435B2 (ja) 気体分離装置
JP7388731B2 (ja) 圧力スイング吸着装置、および、ガス生成方法
JP7161725B2 (ja) ガス発生装置用圧縮機の運転制御方法及びガス発生装置用圧縮機,並びに前記圧縮機を備えたガス発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230110

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230830

R150 Certificate of patent or registration of utility model

Ref document number: 7347757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150