JP7341155B2 - センサ素子およびセンサ素子を製造する方法 - Google Patents

センサ素子およびセンサ素子を製造する方法 Download PDF

Info

Publication number
JP7341155B2
JP7341155B2 JP2020548481A JP2020548481A JP7341155B2 JP 7341155 B2 JP7341155 B2 JP 7341155B2 JP 2020548481 A JP2020548481 A JP 2020548481A JP 2020548481 A JP2020548481 A JP 2020548481A JP 7341155 B2 JP7341155 B2 JP 7341155B2
Authority
JP
Japan
Prior art keywords
layer
alumina
zirconia
sensor element
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020548481A
Other languages
English (en)
Other versions
JPWO2020066713A1 (ja
Inventor
浩佑 氏原
恵実 藤▲崎▼
崇弘 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2020066713A1 publication Critical patent/JPWO2020066713A1/ja
Application granted granted Critical
Publication of JP7341155B2 publication Critical patent/JP7341155B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/068Oxidic interlayers based on refractory oxides, e.g. zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/66Forming laminates or joined articles showing high dimensional accuracy, e.g. indicated by the warpage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、センサ素子およびセンサ素子を製造する方法に関する。
従来、ジルコニアを用いたセンサが利用されている。例えば、特許第5104744号公報では、アルミナシートに設けた充填用貫通穴内に、ジルコニア材料からなるジルコニア充填部を設け、当該ジルコニア充填部の両表面に一対の電極を設けたガスセンサ素子が開示されている。また、特許第5198832号公報では、積層型の検出素子を備えるガスセンサが開示されており、当該検出素子は、ジルコニアを主成分とする固体電解質層を有する板状のセンサ機能部と、センサ機能部の両面上に積層されるとともに、アルミナを主成分とする基層から構成される板状の第1部および第2部とを備える。当該ガスセンサでは、第1部の基層と第2部の基層とが同程度の厚みとされ、検出素子の少なくとも一部に、センサ機能部の固体電解質層を中心に積層方向に対称的な構造をなす対称構造部が設けられる。これにより、素子全体の反りが抑制される。
なお、特開平8-15213号公報では、内燃機関排気系に設けられるヒータ付き酸素センサにおいて、内燃機関排気管の水分不発生温度に相当する所定の負荷量に達することを条件に酸素センサのヒータに通電を行う手法が開示されている。当該手法により、排気管に存在する水滴がセンサ素子に接触することによる素子割れが防止される。
ところで、センサ素子の製造等において、ジルコニア層部の両面に2つのアルミナ層部を形成したセラミック積層体を作製する場合、セラミック積層体において大きな反りが生じてしまう。この場合、例えば、センサ素子を用いたセンサの組立等において支障が生じてしまう。
本発明は、センサ素子に向けられており、センサ素子のセラミック積層体における反りを抑制することを目的としている。
本発明に係る一のセンサ素子は、ジルコニア層部、および、前記ジルコニア層部の両面にそれぞれ設けられた2つのアルミナ層部を有するセラミック積層体と、前記セラミック積層体に設けられる複数の電極とを備え、前記2つのアルミナ層部の双方が、Ti元素を含み、前記ジルコニア層部が、前記2つのアルミナ層部のそれぞれとの界面において、ジルコニアの結晶構造にTi元素が固溶した反応層を有し、前反応層が、Ti元素を0.05~5.0質量%含む。
本発明によれば、センサ素子のセラミック積層体における反りを抑制することができる。
本発明の一の好ましい形態では、前反応層の厚さが、5~100μmである。
本発明の他の好ましい形態では、前記2つのアルミナ層部が、遷移金属、希土類、アルカリ金属およびアルカリ土類金属のいずれかに含まれる他の元素をさらに含む。
本発明の他の好ましい形態では、センサ素子が、前記セラミック積層体の一部を覆う多孔質保護部をさらに備える。
本発明は、センサ素子を製造する方法にも向けられている。本発明に係る上記センサ素子を製造する方法では、前記ジルコニア層部および前記2つのアルミナ層部が、共焼成により形成される。
上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
ガスセンサを示す図である。 センサ素子の構造を示す断面図である。 アルミナ層部とジルコニア層部との界面近傍を示す断面図である。 セラミック積層体を示す図である。 反りが生じたセラミック積層体を示す図である。
図1は、本発明の一の実施の形態に係るガスセンサ1を示す図である。ガスセンサ1は、被測定ガスに含まれる所定のガス成分の濃度の測定に用いられる。一例では、ガスセンサ1は、自動車の排ガスに含まれるNOx等の濃度の測定に用いられる。被測定ガスが排ガスである場合、ガスセンサ1は、例えば自動車の排ガス管に取り付けられる。
ガスセンサ1は、センサ本体11と、外部接続部12と、チューブ13とを備える。チューブ13は、センサ本体11と外部接続部12とを接続する複数のリード線を覆う。外部接続部12は、複数のリード線にそれぞれ接続された複数の端子電極(図示省略)を備える。端子電極は、リード線を介して後述のセンサ素子2の電極と導通する。外部接続部12は、例えば自動車の制御ユニットに接続される。制御ユニットにより、センサ素子2に対して電流が供給されるとともに、センサ素子2からの信号が受信される。
センサ本体11は、センサ素子2と、本体筒状部111と、保護カバー112とを備える。センサ素子2は、長尺の板状であり、被測定ガスから所定のガス成分の濃度を測定する。センサ素子2の構造については後述する。本体筒状部111は、センサ素子2を内部に収容する筒状部材である。センサ素子2の一方の端部(図1中の下側の端部であり、以下、「先端部」という。)は、本体筒状部111から外側に配置されており、保護カバー112は、センサ素子2の先端部の周囲を囲む。保護カバー112には、被測定ガスを流通させるための貫通孔が形成される。
図2は、センサ素子2の構造を示す断面図である。図2では、互いに直交するX方向、Y方向およびZ方向を矢印で示している。既述のように、センサ素子2は長尺の板状であり、図2中のY方向がセンサ素子2の長手方向であり、X方向がセンサ素子2の幅方向である。また、後述するように、センサ素子2は、複数の層(またはシート)が積層されて形成されており、図2中のZ方向が積層方向である。図2では、幅方向に垂直な断面を示している。
センサ素子2は、素子本体20と、素子本体20の一部を覆う多孔質保護部5とを備える。素子本体20は、ジルコニア層部3と、2つのアルミナ層部4a,4bとを備える。素子本体20では、ジルコニア層部3の両面(積層方向を向く面)に2つのアルミナ層部4a,4bがそれぞれ設けられる。後述するように、ジルコニア層部3およびアルミナ層部4a,4bは、主としてセラミックにより形成されており、素子本体20は、セラミック積層体である。
ジルコニア層部3は、第1基板層31と、第2基板層32と、第3基板層33と、第1固体電解質層34と、スペーサ層35と、第2固体電解質層36とを備える。第1基板層31、第2基板層32、第3基板層33、第1固体電解質層34、スペーサ層35および第2固体電解質層36は、(-Z)側から(+Z)方向に向かってこの順序で積層される。
ジルコニア層部3に含まれる複数の層31~36は、いずれもジルコニア(ZrO)を主成分とするセラミックにより形成される。ここで、各層31~36の主成分は、当該層31~36の全体に対して50質量%以上含まれる成分を意味する。以下同様である。各層31~36は緻密な構造を有し、気密性を有する。ジルコニアを主成分とするジルコニア層部3(および各層31~36)は、酸素イオン伝導性を有する。ジルコニア層部3において、酸素イオン伝導性をより確実に発揮させるという観点では、ジルコニア層部3は、ジルコニア層部3の全体に対してジルコニアを65質量%以上含むことが好ましく、80質量%以上含むことがより好ましい。後述するように、ジルコニア層部3は、例えば、各層31~36に対応するセラミックグリーンシートに所定の加工およびパターンの印刷等を行い、これらのシートを積層した後、焼成して一体化させることにより作製される。
ジルコニア層部3において、先端部側((-Y)側)の部位には、スペーサ層35の一部を除去して形成された空間351が設けられており、当該空間351には、複数の電極371~375が設けられる。また、第2固体電解質層36の(+Z)側の面にも電極376が形成される。電極376の周りには、被測定ガスからポンピングした酸素を外部に放出するための貫通孔を設けてある。ジルコニア層部3における、先端部から(+Y)側に離れた部位では、第3基板層33とスペーサ層35との間に空間341が設けられる。空間341は、第1固体電解質層34の側面で区画される。空間341の近傍において、第3基板層33と第1固体電解質層34との間には、多孔質セラミック層331や電極377が設けられる。これらの電極371~377のうち、少なくとも一部の電極は、多孔質サーメット電極(例えば、PtとZrOとのサーメット電極)として形成される。
ジルコニア層部3は、ヒータ部38をさらに備える。ヒータ部38は、第2基板層32と第3基板層33との間に設けられる。ヒータ部38は、電気抵抗体をアルミナ等の絶縁体で覆うことにより形成される。電気抵抗体には、図示省略のコネクタ電極から電流が供給される。ヒータ部38がジルコニア層部3を、例えば、600℃以上に加熱することにより、固体電解質層34,36における酸素イオン伝導性が高められる。
ジルコニア層部3では、電極371~377および固体電解質層34,36等により、電気化学的ポンプセルや電気化学的センサセルが実現される。上記空間351には、図示省略のガス導入口から被測定ガスが導入され、ポンプセルおよびセンサセルが協働することにより、被測定ガスのNOx濃度が測定される。以上のように、センサ素子2では、ジルコニア層部3における酸素イオン伝導性を利用した測定が行われる。なお、センサ素子2におけるNOx濃度の測定原理については周知であるため、ここでは説明を省略する。
ジルコニア層部3における上記層31~36の個数は、センサ素子2の設計に応じて適宜変更されてよい。典型的には、ジルコニア層部3は、ジルコニアを主成分とする複数の層を含む。素子本体20の製造を容易に行うという観点では、積層方向におけるジルコニア層部3の厚さの下限値は、例えば400μmであり、好ましくは500μmである。素子本体20の小型化を図るという観点では、ジルコニア層部3の厚さの上限値は、例えば1800μmであり、好ましくは1600μmである。
アルミナ層部4aは、第1基板層31の(-Z)側の面に接し、典型的には、当該面の全体を覆う。アルミナ層部4bは、第2固体電解質層36の(+Z)側の面に接し、典型的には、当該面の全体を覆う。2つのアルミナ層部4a,4bは、いずれもアルミナ(Al)を主成分とするセラミックにより形成される。アルミナ層部4a,4bによりジルコニア層部3が保護される。アルミナ層部4a,4bにおいて、ある程度の強度を確保するという観点では、各アルミナ層部4a,4bは、当該アルミナ層部4a,4bの全体に対してアルミナを65質量%以上含むことが好ましく、80質量%以上含むことがより好ましい。
素子本体20の製造を容易に行うという観点では、積層方向における各アルミナ層部4a,4bの厚さの下限値は、例えば10μmであり、好ましくは20μmであり、より好ましくは30μmである。素子本体20の小型化を図るという観点では、アルミナ層部4a,4bの厚さの上限値は、例えば700μmであり、好ましくは600μmであり、より好ましくは500μmである。好ましくは、2つのアルミナ層部4a,4bの厚さは、ほぼ同じであり、例えば、一方のアルミナ層部の厚さが、他方のアルミナ層部の厚さの80%以上かつ120%以下である。素子本体20の設計によっては、2つのアルミナ層部4a,4bの厚さが、上記範囲を超えて異なっていてもよい。
ジルコニア層部3の厚さT1と、各アルミナ層部4a,4bの厚さT2との比の値(T1/T2)の下限値は、例えば0.1であり、好ましくは0.2であり、より好ましくは0.4である。上記比の値の上限値は、例えば25であり、好ましくは24であり、より好ましくは23である。アルミナ層部4a,4bにおいて、ある程度の強度を確保するという観点では、アルミナ層部4a,4bの開気孔率の上限値は、例えば10%であり、好ましくは5%である。アルミナ層部4a,4bの開気孔率の下限値は、例えば0.1%であり、好ましくは0.3%である。開気孔率は、例えばアルキメデス法により測定可能である。アルミナ層部4a,4bの材料の詳細については後述する。
既述のように、センサ素子2は、多孔質保護部5を備える。多孔質保護部5は、素子本体20における先端部側((-Y)側)の部位の表面を覆う。具体的には、素子本体20の(-Z)側の面の先端部側、(+Z)側の面の先端部側、(-X)側の面の先端部側、(+X)側の面の先端部側、および、(-Y)側の面の全体が、多孔質保護部5により覆われる。多孔質保護部5は、例えば、アルミナ、ジルコニア、スピネル、コージェライト、チタニアまたはマグネシア等の多孔質セラミックにより形成される。本実施の形態では、多孔質保護部5がアルミナにより形成される。この場合、アルミナ層部4a,4bと多孔質保護部5とが共にアルミナを含むことにより、両者間の密着力を向上することが可能となる。
多孔質保護部5は、素子本体20における先端部側の部位を保護する。仮に、被測定ガス中の水分等がジルコニア層部3に付着した場合、付着部分が局所的に急激に冷却されることにより、ジルコニア層部3が熱衝撃を受け、クラックが発生する可能性がある。一方、多孔質保護部5が設けられるセンサ素子2では、被測定ガス中の水分等がジルコニア層部3に付着することが防止され、ジルコニア層部3におけるクラックの発生が抑制される。また、多孔質保護部5により、被測定ガスに含まれるオイル成分等が、素子本体20の表面上の電極に付着することも防止され、当該電極の劣化が抑制される。なお、センサ素子2では、ジルコニア層部3における既述のガス導入口が多孔質保護部5により覆われるが、多孔質保護部5が多孔質体により形成されため、被測定ガスは多孔質保護部5を通過してガス導入口に到達可能である。
素子本体20を適切に保護するという観点では、多孔質保護部5の厚さの下限値は、例えば100μmであり、好ましくは200μmである。センサ素子2の小型化を図るという観点では、多孔質保護部5の厚さの上限値は、例えば1000μmであり、好ましくは900μmである。被測定ガスをジルコニア層部3のガス導入口に適切に導くという観点では、多孔質保護部5の開気孔率の下限値は、例えば5%であり、好ましくは10%である。多孔質保護部5において、ある程度の強度を確保するという観点では、多孔質保護部5の開気孔率の上限値は、例えば85%であり、好ましくは80%である。
次に、アルミナ層部4a,4bの材料の詳細について説明する。以下の説明では、2つのアルミナ層部4a,4bを区別しない場合に、アルミナ層部4a,4bを「アルミナ層部4」と総称する。アルミナ層部4は、アルミナを主成分とするとともに、添加元素をさらに含む。ここで、添加元素は、アルミナを構成するAl(アルミニウム)およびO(酸素)以外の元素であり、遷移金属、希土類、アルカリ金属およびアルカリ土類金属のいずれかに含まれる元素(ただし、Zr(ジルコニウム)、Y(イットリウム)、Mg(マグネシウム)およびCa(カルシウム)を除く。)である。アルミナ層部4が、遷移金属、希土類、アルカリ金属およびアルカリ土類金属のいずれかに含まれる2種類以上の元素を含んでもよい。
好ましい添加元素は、Ti(チタン)、Na(ナトリウム)、Sc(スカンジウム)、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Sr(ストロンチウム)、Nb(ニオブ)、Mo(モリブデン)、Ba(バリウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)およびYb(イッテルビウム)のいずれかの元素である。
より好ましい添加元素は、Ti元素である。一例では、アルミナ層部4は、チタニア(TiO)を含む。アルミナ層部4は、添加元素であるTi元素に加えて、遷移金属、希土類、アルカリ金属およびアルカリ土類金属のいずれかに含まれるとともに、Ti元素とは異なる他の元素をさらに含んでよい。当該他の元素として、Zr、Y、MgおよびCaを例示することができる。一例では、これらの元素は、アルミナ層部4において、酸化物(ジルコニア、イットリア、マグネシアおよびカルシア)またはAlやTiとの複合酸化物として存在する。また、後述の反応層39に当該他の元素が含まれてもよい。アルミナ層部4が、Ti元素に加えてMgを含む場合には、素子本体20の機械的強度(ここでは、曲げ強度)を向上することが可能となる。
セラミック積層体である素子本体20では、アルミナ層部4が、アルミナを主成分とするとともに、添加元素をさらに含むことにより、素子本体20における反り、すなわち、センサ素子2における反りを抑制することができる。これにより、ガスセンサ1の組立に支障が生じることが防止される。素子本体20において反りが抑制される理由は必ずしも明確ではないが、アルミナ層部4が添加元素を含む素子本体20では、各アルミナ層部4とジルコニア層部3との界面近傍において、図3に示すように、Zr元素と添加元素とを含む反応相の層39(以下、「反応層39」という。)が生成される。ここでは、反応層39は、ジルコニア層部3の一部であるものとする。反応層39は、アルミナ層部4と接する層である。素子本体20では、反応層39の存在が、反りの抑制に寄与している可能性がある。反応層39の熱膨張係数は、アルミナ層部4の熱膨張係数とジルコニア層部3の反応層39を除く部分の熱膨張係数との間の値であると考えられ、この場合、反応層39は、アルミナ層部4とジルコニア層部3との熱膨張差を緩和する。
反応層39の厚さは、アルミナ層部4が接する層31,36の厚さよりも十分に小さく、好ましくは5~100μmである。反応層39が100μmよりも厚くなると、ジルコニア層部3における酸素イオン伝導性が低下する可能性がある。反応層39が5μmよりも薄くなると、素子本体20における反りが大きくなる、または、ジルコニア層部3とアルミナ層部4とが剥離する可能性がある。反応層39の厚さは、より好ましくは10~50μmである。反応層39の特定では、例えば、素子本体20の側面(積層方向に沿う面)が鏡面研磨され、研磨面に対してエネルギー分散形X線分光器(EDS)における面分析が行われる。そして、Zr元素および添加元素が混在する領域が、反応層39として特定される。また、当該領域の厚さが、反応層39の厚さとして取得される。原則として、ジルコニア層部3のアルミナ層部4と接する層31,36において反応層39を除く部分は、添加元素(好ましい例では、Ti元素)を含まない、すなわち、当該層31,36は、添加元素が不存在である層を含む。
添加元素が、Ti元素である例では、Zr元素とTi元素とを一様に含む反応層39が生成される。一例では、ジルコニア層部3におけるジルコニアの結晶構造にTi元素が固溶して反応層39が形成される。反応層39では、チタニアの結晶が混在していてもよい。反応層39は、Zr元素およびTi元素を含む層であればよい。反応層39は、Ti元素を0.05~5.0質量%含むことが好ましく、0.05~3.5質量%含むことがより好ましい。これにより、素子本体20における反りをより確実に抑制することができる。Ti元素が適切に分散した反応層39を形成して、反りをさらに抑制するには、反応層39におけるTi元素の割合は、0.1質量%以上であることが好ましい。また、素子本体20の強度を向上するには、反応層39におけるTi元素の割合は、3.0質量%以下であることが好ましい。反応層39におけるTi元素の割合は、例えば、上記EDSにおける面分析により取得することが可能である。アルミナ層部4に含まれるTi元素のジルコニア層部3(反応層39)への拡散により、アルミナ層部4おいて反応層39の近傍では、Ti元素の質量割合が、他の部位よりも局所的に低くなる場合がある。すなわち、アルミナ層部4では、Ti元素の質量割合が他の部位よりも低い層が、反応層39との界面近傍に設けられる場合がある。反応層39の生成において、Zr元素が、アルミナ層部4に拡散してもよい。
添加元素が、Ti元素である場合、アルミナ層部4は、Ti元素を酸化物換算で(典型的には、TiOとして)0.1質量%以上含むことが好ましい。これにより、Ti元素が適切に分散した反応層39を形成することができ、素子本体20における反りをより確実に抑制することができる。Ti元素がより均等に分散した反応層39を形成するには、アルミナ層部4が、Ti元素を酸化物換算で0.5質量%以上含むことが好ましく、1.0質量%以上含むことがより好ましい。また、アルミナ層部4に含まれるTi元素が過度に多い場合には、機械的強度を確保するためのアルミナの量が少なくなってしまう。したがって、素子本体20における、ある程度の機械的強度を確保するには、アルミナ層部4におけるTi元素の質量割合が、酸化物換算で10質量%以下であることが好ましく、9質量%以下であることがより好ましく、8質量%以下であることがより一層好ましい。
なお、センサ素子2の設計によっては、素子本体20の一部(上記の例では、先端部)を覆う多孔質保護部5が省略され、添加元素を含むアルミナ層部により、素子本体20の当該一部が覆われてもよい。この場合、図2の素子本体20では、(-X)側の面の先端部側、(+X)側の面の先端部側、および、(-Y)側の面の全体をそれぞれ覆うアルミナ層部が、アルミナ層部4a,4bに加えて形成される。アルミナ層部も耐被水性に優れるため、被測定ガス中の水分等が素子本体20に付着した場合に、クラックの発生を抑制することができる。
センサ素子2の製造では、まず、ジルコニア層部3に含まれる層31~36と同数の未焼成のセラミックグリーンシートが準備される。これらのセラミックグリーンシートは、上記層31~36となる予定のものであり、ジルコニア原料を主成分とするジルコニアグリーンシートである。ジルコニアグリーンシートは、ジルコニア原料以外に、有機バインダ、有機溶剤等を含む(後述のアルミナグリーンシートにおいて同様)。各ジルコニアグリーンシートには、対応する層31~36の設計に従った電極、絶縁層、抵抗発熱体等のパターンが印刷される。
また、2つの未焼成のセラミックグリーンシートが準備される。これらのセラミックグリーンシートは、アルミナ層部4a,4bとなる予定のものであり、アルミナ原料を主成分とするとともに添加元素を含むアルミナグリーンシートである。添加元素は、例えばチタニア等の酸化物としてアルミナグリーンシートに含まれる。続いて、接着ペーストをグリーンシート間に介在させつつ、1つのアルミナグリーンシート、上記層31~36に対応する複数のジルコニアグリーンシート、および、1つのアルミナグリーンシートを順に積層することにより積層体が得られる。接着ペーストは、例えば、ジルコニアの粉末、バインダおよび有機溶剤を含む。
典型的には、当該積層体では、焼成前の状態である複数の素子本体が配列される。当該積層体を切断することにより、焼成前の各素子本体を取り出し、所定の焼成温度(焼成時の最高温度であり、例えば、1300~1500℃)で焼成することにより、素子本体20が得られる。このようにして、素子本体20におけるジルコニア層部3および2つのアルミナ層部4a,4bが、共焼成により一体的に形成される。
なお、アルミナを主成分とするとともに添加元素を含むペーストを、ジルコニア層部3の両面となるジルコニアグリーンシートの面に塗布することにより、焼成前のアルミナのシートが形成されてもよい。また、素子本体20は、必ずしも共焼成により形成される必要はなく、例えば、ジルコニア層部3およびアルミナ層部4a,4bを焼成により個別に作製した後、接着ペーストを介してジルコニア層部3およびアルミナ層部4a,4bを積層し、再度焼成が行われてもよい。
焼成体である素子本体20が得られると、素子本体20の表面の一部に多孔質保護部5が形成される。多孔質保護部5は、例えば、プラズマガンを用いたプラズマ溶射により形成される。プラズマ溶射では、例えば、アルミナ粉末を含む溶射材料がキャリアガスと共に、素子本体20における先端部側((-Y)側)の部位の表面に吹き付けられる。具体的には、素子本体20の(-Z)側の面の先端部側、(+Z)側の面の先端部側、(-X)側の面の先端部側、(+X)側の面の先端部側、および、(-Y)側の面の全体に溶射材料が吹き付けられ、多孔質保護部5が形成される。これにより、センサ素子2が完成する。
ところで、共焼成により素子本体20を作製する場合、アルミナ層部4a,4bとなるアルミナグリーンシートの焼成収縮曲線と、ジルコニア層部3となるジルコニアグリーンシートの焼成収縮曲線とが近似することが好ましい。ここで、焼成収縮曲線は、焼成時の温度上昇に伴うグリーンシートの収縮率(収縮した長さの、初期長さに対する比率)の変化を示す。焼成途上のグリーンシートの収縮率が2%以上となる際の温度を収縮開始温度として、例えば、アルミナグリーンシートの収縮開始温度とジルコニアグリーンシートの収縮開始温度との差(絶対値)がある程度近似し、かつ、実際の焼成温度におけるアルミナグリーンシートの収縮率とジルコニアグリーンシートの収縮率との差(絶対値)がある程度近似する場合に、2つの焼成収縮曲線が近似しているといえる。焼成収縮曲線(収縮開始温度および焼成温度における収縮率)は、熱機械分析装置(TMA)を用いて測定可能である。
アルミナグリーンシートの焼成収縮曲線と、ジルコニアグリーンシートの焼成収縮曲線とが近似する場合、共焼成における昇温時に、アルミナグリーンシートとジルコニアグリーンシートとがほぼ同時に収縮を開始し、焼成温度(最高温度)に到達した際においても、両者の収縮量はほぼ同じである。したがって、素子本体20における反りをさらに抑制することが可能となる。例えば、Ti元素を含まないアルミナグリーンシートの焼成収縮曲線は、ジルコニアグリーンシートの焼成収縮曲線と近似しないが、Ti元素(例えばチタニア)を添加元素として含むアルミナグリーンシートでは、焼成収縮曲線がジルコニアグリーンシートの焼成収縮曲線と近似する。素子本体20における反りをより確実に抑制するには、アルミナグリーンシートの収縮開始温度とジルコニアグリーンシートの収縮開始温度との差は、70℃以下であることが好ましく、50℃以下であることがより好ましく、30℃以下であることがより一層好ましい。また、焼成温度におけるアルミナグリーンシートの収縮率とジルコニアグリーンシートの収縮率との差は、大きく相違することはないが、反りをより確実に抑制するには、当該差は4%ポイント以下であることが好ましく、3%ポイント以下であることがより好ましく、2%ポイント以下であることがより一層好ましい。
上記のように助剤(添加剤)によりアルミナグリーンシートの焼成収縮曲線を調整する場合、助剤に含まれる元素が共焼成においてジルコニア層部3に拡散することがある。この場合に、助剤の種類や量によっては、助剤に含まれる元素のジルコニア層部3への拡散により、素子本体20の特性に影響が生じる(例えば、ジルコニア層部3における酸素イオン伝導性が低下する)可能性がある。これに対し、焼成体である素子本体20において、反応層39がTi元素を0.05~5.0質量%含むように、Ti元素を含む助剤を適切な量だけ添加したアルミナグリーンシートを利用する場合には、素子本体20の特性に影響が生じることを抑制しつつ、共焼成における素子本体20の反りを抑制することが可能となる。
<実施例>
(セラミック積層体の作製)
次に、セラミック積層体の実施例について述べる。ここでは、図4に示すように、ジルコニア層部83が4個の層831を含み、ジルコニア層部83の両面に2つのアルミナ層部84をそれぞれ形成したセラミック積層体8を作製した。
セラミック積層体8の作製では、まず、アルミナの粉末、助剤であるチタニアの粉末、他の助剤の粉末、可塑剤および有機溶剤を秤量し、これらの材料をポットミルを用いて10時間混合した。これにより、アルミナグリーンシートの原料となる混合物を得た。当該混合物におけるアルミナ(Al)、チタニア(TiO)および他の助剤(SiO、ZrO、MgO、Y)の混合比は表1の「組成」に示す通りである。
Figure 0007341155000001
また、ポリビニルブチラール(PVB)樹脂および有機溶剤を含むバインダ溶液を、上記の混合物に追加し、さらに10時間混合した。その後、所定の手法で粘度調整を行い、テープ成形法によりアルミナグリーンシートを得た。アルミナグリーンシートの厚さは、250μmである。また、ジルコニア原料を含むジルコニアグリーンシートを、アルミナグリーンシートと同様の作業により得た。ジルコニアグリーンシートの厚さは、250μmである。
続いて、ジルコニアの粉末、バインダおよび有機溶剤を含む接着ペーストを、スクリーン印刷によりグリーンシートに塗布した。そして、接着ペーストをグリーンシート間に介在させつつ、1個のアルミナグリーンシート、4個のジルコニアグリーンシート、および、1個のアルミナグリーンシートを順に積層することにより、積層体を形成した。積層体の厚さは、1.5mmであった。なお、電極等のパターンの印刷は省略した。その後、当該積層体を(85mm×5mm)の大きさに切断し、1400℃で焼成した。これにより、実施例1~8のセラミック積層体8を得た。また、比較例1~5のセラミック積層体8も、同様の作業により作製した。表1のように、比較例1~5のセラミック積層体8では、アルミナグリーンシートが、添加元素の原料であるチタニアを含んでいない。
次に、実施例1~8、並びに、比較例1~5のセラミック積層体8に対して各種測定を行った。表2では、測定結果を示している。
Figure 0007341155000002
(開気孔率の測定)
開気孔率の測定は、アルミナグリーンシートを焼成して得た、単体のアルミナ層部84に対して、アルキメデス法により行った。表2の「開気孔率」では、アルミナ層部84の開気孔率が0%以上4%未満であるセラミック積層体8に「〇」を付し、4%以上10%未満であるセラミック積層体8に「△」を付し、10%以上であるセラミック積層体8に「×」を付している。助剤としてSiOおよびYをそれぞれ含む比較例2および5のセラミック積層体8では、アルミナ層部84の開気孔率が10%以上となる(緻密性が低下する)のに対し、実施例1~8、並びに、比較例1、3および4のセラミック積層体8では、開気孔率が10%未満となり、緻密なアルミナ層部84が得られた。
(収縮開始温度の測定)
収縮開始温度の測定では、実施例1~8、並びに、比較例1~5におけるアルミナグリーンシートを単体で焼成する際の収縮開始温度を、熱機械分析装置(TMA)を用いて測定した。収縮開始温度は、グリーンシートの収縮率が2%以上となる際の温度とした。また、ジルコニアグリーンシートを単体で焼成する際の収縮開始温度も測定し、アルミナグリーンシートの収縮開始温度とジルコニアグリーンシートの収縮開始温度との差を求めた。表2の「収縮開始温度」では、アルミナグリーンシートの収縮開始温度とジルコニアグリーンシートの収縮開始温度との差の絶対値(以下、単に「収縮開始温度の差」という。)が30℃以下であるセラミック積層体8に「◎」を付し、30℃よりも大きく、かつ、50℃以下であるセラミック積層体8に「〇」を付し、50℃よりも大きく、かつ、70℃以下であるセラミック積層体8に「△」を付し、70℃よりも大きいセラミック積層体8に「×」を付している。実施例1~8では、収縮開始温度の差が50℃以下であるのに対し、比較例1~5では、収縮開始温度の差が50℃よりも大きくなった。比較例2、3および5では、収縮開始温度の差が70℃よりも大きくなり、セラミック積層体8において、アルミナ層部84とジルコニア層部83との剥離が生じた。したがって、比較例2、3および5については、表2における他の測定を行わなかった。
(反りの測定)
図5では、反りが生じたセラミック積層体8を二点鎖線で示している。反りの測定では、一方のアルミナ層部84を下側に配置した状態で、セラミック積層体8を水平な設置面上に載置し、3D形状測定機(キーエンス社製、VR-3000)を用いて、他方のアルミナ層部84の上方を向く面の全体をスキャンした。平均段差モードで設置面を基準面として設定し、アルミナ層部84の上記面において長手方向の80%以上の範囲、および、幅方向(短手方向)の30%以上の範囲の領域を測定面として設定した。そして、測定面の最大高さから最小高さを引いて得た値を、反りとして算出した。
表2に示すように、実施例1~8のセラミック積層体8では、反りが300μm以下であるのに対し、比較例1および4のセラミック積層体8では、反りが300μmを大幅に超えた。セラミック積層体8の反りが300μmを超えると、セラミック積層体8が上記素子本体20である場合に、ガスセンサ1の組立に支障が生じる。また、実施例4~6のセラミック積層体8では、反りが200μm未満となった。実施例4~6のセラミック積層体8では、アルミナグリーンシートの原料に対するMgOの添加により収縮開始温度の差が30℃以下となり、大幅に反りが抑制されたと考えられる。
(反応層の確認および反応層の各種測定)
反応層の確認では、セラミック積層体8の側面(積層方向に沿う面)を鏡面研磨した後、走査電子顕微鏡(SEM)装置で、研磨面におけるジルコニア層部83とアルミナ層部84との界面近傍を倍率1000倍で観察した。また、エネルギー分散形X線分光器(EDS)にて、ZrおよびTiの面分析を行い、ジルコニア層部83においてTi元素の存在する領域(Zr元素およびTi元素が混在する領域)を反応層として特定した。ZrおよびTiの分析には電子プローブマイクロアナライザー(EPMA)を用いることもできる。表1に示すように、実施例1~8のセラミック積層体8では、反応層の存在が確認できたのに対し、比較例1および4のセラミック積層体8では、反応層の存在が確認できなかった。したがって、反応層の存在が、反りの抑制に寄与していると考えられる。
上記の反応層の確認において特定された領域、すなわち、Zr元素およびTi元素が混在する領域の厚さを、反応層の厚さとして測定した。実施例1~8のセラミック積層体8では、反応層の厚さが5~100μmの範囲内であった。また、上記EDSにおける面分析から、反応層におけるTi元素の割合を取得した。実施例1~8より、反応層におけるTi元素の割合が、0.05~3.5質量%であれば、反りをより確実に抑制することが可能であるといえる。反応層におけるTi元素の割合が3.5質量%である実施例8のセラミック積層体8においても、反りは240μmであり、十分に小さい。したがって、Ti元素の割合が5.0質量%以下であれば、反りを300μm以下に抑制することが可能であると考えられる。
表1および表2から明らかなように、反応層の厚さ、および、反応層におけるTi元素の割合は、アルミナグリーンシートの原料におけるTiOの質量割合に依存する。アルミナグリーンシートの原料におけるTiOの質量割合が過度に小さい場合には、反応層の厚さおよびTi元素の割合が大幅に小さくなり、この場合、反りが大きくなる、または、アルミナ層部84とジルコニア層部83との剥離が生じると考えられる。換言すると、反応層の厚さが5μm以上である、または、反応層におけるTi元素の割合が0.05質量%以上である場合には、剥離および反りの発生をより確実に抑制することが可能である。
(曲げ強度の測定)
曲げ強度の測定では、焼成後における大きさが(40mm×4mm)となるように焼成前の積層体を切断し、セラミック積層体8の作製と同様にして焼成を行って試験片を得た。そして、強度測定装置(インスロン社製)を用いて、各試験片に対して積層方向の4点曲げ強度を測定した。
表1に示すように、実施例1~7、並びに、比較例1および4の試験片では、曲げ試験で破断した荷重が200N以上であるのに対し、実施例8では、曲げ試験で破断した荷重が200N未満であった。したがって、セラミック積層体8においてある程度の機械的強度を確保するには、アルミナ層部84におけるTi元素の質量割合が、酸化物換算で10質量%以下である、または、反応層におけるTi元素の割合が3.0質量%以下であることが好ましいといえる。これにより、セラミック積層体8において強度を担うAlおよびZrOが相対的に少なくなることが防止される。また、実施例4~6のセラミック積層体8では、アルミナグリーンシートの原料に対するMgOの添加により機械的強度がさらに向上した(後述の耐被水性において同様)。
(耐被水性の測定)
耐被水性の測定では、セラミック積層体8をヒータ上に載置し、セラミック積層体8を800℃まで加熱した。セラミック積層体8の表面温度が800℃となると、所定量の水滴を滴下し、セラミック積層体8におけるクラックの発生の有無を目視で確認した。クラックが発生するまで、水滴の量を大きくしつつ上記作業を繰り返した。
表1に示すように、実施例1~7、並びに、比較例1および4のセラミック積層体8では、クラックが発生する水滴の量が50μL以上であるのに対し、実施例8では、5μLの水滴でクラックが発生した。実施例8のセラミック積層体8における耐被水性の低下の理由は明確ではないが、セラミック積層体8においてある程度の耐被水性を確保するには、機械的強度と同様に、アルミナ層部84におけるTi元素の質量割合が、酸化物換算で10質量%以下である、または、反応層におけるTi元素の割合が3.0質量%以下であることが好ましいと考えられる。
上記センサ素子およびセラミック積層体では様々な変形が可能である。
上記素子本体20(およびセラミック積層体)では、2つのアルミナ層部4a,4bの双方が添加元素(例えば、Ti元素)を含むが、一方のアルミナ層部が添加元素を含み、他方のアルミナ層部が添加元素を含まない場合であっても、素子本体20における反りをある程度抑制することが可能である。以上のように、素子本体20では、2つのアルミナ層部のうち少なくとも1つのアルミナ層部が、添加元素(例えば、Ti元素)を含むことにより、素子本体20における反りを抑制することが可能となる。また、ジルコニア層部3が、当該少なくとも1つのアルミナ層部との界面近傍において、Zr元素および添加元素を含む反応層39を有することが好ましい。
センサ素子2は、ガスセンサ1以外のセンサに用いられてもよい。添加元素により反りを抑制したセラミック積層体は、センサ素子2以外の他の用途に用いられてもよい。例えば、高い耐熱衝撃性が求められる焼成用セッタとして、上記セラミック積層体を用いることが可能である。セラミック積層体の用途によっては、ジルコニア層部が、ジルコニアを主成分とする1つの層のみを含んでもよい。また、各アルミナ層部が、アルミナを主成分とする複数の層を含んでもよい。このように、セラミック積層体では、ジルコニア層部が、ジルコニアを主成分とする1つまたは複数の層を含み、アルミナ層部が、アルミナを主成分とする1つまたは複数の層を含んでいればよい。
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
2 センサ素子
3,83 ジルコニア層部
4,4a,4b,84 アルミナ層部
5 多孔質保護部
8 セラミック積層体
20 素子本体
39 反応層
371~377 電極

Claims (5)

  1. センサ素子であって、
    ジルコニア層部、および、前記ジルコニア層部の両面にそれぞれ設けられた2つのアルミナ層部を有するセラミック積層体と、
    前記セラミック積層体に設けられる複数の電極と、
    を備え、
    前記2つのアルミナ層部の双方が、Ti元素を含み、
    前記ジルコニア層部が、前記2つのアルミナ層部のそれぞれとの界面において、ジルコニアの結晶構造にTi元素が固溶した反応層を有し、
    反応層が、Ti元素を0.05~5.0質量%含むセンサ素子
  2. 請求項1に記載のセンサ素子であって、
    反応層の厚さが、5~100μmであるセンサ素子
  3. 請求項1または2に記載のセンサ素子であって、
    前記2つのアルミナ層部が、遷移金属、希土類、アルカリ金属およびアルカリ土類金属のいずれかに含まれる他の元素をさらに含むセンサ素子
  4. 請求項1ないしのいずれか1つに記載のセンサ素子であって、
    前記セラミック積層体の一部を覆う多孔質保護部をさらに備えるセンサ素子
  5. 請求項1ないしのいずれか1つに記載のセンサ素子を製造する方法であって、
    前記ジルコニア層部および前記2つのアルミナ層部が、共焼成により形成されるセンサ素子を製造する方法
JP2020548481A 2018-09-28 2019-09-13 センサ素子およびセンサ素子を製造する方法 Active JP7341155B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/036239 2018-09-28
JP2018036239 2018-09-28
PCT/JP2019/036196 WO2020066713A1 (ja) 2018-09-28 2019-09-13 センサ素子

Publications (2)

Publication Number Publication Date
JPWO2020066713A1 JPWO2020066713A1 (ja) 2021-10-07
JP7341155B2 true JP7341155B2 (ja) 2023-09-08

Family

ID=69952654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020548481A Active JP7341155B2 (ja) 2018-09-28 2019-09-13 センサ素子およびセンサ素子を製造する方法

Country Status (5)

Country Link
US (1) US20210163372A1 (ja)
JP (1) JP7341155B2 (ja)
CN (1) CN112714756B (ja)
DE (1) DE112019003806T5 (ja)
WO (1) WO2020066713A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005875A (ja) 2000-06-19 2002-01-09 Denso Corp 積層型ガスセンサ素子及びその製造方法
JP2005153449A (ja) 2003-11-28 2005-06-16 Kyocera Corp セラミック成形体の接合方法およびガスセンサ素子の製造方法
JP2006153703A (ja) 2004-11-30 2006-06-15 Ngk Spark Plug Co Ltd ガスセンサ
JP2009115618A (ja) 2007-11-06 2009-05-28 Ngk Spark Plug Co Ltd ガスセンサ
JP2013112595A (ja) 2011-11-30 2013-06-10 Nikkato:Kk コーティング層を有するジルコニア製酸素センサー素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778481B2 (ja) * 1987-02-16 1995-08-23 日本碍子株式会社 酸素センサ素子の製造方法
US20020139670A1 (en) * 2000-12-18 2002-10-03 Beckmeyer Richard F. Slip method for making exhaust sensors
DE10345807A1 (de) * 2003-09-30 2005-04-21 Bosch Gmbh Robert Festelektrolytmaterial und Verfahren zu dessen Herstellung
US7265483B2 (en) * 2004-03-29 2007-09-04 Canon Kabushiki Kaisha Dielectric member, piezoelectric member, ink jet head, ink jet recording apparatus and producing method for ink jet recording apparatus
WO2007097460A1 (ja) * 2006-02-27 2007-08-30 Kyocera Corporation セラミック部材の製造方法、並びにセラミック部材、ガスセンサ素子、燃料電池素子、フィルタ素子、積層型圧電素子、噴射装置、及び燃料噴射システム
GB0704972D0 (en) * 2007-03-15 2007-04-25 Varney Mark S Neoteric room temperature ionic liquid gas sensor
WO2009119481A1 (ja) * 2008-03-24 2009-10-01 京セラ株式会社 装飾部品用セラミックスおよびこれを用いた装飾部品
JP4471016B2 (ja) * 2008-04-07 2010-06-02 トヨタ自動車株式会社 ガスセンサとその製造方法
JP4996527B2 (ja) * 2008-04-14 2012-08-08 日本特殊陶業株式会社 積層型ガスセンサ素子及びガスセンサ
WO2009128503A1 (ja) * 2008-04-17 2009-10-22 旭硝子株式会社 エレクトレットおよび静電誘導型変換素子
JP5736344B2 (ja) * 2011-08-02 2015-06-17 日本特殊陶業株式会社 ガスセンサ
CN103681728B (zh) * 2012-09-20 2018-04-24 索尼公司 固体摄像装置及其方法以及电子设备
CN103728359A (zh) * 2014-01-20 2014-04-16 中国科学院上海硅酸盐研究所 一种NOx传感器及其制备方法
CN104788084A (zh) * 2015-04-09 2015-07-22 景德镇晶达新材料有限公司 一种多晶硅还原炉用高抗热震性氧化铝陶瓷环及其制备方法
CN105234177A (zh) * 2015-09-30 2016-01-13 北京科技大学 一种非对称组坯钛钢复合板抑制翘曲的热轧方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005875A (ja) 2000-06-19 2002-01-09 Denso Corp 積層型ガスセンサ素子及びその製造方法
JP2005153449A (ja) 2003-11-28 2005-06-16 Kyocera Corp セラミック成形体の接合方法およびガスセンサ素子の製造方法
JP2006153703A (ja) 2004-11-30 2006-06-15 Ngk Spark Plug Co Ltd ガスセンサ
JP2009115618A (ja) 2007-11-06 2009-05-28 Ngk Spark Plug Co Ltd ガスセンサ
JP2013112595A (ja) 2011-11-30 2013-06-10 Nikkato:Kk コーティング層を有するジルコニア製酸素センサー素子

Also Published As

Publication number Publication date
WO2020066713A1 (ja) 2020-04-02
US20210163372A1 (en) 2021-06-03
DE112019003806T5 (de) 2021-05-12
CN112714756A (zh) 2021-04-27
CN112714756B (zh) 2022-12-27
JPWO2020066713A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP4409581B2 (ja) 酸素センサ素子
JP7227824B2 (ja) ガスセンサのセンサ素子
JP2006171013A (ja) セラミックヒータ、積層型ガスセンサ素子及び積層型ガスセンサ素子を備えるガスセンサ
CN108693235B (zh) 传感器元件
JP2007121323A (ja) ガスセンサ
JP2007206082A (ja) セラミックヒータ、積層型ガスセンサ素子及びその製造方法、並びに積層型ガスセンサ素子を備えるガスセンサ
US10996191B2 (en) Sensor element and gas sensor
JP2013238408A (ja) ガスセンサ素子
JP7341155B2 (ja) センサ素子およびセンサ素子を製造する方法
JP4189260B2 (ja) セラミックヒータ構造体の製造方法、並びにセラミックヒータ構造体
JP2007132954A (ja) セラミックヒータ、積層型ガスセンサ素子及び積層型ガスセンサ素子を備えるガスセンサ
CN108693233B (zh) 传感器元件
WO2020203027A1 (ja) ガスセンサのセンサ素子
JP5693421B2 (ja) 積層型ガスセンサ素子および積層型ガスセンサ
JP7179968B2 (ja) ガスセンサのセンサ素子
JP7500613B2 (ja) ガスセンサのセンサ素子およびセンサ素子への保護層形成方法
WO2020203029A1 (ja) ガスセンサのセンサ素子
JP3931783B2 (ja) ガスセンサ素子
JP6877219B2 (ja) センサ素子
JP2020165770A (ja) ガスセンサのセンサ素子
JP3929882B2 (ja) 平板状セラミックヒータおよびこれを用いた検出素子
JP4579636B2 (ja) ガスセンサの製造方法
WO2020195692A1 (ja) ガスセンサのセンサ素子
JP3935059B2 (ja) 酸素センサ素子
JP2004241148A (ja) セラミックヒータ構造体および検出素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230829

R150 Certificate of patent or registration of utility model

Ref document number: 7341155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150