JP7332856B2 - 異方性磁性粉末の製造方法および異方性磁性粉末 - Google Patents

異方性磁性粉末の製造方法および異方性磁性粉末 Download PDF

Info

Publication number
JP7332856B2
JP7332856B2 JP2019086125A JP2019086125A JP7332856B2 JP 7332856 B2 JP7332856 B2 JP 7332856B2 JP 2019086125 A JP2019086125 A JP 2019086125A JP 2019086125 A JP2019086125 A JP 2019086125A JP 7332856 B2 JP7332856 B2 JP 7332856B2
Authority
JP
Japan
Prior art keywords
magnetic powder
mass
acid
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019086125A
Other languages
English (en)
Other versions
JP2020102606A (ja
Inventor
永 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Publication of JP2020102606A publication Critical patent/JP2020102606A/ja
Application granted granted Critical
Publication of JP7332856B2 publication Critical patent/JP7332856B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、異方性磁性粉末の製造方法および異方性磁性粉末に関する。
特許文献1には、SmFeN系焼結磁石が開示されており、焼結に使用する磁性粉末として平均粒子径が小さく、酸素含有量が少ない磁性粉末が開示されている。しかしながら、平均粒子径が20μm以上である磁性粉末をジェットミルで粉砕して磁性粉末を作製しており、粒度分布の幅が広い粉末しか作製することができない。
ところで、特許文献2には、還元拡散工程で使用したカルシウムを除去するために、窒化処理して得られた磁性粉末を酸で洗浄する方法が知られている。しかしながら、カルシウム除去を目的としており、少なくとも実施例には、酸素含有量が高い磁性粉末しか開示されていない。
特開2017-55072号公報 特開2015-70102号公報
本発明は、酸素濃度が低く、平均粒子径が小さく、粒度分布の狭い異方性磁性粉末と、その製造方法を提供することを目的とする。
本発明の一態様にかかる異方性磁性粉末の製造方法は、SmとFeを含む酸化物を、還元性ガス雰囲気下で熱処理することにより、部分酸化物を得る前処理工程、
前記部分酸化物を、還元剤の存在下、920℃以上1200℃以下で熱処理することにより、合金粒子を得る工程、
前記合金粒子を窒化して窒化物を得る工程、
前記窒化物を洗浄して磁性粉末を得る工程、および、
前記磁性粉末を酸処理する工程を含み、
前記酸処理する工程において、磁性粉末100質量部に対する酸の量が、3.5質量部以上13.5質量部以下である。
また、本発明の一態様にかかる異方性磁性粉末は
レーザー回折式粒径分布測定装置を用いて乾式条件で測定した平均粒径が1.5μm以上7μm以下であり、下記式
スパン=(D90-D10)/D50
(ここで、D10、D50、D90は、粒度分布の積算値がそれぞれ10%、50%、90%に相当する粒径である。)
で定義されるスパンが1.6以下であり、Sm、Fe、N、Oを含み、Oの量が0.05質量%以上0.65質量%以下である。
本発明の異方性磁性粉末の製造方法では、酸処理する工程において、磁性粉末100質量部に対する酸の量が、3.5質量部以上13.5質量部以下であるため、酸素濃度が低く、平均粒子径が小さく、そして、粒度分布の狭い異方性磁性粉末を製造することができる。
以下、本発明の実施形態について詳述する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための一例であり、本発明を以下のものに限定するものではない。なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本実施形態の異方性磁性粉末の製造方法は、SmとFeを含む酸化物を、還元性ガス雰囲気下で熱処理することにより、部分酸化物を得る前処理工程、前記部分酸化物を、還元剤の存在下、920℃以上1200℃以下で熱処理することにより、合金粒子を得る工程、前記合金粒子を窒化して窒化物を得る工程、前記窒化物を洗浄して磁性粉末を得る工程、および、前記磁性粉末を酸処理する工程を含み、前記酸処理する工程において、磁性粉末100質量部に対する酸の量が、3.5質量部以上13.5質量部以下であることを特徴とする。酸処理工程において、酸の量を磁性粉末100質量部に対し3.5質量部以上13.5質量部以下とすることにより、酸処理後大気に暴露した際に再酸化が起こりにくい程度に酸化されたSmリッチ層が磁性粉末表面を覆うようにすることができるので、酸素濃度が低く、平均粒子径が小さく、粒度分布の狭い異方性磁性粉末が得られる。
前処理工程で使用するSmとFeを含む酸化物は、Sm酸化物とFe酸化物を混合することにより得られるが、例えばSmとFeを含む溶液と沈殿剤を混合し、SmとFeとを含む沈殿物を得る工程(沈殿工程)、および、前記沈殿物を焼成することにより、SmとFeを含む酸化物を得る工程(酸化工程)によって、製造することができる。
[沈殿工程]
沈殿工程では、強酸性の溶液にSm原料、Fe原料を溶解して、SmとFeを含む溶液を調製する。SmFe17を主相として得る場合、SmおよびFeのモル比(Sm:Fe)は1.5:17~3.0:17が好ましく、2.0:17~2.5:17がより好ましい。La、W、Co、Ti、Sc、Y、Pr、Nd、Pm、Gd、Tb、Dy、Ho、Er、Tm、Luなどの原料を上述した溶液に加えても良い。残留磁束密度の点で、Laを含むことが好ましい。保持力と角型比の点で、Wを含むことが好ましい。温度特性の点で、Coを含むことが好ましい。
Sm原料、Fe原料としては、強酸性の溶液に溶解できるものであれば限定されない。例えば、入手のしやすさの点で、Sm原料としては酸化サマリウムが、Fe原料としてはFeSOが挙げられる。SmとFeを含む溶液の濃度は、Sm原料とFe原料が実質的に酸性溶液に溶解する範囲で適宜調整することができる。酸性溶液としては溶解性の点で硫酸が挙げられる。
SmとFeを含む溶液と沈殿剤を反応させることにより、SmとFeを含む不溶性の沈殿物を得る。ここで、SmとFeを含む溶液は、沈殿剤との反応時にSmとFeを含む溶液となっていればよく、たとえばSmとFeを含む原料を別々の溶液として調製し、各々の溶液を滴下して沈殿剤と反応させても良い。別々の溶液として調製する場合においても各原料が実質的に酸性溶液に溶解する範囲で適宜調整する。沈殿剤としては、アルカリ性の溶液でSmとFeを含む溶液と反応して沈殿物が得られるものであれば限定されず、アンモニア水、苛性ソーダなどが挙げられ、苛性ソーダが好ましい。
沈殿反応は、沈殿物の粒子の性状を容易に調整できる点から、SmとFeを含む溶液と、沈殿剤とを、それぞれ水などの溶媒に滴下する方法が好ましい。SmとFeを含む溶液と沈殿剤との供給速度、反応温度、反応液濃度、反応時のpH等を適宜制御することにより、構成元素の分布が均質で、粒度分布のシャープな、粉末形状の整った沈殿物が得られる。このような沈殿物を使用することによって、最終製品である磁性粉末の磁気特性が向上する。反応温度は、0~50℃とすることができ、35~45℃であることが好ましい。反応液濃度は、金属イオンの総濃度として0.65mol/L~0.85mol/Lとすることが好ましく、0.7mol/L~0.85mol/Lとすることがより好ましい。反応pHは、5~9とすることが好ましく、6.5~8とすることがより好ましい。
SmとFeを含む溶液は、磁気特性の点で、さらにLa、WおよびCoからなる群から選ばれる1種以上の金属を含むことが好ましい。La原料としては、強酸性の溶液に溶解できるものであれば限定されず、例えば、入手のしやすさの点で、LaClが挙げられる。Sm原料とFe原料ととともに、La原料、W原料、Co原料が実質的に酸性溶液に溶解する範囲で適宜調整し、酸性溶液としては溶解性の点で硫酸が挙げられる。W原料としては、タングステン酸アンモニウムが挙げられ、Co原料としては、硫酸コバルトが挙げられる。SmとFeを含む溶液とは別に、水に実質的に溶解する範囲で調整することが好ましい。
SmとFeを含む溶液が、さらにLa、WおよびCoからなる群から選ばれる1種以上の金属を含む場合、Sm、Feと、La、WおよびCoからなる群から選ばれる1種以上を含む不溶性の沈殿物を得る。ここで、該溶液は、沈殿剤との反応時にLa、WおよびCoからなる群から選ばれる1種以上となっていればよく、例えば各原料を別々の溶液として調製し、各々の溶液を滴下して沈殿剤と反応させても良いし、SmとFeを含む溶液と一緒に調整しても良い。
沈殿工程で得られた異方性磁性粉末粒子により、最終的に得られる磁性粉末の粉末粒径、粉末形状、粒度分布がおよそ決定される。得られた粒子の粒径をレーザー回折式湿式粒度分布計により測定した場合、全粉末が、0.05~20μm、好ましくは0.1~10μmの範囲にほぼ入るような大きさと分布であることが好ましい。また、異方性磁性粉末粒子の平均粒径は、粒度分布における小粒径側からの体積累積50%に相当する粒径として測定され、0.1~10μmの範囲内にあることが好ましい。
沈殿物を分離した後は、続く酸化工程の熱処理において残存する溶媒に沈殿物が再溶解して、溶媒が蒸発する際に沈殿物が凝集したり、粒度分布、粉末径等が変化したりすることを抑制するために、分離物を脱溶媒しておくことが好ましい。脱溶媒する方法として具体的には、例えば溶媒として水を使用する場合、70~200℃のオーブン中で5~12時間乾燥する方法が挙げられる。
沈殿工程の後に、得られる沈殿物を分離洗浄する工程を含んでもよい。洗浄する工程は上澄み溶液の導電率が5mS/m以下となるまで適宜行う。沈殿物を分離する工程としては、例えば、得られた沈殿物に溶媒(好ましくは水)を加えて混合した後、濾過法、デカンテーション法等を用いることができる。
[酸化工程]
酸化工程とは、沈殿工程で形成された沈殿物を焼成することにより、SmとFeとを含む酸化物を得る工程である。例えば、熱処理により沈殿物を酸化物に変換することができる。沈殿物を熱処理する場合、酸素の存在下で行われる必要があり、例えば、大気雰囲気下で行うことができる。また、酸素存在下で行われる必要があるため、沈殿物中の非金属部分に酸素原子を含むことが好ましい。
酸化工程における熱処理温度(以下、酸化温度)は特に限定されないが、700~1300℃が好ましく、900~1200℃がより好ましい。700℃未満では酸化が不十分となり、1300℃を超えると、目的とする磁性粉末の形状、平均粒径および粒度分布が得られない傾向にある。熱処理時間も特に限定されないが、1~3時間が好ましい。
得られる酸化物は、酸化物粒子内においてR、鉄の微視的な混合が充分になされ、沈殿物の形状、粒度分布等が反映された酸化物粒子である。
[前処理工程]
前処理工程とは、SmとFeを含む酸化物を、還元性ガス雰囲気下で熱処理することにより、酸化物の一部が還元された部分酸化物を得る工程である。
ここで、部分酸化物とは、酸化物の一部が還元された酸化物をいう。酸化物の酸素濃度は特に限定されないが、10質量%以下が好ましく、8質量%以下がより好ましい。10質量%を超えると、還元工程においてCaとの還元発熱が大きくなり、焼成温度が高くなることで異常な粒子成長をした粒子ができてしまう傾向がある。ここで、部分酸化物の酸素濃度は、非分散赤外吸収法(ND-IR)により測定することができる。
還元性ガスは水素(H)、一酸化炭素(CO)、メタン(CH)等の炭化水素ガスなどから適宜選択されるが、コストの点で水素ガスが好ましく、ガスの流量は、酸化物が飛散しない範囲で適宜調整される。前処理工程における熱処理温度(以下、前処理温度)は、300℃以上950℃以下の範囲とし、好ましくは400℃以上、より好ましくは750℃以上であり、好ましくは900℃未満である。前処理温度が300℃以上であるとSmとFeを含む酸化物の還元が効率的に進行する。また950℃以下であると酸化物粒子が粒子成長、偏析することが抑制され、所望の粒径を維持することができる。また、還元性ガスとして水素を用いる場合、使用する酸化物層の厚みを20mm以下に調整し、更に反応炉内の露点を-10℃以下に調整することが好ましい。
[還元工程]
還元工程とは、前記部分酸化物を、還元剤の存在下、920℃以上1200℃以下で熱処理することにより、合金粒子を得る工程であり、例えば部分酸化物をカルシウム融体またはカルシウムの蒸気と接触することで還元が行われる。熱処理温度は、磁気特性の点より950℃以上1150℃以下が好ましく、980℃以上1100℃以下がより好ましく、特に、1000℃以上1090℃以下の第一温度で熱処理した後、第一温度よりも低い980℃以上1070℃以下の第二温度で熱処理することが好ましい。また、第一温度は、1010℃以上1080℃以下が好ましく、第二温度は、990℃以上1060℃以下が好ましい。第一温度と第二温度の温度差は、第二温度が第一温度よりも15℃以上60℃以下の範囲で低いことが好ましく、15℃以上30℃以下の範囲で低いことがより好ましい。第一温度による熱処理と第二温度による熱処理は連続で行っても良く、これらの熱処理間において、第二温度の温度範囲より低い熱処理温度での熱処理を含むこともできるが、生産性の点で、連続で行うことが好ましい。各熱処理時間は、還元反応をより均一に行う観点から、120分未満が好ましく、90分未満がより好ましく、熱処理時間の下限は10分以上が好ましく、30分以上がより好ましい。
金属カルシウムは、粒状又は粉末状の形で使用されるが、その粒子径は10mm以下が好ましい。これにより還元反応時における凝集をより効果的に抑制することができる。また、金属カルシウムは、反応当量(希土類酸化物を還元するのに必要な化学量論量であり、Feが酸化物の形である場合には、これを還元するに必要な分を含む)の1.1~3.0倍量の割合で添加することができ、1.5~2.0倍量が好ましい。
還元工程では、還元剤である金属カルシウムとともに、必要に応じて崩壊促進剤を使用することができる。この崩壊促進剤は、後述する水洗工程に際して、生成物の崩壊、粒状化を促進させるために適宜使用されるものであり、例えば、塩化カルシウム等のアルカリ土類金属塩、酸化カルシウム等のアルカリ土類酸化物などが挙げられる。これらの崩壊促進剤は、希土類源として使用される希土類酸化物当り1~30質量%、好ましくは5~30質量%の割合で使用される。
[窒化工程]
窒化工程とは、還元工程で得られた合金粒子を窒化処理することにより、異方性の磁性粒子を得る工程である。上述の沈殿工程で得られる粒子状の沈殿物を用いていることから、還元工程にて多孔質塊状の合金粒子が得られる。これにより、粉砕処理を行うことなく直ちに窒素雰囲気中で熱処理して窒化することができるため、窒化を均一に行うことができる。
合金粒子の窒化処理における熱処理温度(以下、窒化温度)は、好ましくは300~600℃、特に好ましくは400~550℃の温度とし、この温度範囲で雰囲気を窒素雰囲気に置換することにより行われる。熱処理時間は、合金粒子の窒化が充分に均一に行われる程度に設定されればよい。
窒化工程後に得られる生成物には、磁性粒子に加えて、副生するCaO、未反応の金属カルシウム等が含まれ、これらが複合した焼結塊状態となっている場合がある。そこで、その場合は、この生成物を冷却水中に投入して、CaO及び金属カルシウムを水酸化カルシウム(Ca(OH))懸濁物として磁性粒子から分離することができる。さらに残留する水酸化カルシウムは、磁性粒子を酢酸等で洗浄して充分に除去してもよい。
[酸処理工程]
酸処理工程とは、洗浄した窒化物を、磁性粉末100質量部に対して3.5質量部以上13.5質量部以下の酸で処理する工程である。前述した窒化物の洗浄では、カルシウム成分を除去しているが、酸素をある程度含有するSmリッチ層が残存して保護層として機能するため酸化されて酸素濃度が増大することを抑制している。該酸処理工程では、このSmリッチ層を除去して、磁性粉末全体中の酸素濃度を低減する。また、本発明の製造方法では、粉砕等を行わないため、異方性磁性粉末の粒度分布が狭く、微粉を含まないため、酸素濃度の増加を抑制することが可能となる。
酸処理工程に用いる酸としては、特に限定されず、たとえば塩化水素、硝酸、硫酸、酢酸などが挙げられる。なかでも、不純物が残留しない点で、塩化水素、硝酸が好ましい。
酸処理工程に用いる酸の使用量は、磁性粉末100質量部に対して3.5質量部以上13.5質量部以下であるが、4質量部以上10質量部以下が好ましい。3.5質量部未満では、磁性粉末表面の酸化物が残り、酸素濃度が高くなり、13.5質量部を超えると、大気に触れた際に酸化が起こりやすく、また、磁性粉末を溶解するため、コストも高くなる。
酸処理工程において、酸で処理した後に得られた磁性粉末は、必要によりデカンテーションなどの方法で水分を低減することもできる。
[脱水工程]
酸処理する工程の後に、更に脱水処理する工程を含むが好ましい。脱水処理によって、真空乾燥前の固形分中の水分値を低減させ、真空乾燥前の固形分が水分をより多く含むことにより生じる乾燥時の酸化の進行を抑制することができる。ここで、脱水処理は、圧力や遠心力を加えることで、これら処理前後における固形分中に含まれる水分値を低減する処理のことを意味し、単なるデカンテーションや濾過や乾燥は含まない。脱水処理方法は特に限定されないが、圧搾、遠心分離などが挙げられる。
脱水処理後の磁性粉末に含まれる水分量は特に限定されないが、13質量%以下が好ましく、10質量%以下がより好ましい。
酸処理して得られた磁性粉末、または、酸処理後、脱水処理して得られた磁性粉末は、真空乾燥することが好ましい。乾燥温度は特に限定されないが、70℃以上が好ましく、80℃がより好ましい。乾燥時間も特に限定されないが、1時間以上が好ましく、3時間以上がより好ましい。
本実施形態における異方性磁性粉末は、レーザー回折式粒径分布測定装置を用いて乾式条件で測定した平均粒径が1.5μm以上7μm以下であり、下記式
スパン=(D90-D10)/D50
(ここで、D10、D50、D90は、粒度分布の積算値がそれぞれ10%、50%、90%に相当する粒径である。)
で定義されるスパンが1.6以下であり、Sm、Fe、N、Oを含み、Oの量が0.05質量%以上0.65質量%以下であることを特徴とする。
本実施形態における異方性磁性粉末は、前述の製造方法により作製することができるが、磁性粉末を粉砕等による機械的な破砕を行っていないために、平均粒子径が小さく、かつ、スパンも小さな粉末となる。
本実施形態における異方性磁性粉末は、典型的には下記一般式
SmFe(100-v―w-x-y-z)LaCo
(式中、3≦v≦30、5≦w≦15、0≦x≦0.3、0≦y≦2.5、0≦z≦2.5である。)
で表される。
一般式において、vを3以上30以下と規定するのは、3未満では鉄成分の未反応部分(α-Fe相)が分離して窒化物の保磁力が低下し、実用的な磁石ではなくなり、30を超えると、Smの元素が析出し、磁性粉末が大気中で不安定になり、残留磁束密度が低下するからである。また、wを5以上15以下と規定するのは、5未満では、ほとんど保磁力が発現できず、15を越えるとSmの元素や、鉄自体の窒化物が生成するからである。
磁気特性の点より、xは0≦x≦0.3であるが、0.11≦x≦0.22が好ましく、yは0≦y≦2.5であり、zは0≦z≦2.5である。
異方性磁性粉末の平均粒子径は1.5μm以上7μm以下であるが、3μm以上7μm以下が好ましく、4μm以上6.5μm以下がより好ましい。1.5μm未満では、表面積が多いので酸化が起こりやすく、7μmを超えると、磁性粉末が多磁区構造になることで、磁気特性が低下する傾向がある。ここで、平均粒子径は、レーザー回折式粒径分布測定装置を用いて乾式条件で測定した粒子径を意味する。
異方性磁性粉末の下記式
スパン=(D90-D10)/D50
(ここで、D10、D50、D90は、粒度分布の積算値がそれぞれ10%、50%、90%に相当する粒径である。)
で計算されるスパンは1.6以下であるが、1.3以下が好ましい。1.6を超えると、大きな粒子が存在しており、磁気特性が低下する傾向がある。
異方性磁性粉末は酸素を含み、その含有量は0.05質量%以上0.65質量%以下であればよく、0.3質量%以下が好ましい。0.05質量%未満では、大気に曝露すると、酸化が起こりやすく、0.65質量%を超えると磁気特性が低下する傾向がある。ここで、酸素含有量は、非分散赤外吸収法(ND-IR)により測定することができる。
本実施形態の異方性磁性粉末は酸素濃度が低いため、例えば、焼結磁石やボンド磁石として使用することができる。
ボンド磁石は、本実施形態の異方性磁性粉末と、樹脂より作製される。この異方性磁性粉末を含むことで、高い磁気特性を有する複合材料を構成することができる。
複合材料に含まれる樹脂は、熱硬化性樹脂であっても、熱可塑性樹脂であってもよいが、熱可塑性樹脂であることが好ましい。熱可塑性樹脂として、具体的には、ポリフェニレンサルファイド樹脂(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリアミド(PA)、ポリプロピレン(PP)、ポリエチレン(PE)等を挙げることができる。
複合材料を得る際の異方性磁性粉末と樹脂の重量比(樹脂/磁性粉末)は、0.10~0.15であることが好ましく、0.11~0.14であることがより好ましい。
複合材料は、例えば、混練機を用いて、280~330℃で異方性磁性粉末と樹脂とを混合することにより得ることができる。
複合材料を用いることにより、ボンド磁石を製造することができる。具体的には例えば、複合材料を熱処理しながら配向磁場で磁化容易磁区を揃え(配向工程)、次いで着磁磁場でパルス着磁する(着磁工程)ことにより、ボンド磁石を得ることができる。
配向工程における熱処理温度は、例えば90~200℃であることが好ましく、100~150℃であることがより好ましい。配向工程における配向磁場の大きさは、例えば720kA/mとすることができる。また、着磁工程における着磁磁場の大きさは、例えば1500~2500kA/mとすることができる。
以下、実施例について説明する。なお、特に断りのない限り、「%」は質量基準である。
[評価]
酸素含有量、窒素含有量、粒度分布は、以下の方法で評価した。
<酸素含有量>
酸素含有量は、非分散型赤外線吸収法(株式会社堀場製作所製のEMGA-820)により測定した。
<窒素含有量>
窒素含有量は、熱伝導度法(株式会社堀場製作所製のEMGA-820)により測定した。
<粒度分布>
粒度分布は、レーザー回折式粒度分布測定装置(日本レーザー株式会社のHELOS&RODOS)により測定した。
<水分量>
水分量は、真空乾燥前後の重量の差により測定した。
製造例1(中粒径のSmFe酸化物の作製)
純水2.0kgにFeSO・7HO 5.0kgを混合溶解した。さらにSm 0.49kgと70%硫酸0.74kgとを加えてよく攪拌し、完全に溶解させた。次に、得られた溶液に純水を加え、最終的にFe濃度が0.726mol/l、Sm濃度が0.112mol/lとなるように調整し、SmFe硫酸溶液とした。
[沈殿工程]
温度が40℃に保たれた純水20kg中に、調製したSmFe硫酸溶液全量を反応開始から70分間で攪拌しながら滴下し、同時に15%アンモニア液を滴下させ、pHを7~8に調整した。これにより、SmFe水酸化物を含むスラリーを得た。得られたスラリーをデカンテーションにより純水で洗浄した後、水酸化物を固液分離した。分離した水酸化物を100℃のオーブン中で10時間乾燥した。
[酸化工程]
沈殿工程で得られた水酸化物を大気中1000℃で1時間、焼成処理した。冷却後、原料粉末として赤色のSmFe酸化物を得た。
製造例2(大粒径のSmFe酸化物の作製)
製造例1において、La 0.035kgを加えたこと、酸化工程での大気中温度900℃に変更した以外は製造例1と同様に操作し、中粒径のSmFe酸化物を得た。
製造例3(小粒径のSmFe酸化物の作製)
製造例1において、15%アンモニア液と同時に18%のタングステン酸アンモニウム0.14kgを滴下させたこと、酸化工程での焼成温度900℃に変更した以外は製造例1と同様に操作し、小粒径のSmFe酸化物を得た。
実施例1(中粒子径の磁性粉末)
[前処理工程]
製造例1で得られたSmFe酸化物100gを、嵩厚10mmとなるように鋼製容器に入れた。容器を炉内に入れ、100Paまで減圧した後、水素ガスを導入しながら、前処理温度の850℃まで昇温し、そのまま15時間保持した。非分散赤外吸収法(ND-IR)(株式会社堀場製作所製のEMGA-820)により酸素濃度を測定したところ、5質量%であった。これにより、Smと結合している酸素は還元されず、Feと結合している酸素のうち、95%が還元される黒色の部分酸化物を得たことがわかった。
[還元工程]
前処理工程で得られた部分酸化物60gと平均粒径約6mmの金属カルシウム19.2gとを混合して炉内に入れた。炉内を真空排気した後、アルゴンガス(Arガス)を導入した。1045℃の第一温度まで上昇させて、45分間保持し、その後、1000℃の第二温度に冷却して30分間保持することにより、Fe-Sm合金粒子を得た。
[窒化工程]
引き続き、炉内温度を100℃まで冷却した後、真空排気を行い、窒素ガスを導入しながら、温度を450℃まで上昇させて、そのまま23時間保持して、磁性粒子を含む塊状生成物を得た。
[水洗工程]
窒化工程で得られた塊状の生成物を純水3kgに投入し、30分間攪拌した。静置した後、デカンテーションにより上澄みを排水した。純水への投入、攪拌及びデカンテーションを10回繰り返した。次いで99.9%酢酸2.5gを投入して15分間攪拌した。静置した後、デカンテーションにより上澄みを排水した。純水への投入、攪拌及びデカンテーションを2回繰り返した。
[酸処理工程]
水洗工程で得られた粉末100質量部に対して、塩化水素として4.3質量部となるように、6%塩酸水溶液を添加して、1分間、撹拌した。静置した後、デカンテーションにより上澄みを排水した。純水への投入、攪拌及びデカンテーションを2回繰り返した。固液分離した後80℃で真空乾燥を3時間行い、磁性粉末を得た。
実施例2~4および比較例1~4(中粒子径の磁性粉末)
表1に記載した酸使用量に変更した以外は、実施例1と同様に操作し、磁性粉末を作製した。
各実施例および比較例で得られた磁性粉末を用いて、上述した方法により酸素含有量、窒素含有量および粒度分布を測定した。評価結果を表1に示す。
Figure 0007332856000001
表1の結果から、中粒子径の磁性粉末の場合、3.5質量部以上の酸で洗浄すると、酸素含有量が0.61質量%以下と非常に少ない磁性粉末が得られた。スパンも1.2程度しかなく、粒度分布の狭い異方性磁性粉末であった。
実施例5、6(大粒子径の磁性粉末)
製造例2で作製したSmFe酸化物を使用したことおよび表2に記載した酸使用量に変更したこと以外は、実施例1と同様に操作し、大粒子径の磁性粉末を作製した。各実施例で得られた磁性粉末を用いて、上述した方法により酸素含有量、窒素含有量、粒度分布を測定した。評価結果を表2に示す。
Figure 0007332856000002
表2の結果から、大粒子径の磁性粉末の場合、5質量部または7質量部の酸で洗浄すると、酸素含有量が0.20質量%以下と非常に少ない磁性粉末が得られた。スパンも1.2程度しかなく、粒度分布の狭い異方性磁性粉末であった。
実施例7~9、比較例5(小粒子径の磁性粉末)
製造例3で作製したSmFe酸化物を使用したことおよび表3に記載した酸使用量に変更したこと以外は、実施例1と同様に操作し、小粒子径の磁性粉末を作製した。各実施例および比較例で得られた磁性粉末を用いて、上述した方法により酸素含有量、窒素含有量、粒度分布を測定した。評価結果を表3に示す。
Figure 0007332856000003
表3の結果から、小粒子径の磁性粉末の場合も、3.5質量部以上13.5質量部以下の酸で洗浄すると、酸素含有量が0.54質量%以下と非常に少ない磁性粉末が得られた。スパンも1.5程度しかなく、粒度分布の狭い異方性磁性粉末であった。
実施例10~11
実施例5および7において、酸処理工程で得た固液分離後の固形分を、圧搾することにより脱水処理を行った後に、80℃で3時間、真空乾燥を行ったこと以外は、それぞれ実施例5および7と同様に操作し、磁性粉末を作製した。各実施例で得られた磁性粉末を用いて、上述した方法により、脱水処理後の固形分の水分量、得られた磁性粉末の酸素含有量、窒素含有量、粒度分布を測定した。評価結果を、実施例5および7で作製した磁性粉末の評価結果とともに、表4に示す。
Figure 0007332856000004
表4の結果から、実施例10において、脱水処理を行うことにより、水分量を大幅に低減でき、実施例5と比較して、得られた磁性粉末中の酸素含有量をさらに低減できた。また、実施例11においても、水分量を大幅に低減でき、実施例7と比較して、得られた磁性粉末中の酸素含有量をさらに低減できた。
本発明の製造方法によって得られた異方性磁性粉末は、酸素濃度が低く、平均粒子径が小さく、そして、粒度分布の狭い異方性磁性粉末であるので、特に焼結磁石に好適に適用することができる。

Claims (6)

  1. SmとFeを含む酸化物を、還元性ガス雰囲気下で熱処理することにより、部分酸化物を得る前処理工程、
    前記部分酸化物を、還元剤である金属カルシウムの存在下、920℃以上1200℃以下で熱処理することにより、合金粒子を得る工程、
    前記合金粒子を窒化して窒化物を得る工程、
    前記窒化物を、前記合金粒子を得る工程で使用したカルシウムを除去するために酸で洗浄して磁性粉末を得る工程、および、
    前記磁性粉末を酸処理する工程を含み、
    前記酸処理する工程において、磁性粉末100質量部に対する酸の量が、3.5質量部以上13.5質量部以下である異方性磁性粉末の製造方法。
  2. 前記合金粒子を得る工程において、1000℃以上1090℃以下の第一温度で熱処理した後、第一温度よりも低い980℃以上1070℃以下の第二温度で熱処理する請求項1記載の異方性磁性粉末の製造方法。
  3. 前記SmとFeを含む酸化物は、更にLa、WおよびCoからなる群から選ばれる1種以上の金属を含む請求項1または2に記載の異方性磁性粉末の製造方法。
  4. 前記酸処理で使用する酸が、塩化水素または硝酸である請求項1~3のいずれか1項に記載の異方性磁性粉末の製造方法。
  5. 前記酸処理する工程の後に、更に脱水処理する工程を含む請求項1~4のいずれか1項に記載の異方性磁性粉末の製造方法。
  6. レーザー回折式粒径分布測定装置を用いて乾式条件で測定した平均粒径が1.5μm以上7μm以下であり、下記式
    スパン=(D90-D10)/D50
    (ここで、D10、D50、D90は、粒度分布の積算値がそれぞれ10%、50%、90%に相当する粒径である。)
    で定義されるスパンが1.6以下であり、Sm、Fe、N、Oを含み、Oの量が0.05質量%以上0.65質量%以下である異方性磁性粉末。
JP2019086125A 2018-12-19 2019-04-26 異方性磁性粉末の製造方法および異方性磁性粉末 Active JP7332856B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018237483 2018-12-19
JP2018237483 2018-12-19

Publications (2)

Publication Number Publication Date
JP2020102606A JP2020102606A (ja) 2020-07-02
JP7332856B2 true JP7332856B2 (ja) 2023-08-24

Family

ID=71140031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019086125A Active JP7332856B2 (ja) 2018-12-19 2019-04-26 異方性磁性粉末の製造方法および異方性磁性粉末

Country Status (1)

Country Link
JP (1) JP7332856B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360052B2 (ja) * 2020-06-19 2023-10-12 日亜化学工業株式会社 異方性磁性粉末の製造方法および異方性磁性粉末
JP7440478B2 (ja) 2021-11-24 2024-02-28 トヨタ自動車株式会社 希土類磁石及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171868A (ja) 2007-01-09 2008-07-24 Sumitomo Metal Mining Co Ltd 希土類−鉄−窒素系磁石粉末の製造方法
JP2015070102A (ja) 2013-09-28 2015-04-13 日亜化学工業株式会社 磁性粒子の製造方法、及び磁性粒子
JP2017117937A (ja) 2015-12-24 2017-06-29 日亜化学工業株式会社 異方性磁性粉末およびその製造方法
JP2017226885A (ja) 2016-06-23 2017-12-28 住友金属鉱山株式会社 希土類−鉄−窒素系磁石粉末の製造方法
JP6724972B2 (ja) 2017-12-22 2020-07-15 日亜化学工業株式会社 異方性磁性粉末の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171868A (ja) 2007-01-09 2008-07-24 Sumitomo Metal Mining Co Ltd 希土類−鉄−窒素系磁石粉末の製造方法
JP2015070102A (ja) 2013-09-28 2015-04-13 日亜化学工業株式会社 磁性粒子の製造方法、及び磁性粒子
JP2017117937A (ja) 2015-12-24 2017-06-29 日亜化学工業株式会社 異方性磁性粉末およびその製造方法
JP2017226885A (ja) 2016-06-23 2017-12-28 住友金属鉱山株式会社 希土類−鉄−窒素系磁石粉末の製造方法
JP6724972B2 (ja) 2017-12-22 2020-07-15 日亜化学工業株式会社 異方性磁性粉末の製造方法

Also Published As

Publication number Publication date
JP2020102606A (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
US20230268105A1 (en) Anisotropic magnetic powders
US11685654B2 (en) Secondary particles for anisotropic magnetic powder
WO1999033597A1 (fr) POUDRE D'ALLIAGE DE Sm-Fe-N ET PROCEDE DE PRODUCTION
JP6489073B2 (ja) 希土類−鉄−窒素系磁石粉末の製造方法
JP6724972B2 (ja) 異方性磁性粉末の製造方法
JP7332856B2 (ja) 異方性磁性粉末の製造方法および異方性磁性粉末
US10867728B2 (en) Method of producing anisotropic magnetic powder
JP2023048129A (ja) SmFeN系希土類磁石の製造方法
CN116168940A (zh) 稀土磁体及其制造方法
JP7360052B2 (ja) 異方性磁性粉末の製造方法および異方性磁性粉末
JP2023067693A (ja) 希土類磁石及びその製造方法
JP2021055188A (ja) 異方性磁性粉末の製造方法
JP2022056073A (ja) 異方性磁性粉末の製造方法および異方性磁性粉末
WO2022259949A1 (ja) SmFeN系異方性磁性粉末およびボンド磁石、ならびにそれらの製造方法
WO2023048003A1 (ja) SmFeN系異方性磁性粉末およびボンド磁石、ならびにそれらの製造方法
JP2022189752A (ja) SmFeN系異方性磁性粉末の製造方法およびSmFeN系異方性磁性粉末
JP6985607B2 (ja) 異方性磁性粉末の製造方法
US20220406496A1 (en) METHOD OF PRODUCING SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND SmFeN-BASED ANISOTROPIC MAGNETIC POWDER
US20240161975A1 (en) SmFeN BASED RARE EARTH MAGNET AND PRODUCTION METHOD THEREOF
JP2022189753A (ja) SmFeN系希土類磁石の製造方法
CN115472409A (zh) SmFeN系稀土磁体的制造方法
CN115881415A (zh) SmFeN系稀土类磁体的制造方法
JP2023077265A (ja) 希土類磁石及びその製造方法
JP2024028122A (ja) 希土類磁性粉末の製造方法および希土類磁性粉末
CN118043153A (en) SmFeN anisotropic magnetic powder, bonded magnet, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R151 Written notification of patent or utility model registration

Ref document number: 7332856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151