JP7323108B2 - Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method - Google Patents

Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method Download PDF

Info

Publication number
JP7323108B2
JP7323108B2 JP2019035443A JP2019035443A JP7323108B2 JP 7323108 B2 JP7323108 B2 JP 7323108B2 JP 2019035443 A JP2019035443 A JP 2019035443A JP 2019035443 A JP2019035443 A JP 2019035443A JP 7323108 B2 JP7323108 B2 JP 7323108B2
Authority
JP
Japan
Prior art keywords
measurement
measured
property evaluation
thermoelectric
measurement probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019035443A
Other languages
Japanese (ja)
Other versions
JP2020139834A (en
Inventor
清 小川
崇宏 梶間
良三 平松
方星 長野
匠 山崎
ウソク 申
彰宏 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokai National Higher Education and Research System NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tokai National Higher Education and Research System NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019035443A priority Critical patent/JP7323108B2/en
Publication of JP2020139834A publication Critical patent/JP2020139834A/en
Application granted granted Critical
Publication of JP7323108B2 publication Critical patent/JP7323108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

特許法第30条第2項適用 (1)公開の事由1 集会名、開催場所:2018年第79回応用物理学会秋季学術講演会展示会 展示日:平成30年9月18-21日 (2)公開の事由2 集会名、開催場所:第39回日本熱物性シンポジウム 開催日:平成30年11月13日 (3)公開の事由3 集会名、開催場所:第39回日本熱物性シンポジウム展示コーナー 展示日:平成30年11月13-15日 (4)公開の事由4 刊行物:THERMOPHYSICAL PROPERTIES 39 The 39th Japan Symposium 2018 Final Program 発行日:平成30年11月13日 (5)公開の事由5 刊行物:THERMOPHYSICAL PROPERTIES 39 The 39th Japan Symposium 2018 発行日:平成30年11月13日Application of Article 30, Paragraph 2 of the Patent Act (1) Reason for disclosure 1 Meeting name and venue: 2018 79th Japan Society of Applied Physics Autumn Scientific Lecture Exhibition Exhibition date: September 18-21, 2018 (2 ) Reason for disclosure 2 Meeting name, Venue: 39th Japan Symposium on Thermophysical Properties Date: November 13, 2018 (3) Reason for disclosure 3 Meeting name, Venue: 39th Japan Symposium on Thermophysical Properties Exhibition corner Exhibition date: November 13-15, 2018 (4) Reason for publication 4 Publication: THERMOPHYSICAL PROPERTIES 39 The 39th Japan Symposium 2018 Final Program Publication date: November 13, 2018 (5) Reason for publication 5 Publication Material: THERMOPHYSICAL PROPERTIES 39 The 39th Japan Symposium 2018 Publication date: November 13, 2018

本発明は、熱電材料の電気抵抗率、ゼーベック係数及び熱伝導率を測定する熱電特性評価ユニット、熱電特性評価装置及び熱電特性評価方法に関する。 The present invention relates to a thermoelectric property evaluation unit, a thermoelectric property evaluation device, and a thermoelectric property evaluation method for measuring electrical resistivity, Seebeck coefficient and thermal conductivity of thermoelectric materials.

熱を電気に変える熱電変換材料は物質の両端に温度差を生じさせることで電圧が生じるゼーベック効果を利用している。熱を電力に直接変換できる「熱電変換」は、タービンのような可動部がなく、二酸化炭素などの排出もない環境にやさしい発電技術のひとつとして注目されている。 Thermoelectric conversion materials that convert heat into electricity utilize the Seebeck effect, in which voltage is generated by creating a temperature difference between both ends of a substance. "Thermoelectric conversion," which can directly convert heat into electric power, is attracting attention as an environmentally friendly power generation technology that does not have moving parts such as turbines and does not emit carbon dioxide.

熱電材料の性能は、一般的に性能指数Z =α2/ρκで定義される。ここで、αはゼーベック係数、ρは電気抵抗率、κは熱伝導率である。性能指数Zが大きな値ほど優れた熱電材料(発電性能が高い)であるが、性能指数Zはまた温度の関数であり、ある温度で最大値をとる。熱電性能や抵抗率、熱伝導率の微妙な調整を行って、材料を最適化する実験が多く試みられている。 The performance of thermoelectric materials is generally defined by the figure of merit Z = α2/ρκ. where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the thermal conductivity. The higher the value of the figure of merit Z, the better the thermoelectric material (the higher the power generation performance), but the figure of merit Z is also a function of temperature, and takes a maximum value at a certain temperature. Many experiments have been attempted to optimize materials by fine-tuning their thermoelectric performance, resistivity, and thermal conductivity.

ゼーベック係数αや熱伝導率λは、熱電性能指数を決定する重要な因子である。すなわち、熱電材料の性能評価では、ある温度において、これらの物性値を定量的に決定する必要があり、一般的には、熱電能に関しては定常2端子法によって決定する。このような熱電材料である試料の性能評価は、当該試料上の2点に高精度に位置決めして、当該2点の電圧と温度を計測する必要がある。 The Seebeck coefficient α and the thermal conductivity λ are important factors that determine the thermoelectric figure of merit. That is, in the performance evaluation of thermoelectric materials, it is necessary to quantitatively determine these physical property values at a certain temperature. Generally, the thermoelectric power is determined by the stationary two-terminal method. To evaluate the performance of such a sample that is a thermoelectric material, it is necessary to position two points on the sample with high accuracy and measure the voltage and temperature at the two points.

また、各熱電特性の測定装置において、当該特性の測定方向(面方向又は厚さ方向)が異なるため、特性が測定方向に依存する異方性のある試料の場合は、微細組織の方向と熱の流れる方向とを考慮して試料を用意する必要があり、測定の負荷が大きかった。 In addition, in the case of an anisotropic sample whose properties depend on the measurement direction, the direction of the microstructure and the thermal Therefore, it was necessary to prepare the sample in consideration of the flow direction of the gas, and the load of the measurement was heavy.

同一試料で電気抵抗率、ゼーベック係数及び熱拡散率の測定を行う方法として、例えば、特許文献1には、ヒータを一端に配置した試料側面に2本の熱電対を接触させて熱拡散率を測定する方法を主とし、併せてゼーベック係数及び電気抵抗率を測定する方法が開示されている。 As a method for measuring the electrical resistivity, Seebeck coefficient and thermal diffusivity of the same sample, for example, Patent Document 1 discloses a method in which two thermocouples are brought into contact with the side surface of a sample with a heater arranged at one end to measure the thermal diffusivity. A method of measuring the Seebeck coefficient and an electric resistivity are also disclosed.

特開2016-24174号公報JP 2016-24174 A

上述のような従来の測定方法では、熱電対などの測定プローブと試料の接触が不安定で、熱電対を導電ペーストなどで試料に取り付ける方法、バネの力で押し付ける方法が用いられることが多い。これらの方法では、試料の準備に時間と手間が必要であり、バネの押し付け力の調整が難しく、測定中に接触不良による計測不良が発生する問題があった。 In conventional measurement methods such as those described above, the contact between a measurement probe such as a thermocouple and the sample is unstable, and a method of attaching the thermocouple to the sample with conductive paste or the like or a method of pressing the sample with the force of a spring is often used. In these methods, preparation of the sample requires time and effort, it is difficult to adjust the pressing force of the spring, and there is a problem that measurement failure occurs due to poor contact during measurement.

そこで、本発明は、同一測定試料を用い、同一測定方向(熱流方向)で熱電特性を評価することができるとともに、簡単な構成であり、短時間で高精度な熱電特性評価を行うことができる熱電特性評価ユニット、熱電特性評価装置及び熱電特性評価方法を提供することを目的とする。 Therefore, the present invention can evaluate thermoelectric properties in the same measurement direction (heat flow direction) using the same measurement sample, has a simple configuration, and can perform highly accurate thermoelectric property evaluation in a short time. An object of the present invention is to provide a thermoelectric property evaluation unit, a thermoelectric property evaluation device, and a thermoelectric property evaluation method.

上記目的を達成するため、請求項1に記載の発明では、熱電材料からなる板状の被測定物の電気抵抗率、ゼーベック係数及び熱拡散率を評価する熱電特性評価ユニットであって、被測定物に接触し、被測定物からの電圧及び熱起電力を計測するための、それぞれ熱電対を備えた4本の測定プローブと、前記被測定物が前記測定プローブと接触する測定面と反対の被測定物の裏面を支持して保持する保持部材と、前記測定プローブをそれぞれ被測定物に押し当てるための押付け手段と、前記被測定物の一端部を定常加熱または周期加熱して前記被測定物の測定面方向に温度差を発生させるためのヒータと、を備え、前記測定プローブは、それぞれ絶縁体の支持管に熱電対を通して先端を計測部として突出させて構成されており、それぞれの前記測定プローブの計測部が前記被測定物に流れる電流または熱流に沿った方向に配置されている、という技術的手段を用いる。 In order to achieve the above object, the invention according to claim 1 provides a thermoelectric property evaluation unit for evaluating the electrical resistivity, Seebeck coefficient and thermal diffusivity of a plate-shaped object to be measured made of a thermoelectric material, four measuring probes, each equipped with a thermocouple , for contacting an object and measuring the voltage and thermoelectric force from the object to be measured; holding member for supporting and holding the back surface of the object to be measured; pressing means for pressing the measurement probe against the object to be measured; and a heater for generating a temperature difference in the direction of the measurement surface of the object. A technical means is used in which the measuring portion of the measuring probe is arranged in a direction along the current or heat flow flowing through the object to be measured.

請求項2に記載の発明では、請求項1に記載の熱電特性評価ユニットにおいて、前記ヒータは、前記保持部材に、前記被測定物の一端部で接触可能に配置されている、という技術的手段を用いる。 According to the invention of claim 2, in the thermoelectric property evaluation unit of claim 1, the heater is arranged so as to be able to contact the holding member at one end of the object to be measured. Use

請求項3に記載の発明では、請求項1または請求項2に記載の熱電特性評価ユニットにおいて、前記押付け手段は、プッシュロッド機構を備え、前記測定プローブにそれぞれ取り付けられた接触圧調整部材と、前記接触圧調整部材を介して前記測定プローブを前記被測定物に向かって対して直線駆動する駆動手段と、を備え、前記接触圧調整部材は、各測定プローブにおいて、前記計測部が前記被測定物に接触した後は、前記駆動手段による変位を吸収するとともに当該計測部による前記被測定物に対する押付け力を発生させる、という技術的手段を用いる。 In the invention according to claim 3, in the thermoelectric property evaluation unit according to claim 1 or 2, the pressing means includes a push rod mechanism, and a contact pressure adjustment member attached to each of the measurement probes; driving means for linearly driving the measurement probe toward the object to be measured via the contact pressure adjustment member, wherein the contact pressure adjustment member is configured such that the measurement portion of each measurement probe corresponds to the After contacting the object to be measured, a technical means is used in which the displacement by the driving means is absorbed and a pressing force is generated by the measurement unit against the object to be measured.

請求項4に記載の発明では、請求項1ないし請求項3のいずれか1つに記載の熱電特性評価ユニットと、当該熱電特性評価ユニットを制御し当該熱電特性評価ユニットから送出される信号に基づいて前記被測定物の電気抵抗率、ゼーベック係数及び熱拡散率を測定する制御手段と、を備えた、という技術的手段を用いる。 In the invention according to claim 4, the thermoelectric property evaluation unit according to any one of claims 1 to 3, and based on a signal that controls the thermoelectric property evaluation unit and is sent from the thermoelectric property evaluation unit and a control means for measuring the electrical resistivity, Seebeck coefficient and thermal diffusivity of the object to be measured.

請求項5に記載の発明では、請求項4に記載の熱電特性評価装置を用いた熱電特性評価方法であって、請求項4に記載の熱電特性評価装置を用いた熱電特性評価方法であって、前記熱電特性評価ユニットを用いて、被測定物に前記測定プローブをそれぞれ接触させる工程と、前記測定プローブにより被測定物に電流を流し、他の測定プローブにより計測された異なる2点間の電圧に基づいて電気抵抗率を算出する工程と、前記ヒータにより被測定物を定常加熱し、前記測定プローブにより測定される異なる2点間の温度差により発生する起電力に基づいてゼーベック係数を算出する工程と、前記ヒータにより被測定物を周期加熱し、前記測定プローブにより異なる2点の温度波形データをそれぞれ取得し、前記制御手段で生成した基準となる温度波形データを用いて異なる2点間の周期的な温度変化の位相差を演算し、当該周期的な温度変化の位相差の周波数依存性に基づいて周期的な温度変化の位相差周波数依存性に基づいて熱拡散率を算出する工程と、を備えた、という技術的手段を用いる。 The invention according to claim 5 is a thermoelectric property evaluation method using the thermoelectric property evaluation device according to claim 4, and a thermoelectric property evaluation method using the thermoelectric property evaluation device according to claim 4, a step of contacting each of the measurement probes with an object to be measured using the thermoelectric property evaluation unit; and applying a current to the object to be measured by the measurement probe, and measuring a voltage between two different points by another measurement probe. and calculating the Seebeck coefficient based on the electromotive force generated by the temperature difference between two different points measured by the measuring probe while steadily heating the object to be measured by the heater. and periodically heating the object to be measured by the heater, obtaining temperature waveform data at two different points with the measurement probe, and using the reference temperature waveform data generated by the control means to measure the difference between the two different points. calculating the phase difference of the periodic temperature changes, and calculating the thermal diffusivity based on the frequency dependence of the phase differences of the periodic temperature changes; using the technical means of

請求項1に記載の発明によれば、一つの測定装置で、同一測定試料を用い、同一測定方向(熱流方向)で3つの熱電特性を評価することができる。押付け手段により、測定プローブを評価試料に対して適切な圧力で確実に接触させることができるので、良好な接触状態で測定を行うことができ、測定精度及び再現性を向上させることができる。 According to the first aspect of the present invention, it is possible to evaluate three thermoelectric properties in the same measurement direction (heat flow direction) using the same measurement sample with one measurement apparatus. The pressing means can reliably bring the measurement probe into contact with the evaluation sample with an appropriate pressure, so that measurement can be performed in a good contact state, and measurement accuracy and reproducibility can be improved.

請求項2に記載の発明のようにヒータを配置することにより、ヒータが十分に評価試料に熱を供給できるような接触状態にすることができるので、良好な加熱を行うことができ、測定精度及び再現性を向上させることができる。また、熱拡散率測定において、ヒータを評価試料の裏面から加熱するように配置することにより、温度波が安定するので測定精度及び再現性を向上させることができる。 By arranging the heater as in the second aspect of the invention, the heater can be brought into a contact state in which it can sufficiently supply heat to the evaluation sample, so good heating can be performed, and measurement accuracy can be improved. and reproducibility can be improved. In addition, in the thermal diffusivity measurement, by arranging the heater so as to heat the evaluation sample from the back side, the temperature wave is stabilized, so that the measurement accuracy and reproducibility can be improved.

請求項3に記載の発明によれば、各測定プローブを個別に操作するのではなく、駆動手段の操作により、すべての測定プローブを評価試料に対して適切な圧力で確実に接触させることができる。 According to the third aspect of the invention, all the measurement probes can be reliably brought into contact with the evaluation sample with an appropriate pressure by operating the driving means instead of operating each measurement probe individually. .

請求項4に記載の発明のように、熱電特性評価ユニットと制御手段とを備えた熱電特性評価装置を構成することができる。 According to the fourth aspect of the invention, it is possible to configure a thermoelectric property evaluation device that includes a thermoelectric property evaluation unit and control means.

請求項5に記載の発明のように、請求項4に記載の熱電特性評価装置を用いて、電気抵抗率、ゼーベック係数及び熱拡散率を短時間で順次測定することができる。特に、熱拡散率測定において、熱拡散率を測定する時間が大幅に短縮される。また、測定に必要な機器構成を簡略化することができる。 As in the fifth aspect of the invention, the thermoelectric property evaluation apparatus of the fourth aspect can be used to sequentially measure electrical resistivity, Seebeck coefficient and thermal diffusivity in a short time. In particular, in thermal diffusivity measurement, the time required to measure thermal diffusivity is greatly reduced. In addition, it is possible to simplify the equipment configuration required for the measurement.

熱電特性評価ユニットの全体側面図である。なお、以下の説明において、図1の上方を「上」、下方を「下」とする。1 is an overall side view of a thermoelectric property evaluation unit; FIG. In the following description, the upper side of FIG. 1 will be referred to as "upper" and the lower side as "lower". 図1の熱電特性評価ユニットを上方から見た全体平面図である。FIG. 2 is an overall plan view of the thermoelectric property evaluation unit of FIG. 1 viewed from above; 試料ホルダ近傍の構造を示す側面図である。It is a side view which shows the structure near a sample holder. 測定プローブが所定の評価試料に接触する状態を模式的に示した説明図である。FIG. 4 is an explanatory diagram schematically showing a state in which a measurement probe is brought into contact with a predetermined evaluation sample; 試料ホルダの概略構成を示す説明図である。It is an explanatory view showing a schematic structure of a sample holder. 試料ホルダを測定プローブ側から見たときの構成を示す平面説明図である。FIG. 4 is a plan explanatory view showing the configuration of the sample holder when viewed from the measurement probe side; 支持手段及び接触圧調整手段の構成を説明するための説明図である。図7(A)は、上方から見た説明図であり、図7(B)は側面から見た説明図である。It is an explanatory view for explaining composition of support means and contact pressure adjustment means. FIG. 7A is an explanatory diagram viewed from above, and FIG. 7B is an explanatory diagram viewed from a side. 熱電特性評価装置の構成を示すブロック図である。It is a block diagram which shows the structure of a thermoelectric property evaluation apparatus. 電気抵抗率の測定原理を示す説明図である。It is explanatory drawing which shows the measurement principle of an electrical resistivity. ゼーベック係数の測定原理を示す説明図である。It is an explanatory view showing the principle of measuring the Seebeck coefficient. 熱拡散率の測定原理を示す説明図である。It is explanatory drawing which shows the measurement principle of a thermal diffusivity. 熱拡散率測定における信号処理方法を示す説明図である。FIG. 4 is an explanatory diagram showing a signal processing method in thermal diffusivity measurement; 加熱周波数を変化させて熱換算率測定を行った結果を示す説明図である。It is explanatory drawing which shows the result of having changed the heating frequency and performed heat conversion factor measurement.

(熱電特性評価ユニット)
本発明の熱電特性評価ユニットについて、図1-7を参照して説明する。
(Thermoelectric property evaluation unit)
A thermoelectric characterization unit of the present invention will now be described with reference to FIGS. 1-7.

熱電特性評価ユニット1は、測定プローブ10と、被測定物である評価試料Mを保持する試料ホルダ30と、測定プローブ10を所定の配置に支持する支持手段40と、測定プローブ10を評価試料Mに対して直線駆動する駆動手段50と、測定プローブ10の先端の計測部が評価試料Mの評価面に接触する状態を調整する接触圧調整手段(以下、接触圧調整部材60)と、を備えている。ここで、支持手段40、駆動手段50及び接触圧調整部材60が、複数の測定プローブ10の計測部をそれぞれ評価試料Mに押し当てて接触させるための押付け手段を構成する。評価試料Mとして、熱電材料からなる板状の試料を用いることができる。 The thermoelectric property evaluation unit 1 includes a measurement probe 10, a sample holder 30 that holds an evaluation sample M that is an object to be measured, a support means 40 that supports the measurement probe 10 in a predetermined arrangement, and a measurement probe 10 attached to the evaluation sample M. and a contact pressure adjusting means (hereinafter referred to as a contact pressure adjusting member 60) for adjusting the contact state of the measuring portion at the tip of the measuring probe 10 with the evaluation surface of the evaluation sample M. ing. Here, the support means 40, the drive means 50, and the contact pressure adjustment member 60 constitute a pressing means for pressing the measurement portions of the plurality of measurement probes 10 against the evaluation sample M to contact them. As the evaluation sample M, a plate-shaped sample made of a thermoelectric material can be used.

測定プローブ10として、第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14を用いる。測定プローブ10は、室温~1000℃までの測定が可能で、真空雰囲気下で使用可能な構成とすることが好ましい。 As the measurement probe 10, a first measurement probe 11, a second measurement probe 12, a third measurement probe 13 and a fourth measurement probe 14 are used. It is preferable that the measurement probe 10 be configured to be able to measure from room temperature to 1000° C. and to be usable in a vacuum atmosphere.

第1測定プローブ11は、熱電対15と、支持管16と、を備え、支持管16は熱電対15の先端の計測部15aが露出するように内装して固定している。 The first measurement probe 11 includes a thermocouple 15 and a support tube 16. The support tube 16 is internally fixed such that the measurement portion 15a at the tip of the thermocouple 15 is exposed.

第2測定プローブ12は、熱電対17と、支持管18と、を備え、支持管18は熱電対17の先端の計測部17aが露出するように内装して固定している。 The second measurement probe 12 includes a thermocouple 17 and a support tube 18. The support tube 18 is internally fixed such that the measurement portion 17a at the tip of the thermocouple 17 is exposed.

第3測定プローブ13は、第2測定プローブ12と同様の構成であり、熱電対19と、支持管20と、を備え、支持管20は熱電対19の先端の計測部19aが露出するように内装して固定している。 The third measurement probe 13 has the same configuration as the second measurement probe 12, and includes a thermocouple 19 and a support tube 20. The support tube 20 is arranged so that the measurement portion 19a at the tip of the thermocouple 19 is exposed. It is fixed inside.

第4測定プローブ14は、第1測定プローブ11と同様の構成であり、熱電対21と、支持管22と、を備え、支持管22は熱電対21の先端の計測部21aが露出するように内装して固定している。 The fourth measurement probe 14 has the same configuration as the first measurement probe 11, and includes a thermocouple 21 and a support tube 22. The support tube 22 is arranged so that the measurement portion 21a at the tip of the thermocouple 21 is exposed. It is fixed inside.

第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14は、後述する支持手段40により平行に等間隔で配置されている。 The first measurement probe 11, the second measurement probe 12, the third measurement probe 13, and the fourth measurement probe 14 are arranged in parallel at equal intervals by support means 40, which will be described later.

支持管16、18、20、22は、耐熱性が高い絶縁材料により形成されており、例えば、アルミナ管などを好適に用いることができる。 The support tubes 16, 18, 20, 22 are made of an insulating material with high heat resistance, and for example, an alumina tube or the like can be suitably used.

高温での測定を勘案すると、熱電対15、17、19、21は、R熱電対を好適に用いることができる。 Considering the measurement at high temperatures, the thermocouples 15, 17, 19, and 21 can preferably be R thermocouples.

第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14の各先端の計測部11a、12a、13a、14aは、探針プローブとして評価試料Mに直接接触される。そのため、良好な接触状態を得ることができ、また、熱容量が大き過ぎないように形成される。通常、熱電対の先端部は球状であるが、計測部11a、12a、13a、14aは、評価試料Mとの接触部が平面となるように形成されている。これにより、評価試料Mに対する計測部11a、12a、13a、14aの接触面積を増大させることができるので、測定精度を向上させることができる。 Measurement parts 11a, 12a, 13a, and 14a at the tips of the first measurement probe 11, the second measurement probe 12, the third measurement probe 13, and the fourth measurement probe 14 are directly brought into contact with the evaluation sample M as probes. . Therefore, a good contact state can be obtained, and the heat capacity is formed so as not to be too large. The tip of the thermocouple is usually spherical, but the measurement parts 11a, 12a, 13a, and 14a are formed so that the contact parts with the evaluation sample M are flat. As a result, the contact areas of the measuring portions 11a, 12a, 13a, and 14a with respect to the evaluation sample M can be increased, so that the measurement accuracy can be improved.

試料ホルダ30は、評価試料Mを測定プローブ10に対向して保持する保持部材31と、評価試料Mに温度勾配を生じさせるように構成されたヒータ32と、を備えている。 The sample holder 30 includes a holding member 31 that holds the evaluation sample M facing the measurement probe 10, and a heater 32 configured to generate a temperature gradient in the evaluation sample M.

保持部材31は、評価試料Mの裏面を支持して保持するブロック状の部材であり、熱電特性評価ユニット1を電気炉などの加熱手段に取り付けるためのフランジ部70から延設されるホルダシャフト33により、保持された評価試料Mが測定プローブ10の各先端の計測部に対向するように配置されている。 The holding member 31 is a block-shaped member that supports and holds the back surface of the evaluation sample M, and has a holder shaft 33 extending from a flange portion 70 for attaching the thermoelectric property evaluation unit 1 to heating means such as an electric furnace. Thus, the held evaluation sample M is arranged so as to face the measuring section at each tip of the measuring probe 10 .

保持部材31は、熱拡散率の測定において評価試料M中に印加される温度波に対する影響を小さくするために低熱伝導材料による形成することが好ましい。また、機械的な強度を保ちながら気孔率を高くするなど、保持部材31を介した測定誤差の要因となる熱の漏洩を効率よく防ぐことが好ましい。 The holding member 31 is preferably made of a low thermal conductive material in order to reduce the influence of the temperature wave applied to the evaluation sample M in measuring the thermal diffusivity. In addition, it is preferable to efficiently prevent heat leakage through the holding member 31, which causes measurement errors, such as by increasing the porosity while maintaining the mechanical strength.

ヒータ32は、熱物性(ゼーベック係数、熱拡散率)を測定するために評価試料Mを一端から加熱する定常加熱及び周期加熱可能に構成された加熱源である。 The heater 32 is a heating source capable of constant heating and periodic heating for heating the evaluation sample M from one end in order to measure thermophysical properties (Seebeck coefficient, thermal diffusivity).

ヒータ32は、保持部材31で保持した評価試料Mを一端部近傍の裏面から加熱可能なように保持部材31に埋め込まれて配置されている。本実施形態では、第1測定プローブ11により押付けされる位置に対応して配置されている。つまり、第1測定プローブ11が評価試料Mに接触する位置の裏面側で評価試料Mに接触する位置に配置されている。 The heater 32 is embedded in the holding member 31 so as to heat the evaluation sample M held by the holding member 31 from the back surface near one end. In this embodiment, it is arranged corresponding to the position pressed by the first measurement probe 11 . That is, the first measurement probe 11 is arranged at a position where it contacts the evaluation sample M on the rear side of the position where the evaluation sample M is contacted.

支持手段40は、測定プローブ10の他端をそれぞれ支持する支持部材41と、測定プローブ10を案内するプローブガイド42と、を備えている。 The support means 40 includes support members 41 that support the other ends of the measurement probes 10 and probe guides 42 that guide the measurement probes 10 .

支持手段40は、評価試料Mの面方向でヒータ32から離間する方向に、第1測定プローブ11、第2測定プローブ12、第3測定プローブ13、第4測定プローブ14の順に所定の取付間隔で配置する。 The supporting means 40 is arranged in the plane direction of the evaluation sample M in the direction away from the heater 32 in the order of the first measuring probe 11, the second measuring probe 12, the third measuring probe 13, and the fourth measuring probe 14 at predetermined mounting intervals. Deploy.

これにより、測定プローブ10は、評価試料Mに流れる電流または熱流に沿った方位に配置されることになり、各物性を同じ方向で測定できる。 Thereby, the measurement probe 10 is arranged in the direction along the electric current or heat flow flowing through the evaluation sample M, and each physical property can be measured in the same direction.

支持部材41aは第1測定プローブ11の端部を支持し、支持部材41bは第2測定プローブ12の端部を支持し、支持部材41cは第3測定プローブ13の端部を支持し、支持部材41dは第4測定プローブ14の端部を支持する。 The support member 41a supports the end of the first measurement probe 11, the support member 41b supports the end of the second measurement probe 12, the support member 41c supports the end of the third measurement probe 13, and the support member 41c supports the end of the third measurement probe 13. 41d supports the end of the fourth measurement probe 14;

ホルダシャフト33には、第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14を挿通して、位置決め及び前進、後退時のガイドを行うプローブガイド42が取り付けられている。ここで、ホルダシャフト33及びプローブガイド42は耐熱性の観点から石英で形成することが好ましい。 Attached to the holder shaft 33 is a probe guide 42 which guides the first measurement probe 11, the second measurement probe 12, the third measurement probe 13 and the fourth measurement probe 14 for positioning and advancing and retreating. ing. Here, the holder shaft 33 and the probe guide 42 are preferably made of quartz from the viewpoint of heat resistance.

駆動手段50は、直線駆動を行う駆動装置51と、駆動装置51により測定プローブ10の直線駆動を行うための駆動部材52と、を備えている。 The driving means 50 includes a driving device 51 for linear driving and a driving member 52 for linearly driving the measurement probe 10 by the driving device 51 .

駆動装置51は、駆動部51aと、駆動シャフト51bと、を備えており、駆動シャフト51bの先端に駆動部材52が取り付けられている。また、支持部材41の一端を前後方向へ案内する溝部をそれぞれ有するガイド部材53が設けられている。 The drive device 51 includes a drive portion 51a and a drive shaft 51b, and a drive member 52 is attached to the tip of the drive shaft 51b. Further, guide members 53 each having a groove for guiding one end of the support member 41 in the front-rear direction are provided.

本実施形態では、駆動装置51として、ダイヤルの回動を直線駆動に変換するダイヤルゲージを用いたが、直線駆動を行うことができる駆動装置であれば各種装置を採用することができる。 In this embodiment, a dial gauge that converts rotation of the dial into linear drive is used as the drive device 51, but various devices can be employed as long as they are capable of linear drive.

また、駆動部材52には、測定プローブ10の先端の計測部が評価試料Mに接触する状態を調整する接触圧調整部材60が取り付けられている。 Further, a contact pressure adjusting member 60 is attached to the driving member 52 for adjusting the contact state of the measurement portion at the tip of the measurement probe 10 with the evaluation sample M. As shown in FIG.

接触圧調整部材60は、ばねを内装したシリンダ状の部材であり、一方から押付けしたときに、内装したばねが縮んで全長が短くなるとともに押付け方向と逆方向に付勢するプッシュロッド機構を有する。 The contact pressure adjusting member 60 is a cylindrical member with an internal spring. When pressed from one side, the internal spring contracts to shorten the overall length and has a push rod mechanism that biases in the direction opposite to the pressing direction. .

接触圧調整部材60は、各測定プローブ10と押付け方向が平行となるようにそれぞれの支持部材41に接続されている。 The contact pressure adjusting member 60 is connected to each supporting member 41 so that the pressing direction is parallel to each measuring probe 10 .

第1測定プローブ11には支持部材41aを介して接触圧調整部材60aが、第2測定プローブ12には支持部材41bを介して接触圧調整部材60bが、第3測定プローブ13には支持部材41cを介して接触圧調整部材60cが、第4測定プローブ14には支持部材41dを介して接触圧調整部材60dが、それぞれ接続されている。 The first measurement probe 11 has a contact pressure adjusting member 60a via a supporting member 41a, the second measuring probe 12 has a contact pressure adjusting member 60b via a supporting member 41b, and the third measuring probe 13 has a supporting member 41c. The contact pressure adjusting member 60c is connected to the contact pressure adjusting member 60c via the , and the contact pressure adjusting member 60d is connected to the fourth measurement probe 14 via the supporting member 41d.

測定プローブ10を直線駆動し、評価試料Mに各測定プローブ10の先端の計測部を接触させる方法を説明する。 A method of linearly driving the measurement probes 10 and bringing the measurement portion at the tip of each measurement probe 10 into contact with the evaluation sample M will be described.

まず、評価試料Mから各測定プローブ10の先端の計測部が離間した状態で駆動装置51を操作し、駆動部材52を評価試料Mに向かって前進させる。 First, the driving device 51 is operated in a state in which the measurement portion at the tip of each measurement probe 10 is separated from the evaluation sample M, and the driving member 52 is advanced toward the evaluation sample M. As shown in FIG.

駆動部材52が評価試料Mに向かって前進すると、接触圧調整部材60及び支持部材41を介して第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14が同時に評価試料Mに対して前進する。 When the drive member 52 advances toward the evaluation sample M, the first measurement probe 11, the second measurement probe 12, the third measurement probe 13, and the fourth measurement probe 14 simultaneously move through the contact pressure adjustment member 60 and the support member 41. Move forward with respect to the evaluation sample M.

このとき、第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14は、プローブガイド42に案内されて前進するので、所定の間隔など位置決めされた状態で前進する。 At this time, since the first measurement probe 11, the second measurement probe 12, the third measurement probe 13, and the fourth measurement probe 14 advance while being guided by the probe guide 42, they advance while being positioned at predetermined intervals. .

第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14の先端の計測部が評価試料Mに接触すると、接触圧調整部材60が作動する。 When the measuring portions at the tips of the first measuring probe 11, the second measuring probe 12, the third measuring probe 13, and the fourth measuring probe 14 contact the evaluation sample M, the contact pressure adjusting member 60 operates.

測定プローブ10の先端の計測部が評価試料Mに接触した後でも、接触圧調整部材60に内装されたばねが変位可能な距離だけ支持部材41を移動させ、駆動手段50による変位を吸収することができる。このとき、測定プローブ10の先端の計測部は適切な押付け力で評価試料Mを押付けすることになる。 Even after the measurement portion at the tip of the measurement probe 10 contacts the evaluation sample M, the support member 41 can be moved by a distance that the spring contained in the contact pressure adjustment member 60 can be displaced, and the displacement by the driving means 50 can be absorbed. can. At this time, the measurement part at the tip of the measurement probe 10 presses the evaluation sample M with an appropriate pressing force.

接触圧調整部材60は、第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14にそれぞれ設けられているので、個別の測定プローブ10毎に上記の動作が行われる。これにより、一部の測定プローブ10の先端の計測部しか評価試料Mに接触していなかった場合も、更に駆動部材52の直線駆動により支持部材41を評価試料Mに接近させることにより、すべての測定プローブ10の先端の計測部を適切な押付け力で評価試料Mに確実に接触させることができる。このように、各測定プローブ10を個別に操作するのではなく、駆動手段50の操作により、すべての測定プローブ10を評価試料Mに対して確実に接触させることができる。 Since the contact pressure adjusting member 60 is provided for each of the first measurement probe 11, the second measurement probe 12, the third measurement probe 13, and the fourth measurement probe 14, the above operation is performed for each individual measurement probe 10. will be As a result, even when only the measurement portions at the tips of some of the measurement probes 10 are in contact with the evaluation sample M, all the measurement probes 10 can be moved closer to the evaluation sample M by driving the driving member 52 linearly. The measurement portion at the tip of the measurement probe 10 can be reliably brought into contact with the evaluation sample M with an appropriate pressing force. In this way, all the measurement probes 10 can be reliably brought into contact with the evaluation sample M by operating the driving means 50 instead of operating each measurement probe 10 individually.

上記の構成により、第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14の先端の計測部の正確な位置決めを行い、銀ペーストなどを用いることなく、評価試料Mに対して適切な圧力で確実に接触させることができる。これにより、熱電物性測定を測定プローブ10の良好な接触状態で行うことができるので、測定精度及び再現性を向上させることができる。 With the above configuration, the measurement parts at the tips of the first measurement probe 11, the second measurement probe 12, the third measurement probe 13, and the fourth measurement probe 14 are accurately positioned, and the evaluation sample can be obtained without using silver paste or the like. It is possible to reliably contact M with an appropriate pressure. As a result, the thermoelectric property measurement can be performed with the measurement probe 10 in a good contact state, so that the measurement accuracy and reproducibility can be improved.

測定プローブ10を評価試料Mから後退させるときは逆の操作を行えばよい。 When retracting the measurement probe 10 from the evaluation sample M, the opposite operation may be performed.

(熱電特性評価装置)
図8に示すように、本発明の熱電特性評価装置2は、熱電特性評価ユニット1、熱電特性評価ユニット1を制御し熱電特性評価ユニット1から送出される信号に基づいて評価試料Mの電気抵抗率、ゼーベック係数及び熱拡散率を測定する制御手段100と、評価試料Mを評価温度まで昇温する加熱手段200と、を備えている。
(Thermoelectric property evaluation device)
As shown in FIG. 8, the thermoelectric property evaluation apparatus 2 of the present invention controls the thermoelectric property evaluation unit 1, the thermoelectric property evaluation unit 1, and based on the signal sent from the thermoelectric property evaluation unit 1, the electric resistance of the evaluation sample M. A control means 100 for measuring the modulus, the Seebeck coefficient and the thermal diffusivity, and a heating means 200 for raising the temperature of the evaluation sample M to the evaluation temperature.

制御手段100は、デジタルマルチメータ110と、直流電圧・電流発生器113と、ファンクションジェネレータ114と、ヒータ32に制御電流を送出するヒータ加熱電源115と、パーソナルコンピュータなどの制御装置116と、を備えている。 The control means 100 includes a digital multimeter 110, a DC voltage/current generator 113, a function generator 114, a heater heating power source 115 for sending a control current to the heater 32, and a control device 116 such as a personal computer. ing.

デジタルマルチメータ110は、各測定プローブ間から温度・電圧・抵抗測定を行う第1スイッチカード111及び電気抵抗率及び熱拡散率測定時の直流電流&交流信号の供給回路制御を行う第2スイッチカード112を内蔵している。デジタルマルチメータ110は、ゼーベック係数測定時、第1測定プローブ11、第4測定プローブ14を用いて温度測定・起電力(電圧)の測定を行う。 The digital multimeter 110 includes a first switch card 111 that measures temperature, voltage, and resistance from between the measurement probes, and a second switch card that controls the DC current and AC signal supply circuits when measuring electrical resistivity and thermal diffusivity. 112 is built in. The digital multimeter 110 performs temperature measurement and electromotive force (voltage) measurement using the first measurement probe 11 and the fourth measurement probe 14 when measuring the Seebeck coefficient.

第1スイッチカード111には、第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14と、制御装置116と、が接続されている。 The first switch card 111 is connected with the first measurement probe 11 , the second measurement probe 12 , the third measurement probe 13 , the fourth measurement probe 14 , and the control device 116 .

第2スイッチカード112には、第1測定プローブ11及び第4測定プローブ14と、ヒータ加熱電源115と、直流電圧・電流発生器113と、ファンクションジェネレータ114と、制御装置116と、が接続されている。 Connected to the second switch card 112 are the first measurement probe 11 and the fourth measurement probe 14, a heater heating power source 115, a DC voltage/current generator 113, a function generator 114, and a control device 116. there is

直流電圧・電流発生器113は、電気抵抗率測定時の直流電流印加及びゼーベック係数測定時の定常加熱用電流印加を行う。 A DC voltage/current generator 113 applies a DC current during electrical resistivity measurement and a constant heating current during Seebeck coefficient measurement.

ファンクションジェネレータ114は、熱拡散率を測定時、ヒータ加熱電源からヒータ32に周期加熱するための任意の周波数と波形を持つ交流電圧信号の生成を行う。 The function generator 114 generates an AC voltage signal having an arbitrary frequency and waveform for periodically heating the heater 32 from the heater heating power supply when measuring the thermal diffusivity.

直流電圧・電流発生器113と、ファンクションジェネレータ114と、は制御装置116に接続されている。 The DC voltage/current generator 113 and the function generator 114 are connected to the control device 116 .

加熱手段200としては、電気炉など通常の高温計測に用いる加熱手段を用いることができる。 As the heating means 200, a heating means such as an electric furnace, which is normally used for high temperature measurement, can be used.

熱電特性評価ユニット1には、フランジ部70に試料室210を取り付けて設けることもできる。試料室210は、測定プローブ10、試料ホルダ30などを覆い、雰囲気制御が可能なチャンバとして形成されており、例えば、不活性雰囲気、真空雰囲気下での測定も可能である。ここで、真空状態で測定すると、評価試料Mからの熱の漏洩を抑制することができるので、測定精度を向上させることができる。 The thermoelectric property evaluation unit 1 can also be provided with a sample chamber 210 attached to the flange portion 70 . The sample chamber 210 covers the measurement probe 10, the sample holder 30, and the like, and is formed as a chamber whose atmosphere can be controlled. For example, measurement under an inert atmosphere or a vacuum atmosphere is possible. Here, if the measurement is performed in a vacuum state, heat leakage from the evaluation sample M can be suppressed, so the measurement accuracy can be improved.

(熱電特性評価方法)
熱電特性評価装置2を用いた電気抵抗率、ゼーベック係数及び熱拡散率の測定方法について説明する。
(Thermoelectric property evaluation method)
A method for measuring electrical resistivity, Seebeck coefficient and thermal diffusivity using the thermoelectric property evaluation device 2 will be described.

まず、評価試料Mを一端近傍の裏面にヒータ32が接触するように、試料ホルダ30の保持部材31に取り付ける。次に、熱電特性評価装置2を操作して、測定プローブ10の先端の計測部を評価試料Mに接触させる。制御装置116により、オーミックコンタクトにより測定プローブ10が良好な接触状態であることを確認してから加熱手段200により測定温度まで昇温した後に、熱電特性の測定を開始する。 First, the evaluation sample M is attached to the holding member 31 of the sample holder 30 so that the heater 32 is in contact with the back surface near one end. Next, the thermoelectric property evaluation device 2 is operated to bring the measurement portion at the tip of the measurement probe 10 into contact with the evaluation sample M. As shown in FIG. After the control device 116 confirms that the measurement probe 10 is in good contact with the ohmic contact, the temperature is raised to the measurement temperature by the heating means 200, and then the measurement of the thermoelectric characteristics is started.

制御装置116のソフトウェアにより測定の指示が実行されると、電気抵抗率、ゼーベック係数、熱拡散率の順に1回ずつ測定が実行され、測定データは制御装置116に保存される。 When the software of the controller 116 executes the measurement instruction, the electrical resistivity, the Seebeck coefficient, and the thermal diffusivity are measured once each in this order, and the measured data are stored in the controller 116 .

本発明の熱物性評価方法によれば、熱電材料の開発で性能指数を求める上で必要な熱電物性である、電気抵抗率、ゼーベック係数及び熱拡散率を一の評価試料Mを用い、一の評価装置により評価することができる。 According to the thermophysical property evaluation method of the present invention, the thermoelectric properties necessary for obtaining the figure of merit in the development of thermoelectric materials, the electrical resistivity, the Seebeck coefficient, and the thermal diffusivity, are evaluated using an evaluation sample M of one. It can be evaluated by an evaluation device.

また、評価試料Mの同一面に接触させた測定プローブ10により各物性の測定を行うので、同一方向の物性を測定することができる。 Moreover, since each physical property is measured by the measurement probe 10 brought into contact with the same surface of the evaluation sample M, the physical property in the same direction can be measured.

加熱手段200により複数水準の温度を設定し測定を行うことにより、各物性の温度依存性を評価することができる。ここで、加熱手段200により、測定温度を上昇させると、測定プローブ10が膨張するが、接触圧調整部材60によりその膨張分を吸収することができるので、測定プローブ10より評価試料Mに過度の応力が負荷されることがなく、良好な接触状態を維持することができる。 Temperature dependence of each physical property can be evaluated by setting a plurality of levels of temperature by the heating means 200 and performing measurement. Here, when the measurement temperature is raised by the heating means 200, the measurement probe 10 expands. A good contact state can be maintained without stress being applied.

電気抵抗率の測定には、主としてデジタルマルチメータ110、第1スイッチカード111、第2スイッチカード112、直流電圧・電流発生器113、制御装置116を使用する。測定原理を図9に示す。図中丸囲いの1-4は、それぞれ第1測定プローブ11、第2測定プローブ12、第3測定プローブ13及び第4測定プローブ14の接触点(測定点)を示す。図10及び図11においても同様である。 A digital multimeter 110, a first switch card 111, a second switch card 112, a DC voltage/current generator 113, and a controller 116 are mainly used for measuring electrical resistivity. FIG. 9 shows the measurement principle. Circled circles 1-4 in the figure indicate contact points (measurement points) of the first measurement probe 11, the second measurement probe 12, the third measurement probe 13 and the fourth measurement probe 14, respectively. The same applies to FIGS. 10 and 11 as well.

デジタルマルチメータ110により第1測定プローブ11の-側素線及び第4測定プローブ14の-側素線に通電して評価試料Mの表面に電流を流し、第2測定プローブ12の-側素線及び第3測定プローブ13の-側素線間の電圧を測定する。そして、得られた測定データに基づいて下式により電気抵抗率ρeを算出する。ここで補正係数fは、試料厚さt[m]およびヒータ・センサ間距離d、d[m]に依存する値であり、補正係数fは、ヒータ・センサ間距離d、d[m]及び試料の短手方向の長さl[m]に依存する値である。 By using the digital multimeter 110, the − side wire of the first measurement probe 11 and the − side wire of the fourth measurement probe 14 are energized to flow a current on the surface of the evaluation sample M, and the − side wire of the second measurement probe 12. and the voltage between the - side strands of the third measuring probe 13 is measured. Then, based on the obtained measurement data, the electrical resistivity ρe is calculated by the following formula. Here, the correction coefficient f 1 is a value that depends on the sample thickness t [m] and the heater-sensor distances d 1 and d 2 [m], and the correction coefficient f 2 is the heater-sensor distance d 1 , It is a value that depends on d 2 [m] and the length l [m] of the sample in the transverse direction.

Figure 0007323108000001
Figure 0007323108000001

ゼーベック係数の測定には、主としてデジタルマルチメータ110、第1スイッチカード111、第2スイッチカード112、直流電圧・電流発生器113、ヒータ加熱電源115、制御装置116を使用する。測定原理を図10に示す。 Digital multimeter 110, first switch card 111, second switch card 112, DC voltage/current generator 113, heater heating power source 115, and controller 116 are mainly used for measuring the Seebeck coefficient. FIG. 10 shows the measurement principle.

直流電圧・電流発生器113によってヒータ加熱電源115を経由してヒータ32に直流電圧を印加し、評価試料Mを定常加熱する。第1測定プローブ11及び第4測定プローブ14により、それぞれの接触部の温度差によって発生する起電力を測定する。そして、得られた測定データに基づいて下式によりゼーベック係数を算出する。 A DC voltage/current generator 113 applies a DC voltage to the heater 32 via a heater heating power supply 115 to steadily heat the evaluation sample M. FIG. The electromotive force generated by the temperature difference between the contact portions is measured by the first measurement probe 11 and the fourth measurement probe 14 . Then, the Seebeck coefficient is calculated by the following formula based on the obtained measurement data.

Figure 0007323108000002
Figure 0007323108000002

熱拡散率の測定には、主としてデジタルマルチメータ110、第1スイッチカード111、第2スイッチカード112、ファンクションジェネレータ114、ヒータ加熱電源115、制御装置116を使用する。測定原理を図11及び図12に示す。 A digital multimeter 110, a first switch card 111, a second switch card 112, a function generator 114, a heater heating power supply 115, and a controller 116 are mainly used for measuring the thermal diffusivity. The measurement principle is shown in FIGS. 11 and 12. FIG.

まず、ファンクションジェネレータ114によりヒータ加熱電源115を経由してヒータ32に周期的な電圧を印加することで、評価試料Mを周期加熱する。第2測定プローブ12及び第3測定プローブ13によりそれぞれの温度(温度2、温度3とする)を計測し、制御装置116に温度波形データを取り込む。そして、温度2、温度3の波形から、第2測定プローブ12及び第3測定プローブ13の温度応答の差(位相差)、及びこの位相差の周波数依存性を利用して熱拡散率aを下式により算出する。 First, the evaluation sample M is cyclically heated by periodically applying a voltage to the heater 32 via the heater heating power supply 115 by the function generator 114 . The respective temperatures (temperature 2 and temperature 3) are measured by the second measurement probe 12 and the third measurement probe 13, and temperature waveform data is taken into the controller 116. FIG. Then, from the waveforms of temperature 2 and temperature 3, the temperature response difference (phase difference) between the second measurement probe 12 and the third measurement probe 13 and the frequency dependence of this phase difference are used to lower the thermal diffusivity a. Calculated by the formula.

Figure 0007323108000003
Figure 0007323108000003

ヒータ32は、第1測定プローブ11により評価試料Mが押付けられることにより、評価試料Mの裏面から一定の接触圧で押付けられる。これにより、ヒータ32が十分に評価試料Mに熱を供給できるような接触状態にすることができるので、良好な加熱を行うことができ、測定精度及び再現性を向上させることができる。また、ヒータ32を評価試料Mの裏面から加熱するように配置することにより、温度波が安定するので測定精度及び再現性を向上させることができる。 When the evaluation sample M is pressed by the first measurement probe 11 , the heater 32 is pressed from the rear surface of the evaluation sample M with a constant contact pressure. As a result, the heater 32 can sufficiently supply heat to the evaluation sample M, so that good heating can be achieved, and measurement accuracy and reproducibility can be improved. Further, by arranging the heater 32 so as to heat the evaluation sample M from the rear surface, the temperature wave is stabilized, so that the measurement accuracy and reproducibility can be improved.

熱拡散率の測定において、内側2つの第2測定プローブ12及び第3測定プローブ13を用いると、ヒータ32からの温度波の振幅が得やすいとともに、評価試料Mの試料の厚さ方向の熱伝導を無視でき、面方向(熱流方向)のみの熱伝導として扱えることが可能な熱伝導の一次元性が保たれる位置で測定できるため、好適である。 In the measurement of the thermal diffusivity, the use of the inner two second measurement probes 12 and the third measurement probe 13 makes it easy to obtain the amplitude of the temperature wave from the heater 32, and the heat conduction of the evaluation sample M in the thickness direction of the sample. is negligible and can be treated as heat conduction only in the surface direction (heat flow direction).

従来の周期加熱法では、レーザによる加熱で試料を加熱する場合、
・試料の光吸収の違いによる問題
・光の焦点を合わせるのが難しい
・装置構成が複雑となる
・高温環境下での計測において、評価試料の特定個所に正確にレーザを照射することが困難である
等の問題があった。
In the conventional periodic heating method, when the sample is heated by laser heating,
・Problems due to differences in light absorption of the sample ・It is difficult to focus the light ・The equipment configuration is complicated There were some problems.

また、ヒータブロックを評価試料の片端に接触して加熱する方法では、ヒータの熱容量が大きいため、高い周波数での温度変化を発生させることが難しく、その結果、計測に用いられる周波数の範囲が狭く、計測可能な材料の熱拡散率の範囲が厳しく制限されるという問題があった。 In addition, in the method of heating the test sample by contacting the heater block with one end, it is difficult to generate a temperature change at a high frequency due to the large heat capacity of the heater. However, the range of measurable thermal diffusivities of materials is severely limited.

ヒータ32は、小型であり自身の熱容量が小さいとともに、ヒータ32の発熱を熱伝導率の小さい保持部材31で囲むことから、周期的な熱エネルギーを評価試料Mに効率よく伝搬することが可能である。これにより、高い周波数で試料の温度変化を発生させることができる。また、低周波の場合でも時差を減らすことができるため、測定精度を高めることができる。 The heater 32 is small and has a small heat capacity, and the heat generated by the heater 32 is surrounded by the holding member 31 having a small thermal conductivity. be. This makes it possible to generate temperature changes in the sample at high frequencies. Moreover, since the time difference can be reduced even in the case of low frequencies, the measurement accuracy can be improved.

以下に、本発明の熱拡散率の測定方法について詳説する。 The method for measuring the thermal diffusivity of the present invention will be described in detail below.

評価試料Mに対し、ヒータ32により周期加熱を開始し、ヒータ32から近い第2測定プローブ12の温度波形データと、ヒータ32から遠い第3測定プローブ13の温度波形データをデジタルマルチメータ110により計測し、制御装置116に2つの波形データを取り込む。 The heater 32 starts cyclic heating of the evaluation sample M, and the temperature waveform data of the second measurement probe 12 near the heater 32 and the temperature waveform data of the third measurement probe 13 far from the heater 32 are measured by the digital multimeter 110. Then, the controller 116 takes in two waveform data.

測定信号に対して、測定信号と同位相信号および測定信号と90°位相シフトした信号をそれぞれ掛算し、測定信号と等しい周波数成分を検出する。得られたそれぞれ検出信号をローパスフィルタに通すことで求められる、測定信号の同位相成分Xと測定信号の直交成分Yから、基準となる信号(制御装置116で生成した基準となる温度波形データ)に対する測定信号の位相差θは、θ=arctan(Y/X) から得られる。 The measurement signal is multiplied by a signal in phase with the measurement signal and a signal phase-shifted by 90° from the measurement signal, respectively, to detect the frequency component equal to that of the measurement signal. A reference signal (reference temperature waveform data generated by the controller 116) is obtained from the in-phase component X of the measurement signal and the quadrature component Y of the measurement signal, which are obtained by passing each of the obtained detection signals through a low-pass filter. The phase difference .theta. of the measured signal with respect to is obtained from .theta.=arctan(Y/X).

上記の位相差θについて、ヒータ32から近い第2測定プローブ12で得られる位相差をθ1、ヒータ32から遠い第3測定プローブ13で得られる位相差をθ2とすると、2点間の位相差はθ2-θ1で得られる。 Regarding the above phase difference θ, if the phase difference obtained by the second measuring probe 12 closer to the heater 32 is θ1, and the phase difference obtained by the third measuring probe 13 farther from the heater 32 is θ2, the phase difference between the two points is It is obtained by θ2-θ1.

指定した周波数域での計測において上記手順を繰り返し行い、測定を終了する。そして、制御装置116に記録された値から、各周波数毎の第2測定プローブ12及び第3測定プローブ13間の位相差を算出し、(周波数)1/2 に対する位相差のプロットから最小2乗法を用いて導出した一次の近似式の傾きから熱拡散率を得る。 Repeat the above procedure for measurement in the specified frequency range, and end the measurement. Then, from the values recorded in the control device 116, the phase difference between the second measuring probe 12 and the third measuring probe 13 for each frequency is calculated, and the least squares method is obtained from the plot of the phase difference against (frequency) 1/2 . The thermal diffusivity is obtained from the slope of the first-order approximation formula derived using

従来の熱拡散率測定では、以下の方法で測定を行っていた。 In the conventional thermal diffusivity measurement, the following method is used.

評価試料をヒータで周期加熱し、ヒータに近い熱物性計測プローブとヒータへ供給されるファンクションジェネレータの変調電圧との位相差と振幅をロックインアンプで計測し、計測される位相差、設定した位相差安定条件を充足したときに、その位相差の値を記録する。次に、ロックインアンプへ入力される値をヒータに近い熱物性計測プローブから遠い熱物性計測プローブへ切り替え、同様の計測を行い、位相差の値を記録する。そして、記録された値から、各周波数毎の熱物性計測プローブ2点間の位相差を算出し、(周波数)1/2 に対する位相差のプロットから最小二乗法を用いて導出した一次の近似式の傾きから熱拡散率を得る。(例えば、I.Hatta, K.Fujii, A.Sakakibara, F.Takahashi, Y.Hamada and Y.Kaneda: Jpn. J. Appl. Phys., 38 (1999) 2988.) The evaluation sample is cyclically heated with a heater, and the phase difference and amplitude between the thermophysical property measurement probe near the heater and the modulation voltage of the function generator supplied to the heater are measured with a lock-in amplifier. When the phase difference stability condition is satisfied, the value of the phase difference is recorded. Next, the value input to the lock-in amplifier is switched from the thermophysical property measuring probe closer to the heater to the thermophysical property measuring probe farther from the heater, the same measurement is performed, and the value of the phase difference is recorded. Then, from the recorded values, the phase difference between the two points of the thermophysical property measurement probe is calculated for each frequency, and the first-order approximation formula derived using the least squares method from the plot of the phase difference against (frequency) 1/2 The thermal diffusivity is obtained from the slope of (For example, I. Hatta, K. Fujii, A. Sakakibara, F. Takahashi, Y. Hamada and Y. Kaneda: Jpn. J. Appl. Phys., 38 (1999) 2988.)

熱電材料では信号強度が小さいため、従来の熱拡散率測定では、ロックインに時間がかかり測定時間が長くなるという欠点があった。 Since the signal strength of thermoelectric materials is small, the conventional thermal diffusivity measurement has the disadvantage that lock-in takes a long time and the measurement time is long.

本発明の熱拡散率測定によれば、第2測定プローブ12の温度波形データと第3測定プローブ13の温度波形データを制御装置116に2つの波形データを取り込んだ後に、制御装置116内部で生成した信号波形を用いて演算処理を行うため、評価試料Mからの信号強度が小さくても測定が可能であり、従来の測定法のようにロックインするまで待機する必要がなく、ロックインアンプを用いた場合より熱拡散率を測定する時間が大幅に短縮される。また、測定に必要な機器構成を簡略化することができる。 According to the thermal diffusivity measurement of the present invention, the temperature waveform data of the second measurement probe 12 and the temperature waveform data of the third measurement probe 13 are generated inside the control device 116 after the two waveform data are taken into the control device 116. Since arithmetic processing is performed using the obtained signal waveform, measurement is possible even if the signal strength from the evaluation sample M is small, and there is no need to wait until lock-in occurs as in conventional measurement methods, and a lock-in amplifier is used. The time required to measure the thermal diffusivity is greatly shortened. In addition, it is possible to simplify the equipment configuration required for the measurement.

ヒータ32は、保持部材31表面に評価試料Mを載置可能な平面状の部材を介して設置することもできる。 The heater 32 can also be installed via a planar member on which the evaluation sample M can be placed on the surface of the holding member 31 .

ヒータ32は、評価試料Mの測定面側から一端部に接触可能に、例えば、プッシュロッド型のヒータを測定面側から押し当てる構造として、構成することもできる。 The heater 32 can also be configured so as to be able to contact one end of the evaluation sample M from the measurement surface side, for example, as a structure in which a push rod type heater is pressed from the measurement surface side.

ヒータ32に代えて、評価試料Mの一端を冷却して温度差を生じさせる冷却ユニットを採用することもできる。 Instead of the heater 32, it is also possible to employ a cooling unit that cools one end of the evaluation sample M to generate a temperature difference.

(実施形態の効果)
本発明の熱電特性評価ユニット1、熱電特性評価装置2及び熱電特性評価方法によれば、一つの測定装置で、同一評価試料Mを用い、同一測定方向(熱流方向)で電気抵抗率、ゼーベック係数及び熱拡散率を測定することができる。接触圧調整部材60により、測定プローブ10を評価試料Mに対して適切な圧力で確実に接触させることができるので、測定精度及び再現性を向上させることができる。
(Effect of Embodiment)
According to the thermoelectric property evaluation unit 1, the thermoelectric property evaluation device 2, and the thermoelectric property evaluation method of the present invention, one measurement device uses the same evaluation sample M, and the electrical resistivity and Seebeck coefficient are measured in the same measurement direction (heat flow direction). and thermal diffusivity can be measured. The contact pressure adjusting member 60 can reliably bring the measurement probe 10 into contact with the evaluation sample M with an appropriate pressure, thereby improving measurement accuracy and reproducibility.

熱電特性評価装置2を用いて、電気抵抗率、ゼーベック係数及び熱拡散率を短時間で順次測定することができる。特に、熱拡散率測定において、ロックインアンプを用いた場合より測定時間を大幅に短縮することができるとともに、測定に必要な機器構成を簡略化することができる。 Using the thermoelectric property evaluation device 2, electrical resistivity, Seebeck coefficient and thermal diffusivity can be sequentially measured in a short period of time. In particular, in thermal diffusivity measurement, the measurement time can be significantly shortened as compared with the case where a lock-in amplifier is used, and the device configuration required for measurement can be simplified.

熱拡散率の測定可能周波数について検討した。薄板状の熱電変換素子(ビスマステルルBiTe)について、大気中の室温下にて熱拡散率測定を行った。(数3)に基づき、加熱周波数fを0.01~1.0[Hz]の範囲で、センサ間距離d-dを3[mm]にて、位相遅れの差φ-φ[deg]を測定した。また、ヒータのパワーは約0.37[W]に設定した。図13に熱拡散率測定結果例を示す。横軸は加熱周波数の平方根f1/2[Hz1/2]、縦軸は位相遅れの差φ-φ[deg]を表している。この結果から、最小2乗法により算出した一次の近似直線の傾きが(数3)の分母式((φ-φ)/f1/2))に値するので、熱拡散率を求めることができる。 The measurable frequency of thermal diffusivity was investigated. Thermal diffusivity was measured at room temperature in the atmosphere for a thin plate-like thermoelectric conversion element (bismuth tellurium Bi 2 Te 3 ). Based on (Formula 3), the heating frequency f is in the range of 0.01 to 1.0 [Hz], the distance between sensors d 2 - d 1 is 3 [mm], and the phase delay difference φ 2 - φ 1 [deg] was measured. Also, the power of the heater was set to about 0.37 [W]. FIG. 13 shows an example of thermal diffusivity measurement results. The horizontal axis represents the square root f 1/2 [Hz 1/2 ] of the heating frequency, and the vertical axis represents the phase delay difference φ 21 [deg]. From this result, the slope of the first-order approximate straight line calculated by the method of least squares corresponds to the denominator ((φ 2 −φ 1 )/f 1/2 )) of (Formula 3), so the thermal diffusivity can be obtained. can.

熱電変換素子は一般的に熱伝導率が小さいため、加熱周波数fが大きいほど熱電対で検出される温度波の振幅は小さくなりやすく、位相遅れの差φ-φを正しく検出できなくなる。図13から、本実施例では加熱周波数fが約0.025~0.22Hzの領域において、加熱周波数の平方根f1/2[Hz1/2]と位相遅れの差φ-φ[deg]の間に一次の相関性が確認されたことから、この範囲内で熱拡散率を算出した。その結果、熱拡散率a=1.83mm/sと見積もられ、一般的な熱電材料で測定可能であることが確認された。また測定する材料の熱伝導率やヒータのパワー等によっても測定可能な周波数は変化するため、適切な条件を適宜設定する必要がある。 Since a thermoelectric conversion element generally has a low thermal conductivity, the amplitude of the temperature wave detected by the thermocouple tends to decrease as the heating frequency f increases, making it impossible to accurately detect the phase delay difference φ 21 . From FIG. 13, in the present embodiment, in the region where the heating frequency f is about 0.025 to 0.22 Hz, the square root of the heating frequency f 1/2 [Hz 1/2 ] and the phase delay difference φ 2 −φ 1 [deg ], the thermal diffusivity was calculated within this range. As a result, the thermal diffusivity a was estimated to be 1.83 mm 2 /s, and it was confirmed that a general thermoelectric material can be measured. Moreover, since the measurable frequency changes depending on the thermal conductivity of the material to be measured, the power of the heater, etc., it is necessary to appropriately set appropriate conditions.

1…熱電特性評価ユニット
2…熱電特性評価装置
3…制御手段
10…測定プローブ
11…第1測定プローブ
12…第2測定プローブ
13…第3測定プローブ
14…第4測定プローブ
15…第1熱電対
15a…計測部
16…第1支持管
17…第2熱電対
17a…計測部
18…第2支持管
19…第3熱電対
19a…計測部
20…第3支持管
21…第4熱電対
21a…計測部
22…第4支持管
30…試料ホルダ
31…保持部材
32…ヒータ
33…ホルダシャフト
40…支持手段
41…支持部材
41a、41b、41c、41d…支持部材
42…プローブガイド
50…駆動手段
51…駆動装置
51a…駆動部
51b…駆動シャフト
52…駆動部材
53…ガイド部材
60…接触圧調整部材
60a、60b、60c、60d…接触圧調整部材
70…フランジ部
100…制御手段
110…デジタルマルチメータ
111…第1スイッチカード
112…第2スイッチカード
113…直流電圧・電流発生器
114…ファンクションジェネレータ
115…ヒータ加熱電源
116…制御装置
200…加熱手段
210…試料室
M…評価試料
REFERENCE SIGNS LIST 1 thermoelectric property evaluation unit 2 thermoelectric property evaluation device 3 control means 10 measurement probe 11 first measurement probe 12 second measurement probe 13 third measurement probe 14 fourth measurement probe 15 first thermocouple 15a... Measuring part 16... First supporting tube 17... Second thermocouple 17a... Measuring part 18... Second supporting tube 19... Third thermocouple 19a... Measuring part 20... Third supporting tube 21... Fourth thermocouple 21a... Measurement part 22 Fourth support tube 30 Sample holder 31 Holding member 32 Heater 33 Holder shaft 40 Supporting means 41 Supporting members 41a, 41b, 41c, 41d Supporting member 42 Probe guide 50 Driving means 51 Driving device 51a Driving unit 51b Driving shaft 52 Driving member 53 Guide member 60 Contact pressure adjusting members 60a, 60b, 60c, 60d Contact pressure adjusting member 70 Flange 100 Control means 110 Digital multimeter Reference Signs List 111 First switch card 112 Second switch card 113 DC voltage/current generator 114 Function generator 115 Heater heating power source 116 Control device 200 Heating means 210 Sample chamber M Evaluation sample

Claims (5)

熱電材料からなる板状の被測定物の電気抵抗率、ゼーベック係数及び熱拡散率を評価する熱電特性評価ユニットであって、
被測定物に接触し、被測定物からの電圧及び熱起電力を計測するための、それぞれ熱電対を備えた4本の測定プローブと、
前記被測定物が前記測定プローブと接触する測定面と反対の被測定物の裏面を支持して保持する保持部材と、
前記測定プローブをそれぞれ被測定物に押し当てるための押付け手段と、
前記被測定物の一端部を定常加熱または周期加熱して前記被測定物の測定面方向に温度差を発生させるためのヒータと、
を備え、
前記測定プローブは、それぞれ絶縁体の支持管に熱電対を通して先端を計測部として突出させて構成されており、それぞれの前記測定プローブの計測部が前記被測定物に流れる電流または熱流に沿った方向に配置されていることを特徴とする熱電特性評価ユニット。
A thermoelectric property evaluation unit that evaluates the electrical resistivity, Seebeck coefficient and thermal diffusivity of a plate-shaped object to be measured made of a thermoelectric material,
four measurement probes, each equipped with a thermocouple, for contacting the object and measuring the voltage and thermoelectric force from the object;
a holding member that supports and holds the back surface of the object to be measured, which is opposite to the measurement surface on which the object to be measured contacts the measurement probe;
pressing means for pressing each of the measurement probes against an object to be measured;
a heater for steadily heating or cyclically heating one end of the object to be measured to generate a temperature difference in the direction of the measurement surface of the object;
with
Each of the measurement probes is configured such that a thermocouple is passed through a support tube made of an insulator and a tip thereof protrudes as a measurement portion. A thermoelectric property evaluation unit, characterized in that it is arranged in
前記ヒータは、前記保持部材に、前記被測定物の一端部で接触可能に配置されていることを特徴とする請求項1に記載の熱電特性評価ユニット。 2. The thermoelectric property evaluation unit according to claim 1, wherein the heater is arranged so as to be in contact with the holding member at one end of the object to be measured. 前記押付け手段は、
プッシュロッド機構を備え、前記測定プローブにそれぞれ取り付けられた接触圧調整部材と、
前記接触圧調整部材を介して前記測定プローブを前記被測定物に向かって対して直線駆動する駆動手段と、を備え、
前記接触圧調整部材は、各測定プローブにおいて、前記計測部が前記被測定物に接触した後は、前記駆動手段による変位を吸収するとともに当該計測部による前記被測定物に対する押付け力を発生させることを特徴とする請求項1または請求項2に記載の熱電特性評価ユニット。
The pressing means is
a contact pressure adjusting member having a push rod mechanism and attached to each of the measurement probes;
driving means for linearly driving the measurement probe toward the object to be measured via the contact pressure adjusting member;
In each measurement probe, the contact pressure adjusting member absorbs the displacement caused by the driving means after the measurement unit contacts the object to be measured, and causes the measurement unit to generate a pressing force against the object to be measured. The thermoelectric property evaluation unit according to claim 1 or 2, characterized by:
請求項1ないし請求項3のいずれか1つに記載の熱電特性評価ユニットと、
当該熱電特性評価ユニットを制御し当該熱電特性評価ユニットから送出される信号に基づいて前記被測定物の電気抵抗率、ゼーベック係数及び熱拡散率を測定する制御手段と、
を備えたことを特徴とする熱電特性評価装置。
A thermoelectric property evaluation unit according to any one of claims 1 to 3;
a control means for controlling the thermoelectric property evaluation unit and measuring the electrical resistivity, Seebeck coefficient and thermal diffusivity of the object to be measured based on signals sent from the thermoelectric property evaluation unit;
A thermoelectric property evaluation device comprising:
請求項4に記載の熱電特性評価装置を用いた熱電特性評価方法であって、
前記熱電特性評価ユニットを用いて、被測定物に前記測定プローブをそれぞれ接触させる工程と、
前記測定プローブにより被測定物に電流を流し、他の測定プローブにより計測された異なる2点間の電圧に基づいて電気抵抗率を算出する工程と、
前記ヒータにより被測定物を定常加熱し、前記測定プローブにより測定される異なる2点間の温度差により発生する起電力に基づいてゼーベック係数を算出する工程と、
前記ヒータにより被測定物を周期加熱し、前記測定プローブにより異なる2点の温度波形データをそれぞれ取得し、前記制御手段で生成した基準となる温度波形データを用いて異なる2点間の周期的な温度変化の位相差を演算し、当該周期的な温度変化の位相差の周波数依存性に基づいて周期的な温度変化の位相差の周波数依存性に基づいて熱拡散率を算出する工程と、を備えたことを特徴とする熱電特性評価方法。
A thermoelectric property evaluation method using the thermoelectric property evaluation device according to claim 4,
a step of contacting each of the measurement probes with an object to be measured using the thermoelectric property evaluation unit;
A step of applying a current to the object to be measured by the measurement probe and calculating an electrical resistivity based on a voltage between two different points measured by another measurement probe;
a step of steadily heating the object to be measured by the heater and calculating a Seebeck coefficient based on an electromotive force generated by a temperature difference between two different points measured by the measurement probe;
The object to be measured is cyclically heated by the heater, the temperature waveform data of two different points are obtained by the measurement probe, and the reference temperature waveform data generated by the control means is used to cyclically heat the object to be measured between the two different points. calculating a phase difference of temperature changes, and calculating a thermal diffusivity based on the frequency dependence of the phase differences of periodic temperature changes based on the frequency dependence of the phase differences of periodic temperature changes; A method for evaluating thermoelectric properties, comprising:
JP2019035443A 2019-02-28 2019-02-28 Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method Active JP7323108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019035443A JP7323108B2 (en) 2019-02-28 2019-02-28 Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019035443A JP7323108B2 (en) 2019-02-28 2019-02-28 Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method

Publications (2)

Publication Number Publication Date
JP2020139834A JP2020139834A (en) 2020-09-03
JP7323108B2 true JP7323108B2 (en) 2023-08-08

Family

ID=72264717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019035443A Active JP7323108B2 (en) 2019-02-28 2019-02-28 Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method

Country Status (1)

Country Link
JP (1) JP7323108B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305028A (en) 2000-04-25 2001-10-31 Nippon Steel Corp Transmission electron microscope observation sample preparing method for solid phase reactive sample and charged particle beam device
JP2009105132A (en) 2007-10-22 2009-05-14 Japan Aerospace Exploration Agency Thermoelectric characteristic measuring sensor
US20120213250A1 (en) 2011-02-23 2012-08-23 California Institute Of Technology Measuring seebeck coefficient
JP2016024174A (en) 2014-07-24 2016-02-08 国立大学法人埼玉大学 Substance thermal diffusivity measurement method and substance thermoelectric characteristic evaluation device using the method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU521261B2 (en) * 1979-03-28 1982-03-25 Unisearch Limited Distinguishing gemstones
JPH0552783A (en) * 1991-08-28 1993-03-02 Tokuyama Soda Co Ltd Thermoelectric characteristic measuring device
JPH06300719A (en) * 1993-04-16 1994-10-28 Tokuyama Soda Co Ltd Method and apparatus for measuring thermoelectric conversion characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305028A (en) 2000-04-25 2001-10-31 Nippon Steel Corp Transmission electron microscope observation sample preparing method for solid phase reactive sample and charged particle beam device
JP2009105132A (en) 2007-10-22 2009-05-14 Japan Aerospace Exploration Agency Thermoelectric characteristic measuring sensor
US20120213250A1 (en) 2011-02-23 2012-08-23 California Institute Of Technology Measuring seebeck coefficient
JP2016024174A (en) 2014-07-24 2016-02-08 国立大学法人埼玉大学 Substance thermal diffusivity measurement method and substance thermoelectric characteristic evaluation device using the method

Also Published As

Publication number Publication date
JP2020139834A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP5190842B2 (en) Measuring device for thermal permeability
US20070206654A1 (en) Method and Apparatus for Rapid Temperature Changes
CN107037264B (en) Thermoelectric material performance parameter measuring device and measuring method
CN111948250B (en) Variable temperature measuring device for high-flux thermoelectric material
JP6682895B2 (en) Inspection jig, inspection jig set, and board inspection device
JP4258667B2 (en) Thermophysical property measuring method and apparatus
CN104111268A (en) Device for in-situ heating of atomic force microscope conducting probe and in-situ characterization of nanometer Seebeck coefficient
JP7323108B2 (en) Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method
JP2007024603A (en) Measuring method of thin film like sample
Ramiandrisoa et al. A dark mode in scanning thermal microscopy
JP4474550B2 (en) Thermoelectric element characteristic evaluation method
JP3687030B2 (en) Micro surface temperature distribution measurement method and apparatus therefor
US8111079B2 (en) Conductivity measuring apparatus and conductivity measuring method
CN111766264B (en) Device for in-situ characterization of nanoscale thermal conductivity by controlling excitation through thermal wave hopping for atomic force microscope
Hu et al. Dual-wavelength flash Raman mapping method for measuring thermal diffusivity of the suspended nanowire
CN105785102B (en) Thermoelectrical potential measuring circuit, platform and the method for minute yardstick sample
JP3508991B2 (en) Method and apparatus for testing thermal fatigue resistance of sintered ceramics
CN111693565B (en) Dynamic detection system and detection method for electrothermal performance
CN111351815B (en) Electrothermal performance detection system and detection method
JP2009257846A (en) Evaluation method of heat permeability
JP2674684B2 (en) Thermal expansion coefficient measurement method
JP2009042127A (en) Measurement method for thin-film shaped sample
JP2003121459A (en) Electric characteristic measuring device and measuring method
JP2019138869A (en) Thermophysical property measuring method
JP3834633B2 (en) Ultra-high temperature measuring device and gas sensor for ultra-high temperature

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230718

R150 Certificate of patent or registration of utility model

Ref document number: 7323108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150