JP5190842B2 - Measuring device for thermal permeability - Google Patents
Measuring device for thermal permeability Download PDFInfo
- Publication number
- JP5190842B2 JP5190842B2 JP2008109764A JP2008109764A JP5190842B2 JP 5190842 B2 JP5190842 B2 JP 5190842B2 JP 2008109764 A JP2008109764 A JP 2008109764A JP 2008109764 A JP2008109764 A JP 2008109764A JP 5190842 B2 JP5190842 B2 JP 5190842B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- sample
- thermal
- stage
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000035699 permeability Effects 0.000 title claims description 21
- 239000000523 sample Substances 0.000 claims description 208
- 238000005259 measurement Methods 0.000 claims description 38
- 238000001514 detection method Methods 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000009529 body temperature measurement Methods 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 229910001006 Constantan Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000542 scanning thermal microscopy Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 102100031970 Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 2 Human genes 0.000 description 1
- 101000703723 Homo sapiens Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 2 Proteins 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- 229910018321 SbTe Inorganic materials 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004651 near-field scanning optical microscopy Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
本発明は、サーマルプローブを用いてサーマルプローブ内の温度を計測する熱浸透率の計測装置に関する。 The present invention relates to a thermal osmosis rate measuring apparatus that measures a temperature in a thermal probe using a thermal probe.
熱電変換材料は熱と電気の間で直接エネルギー変換を行う材料である。この材料に温度差を与えると材料内部で電位差が生じるので、この電位差を外部回路に取り出せば、外部負荷の部分で電力を取り出すことができ、温度差を利用した発電システム等に利用できる。 A thermoelectric conversion material is a material that directly converts energy between heat and electricity. When a temperature difference is given to this material, a potential difference is generated inside the material. Therefore, if this potential difference is taken out to an external circuit, electric power can be taken out at the external load portion, which can be used for a power generation system using the temperature difference.
近年、環境問題の観点から、廃熱を再利用することが提唱されている。廃熱を再利用して電気エネルギーに変換するためには、熱から電気に大量に変換できる熱電効率の良い熱電変換材料を開発することが求められている。熱電変換材料の開発段階で作製される試料は、試料の材質が不均質であったり、一般の計測法では測定できない試料形状を持っていたりする。したがって、試料の均質性を検証でき、かつ一般的な計測法では評価できない試料を評価できる装置及びその評価方法の開発が求められている。 In recent years, it has been proposed to reuse waste heat from the viewpoint of environmental problems. In order to reuse waste heat and convert it into electrical energy, it is required to develop a thermoelectric conversion material with high thermoelectric efficiency that can convert a large amount of heat into electricity. Samples produced in the development stage of thermoelectric conversion materials may have non-homogeneous sample materials or sample shapes that cannot be measured by general measurement methods. Accordingly, there is a need for development of an apparatus that can verify the homogeneity of a sample and can evaluate a sample that cannot be evaluated by a general measurement method, and an evaluation method thereof.
また、傾斜機能材料は試料内になだらかに分布を持っている。複数の材料を用いて傾斜組成させることにより、多機能を持った新材料を開発することができ、新たな製品開発につながる可能性がある。例えば、熱物性値をなだらかに分布した試料を作製することで、熱伝導特性や熱起電力特性を所望の状態にした製品を開発することができる。熱物性値の分布を確認するために、微小領域の熱物性値を計測できる装置の開発が必要である。 In addition, the functionally gradient material has a gentle distribution in the sample. By making a gradient composition using a plurality of materials, a new material having multiple functions can be developed, which may lead to a new product development. For example, it is possible to develop a product in which the heat conduction characteristics and the thermoelectromotive force characteristics are in a desired state by producing a sample in which the thermophysical property values are gently distributed. In order to confirm the distribution of thermophysical property values, it is necessary to develop an apparatus capable of measuring the thermophysical property values in a minute region.
微小領域の熱物性測定に関連する技術としては、例えば、周期加熱法とサーモリフレクタンス技術を応用して熱浸透率を測定する方法(例えば、非特許文献1、特許文献1参照)や、AFM技術を活用した熱イメージを計測するSThM技術(例えば、非特許文献2参照)や、同じく先端を細くした熱電対をカンチレバーとして試料表面の温度情報を収集して表面形状測定に利用するSTP法(例えば、非特許文献3参照)などが提案されている。サーマルプローブを利用した熱物性測定法が複数提案されている(例えば、非特許文献4、5、特許文献2、3参照)。以上の方法に基づいた装置は開発されている。 As a technique related to the measurement of thermophysical properties in a minute region, for example, a method of measuring a thermal permeability by applying a periodic heating method and a thermoreflectance technique (see, for example, Non-Patent Document 1 and Patent Document 1), AFM SThM technology that measures thermal images using the technology (see, for example, Non-Patent Document 2) and STP method that collects temperature information on the sample surface using a thermocouple with a thin tip as a cantilever and uses it for surface shape measurement ( For example, the nonpatent literature 3 reference) etc. are proposed. A plurality of thermophysical property measurement methods using thermal probes have been proposed (see, for example, Non-Patent Documents 4 and 5, Patent Documents 2 and 3). An apparatus based on the above method has been developed.
本発明の課題は、複数点の電圧及び/又は温度の計測方法、接触点温度の評価方法、熱浸透率の評価方法に基づいた熱浸透率の計測装置を提供することにある。 The subject of this invention is providing the measuring device of the thermal osmosis rate based on the measuring method of the voltage and / or temperature of several points, the evaluation method of contact point temperature, and the evaluation method of thermal osmosis rate.
本発明者らは、微小領域のゼーベック係数と熱浸透率を評価する際に、サーマルプローブを備えた測定装置を用い、複数点の電圧及び/又は温度の計測方法、接触点温度の評価方法、熱浸透率の評価方法に基づいた装置を構成することで、精度良く測定できる知見を得て本発明を完成するに至った。 When evaluating the Seebeck coefficient and thermal permeability of a micro area, the present inventors use a measuring device equipped with a thermal probe, a method for measuring voltage and / or temperature at a plurality of points, a method for evaluating a contact point temperature, By constructing an apparatus based on the evaluation method of the thermal permeability, the present invention was completed by obtaining knowledge that can be measured with high accuracy.
ゼーベック係数及び熱浸透率の計測装置は、試料が設置載置される導電体製の試料台と、前記試料台から引き出され前記試料台と同一材質の試料台配線と、前記試料台に載置された前記試料に接触させる導電体製サーマルプローブと、サーマルプローブから引き出されサーマルプローブと同一材質のプローブ配線と、前記サーマルプローブ内の複数点の温度を計測するために引き出されたプローブ計測線と、前記サーマルプローブと前記試料の接触前後にサーマルプローブ内の複数点の温度とサーマルプローブと試料の接触点の電圧を計測することでゼーベック係数と熱浸透率を計測する手段とを備えたことを特徴とする。 Measuring device Ze Bekku coefficient and thermal effusivity includes a conductive sample stage made of the body which the sample is placed placed, drawn from the sample stage and the sample base line of the sample stage and the same material, placing the sample stage A conductor-made thermal probe to be brought into contact with the placed sample, a probe wire drawn from the thermal probe and made of the same material as the thermal probe, and a probe measurement line drawn to measure temperatures at a plurality of points in the thermal probe And means for measuring the Seebeck coefficient and the thermal permeability by measuring the temperature at a plurality of points in the thermal probe and the voltage at the contact point between the thermal probe and the sample before and after contact between the thermal probe and the sample. It is characterized by.
そして、前記サーマルプローブを任意の平面内で移動自在に支持するプローブ支持ステージと、前記試料台を前期サーマルプローブが移動する平面に直交する一方向に往復移動自在に支持する試料台支持ステージとを備えたことを特徴とする。 Then, before Symbol probe supporting stage for movably supported within an arbitrary plane thermal probe, a sample stage supporting stage reciprocating movably supported in a direction perpendicular to the sample stage plane is year thermal probe moves It is provided with.
また、前記サーマルプローブには、前記試料との接触を検出する接触検知手段が備えられ、前記プローブ支持ステージには、前記試料台側を撮影して計測領域を設定するための撮像手段が備えられていることを特徴とする。 Further, in the prior SL thermal probe, the contact sensing means is provided for detecting the contact between the sample, the probe support stage includes imaging means for setting a measurement region by photographing the sample stage side It is characterized by being.
上記課題を解決するための請求項1に係る本発明の熱浸透率の計測装置は、試料が設置載置される試料台と、前記試料台に載置された前記試料に接触させるサーマルプローブと、前記サーマルプローブ内の複数点の温度を計測するために引き出されたプローブ計測線と、前記サーマルプローブと前記試料の接触後に前記サーマルプローブ内の複数点の温度を計測し、前記サーマルプローブ内の隣接区間の温度差により熱浸透率を計測する手段とを備えたことを特徴とする。 The thermal osmosis rate measuring apparatus according to the first aspect of the present invention for solving the above-described problem includes a sample stage on which a sample is placed and placed, and a thermal probe that is brought into contact with the sample placed on the sample stage. A probe measurement line drawn to measure the temperature of a plurality of points in the thermal probe; and the temperature of the plurality of points in the thermal probe after the contact between the thermal probe and the sample ; And a means for measuring the thermal permeability by the temperature difference between adjacent sections .
そして、請求項2に係る本発明の熱浸透率の計測装置は、請求項1に記載の熱浸透率の計測装置において、前記サーマルプローブを任意の平面内で移動自在に支持するプローブ支持ステージと、前記試料台を前期サーマルプローブが移動する平面に直交する一方向に往復移動自在に支持する試料台支持ステージとを備えたことを特徴とする。 And the thermal osmosis rate measuring device of the present invention according to claim 2 is the thermal osmosis rate measuring device according to claim 1 , wherein the thermal probe is movably supported in an arbitrary plane. And a sample stage support stage that supports the sample stage so as to be reciprocally movable in one direction orthogonal to a plane on which the thermal probe moves.
また、請求項3に係る本発明の熱浸透率の計測装置は、請求項2に記載の熱浸透率の計測装置において、前記サーマルプローブには、前記試料との接触を検出する接触検知手段が備えられ、前記プローブ支持ステージには、前記試料台側を撮影して計測領域を設定するための撮像手段が備えられていることを特徴とする。 According to a third aspect of the present invention, there is provided the thermal osmosis rate measuring apparatus according to the second aspect of the present invention, wherein the thermal probe includes a contact detection means for detecting contact with the sample. The probe support stage is provided with an imaging means for imaging the sample stage side and setting a measurement region.
本発明の熱浸透率の計測装置では、プローブ支持ステージ及び試料台支持ステージを移動制御することにより、試料台に対してサーマルプローブを任意の関係に移動させてサーマルプローブを試料に接触させることができる。また、接触検知手段により接触状況を把握することで、試料が変更になっても同一状態でサーマルプローブを接触させることができ、撮像手段により計測領域を設定して計測を行うことができる。 In the thermal osmosis rate measuring apparatus according to the present invention, the probe support stage and the sample stage support stage are controlled to move, and the thermal probe can be moved to an arbitrary relationship with respect to the sample stage to bring the thermal probe into contact with the sample. it can. Further, by grasping the contact state by the contact detection means, the thermal probe can be brought into contact with the sample even when the sample is changed, and measurement can be performed by setting the measurement region by the imaging means.
本発明の熱浸透率の計測装置は、熱浸透率の分布測定を正確に行うことができる。 The thermal osmosis rate measuring apparatus of the present invention can accurately measure the distribution of the thermal osmosis rate.
図1には本発明の一実施形態例に係るゼーベック係数及び熱浸透率の計測装置(熱浸透率の計測装置)の正面、図2には図1中のII−II線矢視、図3にはサーマルプローブと試料台との関係を模式的に表した概念を示してある。 FIG. 1 is a front view of a Seebeck coefficient and thermal osmosis rate measuring device (thermal osmosis rate measuring device) according to an embodiment of the present invention, and FIG. 2 is a view taken along line II-II in FIG. Shows a concept schematically showing the relationship between the thermal probe and the sample stage.
図1、図2に示すように、熱浸透率の計測装置として、ゼーベック係数及び熱浸透率の計測装置1のベース2には、X軸ステージ3及びY軸ステージ4が設けられ、ベース2にはX軸ステージ3及びY軸ステージ4が互いに直交した方向に延びて配されている。 As shown in FIG. 1 and FIG. 2, as a thermal osmosis measurement device, the base 2 of the Seebeck coefficient and thermal osmosis measurement device 1 is provided with an X axis stage 3 and a Y axis stage 4. The X-axis stage 3 and the Y-axis stage 4 are arranged extending in directions orthogonal to each other.
図1に示すように、X軸ステージ3にはX軸移動ベース5がX軸方向(図1中左右方向)に移動自在に支持され、X軸移動ベース5は図示しない駆動機構によりX軸ステージ3に沿って往復移動自在になっている。X軸移動ベース5には試料台6が取り付けられ、試料台6に試料7が接触載置される。 As shown in FIG. 1, an X-axis moving base 5 is supported on the X-axis stage 3 so as to be movable in the X-axis direction (left-right direction in FIG. 1), and the X-axis moving base 5 is driven by a drive mechanism (not shown). 3 is reciprocally movable along the line 3. A sample table 6 is attached to the X-axis moving base 5, and a sample 7 is placed on the sample table 6 in contact therewith.
図2に示すように、Y軸ステージ4にはY軸移動ベース8がY軸方向(図2中左右方向)に移動自在に支持され、Y軸移動ベース8は図示しない駆動機構によりY軸ステージ4に沿って往復移動自在になっている。Y軸移動ベース8にはZ軸ステージ9が立設され、Z軸ステージ9のX軸ステージ3側の面にはZ軸移動ベース10(プローブステージ)がZ軸方向(図2中上下方向)に移動自在に支持されている。Z軸移動ベース10は図示しない駆動機構によりZ軸ステージ9に沿って上下方向に往復移動自在になっている。 As shown in FIG. 2, a Y-axis moving base 8 is supported on the Y-axis stage 4 so as to be movable in the Y-axis direction (left and right in FIG. 2). The Y-axis moving base 8 is supported by a drive mechanism (not shown). 4 is reciprocally movable along the line 4. A Z-axis stage 9 is erected on the Y-axis movement base 8, and a Z-axis movement base 10 (probe stage) is placed on the surface of the Z-axis stage 9 on the X-axis stage 3 side in the Z-axis direction (vertical direction in FIG. 2). It is supported to move freely. The Z-axis movement base 10 can be reciprocated up and down along the Z-axis stage 9 by a drive mechanism (not shown).
つまり、Y軸ステージ4及びZ軸ステージ9により、後述するサーマルプローブを任意の平面内(YZ平面内)で移動自在に支持するプローブステージが構成されている。そして、X軸ステージ3により、後述するサーマルプローブをYZ平面に対して直交する一方向に往復移動自在に支持する試料台支持ステージが構成されている。 That is, the Y-axis stage 4 and the Z-axis stage 9 constitute a probe stage that supports a thermal probe, which will be described later, movably in an arbitrary plane (in the YZ plane). The X-axis stage 3 constitutes a sample stage support stage that supports a later-described thermal probe so as to be reciprocally movable in one direction orthogonal to the YZ plane.
図1、図2に示すように、Z軸移動ベース10には支持台11が固定され、支持台11には接触検知手段12を介してプローブブロック13が取り付けられている。プローブブロック13にはプローブブロック13と同一材料のプローブ14が設けられ、Z軸移動ベース10が下降することによりプローブ14が試料7に接触するようになっている。サーマルプローブは、接触検知手段12、プローブブロック13及びプローブ14により構成されている。 As shown in FIGS. 1 and 2, a support base 11 is fixed to the Z-axis movement base 10, and a probe block 13 is attached to the support base 11 via contact detection means 12. The probe block 13 is provided with a probe 14 made of the same material as the probe block 13, and the probe 14 comes into contact with the sample 7 when the Z-axis moving base 10 is lowered. The thermal probe includes a contact detection unit 12, a probe block 13, and a probe 14.
Z軸移動ベース10にはカメラ支持台15が固定され、カメラ支持台15には撮像手段としての試料カメラ16が取り付けられている。試料カメラ16では試料7が撮影され、試料カメラ16で撮影した試料画像に対して画像中の特定領域が設定されて熱物性評価の設定範囲とされる。 A camera support 15 is fixed to the Z-axis movement base 10, and a sample camera 16 as an imaging unit is attached to the camera support 15. The sample camera 16 captures the sample 7, and a specific region in the image is set for the sample image captured by the sample camera 16 to be a set range for thermophysical property evaluation.
図3を参照してサーマルプローブの構成を説明する。 The configuration of the thermal probe will be described with reference to FIG.
サーマルプローブはプローブブロック13(材質A: 例えば、コンスタンタン)とプローブ14(材質A: 例えば、コンスタンタン)とから構成され、プローブブロック13とプローブ14は測定中一体となって移動する。プローブブロック13の温度(Tpb)と試料台7(材質B: 例えば、銅)の温度(Tsb)とは、図示しない温度制御手段によって、測定中は一定温度に保たれている。 The thermal probe is composed of a probe block 13 (material A: for example, constantan) and a probe 14 (material A: for example, constantan). The probe block 13 and the probe 14 move together during measurement. The temperature (T pb ) of the probe block 13 and the temperature (T sb ) of the sample stage 7 (material B: copper, for example) are kept constant during measurement by a temperature control means (not shown).
試料7とプローブ14の先端が接触していない状態で、プローブブロック13の温度(Tpb)と試料台7の温度(Tsb)が制御される。この時、Tpb≧Tsb+10℃の関係を満足するように制御される。これは、プローブ14の先端を試料7の温度よりも十分高い条件にするためである。 With the sample 7 and the tip of the probe 14 not in contact with each other, the temperature (T pb ) of the probe block 13 and the temperature (T sb ) of the sample stage 7 are controlled. At this time, control is performed so as to satisfy the relationship of T pb ≧ T sb + 10 ° C. This is to make the tip of the probe 14 sufficiently higher than the temperature of the sample 7.
測定は、サーマルプローブのプローブ14と試料7とが接触していない状態で開始し、一定時間の経過後、プローブ14の先端と試料7とを接触させる。一定時間接触させた後、サーマルプローブのプローブ14を試料7から離し、プローブ14内の電圧計測と温度計測を測定中に行う。 The measurement is started in a state where the probe 14 of the thermal probe and the sample 7 are not in contact with each other, and after a certain period of time, the tip of the probe 14 and the sample 7 are brought into contact with each other. After the contact for a certain time, the probe 14 of the thermal probe is separated from the sample 7, and voltage measurement and temperature measurement in the probe 14 are performed during the measurement.
試料台6からは電圧計測用の試料台配線22(材質B:例えば、銅)が計測用として引き出され、プローブブロック13からはプローブ配線21(材質A:例えば、コンスタンタン)が引き出されている。試料台配線22とプローブ配線21は、計測手段31で接続されている。そのため、プローブ配線21と試料台配線22との間が熱電対として機能できるので、接触点の温度計測、電圧計測を行うことができる。 A sample stage wiring 22 (material B: for example, copper) for voltage measurement is drawn from the sample stage 6 for measurement, and a probe wiring 21 (material A: for example, constantan) is drawn from the probe block 13. The sample stage wiring 22 and the probe wiring 21 are connected by a measuring means 31. Therefore, since the space between the probe wiring 21 and the sample stage wiring 22 can function as a thermocouple, temperature measurement and voltage measurement at the contact point can be performed.
プローブ14内の温度は、T1、T2、及びT3の3点で測定する。プローブ14内のT1、T2及びT3からは、それぞれ、電圧・温度計測用の配線(材質C:例えば、クロメル)32a、32b、及び32cが計測用として引き出されている(プローブ計測線)。配線32a、32b、及び32cは計測手段31でプローブ配線21とそれぞれ接続している。そのため、T1、T2及びT3の温度は、クロメル−コンスタンタンのE熱電対として計測できる。 The temperature in the probe 14 is measured at three points T 1 , T 2 , and T 3 . From T 1 , T 2, and T 3 in the probe 14, voltage / temperature measurement wirings (material C: for example, chromel) 32 a, 32 b, and 32 c are drawn out for measurement (probe measurement lines). ). The wirings 32a, 32b, and 32c are connected to the probe wiring 21 by the measuring means 31, respectively. Therefore, the temperature of T 1 , T 2 and T 3 can be measured as a Chromel-Constantan E thermocouple.
上述したゼーベック係数及び熱浸透率の計測装置1による測定の動作を説明する。 An operation of measurement by the above-described Seebeck coefficient and thermal permeability measurement device 1 will be described.
例えば、試料台6に試料7を接触載置し、X軸移動ベース5、Y軸移動ベース8及びZ軸移動ベース10を適宜移動させ、試料カメラ16により試料7を撮影して測定範囲を決定する。X軸移動ベース5、Y軸移動ベース8及びZ軸移動ベース10を適宜移動させ、試料7の測定位置の直上にプローブ14を位置させ、プローブ14内の複数点の温度計測を開始する。Z軸移動ベース10を下降させてプローブ14を試料7に接触させ、接触時の電圧を計測する。接触の判断は、接触検知手段12の検出値の変化により行う。 For example, the sample 7 is placed in contact with the sample stage 6, the X-axis movement base 5, the Y-axis movement base 8 and the Z-axis movement base 10 are moved as appropriate, and the measurement range is determined by photographing the sample 7 with the sample camera 16. To do. The X-axis movement base 5, the Y-axis movement base 8, and the Z-axis movement base 10 are appropriately moved, the probe 14 is positioned immediately above the measurement position of the sample 7, and temperature measurement at a plurality of points in the probe 14 is started. The Z-axis moving base 10 is lowered to bring the probe 14 into contact with the sample 7 and the voltage at the time of contact is measured. The determination of contact is made based on a change in the detection value of the contact detection means 12.
試料7の多数箇所を測定する場合、X軸移動ベース5、Y軸移動ベース8及びZ軸移動ベース10を適宜移動させ、熱物性評価の設定範囲でプローブ14の試料7への接触を繰り返し、設定範囲の該当場所でプローブ14内の複数点の温度計測と接触点の電圧を計測する。多数箇所の計測(プローブ14の試料7への接触)は、プローブ14の下降量(Z軸移動ベース10の移動量)を制御することで多数箇所に対して測定を行なう。 When measuring a large number of locations on the sample 7, the X-axis moving base 5, the Y-axis moving base 8 and the Z-axis moving base 10 are appropriately moved, and the contact of the probe 14 with the sample 7 is repeated within the set range of the thermal property evaluation. The temperature of a plurality of points in the probe 14 and the voltage at the contact point are measured at a corresponding place in the set range. The measurement at multiple locations (contact of the probe 14 with the sample 7) is performed at multiple locations by controlling the descending amount of the probe 14 (movement amount of the Z-axis movement base 10).
これにより、試料7に対する微小領域のゼーベック係数と熱浸透率分布を得るためのプローブ14内の複数点の温度計測と接触点の電圧を実測する。 As a result, the temperature measurement at a plurality of points in the probe 14 and the voltage at the contact points are measured in order to obtain the Seebeck coefficient and the thermal permeability distribution of the micro area with respect to the sample 7.
未知試料のゼーベック係数を計測する方法は、図3に示したように、サーマルプローブ(材質A)、試料台6(材質B)、未知試料(試料7:材質D)の測定系を用いる。ここで、計測される接触点の電圧ΔVは、次式(1)に示す式で表すことができる。
(1)式において、Sbは試料台6(試料台配線22)のゼーベック係数、Tbdは試料台6と試料7の接触温度、Tjは計測手段31の温度、Sdは試料7のゼーベック係数、Tcpcalは接触点の温度、Saはプローブブロック13(プローブ配線21)のゼーベック係数を表す。 In equation (1), S b is the Seebeck coefficient of the sample stage 6 (sample stage wiring 22), T bd is the contact temperature between the sample stage 6 and the sample 7, T j is the temperature of the measuring means 31, and S d is the temperature of the sample 7. Seebeck coefficient, T cpcal the contact point temperature, S a represents the Seebeck coefficient of the probe block 13 (probe wiring 21).
試料台6(試料台配線22:材質B)、及びプローブ14(プローブブロック13、プローブ配線21:材質A)のゼーベック係数が既知であり、接触点の温度Tcpcalがプローブ内の複数点の温度計測と試料台6の同じ材料の基準試料7(材質B)の測定結果に基づいて評価でき、計測手段31の温度Tjを計測し、試料台6と試料7の接触温度Tbdを試料台6の制御温度Tsbとするならば、以下の(2)式で未知試料のゼーベック係数を見積もることが可能である。 The Seebeck coefficient of the sample stage 6 (sample stage wiring 22: material B) and the probe 14 (probe block 13, probe wiring 21: material A) is known, and the temperature T cpcal of the contact point is the temperature at a plurality of points in the probe. Based on the measurement and the measurement result of the reference sample 7 (material B) of the same material on the sample stage 6, the temperature T j of the measuring means 31 is measured, and the contact temperature T bd between the sample stage 6 and the sample 7 is measured. If the control temperature T sb is 6, the Seebeck coefficient of the unknown sample can be estimated by the following equation (2).
また、未知の試料7に対する熱浸透率は図3のプローブ14内の複数点の温度計測によって評価する。接触後のプローブ14内の隣接区間の温度差ΔTは、試料7の熱浸透率bに対応しており、以下の(3)式で熱浸透率bと温度差ΔTとの関係を表わすことができる。 Further, the thermal permeability for the unknown sample 7 is evaluated by measuring the temperature at a plurality of points in the probe 14 of FIG. The temperature difference ΔT in the adjacent section in the probe 14 after contact corresponds to the thermal permeability b of the sample 7, and the relationship between the thermal permeability b and the temperature difference ΔT can be expressed by the following equation (3). it can.
尚、(3)式中、c1、c2、c3は定数である。 In the formula (3), c 1 , c 2 , and c 3 are constants.
また、試料7の体積比熱容量C(密度と比熱容量)を公知の方法で測定すれば、上述した熱浸透率bから、(4)式により熱伝導率λへの変換が行なえる。つまり、未知試料について測定された熱浸透率bから未知試料の熱伝導率を推定することができる。
これにより、試料7(未知試料)について測定された熱浸透率bから試料7(未知試料)の熱伝導率を推定することができる。実際の装置としては、(4)の変換式を組み込むことにより、未知の試料7の熱伝導率として表示することもできる。 Thereby, the thermal conductivity of the sample 7 (unknown sample) can be estimated from the thermal permeability b measured for the sample 7 (unknown sample). As an actual apparatus, it is possible to display the thermal conductivity of the unknown sample 7 by incorporating the conversion formula (4).
複数箇所の測定においては、全ての点で前記計測によりゼーベック係数と熱浸透率の評価を行い、各測定位置の値として評価する。 In the measurement at a plurality of points, the Seebeck coefficient and the thermal permeability are evaluated by the above measurement at all points, and are evaluated as values at each measurement position.
上述した装置により、試料として600μm×1500μmの(Bi2Te3)1-x(SbTe)xを用い、30μm間隔で分布測定を行うことで、図4〜図6に示した結果を得ることができた。 Using the apparatus described above, 600 μm × 1500 μm (Bi 2 Te 3 ) 1-x (SbTe) x is used as a sample, and distribution measurement is performed at 30 μm intervals, thereby obtaining the results shown in FIGS. did it.
図4はゼーベック係数Sd(μVK−1)の値の数値分布を濃淡で表した状況であり、濃淡の状態が濃くなるにしたがいゼーベック係数(μVK−1)が小さくなっている。図5は熱浸透率b(Js−0.5m−2K−1)の値の数値分布を濃淡で表した状況であり、濃淡の状態が濃くなるにしたがい熱浸透率(Js−0.5m−2K−1)が小さくなっている。 FIG. 4 shows a situation in which the numerical distribution of the value of the Seebeck coefficient Sd (μVK −1 ) is represented by shading, and the Seebeck coefficient (μVK −1 ) decreases as the shading state becomes deeper. FIG. 5 is a situation in which the numerical distribution of the value of the thermal permeability b (Js− 0.5 m −2 K −1 ) is represented by shading, and the thermal permeability (Js −0. 5 m −2 K −1 ) is small.
また、図6は公知の手法で評価した体積比熱容量(1.36×106Jm−3K−1)を用いて求めた熱伝導率λ(Wm−1K−1)の値の数値分布を濃淡で表した状況であり、濃淡の状態が濃くなるにしたがい熱伝導率λ(Wm−1K−1)が小さくなっている。 FIG. 6 shows a numerical distribution of values of thermal conductivity λ (Wm −1 K −1 ) determined using a volume specific heat capacity (1.36 × 10 6 Jm −3 K −1 ) evaluated by a known method. The thermal conductivity λ (Wm −1 K −1 ) decreases as the density becomes darker.
測定結果の平均値と標準偏差は、ゼーベック係数Sdは161±22μVK−1であり、熱浸透率bは1360±120Js−0.5m−2K−1であり、熱伝導率λは1.37±2.4Wm−1K−1であった。 The average value and standard deviation of the measurement results are as follows: Seebeck coefficient S d is 161 ± 22 μVK −1 , thermal permeability b is 1360 ± 120 Js −0.5 m −2 K −1 , and thermal conductivity λ is 1 37 ± 2.4 Wm −1 K −1 .
本発明の装置を利用することにより、熱電変換効率の良い熱電変換材料を利用する技術分野において有用な材料を開発する際に材料探査と均質性評価の側面で利用できる。また、傾斜機能材料の熱物性分布を得ることができるので、新規の材料開発の促進につながる。 By using the apparatus of the present invention, it can be used in terms of material exploration and homogeneity evaluation when developing a material useful in the technical field using a thermoelectric conversion material having a high thermoelectric conversion efficiency. In addition, the thermophysical property distribution of the functionally gradient material can be obtained, which leads to the promotion of new material development.
1 計測装置
2 ベース
3 X軸ステージ
4 Y軸ステージ
5 X軸移動ベース
6 試料台
7 試料
8 Y軸移動ベース
9 Z軸ステージ
10 Z軸移動ベース
11 支持台
12 接触検知手段
13 プローブブロック
14 プローブ
15 カメラ支持台
16 試料カメラ
21 プローブ配線
22 試料台配線
31 計測手段
32 配線
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Base 3 X-axis stage 4 Y-axis stage 5 X-axis movement base 6 Sample stand 7 Sample 8 Y-axis movement base 9 Z-axis stage 10 Z-axis movement base 11 Support stand 12 Contact detection means 13 Probe block 14 Probe 15 Camera support
16 sample camera 21 probe wiring 22 sample base wiring 31 measuring means 32 wiring
Claims (3)
前記試料台に載置された前記試料に接触させるサーマルプローブと、
前記サーマルプローブ内の複数点の温度を計測するために引き出されたプローブ計測線と、
前記サーマルプローブと前記試料の接触後に前記サーマルプローブ内の複数点の温度を計測し、前記サーマルプローブ内の隣接区間の温度差により熱浸透率を計測する手段と
を備えたことを特徴とする熱浸透率の計測装置。 A sample stage on which the sample is placed and mounted;
A thermal probe in contact with the sample placed on the sample stage;
A probe measurement line drawn to measure the temperature of a plurality of points in the thermal probe;
Means for measuring the temperature of a plurality of points in the thermal probe after contacting the thermal probe and the sample, and measuring the thermal permeability by the temperature difference between adjacent sections in the thermal probe. Permeability measuring device.
前記サーマルプローブを任意の平面内で移動自在に支持するプローブ支持ステージと、
前記試料台を前期サーマルプローブが移動する平面に直交する一方向に往復移動自在に支持する試料台支持ステージと
を備えたことを特徴とする熱浸透率の計測装置。 In the thermal osmosis rate measuring device according to claim 1 ,
A probe support stage for supporting the thermal probe movably in an arbitrary plane;
A thermal osmosis rate measuring apparatus comprising: a sample stage support stage that supports the sample stage so as to be reciprocally movable in one direction orthogonal to a plane in which the thermal probe moves.
前記サーマルプローブには、前記試料との接触を検出する接触検知手段が備えられ、 前記プローブ支持ステージには、前記試料台側を撮影して計測領域を設定するための撮像手段が備えられている
ことを特徴とする熱浸透率の計測装置。 In the thermal osmosis rate measuring device according to claim 2 ,
The thermal probe is provided with contact detection means for detecting contact with the sample, and the probe support stage is provided with imaging means for photographing the sample stage side and setting a measurement region. A thermal osmosis rate measuring device characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008109764A JP5190842B2 (en) | 2008-04-21 | 2008-04-21 | Measuring device for thermal permeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008109764A JP5190842B2 (en) | 2008-04-21 | 2008-04-21 | Measuring device for thermal permeability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009258032A JP2009258032A (en) | 2009-11-05 |
JP5190842B2 true JP5190842B2 (en) | 2013-04-24 |
Family
ID=41385626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008109764A Active JP5190842B2 (en) | 2008-04-21 | 2008-04-21 | Measuring device for thermal permeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5190842B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110530927A (en) * | 2019-10-10 | 2019-12-03 | 王雪强 | A kind of thermoelectric material Seebeck coefficient test device and method |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5362465B2 (en) * | 2009-06-17 | 2013-12-11 | 株式会社アイフェイズ | Thermal conductivity measuring method and thermal conductivity measuring device |
WO2012116227A2 (en) * | 2011-02-23 | 2012-08-30 | California Institute Of Technology | Measuring seebeck coefficient |
US9316545B2 (en) * | 2011-07-11 | 2016-04-19 | California Institute Of Technology | Scanning measurement of Seebeck coefficient of a heated sample |
JP6161052B2 (en) * | 2012-04-03 | 2017-07-12 | アドバンス理工株式会社 | Thermoelectric material measuring device |
JP5992194B2 (en) * | 2012-04-03 | 2016-09-14 | アドバンス理工株式会社 | Thermoelectric material measuring device |
CN102967624B (en) * | 2012-11-20 | 2014-08-27 | 清华大学 | Device for testing Seebeck coefficient |
KR101408681B1 (en) | 2013-02-26 | 2014-07-02 | 한국기계연구원 | Non-contact measuring method and apparatus of Seebeck coefficient |
CN103472087B (en) * | 2013-03-15 | 2016-06-08 | 深圳市彩煌实业发展有限公司 | Thermoelectric material Seebeck coefficient measurement apparatus and method |
KR101695569B1 (en) | 2015-10-12 | 2017-01-12 | 한국기계연구원 | Thermoelectric property measurement system |
CN105699619B (en) * | 2016-02-29 | 2017-12-19 | 苏州热工研究院有限公司 | A kind of metal fever potential measuring instrument |
CN108459191B (en) * | 2018-03-26 | 2020-10-23 | 苏州热工研究院有限公司 | Portable thermoelectric potential detector |
CN117805178A (en) * | 2024-02-06 | 2024-04-02 | 西安交通大学 | Probe for characterization of thermoelectric material performance parameters |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003042985A (en) * | 2001-08-03 | 2003-02-13 | Seiko Instruments Inc | Differential scanning calorimeter |
JP2003057121A (en) * | 2001-08-09 | 2003-02-26 | Chokoon Zairyo Kenkyusho:Kk | Method for measuring thermoelectromotive force of thermoelectric material |
JP3924607B2 (en) * | 2002-03-26 | 2007-06-06 | 独立行政法人産業技術総合研究所 | Thermoelectric conversion material evaluation method |
JP4595073B2 (en) * | 2006-08-28 | 2010-12-08 | 独立行政法人産業技術総合研究所 | Thermoelectric material measuring device |
JP2009257846A (en) * | 2008-04-14 | 2009-11-05 | Ulvac-Riko Inc | Evaluation method of heat permeability |
JP2009257845A (en) * | 2008-04-14 | 2009-11-05 | Ulvac-Riko Inc | Temperature evaluating method of contact point |
-
2008
- 2008-04-21 JP JP2008109764A patent/JP5190842B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110530927A (en) * | 2019-10-10 | 2019-12-03 | 王雪强 | A kind of thermoelectric material Seebeck coefficient test device and method |
Also Published As
Publication number | Publication date |
---|---|
JP2009258032A (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5190842B2 (en) | Measuring device for thermal permeability | |
Barako et al. | Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module | |
Kim et al. | Quantitative scanning thermal microscopy with double scan technique | |
JP4595073B2 (en) | Thermoelectric material measuring device | |
US9316545B2 (en) | Scanning measurement of Seebeck coefficient of a heated sample | |
Iwanaga et al. | Scanning Seebeck coefficient measurement system for homogeneity characterization of bulk and thin-film thermoelectric materials | |
CN111948250B (en) | Variable temperature measuring device for high-flux thermoelectric material | |
CN104111268B (en) | A kind of AFM conducting probe In Situ Heating, the device of in-situ characterization nano-plug seebeck coefficient | |
Kessler et al. | Flow sensing by buckling monitoring of electrothermally actuated double-clamped micro beams | |
US8836354B2 (en) | Apparatus for thermal testing of a printed circuit board | |
Pereira et al. | Nano-localized thermal analysis and mapping of surface and sub-surface thermal properties using scanning thermal microscopy (SThM) | |
JP6642392B2 (en) | Surface roughness measuring method and surface roughness measuring device | |
Nguyen et al. | Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM) | |
KR101130223B1 (en) | Quantitative temperature and thermal conductivity measuring method using scanning thermal microscope | |
JP2009257846A (en) | Evaluation method of heat permeability | |
Genix et al. | Local temperature surface measurement with intrinsic thermocouple | |
Platzek et al. | Seebeck scanning microprobe for thermoelectric FGM | |
Ramírez-García et al. | Design of a scanning seebeck coefficient apparatus: A tool for testing inhomogeneities in thermoelectric materials | |
JP2004003872A (en) | Evaluating method of thermoelectric transducing material | |
JP2006105935A (en) | Probe, apparatus, and method for microthermoanalysis | |
CN1115581C (en) | Heatable sample platform for scanning probe microscope | |
KR100983883B1 (en) | Method for measuring thermophyscal properties using scanning thermal microscope(SThM) | |
JP2009257845A (en) | Temperature evaluating method of contact point | |
JP2008157852A (en) | Noncontact temperature measuring device, sample base, and noncontact temperature measurement method | |
Kakefuda et al. | Development of nanoscale thermocouple probes for local thermal measurements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5190842 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160208 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |