JP2009257845A - Temperature evaluating method of contact point - Google Patents

Temperature evaluating method of contact point Download PDF

Info

Publication number
JP2009257845A
JP2009257845A JP2008105159A JP2008105159A JP2009257845A JP 2009257845 A JP2009257845 A JP 2009257845A JP 2008105159 A JP2008105159 A JP 2008105159A JP 2008105159 A JP2008105159 A JP 2008105159A JP 2009257845 A JP2009257845 A JP 2009257845A
Authority
JP
Japan
Prior art keywords
temperature
contact point
probe
contact
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008105159A
Other languages
Japanese (ja)
Inventor
Kenro Ikeuchi
賢朗 池内
Kenji Shimada
賢次 島田
Yoichi Takasaki
洋一 高崎
Yoshiichi Ishii
芳一 石井
Atsushi Yamamoto
淳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ulvac Riko Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ulvac Riko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ulvac Riko Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008105159A priority Critical patent/JP2009257845A/en
Publication of JP2009257845A publication Critical patent/JP2009257845A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the temperature of the contact point between an unknown sample and a thermal probe by a the calibration formula formed between a temperature in the thermal probe and the temperature of the contact point by directly measuring the temperature of the contact point using a reference sample. <P>SOLUTION: The temperature of the contact point of the reference substance which comprises the same material as that of a sample stand placed on the sample stand and the thermal probe is evaluated using a measuring instrument equipped with the thermal probe and the temperature of the contact point between the unknown simple placed on the sample stand and the thermal probe is evaluated from the temperature in the thermal probe on the basis of the correlation of the obtained temperature of the contact point and the temperature in the thermal probe. The temperature of the contact point of the reference substance and the tip of the probe rod constituting the thermal probe is evaluated as a thermocouple formed between a wire for measuring a voltage of the contact point issued from the sample stand and a wire for measuring a probe reference issued from the thermal probe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、試料表面とサーマルプローブとの間の接触点温度の評価方法に関し、特にサーマルブローブ内の温度から基準試料との校正によって未知試料の接触点温度を評価する方法に関する。   The present invention relates to a method for evaluating a contact point temperature between a sample surface and a thermal probe, and more particularly to a method for evaluating a contact point temperature of an unknown sample by calibration with a reference sample from a temperature in a thermal probe.

CPUなどの半導体基板において、加熱部を接触させた時の接触点の温度を観測することにより、基板内の放熱の様子を実測する必要がある。   In a semiconductor substrate such as a CPU, it is necessary to actually measure the state of heat dissipation in the substrate by observing the temperature at the contact point when the heating unit is brought into contact.

また、熱電変換材料の性能評価にはゼーベック係数が有用である。ゼーベック係数は起電圧変化を温度変化で微分することによって得られるため、接触点温度を実測することは温度変化の正確な値を知る上で必要である。   The Seebeck coefficient is useful for evaluating the performance of thermoelectric conversion materials. Since the Seebeck coefficient is obtained by differentiating the change in electromotive voltage with the change in temperature, it is necessary to actually measure the contact point temperature in order to know the exact value of the change in temperature.

サーマルプローブを用いた微小領域の熱測定に関連する技術としては、例えば、接触した時のゼーベック係数を決定する方法として、サーマルプローブ法(例えば、非特許文献1、特許文献1、2参照)が提案されている。AFM技術を活用した熱イメージを計測するSThM技術(例えば、非特許文献2参照)や、同じく先端を細くした熱電対をカンチレバーとして試料表面の温度情報を収集して表面形状測定に利用するSTP法(例えば、非特許文献3参照)などが提案されている。   As a technique related to the thermal measurement of a micro area using a thermal probe, for example, as a method for determining the Seebeck coefficient at the time of contact, a thermal probe method (for example, refer to Non-Patent Document 1, Patent Documents 1 and 2). Proposed. An SThM technique (for example, see Non-Patent Document 2) that measures a thermal image using the AFM technique, or an STP method that collects temperature information of the sample surface using a thermocouple with a thin tip as a cantilever and uses it for surface shape measurement (For example, refer nonpatent literature 3) etc. are proposed.

上記サーマルプローブ法によりゼーベック係数を測定する場合のみ接触点の温度計測が報告されている。加熱ヒータを備えたプローブを被測定材料に接触させて、そのプローブの先端に設けた熱電対により被測定材料の表面温度を測定している。しかし、熱電対における温度と被測定材料の表面温度との間には測定時に無視できない温度差が生じてしまう。この方法は、接触点の温度を直接計測する方法ではないため、必ずしも有効な方法ではないという問題がある。また、シース熱電対を用いる場合、実際の計測位置と接触点とが一致していないという問題がある。すなわち、従来のサーマルプローブ法では、このサーマルプローブ内の温度から推定して接触点の温度を決定していた。   Only when the Seebeck coefficient is measured by the thermal probe method, temperature measurement at the contact point has been reported. A probe provided with a heater is brought into contact with the material to be measured, and the surface temperature of the material to be measured is measured by a thermocouple provided at the tip of the probe. However, a temperature difference that cannot be ignored during measurement occurs between the temperature of the thermocouple and the surface temperature of the material to be measured. Since this method is not a method of directly measuring the temperature of the contact point, there is a problem that it is not necessarily an effective method. Moreover, when using a sheath thermocouple, there exists a problem that an actual measurement position and a contact point do not correspond. That is, in the conventional thermal probe method, the temperature of the contact point is determined by estimating from the temperature in the thermal probe.

特開2004−003872号公報JP 2004-003872 A 特開2008−057144号公報JP 2008-057144 A Sussmann, et al., Proc. 12th Int. Conf. on Theremo-electronics, Yokohama, 86 (1993).Sussmann, et al., Proc. 12th Int. Conf. On Theremo-electronics, Yokohama, 86 (1993). Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy; Jpn. J. Appl. Phys. Vol. 33, p.p.3785-3790 (1994); R. J. Pylkki, P. J. Moyer, and P. E. West.Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy; Jpn.J.Appl.Phys.Vol.33, p.p.3785-3790 (1994); R.J.Pylkki, P.J.Moyer, and P.E. Scanning Thermal Profiler; Appl. Phys. Lett., Vol. 49, No23, pp. 1587-1589(1986); C. C. Williams and H. K. Wickamasinghe.Scanning Thermal Profiler; Appl. Phys. Lett., Vol. 49, No23, pp. 1587-1589 (1986); C. C. Williams and H. K. Wickamasinghe.

従来、サーマルプローブ内の温度から接触点の温度を推定している。
本発明の課題は、上述の従来技術の問題点を解決することにあり、基準試料を用いて接触点の温度の直接測定を行い、サーマルプローブ内の温度と接触点温度との間で校正式を作成し、この校正式を利用して未知試料とサーマルプローブとの間の接触点の温度を評価する方法を提供することにある。
Conventionally, the temperature of the contact point is estimated from the temperature in the thermal probe.
An object of the present invention is to solve the above-mentioned problems of the prior art, by directly measuring the temperature of the contact point using a reference sample, and a calibration formula between the temperature in the thermal probe and the contact point temperature. And providing a method of evaluating the temperature of the contact point between the unknown sample and the thermal probe using this calibration formula.

本発明者らは、基準試料を用いれば簡単に試料とサーマルプローブとの間の接触点温度を計測でき、基準試料で計測した接触点温度とサーマルプローブ内の温度との間で校正式を作成すれば、未知試料の接触点温度が評価できることに気がつき、本発明を完成するに至った。   The inventors can easily measure the contact point temperature between the sample and the thermal probe by using the reference sample, and create a calibration formula between the contact point temperature measured by the reference sample and the temperature in the thermal probe. As a result, it was found that the contact point temperature of the unknown sample could be evaluated, and the present invention was completed.

本発明の接触点温度の評価方法は、サーマルプローブを備えた計測装置を用いて、試料台上に載置された試料台と同じ材質の基準物質とサーマルプローブとの接触点温度を評価し、得られた接触点温度とサーマルプローブ内の温度との相関関係に基づいてサーマルプローブ内の温度から試料台に載置された未知試料とサーマルプローブとの間の接触点温度を評価することを特徴とする。   The contact point temperature evaluation method of the present invention uses a measuring device equipped with a thermal probe, evaluates the contact point temperature between the reference material and the thermal probe of the same material as the sample stage placed on the sample stage, Based on the correlation between the obtained contact point temperature and the temperature in the thermal probe, the contact point temperature between the unknown sample placed on the sample stage and the thermal probe is evaluated from the temperature in the thermal probe. And

前記基準物質とサーマルプローブを構成するプローブ棒の先端との接触点の温度を、前記試料台から出ている接触点電圧計測用の線とサーマルプローブから出ているプローブ基準計測用の線との間に形成される熱電対として評価することを特徴とする。   The temperature of the contact point between the reference material and the tip of the probe rod constituting the thermal probe is determined by the contact point voltage measurement line coming out of the sample stage and the probe reference measurement line coming out of the thermal probe. It is characterized by being evaluated as a thermocouple formed between them.

前記未知試料とサーマルプローブを構成するプローブ棒の先端との間の接触点の温度を評価するに際し、基準物質と該プローブ棒先端との接触前及び接触後に、該プローブ棒内の複数の測定箇所の温度を計測し、隣接する測定箇所の温度差及び最下部の測定箇所と接触点との温度差を計測し、サーマルプローブを構成するプローブブロックの制御温度を変えて測定を行い、該プローブ棒内の隣接する箇所の接触後の温度差と接触前の温度差との差と、該最下部の測定箇所と接触点の温度差との間の関係を接触点温度評価の校正式とし、次いで未知試料について、該基準物質と同様にして、該プローブ棒内の隣接する箇所の接触後の温度差と接触前の温度差との差を計測し、該接触点温度評価の校正式を用いて、該最下部の計測箇所の温度と接触点の温度との差を評価し、該プローブ棒内の隣接する箇所の接触後の温度差と接触前の温度差との差から計算した該最下部の計測箇所の温度と接触点温度との差と、該最下部の計測箇所の温度とから、接触点の温度を評価することを特徴とする。   When evaluating the temperature of the contact point between the unknown sample and the tip of the probe rod constituting the thermal probe, before and after the contact between the reference material and the tip of the probe rod, a plurality of measurement locations in the probe rod Measure the temperature difference between adjacent measurement points and the temperature difference between the lowest measurement point and the contact point, change the control temperature of the probe block that constitutes the thermal probe, and measure the temperature. The contact point temperature evaluation calibration formula is the relationship between the difference between the temperature difference after contact and the temperature difference before contact, and the temperature difference between the lowermost measurement point and the contact point. For the unknown sample, in the same manner as the reference material, measure the difference between the temperature difference after contact and the temperature difference before contact at the adjacent points in the probe rod, and use the calibration formula for temperature evaluation of the contact point. , The temperature and contact of the bottom measurement point The difference between the temperature of the point and the temperature of the lowermost measurement point calculated from the difference between the temperature difference after contact and the temperature difference before contact between adjacent points in the probe rod and the contact point temperature The temperature of the contact point is evaluated from the difference and the temperature of the lowest measurement location.

本発明によれば、基準物質とサーマルプローブ先端との接触点の温度を計測し校正式を得ることにより、未知試料の接触点温度の温度誤差を減らすことができるという効果を奏する。この技術の応用例として、ゼーベック係数評価装置に必要な温度誤差を下げることにより、ゼーベック係数の評価精度を上げることができるという効果を奏する。   According to the present invention, the temperature error of the contact point temperature of an unknown sample can be reduced by measuring the temperature of the contact point between the reference material and the tip of the thermal probe to obtain a calibration formula. As an application example of this technique, there is an effect that the evaluation accuracy of the Seebeck coefficient can be increased by reducing the temperature error necessary for the Seebeck coefficient evaluation apparatus.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明によれば、接触点計測装置を用いて基準物質とサーマルプローブとの接触点の温度を計測し、得られた接触点温度とサーマルプローブ内の温度との相関関係を用いてサーマルプローブ内の温度から未知試料とサーマルプローブとの間の接触点温度を評価することができる。   According to the present invention, the temperature of the contact point between the reference material and the thermal probe is measured using the contact point measuring device, and the correlation between the obtained contact point temperature and the temperature in the thermal probe is used to determine the temperature inside the thermal probe. From this temperature, the temperature of the contact point between the unknown sample and the thermal probe can be evaluated.

本発明で用いる接触点計測装置としては、ヒータ等の加熱手段を備えたサーマルプローブと試料台を有する装置を使用することができる。   As the contact point measuring apparatus used in the present invention, an apparatus having a thermal probe and a sample stage provided with heating means such as a heater can be used.

図1を参照して、接触点計測装置におけるサーマルプローブの構成について説明する。   With reference to FIG. 1, the structure of the thermal probe in a contact point measuring device is demonstrated.

プローブ棒の代表例として、本特許出願と同日に提出する特許出願に係る複数点の電圧及び/又は温度の計測方法のプローブを用いる。この代表例を用いた計測装置の一構成図を図1に示す。   As a typical example of the probe rod, a probe of a method for measuring a plurality of voltages and / or temperatures according to a patent application filed on the same day as the present patent application is used. A configuration diagram of a measuring apparatus using this representative example is shown in FIG.

サーマルプローブ2(材質A:例えば、コンスタンタン)はプローブブロック21(材質A: 例えば、コンスタンタン)とプローブ棒22(材質A: 例えば、コンスタンタン)とから構成されており、プローブブロック21とプローブ棒22とは、測定中一体となって移動する。プローブブロック21の温度(Tpb)と試料台1(材質C: 例えば、銅)の温度(Tsb)とは、図示していない温度制御手段によって、測定中、一定温度に保たれるように構成されている。 The thermal probe 2 (material A: for example, constantan) is composed of a probe block 21 (material A: for example, constantan) and a probe bar 22 (material A: for example, constantan). Move together during measurement. The temperature (T pb ) of the probe block 21 and the temperature (T sb ) of the sample stage 1 (material C: for example, copper) are maintained at a constant temperature during measurement by a temperature control means (not shown). It is configured.

上記装置を用いて測定する前には、試料Sとプローブ棒22の先端とが接触していない状態で、プローブブロック21の温度(Tpb)と試料台1の温度(Tsb)とを温度制御する。ただし、Tpb≧Tsb+10℃の関係を満足するように制御する。これは、プローブ棒の先端を試料の温度よりも十分高い条件にするためである。測定は、サーマルプローブ2のプローブ棒22と被測定試料Sとが接触していない状態で開始し、一定時間の経過後、プローブ棒22の先端と被測定試料Sとを接触させる。一定時間接触させた後、サーマルプローブ2のプローブ棒22を被測定試料Sから離す。プローブ棒22内の電圧計測と温度計測を測定中に行う。 Prior to measurement using the above apparatus, the temperature of the probe block 21 (T pb ) and the temperature of the sample stage 1 (T sb ) are measured while the sample S and the tip of the probe rod 22 are not in contact with each other. Control. However, control is performed so as to satisfy the relationship of T pb ≧ T sb + 10 ° C. This is to make the tip of the probe rod sufficiently higher than the sample temperature. The measurement is started in a state where the probe rod 22 of the thermal probe 2 and the sample S to be measured are not in contact with each other, and after a predetermined time has passed, the tip of the probe rod 22 and the sample S to be measured are brought into contact with each other. After contacting for a certain time, the probe rod 22 of the thermal probe 2 is separated from the sample S to be measured. Voltage measurement and temperature measurement in the probe rod 22 are performed during measurement.

試料台1からは電圧計測用線1a(材質C:例えば、銅)が計測用として出ており、計測器でプローブ基準計測用線2a(材質A:例えば、コンスタンタン)と接続している。そのため、プローブ基準計測用線2aと接触点の電圧計測用線1a(材質C:例えば、銅)との間が熱電対として機能できるので、接触点の温度計測、電圧計測を行うことができる。   A voltage measurement line 1a (material C: for example, copper) is provided for measurement from the sample stage 1, and is connected to a probe reference measurement line 2a (material A: for example, constantan) by a measuring instrument. Therefore, since the space between the probe reference measurement line 2a and the voltage measurement line 1a (material C: for example, copper) at the contact point can function as a thermocouple, temperature measurement and voltage measurement at the contact point can be performed.

次いで、基準試料Sとして試料台1の材質と同じ材質のもの(材質C:例えば、銅)を使用して、測定を行う。プローブブロック21のプローブ棒22の先端を基準試料Sに接触させると、材質Cと材質Aとが接合している箇所は、プローブ棒22と基準試料Sとの接触点、及び計測器におけるプローブ基準計測用線2aと電圧計測用線1aとの接続点の2箇所である。そのため、銅−コンスタンタンのT熱電対として計測した接触点の温度(Tcp)は、ジャンクションの温度を基準として計測された材質Aと材質Cとの間の起電圧をもとに評価することができる。 Next, measurement is performed using the same material as the material of the sample table 1 (material C: for example, copper) as the reference sample S. When the tip of the probe rod 22 of the probe block 21 is brought into contact with the reference sample S, the location where the material C and the material A are joined is the contact point between the probe rod 22 and the reference sample S and the probe reference in the measuring instrument. There are two connection points between the measurement line 2a and the voltage measurement line 1a. Therefore, the temperature (T cp ) of the contact point measured as a copper-constantan T thermocouple can be evaluated based on the electromotive voltage between the material A and the material C measured with reference to the junction temperature. it can.

基準試料Sを用いて得られた、プローブ棒22の先端と基準試料Sとの接触点の温度と、サーマルプローブ2内の温度との相関関係を、以下、説明する。   The correlation between the temperature at the contact point between the tip of the probe rod 22 and the reference sample S, obtained using the reference sample S, and the temperature in the thermal probe 2 will be described below.

基準試料Sとの接触前は、プローブ棒22内のT、T及びTの温度を計測することが可能である。プローブ棒22内の各点間の温度差は、それぞれ、T1a−T2a、T2a−T3a(T1a、T2a及びT3aは、それぞれ、接触前のT、T及びTの温度である)で表わされる。基準試料Sとの接触後は、T、T及びTの温度だけでなく接触点の温度(Tcp)も計測することが可能である。プローブ棒22内の各点間の温度差、及びプローブ棒22内の測定最下部(T3b)と接触点との温度差は、それぞれ、T1b−T2b、T2b−T3b、T3b−Tcp(T1b、T2b及びT3bは、それぞれ、接触後のT、T及びTの温度である)で表わされる。接触前後でプローブ棒22内の温度は変化する。接触前後のプローブ棒22内の各点間の温度差は、それぞれ、(T1b−T2b)−(T1a−T2a)、(T2b−T3b)−(T2a−T3a)で表わされる。上記接触前後の各温度の表記を纏めると以下の表1に示すようになる。 Prior to contact with the reference sample S, the temperatures of T 1 , T 2 and T 3 in the probe rod 22 can be measured. The temperature differences between the points in the probe rod 22 are T 1a -T 2a , T 2a -T 3a (T 1a , T 2a and T 3a are T 1 , T 2 and T 3 before contact, respectively. The temperature is expressed as follows. After the contact with the reference sample S, not only the temperatures of T 1 , T 2 and T 3 but also the temperature at the contact point (T cp ) can be measured. The temperature difference between each point in the probe rod 22 and the temperature difference between the measurement bottom (T 3b ) and the contact point in the probe rod 22 are respectively T 1b -T 2b , T 2b -T 3b , T 3b. -T cp (T 1b , T 2b and T 3b are the temperatures of T 1 , T 2 and T 3 after contact, respectively). The temperature in the probe rod 22 changes before and after contact. The temperature difference between each point in the probe rod 22 before and after contact is ( T1b - T2b )-( T1a - T2a ), ( T2b - T3b )-( T2a - T3a ), respectively. Represented. Table 1 below summarizes the notation of the temperatures before and after the contact.

Figure 2009257845
Figure 2009257845

プローブブロック21の制御温度(Ttb)を変えることにより、試料に伝える熱量を変えることが可能である。そのため、プローブブロック21の制御温度を変えて測定を行う。 By changing the control temperature (T tb ) of the probe block 21, the amount of heat transferred to the sample can be changed. Therefore, measurement is performed by changing the control temperature of the probe block 21.

制御温度を変えて行った測定結果に基づき、(T1b−T2b)−(T1a−T2a)とT3b−Tcpとの関係、(T2b−T3b)−(T2a−T3a)とT3b−Tcpとの関係について説明する。(T1b−T2b)−(T1a−T2a)とT3b−Tcp、(T2b−T3b)−(T2a−T3a)とT3b−Tcpとは、以下説明するように、それぞれ直線近似の関係がある。これらの直線を接触点温度評価の校正式とする。 Based on the results measurements made by changing the control temperature, (T 1b -T 2b) - relationship between (T 1a -T 2a) and T 3b -T cp, (T 2b -T 3b) - (T 2a -T The relationship between 3a ) and T 3b -T cp will be described. ( T1b - T2b )-( T1a - T2a ) and T3b - Tcp , ( T2b - T3b )-( T2a - T3a ) and T3b - Tcp will be described below. Each has a linear approximation relationship. These straight lines are used as calibration equations for contact point temperature evaluation.

上記プローブ棒22内のT、T及びTからは、それぞれ、電圧・温度計測用線(材質B:例えば、クロメル)22a、22b、及び22cが計測用として引き出されており、それぞれの線が、計測器でプローブ基準計測用線2a(材質A:例えば、コンスタンタン)と接続している。そのため、上記温度測定において、T、T及びTの温度は、クロメル−コンスタンタンのE熱電対として計測し、基準試料Sの材質を例えば銅(材質C)とし、接触点の温度は、銅−コンスタンタンのT熱電対として計測する。プローブブロック21の制御温度を、40℃、50℃、60℃及び70℃として測定を行った。試料台1の温度は30℃に制御する。 From T 1 , T 2, and T 3 in the probe rod 22, voltage / temperature measurement lines (material B: for example, chromel) 22 a, 22 b, and 22 c are drawn out for measurement. The wire is connected to the probe reference measurement wire 2a (material A: for example, constantan) by a measuring instrument. Therefore, in the above temperature measurement, the temperatures of T 1 , T 2 and T 3 are measured as an E thermocouple of chromel-constantan, the material of the reference sample S is, for example, copper (material C), and the temperature of the contact point is Measured as a copper-constantan T thermocouple. The measurement was performed with the control temperature of the probe block 21 being 40 ° C, 50 ° C, 60 ° C, and 70 ° C. The temperature of the sample stage 1 is controlled at 30 ° C.

図2(a)にT3b−Tcpの(T1b−T2b)−(T1a−T2a)依存性、図2(b)にT3b−Tcpの(T2b−T3b)−(T2a−T3a)依存性の測定結果を示す。図2(a)及び(b)から明らかなように、それぞれ直線近似の関係があることが分かる。 2A shows the dependence of T 3b -T cp on (T 1b -T 2b )-(T 1a -T 2a ), and FIG. 2B shows the T 3b -T cp (T 2b -T 3b ) −. The measurement result of ( T2a - T3a ) dependence is shown. As is clear from FIGS. 2A and 2B, it can be seen that there is a linear approximation relationship.

上記のようにして得られたサーマルプローブ2内の温度から未知試料とサーマルプローブ2との間の接触点温度Tcpcalを評価する方法について説明する。 A method for evaluating the contact point temperature T cpcal between the unknown sample and the thermal probe 2 from the temperature in the thermal probe 2 obtained as described above will be described.

基準試料(材質C)Sを用いて測定して得た接触点評価の上記校正式を利用して接触点温度を評価する。未知試料(材質D)について、基準試料と同様の方法で測定を行い、サーマルプローブ内の接触前後の隣接する測定箇所の温度差(T1b−T2b)−(T1a−T2a)と(T2b−T3b)−(T2a−T3a)とを評価する。この時の測定条件として、プローブブロック21の制御温度は、基準試料Sの測定で使用した温度から適宜選択すれば良い。試料台1の制御温度は基準試料Sについて測定した温度と同じにする。接触点温度評価の校正式を用いて、T3b−Tcpを評価する。(T1b−T2b)−(T1a−T2a)から計算したT3b−Tcpと、(T2b−T3b)−(T2a−T3a)から計算したT3b−Tcpとを平均して接触点温度評価のT3b−Tcpとする。計測したT3bの温度と、計算したT3b−TcpとからTcpcalを評価する。 The contact point temperature is evaluated using the above calibration formula for contact point evaluation obtained by measurement using the reference sample (material C) S. An unknown sample (material D) is measured in the same manner as the reference sample, and the temperature difference (T 1b −T 2b ) − (T 1a −T 2a ) between adjacent measurement points before and after contact in the thermal probe is ( T2b - T3b )-( T2a - T3a ) is evaluated. As a measurement condition at this time, the control temperature of the probe block 21 may be appropriately selected from the temperatures used in the measurement of the reference sample S. The control temperature of the sample stage 1 is the same as the temperature measured for the reference sample S. T 3b -T cp is evaluated using a calibration formula for contact point temperature evaluation. (T 1b -T 2b) - and T 3b -T cp calculated from (T 1a -T 2a), ( T 2b -T 3b) - and T 3b -T cp calculated from (T 2a -T 3a) On average, T 3b -T cp of the contact point temperature evaluation is used. T cpcal is evaluated from the measured temperature of T 3b and the calculated T 3b -T cp .

ゼーベック係数が未知である試料としてBi10Sb30Te60を用い、上記したようにして測定した場合の(T1b−T2b)−(T1a−T2a)から接触点の温度Tcpcalを計算した結果と、(T2b−T3b)−(T2a−T3a)から接触点の温度Tcpcalを計算した結果とを比較した図を図3に示す。二つの結果から得られた接触点の温度の差は0.5℃以内である。 Using Bi 10 Sb 30 Te 60 as a sample whose Seebeck coefficient is unknown, the temperature T cpcal of the contact point is calculated from (T 1b −T 2b ) − (T 1a −T 2a ) when measured as described above. FIG. 3 shows a comparison between the results obtained and the results obtained by calculating the temperature T cpcal at the contact point from (T 2b −T 3b ) − (T 2a −T 3a ). The difference in temperature at the contact point obtained from the two results is within 0.5 ° C.

本発明によれば、接触点温度の分布測定装置や、ゼーベック係数測定装置の開発に大いに期待される。   According to the present invention, it is greatly expected to develop a contact point temperature distribution measuring device and a Seebeck coefficient measuring device.

熱物性計測装置におけるサーマルプローブの構成を模式的に示す構成図。The block diagram which shows typically the structure of the thermal probe in a thermophysical property measuring device. 3b−Tcpの(T1b−T2b)−(T1a−T2a)依存性(a)、及びT3b−Tcpの(T2b−T3b)−(T2a−T3a)依存性(b)の測定結果を示すグラフ。Of T 3b -T cp (T 1b -T 2b) - (T 1a -T 2a) Dependence (a), and T 3b -T cp (T 2b -T 3b) - (T 2a -T 3a) depends The graph which shows the measurement result of property (b). Bi10Sb30Te60の接触点温度Tcpcalを評価したことを示すグラフであり、横軸は(T1b−T2b)−(T1a−T2a)から接触点温度Tcpcalを評価した値、縦軸は(T2b−T3b)−(T2a−T3a)から接触点温度Tcpcalを評価した値を示す。Is a graph showing that an evaluation of the contact point temperature T Cpcal of Bi 10 Sb 30 Te 60, the horizontal axis (T 1b -T 2b) - ( T 1a -T 2a) the value of the evaluation of the contact point temperature T Cpcal from The vertical axis represents a value obtained by evaluating the contact point temperature T cpcal from (T 2b −T 3b ) − (T 2a −T 3a ).

符号の説明Explanation of symbols

1 試料台 1a 電圧計測用線
2 サーマルプローブ 2a プローブ基準計測用線
21 プローブブロック 22 プローブ棒
22a、22b、22c 電圧計測用線

DESCRIPTION OF SYMBOLS 1 Sample stand 1a Voltage measurement line 2 Thermal probe 2a Probe reference measurement line 21 Probe block 22 Probe rods 22a, 22b, 22c Voltage measurement line

Claims (3)

サーマルプローブを備えた計測装置を用いて、試料台上に載置された試料台と同じ材質の基準物質とサーマルプローブとの接触点温度を評価し、得られた接触点温度とサーマルプローブ内の温度との相関関係に基づいてサーマルプローブ内の温度から試料台に載置された未知試料とサーマルプローブとの間の接触点温度を評価することを特徴とする接触点温度の評価方法。 Using a measuring device equipped with a thermal probe, evaluate the contact point temperature between the reference material and the thermal probe made of the same material as the sample stage placed on the sample stage. A contact point temperature evaluation method, comprising: evaluating a contact point temperature between an unknown sample placed on a sample stage and a thermal probe from a temperature in a thermal probe based on a correlation with temperature. 前記基準物質とサーマルプローブを構成するプローブ棒の先端との接触点温度を、前記試料台から出ている接触点電圧計測用の線とサーマルプローブから出ているプローブ基準計測用の線との間に形成される熱電対として評価することを特徴とする請求項1記載の接触点温度の評価方法。 The contact point temperature between the reference material and the tip of the probe rod constituting the thermal probe is measured between the contact point voltage measurement line coming out of the sample stage and the probe reference measurement line coming out of the thermal probe. The contact point temperature evaluation method according to claim 1, wherein the contact point temperature is evaluated as a thermocouple formed on the surface. 前記未知試料とサーマルプローブを構成するプローブ棒の先端との間の接触点温度を評価するに際し、基準物質と該プローブ棒先端との接触前及び接触後に、該プローブ棒内の複数の測定箇所の温度を計測し、隣接する測定箇所の温度差及び最下部の測定箇所と接触点との温度差を計測し、サーマルプローブを構成するプローブブロックの制御温度を変えて測定を行い、該プローブ棒内の隣接する箇所の接触後の温度差と接触前の温度差との差と、該最下部の測定箇所と接触点との温度差との間の関係を接触点温度評価の校正式とし、次いで未知試料について、該基準物質と同様に、該プローブ棒内の隣接する箇所の接触後の温度差と接触前の温度差との差を計測し、該接触点温度評価の校正式を用いて、該最下部の計測箇所の温度と接触点の温度との差を評価し、該プローブ棒内の隣接する箇所の接触後の温度差と接触前の温度差との差から計算した該最下部の計測箇所の温度と接触点温度との差と、該最下部の計測箇所の温度とから、接触点温度を評価することを特徴とする請求項1又は2記載の接触点温度の評価方法。 When evaluating the contact point temperature between the unknown sample and the tip of the probe rod constituting the thermal probe, before and after the contact between the reference material and the tip of the probe rod, a plurality of measurement points in the probe rod are measured. Measure the temperature, measure the temperature difference between adjacent measurement points and the temperature difference between the lowest measurement point and the contact point, change the control temperature of the probe block that constitutes the thermal probe, measure the temperature inside the probe rod The contact point temperature evaluation calibration formula is the relationship between the difference between the temperature difference after contact and the temperature difference before contact in the adjacent part of the contact point, and the temperature difference between the lowest measurement point and the contact point. For the unknown sample, like the reference material, measure the difference between the temperature difference after contact and the temperature difference before contact in the adjacent location in the probe rod, and use the calibration formula for temperature evaluation of the contact point, Temperature and contact point of the lowest measurement point The difference between the temperature and the difference between the temperature at the lowest measurement point calculated from the difference between the temperature difference after contact and the temperature difference before contact at the adjacent points in the probe rod and the contact point temperature The contact point temperature evaluation method according to claim 1, wherein the contact point temperature is evaluated from the temperature of the lowermost measurement location.
JP2008105159A 2008-04-14 2008-04-14 Temperature evaluating method of contact point Pending JP2009257845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105159A JP2009257845A (en) 2008-04-14 2008-04-14 Temperature evaluating method of contact point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105159A JP2009257845A (en) 2008-04-14 2008-04-14 Temperature evaluating method of contact point

Publications (1)

Publication Number Publication Date
JP2009257845A true JP2009257845A (en) 2009-11-05

Family

ID=41385460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105159A Pending JP2009257845A (en) 2008-04-14 2008-04-14 Temperature evaluating method of contact point

Country Status (1)

Country Link
JP (1) JP2009257845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258032A (en) * 2008-04-21 2009-11-05 Ulvac-Riko Inc Measuring instrument of seebeck coefficient and heat permeability and measuring instrument of heat permeability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258032A (en) * 2008-04-21 2009-11-05 Ulvac-Riko Inc Measuring instrument of seebeck coefficient and heat permeability and measuring instrument of heat permeability

Similar Documents

Publication Publication Date Title
Zhang et al. A review on principles and applications of scanning thermal microscopy (SThM)
JP5190842B2 (en) Measuring device for thermal permeability
Shi et al. Design and batch fabrication of probes for sub-100 nm scanning thermal microscopy
Nelson et al. Temperature calibration of heated silicon atomic force microscope cantilevers
Kim et al. Quantitative scanning thermal microscopy with double scan technique
JP4595073B2 (en) Thermoelectric material measuring device
Kim et al. Quantification of thermal and contact resistances of scanning thermal probes
US11169102B2 (en) Method and measurement device for ascertaining the thermal conductivity of a fluid
Bosse et al. Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopy
Webster et al. Measurement of inhomogeneities in MIMS thermocouples using a linear-gradient furnace and dual heat-pipe scanner
Fischer Quantitative determination of heat conductivities by scanning thermal microscopy
Zhang et al. Quantitative temperature distribution measurements by non-contact scanning thermal microscopy using Wollaston probes under ambient conditions
Yan et al. A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films
CN104111268A (en) Device for in-situ heating of atomic force microscope conducting probe and in-situ characterization of nanometer Seebeck coefficient
Park et al. Design of micro-temperature sensor array with thin film thermocouples
KR101130223B1 (en) Quantitative temperature and thermal conductivity measuring method using scanning thermal microscope
Swoboda et al. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy
JP2009257845A (en) Temperature evaluating method of contact point
Han et al. A built-in temperature sensor in an integrated microheater
Genix et al. Local temperature surface measurement with intrinsic thermocouple
JP2009257846A (en) Evaluation method of heat permeability
Holmsten et al. Inhomogeneity measurements of long thermocouples using a short movable heating zone
Yoann Finite element analysis of the material’s area affected during a micro thermal analysis applied to homogeneous materials
KR100983883B1 (en) Method for measuring thermophyscal properties using scanning thermal microscope(SThM)
Ramírez-García et al. Design of a scanning seebeck coefficient apparatus: A tool for testing inhomogeneities in thermoelectric materials