JP2009257846A - Evaluation method of heat permeability - Google Patents

Evaluation method of heat permeability Download PDF

Info

Publication number
JP2009257846A
JP2009257846A JP2008105160A JP2008105160A JP2009257846A JP 2009257846 A JP2009257846 A JP 2009257846A JP 2008105160 A JP2008105160 A JP 2008105160A JP 2008105160 A JP2008105160 A JP 2008105160A JP 2009257846 A JP2009257846 A JP 2009257846A
Authority
JP
Japan
Prior art keywords
probe
thermal
temperature
sample
probe rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008105160A
Other languages
Japanese (ja)
Inventor
Kenro Ikeuchi
賢朗 池内
Kenji Shimada
賢次 島田
Yoichi Takasaki
洋一 高崎
Yoshiichi Ishii
芳一 石井
Atsushi Yamamoto
淳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ulvac Riko Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ulvac Riko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ulvac Riko Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008105160A priority Critical patent/JP2009257846A/en
Publication of JP2009257846A publication Critical patent/JP2009257846A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method of heat permeability using a thermal probe. <P>SOLUTION: A temperature in the thermal probe at the time of the contact of a sample to be measured with a probe rod is evaluated at a plurality of points using a thermophysical value measuring instrument equipped with the thermal probe composed of a probe block and a probe rod and compared with the result of a sample known in heat permeability using the temperature difference between adjacent measuring places to lead out the heat permeability of an unknown sample. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、試料の熱浸透率の評価方法に関し、特に、サーマルブローブを用いた計測装置を利用して物質の熱浸透率を評価する方法に関する。   The present invention relates to a method for evaluating the thermal permeability of a sample, and more particularly to a method for evaluating the thermal permeability of a substance using a measuring device using a thermal probe.

CPUなどの半導体基板の設計を行う場合、動作中に発生する熱による半導体基板の温度上昇を最小限に抑えられるように熱設計を行うことが重要であり、使用している材料の熱伝導率評価が必要である。また、廃熱を電気に変換し再利用するという観点で環境問題に役立つ可能性がある熱電変換材料の場合では、熱電変換の性能を良くするためには熱伝導率が低い材料を開発しなければならない。   When designing a semiconductor substrate such as a CPU, it is important to design the heat so that the temperature rise of the semiconductor substrate due to heat generated during operation is minimized, and the thermal conductivity of the material used Evaluation is necessary. In the case of thermoelectric conversion materials that may be useful for environmental problems in terms of converting waste heat into electricity and reusing it, materials with low thermal conductivity must be developed to improve the performance of thermoelectric conversion. I must.

熱伝導率は、従来、レーザフラッシュ法や定常法で計測されている。   Conventionally, the thermal conductivity is measured by a laser flash method or a steady method.

一般的な計測方法では、バルク材料を用いて測定しなければならず、また、この測定可能なバルク材料の形状にも制限がある。例えば、直径10mm×厚さ1mm、角25mm×厚さ1mmといった形状に限られ、かつバルク全体の熱物性値しか計測できない。   In general measurement methods, measurement must be performed using a bulk material, and the shape of the measurable bulk material is limited. For example, the shape is limited to a shape of diameter 10 mm × thickness 1 mm, angle 25 mm × thickness 1 mm, and only the thermophysical values of the entire bulk can be measured.

また、熱電変換材料の開発段階で作製される試料は、試料の材質が不均質であったり、一般の計測法では測定できない試料形状を持っていたりする。したがって、試料の均質性を検証でき、かつ一般的な計測法では評価できない試料を評価できる装置及びその評価方法の開発が求められている。   Moreover, the sample produced in the development stage of the thermoelectric conversion material may have a non-homogeneous material or a sample shape that cannot be measured by a general measurement method. Accordingly, there is a need for development of an apparatus that can verify the homogeneity of a sample and can evaluate a sample that cannot be evaluated by a general measurement method, and an evaluation method thereof.

微小領域の熱物性測定に関連する技術としては、例えば、周期加熱法とサーモリフレクタンス技術を応用して熱浸透率を測定する方法(例えば、非特許文献1、特許文献1参照)や、AFM技術を活用した熱イメージを計測するSThM技術(例えば、非特許文献2参照)や、同じく先端を細くした熱電対をカンチレバーとして試料表面の温度情報を収集して表面形状測定に利用するSTP法(例えば、非特許文献3参照)などが提案されている。サーマルプローブを利用した熱物性測定法が複数提案されている(例えば、非特許文献4、5、特許文献2、3参照)。   As a technique related to the measurement of thermophysical properties in a minute region, for example, a method of measuring the thermal permeability by applying a periodic heating method and a thermoreflectance technique (see, for example, Non-Patent Document 1 and Patent Document 1), AFM STHM technology that measures thermal images using the technology (see, for example, Non-Patent Document 2) and STP method that collects temperature information on the sample surface using a thermocouple with a thin tip as well as a cantilever and uses it for surface shape measurement ( For example, the nonpatent literature 3 reference) etc. are proposed. A plurality of thermophysical property measurement methods using thermal probes have been proposed (see, for example, Non-Patent Documents 4 and 5, Patent Documents 2 and 3).

非特許文献4及び5の場合は、サーマルプローブをシース熱電対として使用しておりシース熱電対の温度を利用して計測している。シース熱電対を用いると熱伝導率以外の測定に不向きである。一方、特許文献3の場合は、サーマルプローブ内の複数点の温度を熱電対で計測している。温度変化の時間依存性に基づいて熱伝導率を換算しているが、理論的に検証されておらず実験式によって決められている。   In the case of Non-Patent Documents 4 and 5, a thermal probe is used as a sheath thermocouple, and measurement is performed using the temperature of the sheath thermocouple. Use of a sheathed thermocouple is not suitable for measurements other than thermal conductivity. On the other hand, in the case of Patent Document 3, the temperature at a plurality of points in the thermal probe is measured by a thermocouple. Although the thermal conductivity is converted based on the time dependence of the temperature change, it has not been theoretically verified and is determined by an empirical formula.

特開2000−121585号公報JP 2000-121585 A 特開2004−003872号公報JP 2004-003872 A 特開2008−057144号公報JP 2008-057144 A Thermal effusivity distribution measurements using a thermo- reflectance technique; in Proceeding of 10th International Conference of Photo-acoustic and Photothermal Phenomena, pp. 315-317 (1999); N. Taketoshi, M. Ozawa, H. Ohta, and T. Baba.Thermal effusivity distribution measurements using a thermo- reflectance technique; in Proceeding of 10th International Conference of Photo-acoustic and Photothermal Phenomena, pp. 315-317 (1999); N. Taketoshi, M. Ozawa, H. Ohta, and T. Baba . Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy; Jpn. J. Appl. Phys. Vol. 33, p.p.3785-3790 (1994); R. J. Pylkki, P. J. Moyer, and P. E. West.Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy; Jpn. J. Appl. Phys. Vol. 33, p.p.3785-3790 (1994); R. J. Pylkki, P. J. Moyer, and P. E. West. Scanning Thermal Profiler; Appl. Phys. Lett., Vol. 49, No23, pp. 1587-1589(1986); C. C. Williams and H. K. Wickamasinghe.Scanning Thermal Profiler; Appl. Phys. Lett., Vol. 49, No23, pp. 1587-1589 (1986); C. C. Williams and H. K. Wickamasinghe. 点接触式温度プローブによる固体熱3定数の測定法(測定理論);熱物性,13, 4, pp.246-251; 高橋一郎、榎森正晃.Measurement method of three-constant thermal solids using a point contact temperature probe (measurement theory); Thermophysical properties, 13, 4, pp.246-251; Ichiro Takahashi, Masami Sasamori. 点接触式温度プローブによる固体熱3定数の測定法(被測定物体形状と測定条件の検討);熱物性,13, 4, pp.252-257; 高橋一郎、榎森正晃.Measurement method of three-state solid heat using a point contact temperature probe (examination of measured object shape and measurement conditions); Thermophysical properties, 13, 4, pp.252-257; Ichiro Takahashi, Masami Sasamori.

従来、サーマルプローブ内の複数点の温度を計測することに基づいて熱伝導率評価を行う場合、実験的な式をベースとしており、伝熱モデルを用いた理論的検証がなされていない。   Conventionally, when performing thermal conductivity evaluation based on measuring the temperature at a plurality of points in a thermal probe, it is based on an experimental formula and has not been theoretically verified using a heat transfer model.

本発明の課題は、上述の従来技術の問題点を解決することにあり、サーマルプローブ内の温度を直接計測し、伝熱モデルに合致するような方法で物質の熱浸透率を評価する方法を提供することにある。   An object of the present invention is to solve the above-described problems of the prior art, and a method for directly measuring the temperature in a thermal probe and evaluating the thermal permeability of a substance by a method that matches the heat transfer model. It is to provide.

本発明者らは、微小領域の熱浸透率を評価する際に、サーマルプローブを備えている測定装置を利用して、サーマルプローブ内の複数点の温度を正確に測定すれば、未知材料の熱浸透率を正確に評価できることに気がつき、本発明を完成するに至った。   When evaluating the heat permeability of a minute region, the present inventors use a measuring device equipped with a thermal probe to accurately measure the temperature at a plurality of points in the thermal probe, and the heat of an unknown material. It was noticed that the penetration rate could be accurately evaluated, and the present invention was completed.

本発明の熱浸透率の評価方法は、プローブブロックとプローブ棒とからなるサーマルプローブを備えた熱物性値計測装置を用いて、被測定試料とプローブ棒との接触時のサーマルプローブ内の温度を複数点で評価し、隣接する測定箇所の温度差を用いて、熱浸透率既知試料の結果と比較することにより未知試料の熱浸透率を導出することを特徴とする。   The thermal permeability evaluation method of the present invention uses a thermophysical property measuring apparatus equipped with a thermal probe composed of a probe block and a probe rod to determine the temperature in the thermal probe when the sample to be measured and the probe rod are in contact with each other. It is characterized by deriving the thermal permeability of an unknown sample by evaluating at a plurality of points and comparing the result of a sample with a known thermal permeability using the temperature difference between adjacent measurement locations.

前記接触時のサーマルプローブ内の温度は、プローブ棒先端に直接熱電対を接触させて測定するかプローブ棒先端にプローブ棒と異なる材料からなる計測線を接触させて熱電対として測定するかのどちらかである。   The temperature in the thermal probe at the time of the contact is measured either by directly contacting a thermocouple with the tip of the probe rod or by measuring a thermocouple made of a material different from the probe rod at the tip of the probe rod. It is.

前記既知試料とプローブ棒先端との接触時に、プローブ棒内の複数の測定箇所の温度を計測し、隣接する測定箇所の温度差を算出し、算出された既知試料の温度差に基づいて熱浸透率の校正式を導出し、この校正式を用いて未知試料の熱浸透率を評価することを特徴とする。   At the time of contact between the known sample and the probe rod tip, the temperature of a plurality of measurement locations in the probe rod is measured, the temperature difference between adjacent measurement locations is calculated, and heat penetration is performed based on the calculated temperature difference of the known sample. A calibration formula for the rate is derived, and the thermal penetration rate of the unknown sample is evaluated using this calibration formula.

本発明によれば、サーマルプローブ内の温度差を正確に測定することにより、熱浸透率既知試料の熱浸透率と温度差の伝熱モデルに基づいた校正式を作製する。校正式を利用して未知試料についても測定結果から熱浸透率を評価できる。伝熱モデルで検証した校正式を利用するため、未知試料の熱浸透率の評価精度を上げることができるという効果を奏する。本発明を応用すると、熱浸透率の分布測定や一般的には測定できない形状の試料の熱浸透率を得ることが容易になるという効果を奏する。   According to the present invention, by accurately measuring a temperature difference in the thermal probe, a calibration formula based on a heat transfer model of a heat permeability and a temperature difference of a sample with a known heat permeability is prepared. The thermal permeability can be evaluated from the measurement results for unknown samples using the calibration formula. Since the calibration formula verified by the heat transfer model is used, the evaluation accuracy of the thermal permeability of the unknown sample can be improved. When the present invention is applied, there is an effect that it is easy to obtain a thermal permeability distribution measurement of a sample having a shape that cannot be generally measured or a heat permeability.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明によれば、プローブブロックとプローブ棒とからなるサーマルプローブを備えた熱物性値計測装置を用いて、試料台上に載置された被測定試料とプローブ棒先端との接触時のサーマルプローブ内の温度を複数点で評価する。隣接する測定箇所の温度差を用いて、熱浸透率既知試料の結果と比較することにより未知試料の熱浸透率を正確に導出することができる。   According to the present invention, a thermal probe at the time of contact between a sample to be measured placed on a sample stage and the tip of the probe rod using a thermophysical property measuring apparatus provided with a thermal probe comprising a probe block and a probe rod. The temperature inside is evaluated at multiple points. By using the temperature difference between adjacent measurement locations and comparing the result with a sample with a known thermal permeability, the thermal permeability of an unknown sample can be accurately derived.

(熱物性値計測装置について)
本発明で用いる熱物性値計測装置としては、ヒータ等の加熱手段を備えたサーマルプローブと複数点の温度計測できるプローブ棒が含まれている測定装置で使用することができる。
(About thermophysical property measuring device)
The thermophysical property measuring device used in the present invention can be used in a measuring device including a thermal probe provided with a heating means such as a heater and probe rods capable of measuring temperatures at a plurality of points.

代表的な熱物性値計測装置の一例を以下に示す。ここでは、プローブ棒の代表例として、本特許出願と同日に提出する特許出願に係る複数点の電圧及び/又は温度の計測方法のプローブを用いる。この代表例を用いた計測装置の一構成図を図1に示す。   An example of a typical thermophysical property value measuring apparatus is shown below. Here, as a typical example of the probe rod, a probe of a method for measuring a plurality of voltages and / or temperatures according to a patent application filed on the same day as the present patent application is used. A configuration diagram of a measuring apparatus using this representative example is shown in FIG.

図1において、1は材質C(例えば、銅等)で製作された試料台であり、2はサーマルプローブであり、21及び22は、それぞれ、材質A(例えば、コンスタンタン等)で製作されたプローブブロック及びプローブ棒である。   In FIG. 1, 1 is a sample stage made of material C (for example, copper), 2 is a thermal probe, and 21 and 22 are probes made of material A (for example, constantan). Block and probe rod.

サーマルプローブ2はプローブブロック21とプローブ棒22とから同じ材質で一体に構成されており、プローブブロック21とプローブ棒22とは、測定中一体となって移動する。プローブブロック21の温度(Tpb)と試料台1の温度(Tsb)とは、図示していない温度制御手段によって、測定中、一定温度に保たれるように構成されている。 The thermal probe 2 is integrally formed of the same material from the probe block 21 and the probe rod 22, and the probe block 21 and the probe rod 22 move together during measurement. The temperature (T pb ) of the probe block 21 and the temperature (T sb ) of the sample stage 1 are configured to be kept at a constant temperature during measurement by a temperature control means (not shown).

上記装置を用いて測定する前には、熱浸透率既知試料Sとサーマルプローブ2のプローブ棒22の先端とが接触していない状態で、プローブブロック21の温度(Tpb)と試料台1の温度(Tsb)とを温度制御する。ただし、Tpb≧Tsb +10℃の関係を満足するように制御する。これは、プローブ棒の先端を試料の温度よりも十分高い条件にするためである。測定は、プローブ棒22と被測定試料Sとを接触させて行う。接触中はプローブ棒22内の温度を計測する。一定時間接触させた後、サーマルプローブ2のプローブ棒22の先端を試料Sから離す。 Before the measurement using the above-described apparatus, the temperature (T pb ) of the probe block 21 and the sample stage 1 are measured while the sample S with the known thermal permeability and the tip of the probe rod 22 of the thermal probe 2 are not in contact with each other. The temperature is controlled with respect to the temperature (T sb ). However, control is performed so as to satisfy the relationship of T pb ≧ T sb + 10 ° C. This is to make the tip of the probe rod sufficiently higher than the sample temperature. The measurement is performed by contacting the probe rod 22 and the sample S to be measured. During the contact, the temperature in the probe rod 22 is measured. After contact for a certain time, the tip of the probe rod 22 of the thermal probe 2 is separated from the sample S.

プローブ棒22内の温度は、T、T、及びTの3点で測定する。プローブ棒22内のT、T及びTからは、それぞれ、電圧・温度計測用線(材質B:例えば、クロメル)22a、22b、及び22cが計測用として引き出されており、それぞれの線が、計測器でプローブ基準計測用線2a(材質A:例えば、コンスタンタン)と接続している。そのため、上記温度測定において、T、T及びTの温度は、クロメル−コンスタンタンのE熱電対として計測できる。 The temperature in the probe rod 22 is measured at three points T 1 , T 2 , and T 3 . From T 1 , T 2, and T 3 in the probe rod 22, voltage / temperature measurement lines (material B: for example, chromel) 22 a, 22 b, and 22 c are drawn out for measurement, respectively. However, the measuring instrument is connected to the probe reference measurement line 2a (material A: constantan, for example). Therefore, in the above temperature measurement, the temperatures of T 1 , T 2 and T 3 can be measured as an E thermocouple of chromel-constantan.

被測定試料Sとの接触後、プローブ棒22内の隣接する2点の測定箇所の間の温度差は、それぞれ、T1b−T2b、T2b−T3b、(T1b、T2b及びT3bは、それぞれ、接触後のT、T及びTの温度である)で表わされる。 After contact with the sample S to be measured, the temperature difference between two adjacent measurement points in the probe rod 22 is T 1b −T 2b , T 2b −T 3b , (T 1b , T 2b and T 3b is the temperature of T 1 , T 2 and T 3 after contact, respectively).

接触前後で、プローブ棒22内のT、T及びTにおける温度は変化する。この温度変化は試料への熱量の移動量と関係している。この点については、下記熱伝導方程式(1)を参照のこと。 Before and after the contact, the temperature at T 1 , T 2 and T 3 in the probe rod 22 changes. This temperature change is related to the amount of heat transferred to the sample. For this point, see the heat conduction equation (1) below.

Figure 2009257846
Figure 2009257846

上記式中、qは熱流束、Qは熱量、Aは断面積、λは熱伝導率、dTは温度変化、dxは距離変化を表す。   In the above formula, q is the heat flux, Q is the amount of heat, A is the cross-sectional area, λ is the thermal conductivity, dT is the temperature change, and dx is the distance change.

プローブ棒22内の温度変化は、試料に依存する。試料台1の制御温度(Tsb)とプローブブロック21の制御温度(Ttb)とを一定にして、複数の試料の温度を測定すると、プローブ棒22内の温度変化の試料依存性を系統的に評価することができるものと考えられる。 The temperature change in the probe rod 22 depends on the sample. When the control temperature (T sb ) of the sample stage 1 and the control temperature (T tb ) of the probe block 21 are kept constant, and the temperature of a plurality of samples is measured, the sample dependence of the temperature change in the probe rod 22 is systematized. It is thought that it can be evaluated.

(伝熱モデルによる理論)
熱浸透率測定において、理論的背景と結びつけることにより、サーマルプローブによる測定法の信頼性を高めることができる。この観点から、まず、伝熱モデルによる理論について、図2(a)及び(b)で説明し、理論に基づいたプローブ棒内の温度の時間依存性を図3(a)及び(b)に示し、次いでその理論の検証するためにプローブ棒内の温度を測定したデータを、図4(a)及び(b)を参照して説明する。図3(a)及び(b)並びに図4(a)及び(b)において、横軸は経過時間(t/s)、縦軸は温度(T/℃)である。
(Theory by heat transfer model)
In the measurement of thermal permeability, the reliability of the measurement method using a thermal probe can be improved by combining with the theoretical background. From this viewpoint, first, the theory based on the heat transfer model will be described with reference to FIGS. 2 (a) and 2 (b), and the time dependence of the temperature in the probe rod based on the theory is shown in FIGS. 3 (a) and 3 (b). Next, the data obtained by measuring the temperature in the probe rod in order to verify the theory will be described with reference to FIGS. 4 (a) and 4 (b). In FIGS. 3A and 3B and FIGS. 4A and 4B, the horizontal axis represents elapsed time (t / s), and the vertical axis represents temperature (T / ° C.).

被測定試料とサーマルプローブのプローブ棒との接触前のプローブ棒内の温度が、温度制御部から先端に向けて1次元伝熱モデルが成り立つものと仮定し、   Assuming that the temperature in the probe rod before the contact between the sample to be measured and the probe rod of the thermal probe is one-dimensional heat transfer model from the temperature controller toward the tip,

Figure 2009257846
(上記式中、qbeforeは接触前の熱流束、λはプローブ棒の熱伝導率、dTは温度変化、dxは距離変化を表す。)
温度制御部からの距離によって直線的に温度変化するとしてプローブ棒内の温度を計算する(図2(a))。
Figure 2009257846
(In the above formula, q before represents the heat flux before contact, λ represents the thermal conductivity of the probe rod, dT represents the temperature change, and dx represents the distance change.)
The temperature in the probe rod is calculated assuming that the temperature changes linearly with the distance from the temperature control unit (FIG. 2A).

被測定試料とサーマルプローブのプローブ棒との接触後定常状態に達すると、接触点(Tcp)の温度については2種類の半無限固体が接触した時の温度に対応し、プローブ棒内の温度は温度制御部から先端に向けて1次元伝熱モデルが成り立つものと仮定し、 When a steady state is reached after contact between the sample to be measured and the probe rod of the thermal probe, the temperature at the contact point (T cp ) corresponds to the temperature when two kinds of semi-infinite solids are in contact, and the temperature inside the probe rod Assumes that a one-dimensional heat transfer model is established from the temperature controller to the tip,

Figure 2009257846
(上記式中、qafterは接触後の熱流束、λはプローブ棒の熱伝導率、dTは温度変化、dxは距離変化を表す。)
温度制御部からの距離によって直線的に温度変化するとしてプローブ棒内の温度を計算する(図2(b))。
Figure 2009257846
(In the above formula, q after is the heat flux after contact, λ is the thermal conductivity of the probe rod, dT is the temperature change, and dx is the distance change.)
The temperature in the probe rod is calculated assuming that the temperature changes linearly with the distance from the temperature control unit (FIG. 2B).

本モデルでは、材質A(例えば、コンスタンタン等)で作製され、プローブ棒先端の温度がTであるサーマルプローブと、材質D(例えば、銅等)で作製され、制御温度がTsbである試料台からなる場合を想定した。接触後定常状態に達すると、プローブ棒内の温度は温度制御部から接触部に向けて1次元伝熱モデルが成り立つと仮定し、温度制御部からの距離によって直線的に温度変化するとしてプローブ棒内の温度を計算する。(図2(b)) In this model, the material A (e.g., constantan, etc.) are produced by a thermal probe temperature probe rod tip is T 4, made of a material D (e.g., copper), the control temperature is T sb sample A case consisting of a table was assumed. Assuming that a steady state is reached after contact, the temperature inside the probe rod assumes that a one-dimensional heat transfer model is established from the temperature controller to the contact portion, and the probe rod is assumed to change linearly with the distance from the temperature controller. Calculate the temperature inside. (Fig. 2 (b))

(熱浸透率既知試料を用いた理論の検証)
サーマルプローブの材質はコンスタンタン、既知試料としてはSiOガラスとSiとを用いて行った。プローブブロックの設定温度は60℃、試料台の設定温度は30℃とした。
(Verification of theory using samples with known thermal permeability)
The material of the thermal probe was constantan, and the known sample was SiO 2 glass and Si. The set temperature of the probe block was 60 ° C., and the set temperature of the sample stage was 30 ° C.

上記における詳細な設定条件を以下の表2に示す。   Detailed setting conditions in the above are shown in Table 2 below.

Figure 2009257846
Figure 2009257846

上記においては、既知試料として、熱伝導率が悪く、かつ熱浸透率が低いSiOガラス、そして熱伝導率が良く、かつ熱浸透率が高いSiを用い、プローブ棒の温度T、T及びTについて、モデルを用いた計算結果を図3(a)及び(b)に示す。図3(a)及び(b)は、それぞれ、SiOガラス及びSiの場合である。また、実際の測定結果について、SiOガラスの場合を図4(a)、また、Siの場合を図4(b)に示す。 In the above, SiO 2 glass having low thermal conductivity and low thermal permeability and Si having good thermal conductivity and high thermal permeability are used as known samples, and probe rod temperatures T 1 and T 2 are used. 3 and FIG. 3B show the calculation results using the model for T 3 and T 3 . 3A and 3B show the cases of SiO 2 glass and Si, respectively. Moreover, the actual measurement results, Fig. 4 in the case of SiO 2 glass (a), also shows the case of Si in Figure 4 (b).

図3(a)及び(b)並びに図4(a)及び(b)から明らかなように、1.5秒でプローブ棒先端と既知試料とを接触させた時に、温度変化が現れ、徐々に減少していく。測定結果はモデルを用いた計算結果と定性的ではあるが一致した。   As apparent from FIGS. 3 (a) and 3 (b) and FIGS. 4 (a) and 4 (b), when the tip of the probe rod and the known sample are brought into contact with each other in 1.5 seconds, a temperature change appears and gradually Decrease. The measurement results were qualitatively consistent with the calculation results using the model.

既知試料としてべスペル、BiTe、Pyrex7740、SiOガラス、マコール、安定化ジルコニア、SUS304、Ge、MgO、Ta、Si、及びCuを用い、上記したようにして、プローブ棒内の隣接する2点の測定箇所の間の温度差T1b−T2b、T2b−T3bの計算と測定を行った。温度差を使用するために使った温度の求め方は、計算と測定とで同じ方法を用いた。既知試料の熱物性値は以下の表3の値を使用した。 Using Vespel, BiTe, Pyrex 7740, SiO 2 glass, Macor, stabilized zirconia, SUS304, Ge, MgO, Ta, Si, and Cu as known samples, as described above, two adjacent points in the probe bar Calculation and measurement of temperature differences T 1b -T 2b and T 2b -T 3b between the measurement locations were performed. The same method was used for calculation and measurement for determining the temperature used to use the temperature difference. The values in Table 3 below were used as thermophysical values of known samples.

Figure 2009257846
Figure 2009257846

既知試料の熱浸透率の温度差依存性について、モデルを用いた計算結果を図5に示し、測定結果を図6に示す。 図5及び6において横軸は熱浸透率b(Js−0.5−2−1)であり、縦軸は温度差ΔT(℃)である。図5のモデルを用いた場合の計算結果から、以下の式で熱浸透率bを温度差ΔTで表すことができる。 Regarding the temperature difference dependence of the thermal permeability of a known sample, the calculation result using a model is shown in FIG. 5, and the measurement result is shown in FIG. 5 and 6, the horizontal axis represents the thermal permeability b (Js −0.5 m −2 K −1 ), and the vertical axis represents the temperature difference ΔT (° C.). From the calculation result when the model of FIG. 5 is used, the thermal permeability b can be expressed by the temperature difference ΔT by the following equation.

Figure 2009257846
上記式中、c、c、cは定数である。
Figure 2009257846
In the above formula, c 1 , c 2 , and c 3 are constants.

測定結果についても、上記式と同様に、熱浸透率bと温度差ΔTとの関係にフィッティングすると図6に示すようになり、測定結果でもフィッティングできている。従って、熱浸透率既知の試料を用いて、温度差を測定することによって、校正式を導出することができる。   Similarly to the above equation, the measurement results are fitted to the relationship between the thermal permeability b and the temperature difference ΔT as shown in FIG. 6, and the measurement results can also be fitted. Therefore, a calibration equation can be derived by measuring the temperature difference using a sample with a known thermal permeability.

(未知試料の評価)
未知試料についても上記と同じ熱物性値計測装置を用いてプローブ棒内の温度を測定し、プローブ棒内の温度差からこの校正式を利用して、未知試料の熱浸透率を評価することができる。
(Evaluation of unknown sample)
For unknown samples, the temperature inside the probe rod can be measured using the same thermophysical property measuring instrument as above, and the thermal permeability of the unknown sample can be evaluated from the temperature difference in the probe rod using this calibration formula. it can.

また、未知試料の体積比熱容量C(密度と比熱容量)を公知の方法で測定すれば、公知の熱浸透率bから熱伝導率λへの変換式   Further, if the volume specific heat capacity C (density and specific heat capacity) of an unknown sample is measured by a known method, a conversion formula from a known heat permeability b to a heat conductivity λ.

Figure 2009257846
に基づいて、未知試料について測定された熱浸透率から未知試料の熱伝導率を推定することができる。従って、実際の装置としては、その変換式を組み込むことにより、未知試料の熱伝導率として表示することもできる。
Figure 2009257846
The thermal conductivity of the unknown sample can be estimated from the thermal permeability measured for the unknown sample. Therefore, as an actual apparatus, it is possible to display the thermal conductivity of an unknown sample by incorporating the conversion formula.

上記した校正式を導出したときと同じ条件で、試料としてp−SiGeを用い、上記方法に従って測定を行った。得られた熱浸透率は、3100±300Js−0.5−2−1であり、体積比熱容量を1.6×10Jm−3−1とした場合、熱伝導率は5.9±1.1Wm−1−1となり、文献値と遜色ない値が求められた。 Measurement was performed according to the above method using p-SiGe as a sample under the same conditions as when the above calibration equation was derived. The obtained thermal permeability is 3100 ± 300 Js −0.5 m −2 K −1 , and when the volume specific heat capacity is 1.6 × 10 6 Jm −3 K −1 , the thermal conductivity is 5. The value was 9 ± 1.1 Wm −1 K −1 , and a value comparable to the literature value was obtained.

本発明によれば、伝熱モデルに合致するような方法で未知試料の熱浸透率を正確に評価することにより、熱電変換材料の熱浸透率の評価精度を上げることができるので、本発明は、熱電変換効率の良い熱電変換材料を利用する技術分野において有用な材料を開発する際に利用できる。   According to the present invention, by accurately evaluating the thermal permeability of an unknown sample by a method that matches the heat transfer model, the accuracy of evaluating the thermal permeability of the thermoelectric conversion material can be increased. It can be used when developing a material useful in the technical field that uses a thermoelectric conversion material with good thermoelectric conversion efficiency.

試料接触時のサーマルプローブ内の温度を評価する方法について説明するための測定系の模式的構成図。The typical block diagram of the measurement system for demonstrating the method to evaluate the temperature in the thermal probe at the time of sample contact. 伝熱モデルによる理論を説明するための模式図であり、(a)は接触前の場合、(b)は接触後の場合を示す。It is a schematic diagram for demonstrating the theory by a heat-transfer model, (a) is the case before a contact, (b) shows the case after a contact. プローブ棒内の温度T、T及びTについて、モデルを用いた計算結果を示すグラフであり、(a)はSiOガラスを用いた場合、(b)はSiを用いた場合を示す。Temperature T 1, T 2 and T 3 in the probe rod is a graph showing the calculation results using a model, illustrates the use of a (a) in the case of using the SiO 2 glass, (b) the Si . プローブ棒内の温度T、T及びTについて、実際の測定結果を示すグラフであり、(a)は、SiOガラスを用いた場合、(b)はSiを用いた場合を示す。Temperature T 1, T 2 and T 3 in the probe rod is a graph showing an actual measurement result, (a) shows the case of using the SiO 2 glass, (b) shows the case of using Si. 熱浸透率の温度差依存性について、モデルを用いた計算結果を示すグラフ。The graph which shows the calculation result using a model about the temperature difference dependence of a thermal osmosis rate. 熱浸透率の温度差依存性について、測定結果を示すグラフ。The graph which shows a measurement result about the temperature difference dependence of a thermal osmosis rate.

符号の説明Explanation of symbols

1 試料台 2 サーマルプローブ
2a プローブ基準計測用線 21 プローブブロック
22 プローブ棒 22a、22b、22c 電圧・温度計測用線
S 試料
DESCRIPTION OF SYMBOLS 1 Sample stand 2 Thermal probe 2a Probe reference measurement line 21 Probe block 22 Probe rod 22a, 22b, 22c Voltage / temperature measurement line S Sample

Claims (2)

プローブブロックとプローブ棒とからなるサーマルプローブを備えた熱物性値計測装置を用いて、被測定試料とプローブ棒との接触時のサーマルプローブ内の温度を複数点で評価し、隣接する測定箇所の温度差を用いて、熱浸透率既知試料の結果と比較することにより未知試料の熱浸透率を導出することを特徴とする熱浸透率の評価方法。 Using a thermophysical property measuring device equipped with a thermal probe consisting of a probe block and a probe rod, the temperature inside the thermal probe at the time of contact between the sample to be measured and the probe rod is evaluated at multiple points, and A method of evaluating a thermal osmosis rate, wherein the thermal osmosis rate of an unknown sample is derived by comparing the result of a sample with a known thermal osmosis rate using a temperature difference. 前記既知試料とプローブ棒先端との接触時に、プローブ棒内の複数の測定箇所の温度を計測し、隣接する測定箇所の温度差を算出し、算出された既知試料の温度差に基づいて熱浸透率の校正式を導出し、この校正式を用いて未知試料の熱浸透率を評価することを特徴とする請求項1記載の熱浸透率の評価方法。
At the time of contact between the known sample and the probe rod tip, the temperature of a plurality of measurement locations in the probe rod is measured, the temperature difference between adjacent measurement locations is calculated, and heat penetration is performed based on the calculated temperature difference of the known sample. 2. The thermal osmosis rate evaluation method according to claim 1, wherein a calibration equation for the rate is derived and the thermal osmosis rate of the unknown sample is evaluated using the calibration equation.
JP2008105160A 2008-04-14 2008-04-14 Evaluation method of heat permeability Pending JP2009257846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105160A JP2009257846A (en) 2008-04-14 2008-04-14 Evaluation method of heat permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105160A JP2009257846A (en) 2008-04-14 2008-04-14 Evaluation method of heat permeability

Publications (1)

Publication Number Publication Date
JP2009257846A true JP2009257846A (en) 2009-11-05

Family

ID=41385461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105160A Pending JP2009257846A (en) 2008-04-14 2008-04-14 Evaluation method of heat permeability

Country Status (1)

Country Link
JP (1) JP2009257846A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258032A (en) * 2008-04-21 2009-11-05 Ulvac-Riko Inc Measuring instrument of seebeck coefficient and heat permeability and measuring instrument of heat permeability
JP2011002437A (en) * 2009-06-17 2011-01-06 Ai-Phase Co Ltd Method and device for measuring thermal conductivity
CN107966471A (en) * 2017-11-14 2018-04-27 东南大学 A kind of in-situ testing device and test method of soil body thermal conductivity and geothermic gradient

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258032A (en) * 2008-04-21 2009-11-05 Ulvac-Riko Inc Measuring instrument of seebeck coefficient and heat permeability and measuring instrument of heat permeability
JP2011002437A (en) * 2009-06-17 2011-01-06 Ai-Phase Co Ltd Method and device for measuring thermal conductivity
CN107966471A (en) * 2017-11-14 2018-04-27 东南大学 A kind of in-situ testing device and test method of soil body thermal conductivity and geothermic gradient
CN107966471B (en) * 2017-11-14 2020-01-31 东南大学 in-situ testing device and testing method for soil body thermal conductivity and geothermal gradient

Similar Documents

Publication Publication Date Title
JP5190842B2 (en) Measuring device for thermal permeability
Abad et al. Non-contact methods for thermal properties measurement
Kim et al. Quantitative scanning thermal microscopy with double scan technique
CN110736499B (en) Raman spectrum method for simultaneously measuring temperature and thermal stress of two-dimensional film material in situ
Kim et al. Quantification of thermal and contact resistances of scanning thermal probes
Zhang et al. Quantitative temperature distribution measurements by non-contact scanning thermal microscopy using Wollaston probes under ambient conditions
Thompson Pettes et al. A reexamination of phonon transport through a nanoscale point contact in vacuum
JP4595073B2 (en) Thermoelectric material measuring device
Kwon et al. Scanning thermal wave microscopy (STWM)
Bontempi et al. Quantitative thermal microscopy using thermoelectric probe in passive mode
Park et al. Experimental investigation on the heat transfer between a heated microcantilever and a substrate
Fischer Quantitative determination of heat conductivities by scanning thermal microscopy
Hahn et al. Infrared Microscopy Enhanced Ångström's Method for Thermal Diffusivity of Polymer Monofilaments and Films
Park et al. Design of micro-temperature sensor array with thin film thermocouples
Nguyen et al. Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM)
JP2009257846A (en) Evaluation method of heat permeability
KR101130223B1 (en) Quantitative temperature and thermal conductivity measuring method using scanning thermal microscope
Thiery et al. Thermal contact calibration between a thermocouple probe and a microhotplate
Genix et al. Local temperature surface measurement with intrinsic thermocouple
Yoann Finite element analysis of the material’s area affected during a micro thermal analysis applied to homogeneous materials
CN107966472B (en) Nondestructive rapid measurement method for high-temperature contact thermal resistance
Takahashi et al. Ultrasonic determination of temperature distribution in thick plates during single sided heating
JP2008224496A (en) Thermophysical property measuring device, and thermophysical property measuring method
Alam et al. Characterization of very low thermal conductivity thin films
JP2009257845A (en) Temperature evaluating method of contact point