JP3508991B2 - Method and apparatus for testing thermal fatigue resistance of sintered ceramics - Google Patents

Method and apparatus for testing thermal fatigue resistance of sintered ceramics

Info

Publication number
JP3508991B2
JP3508991B2 JP26382598A JP26382598A JP3508991B2 JP 3508991 B2 JP3508991 B2 JP 3508991B2 JP 26382598 A JP26382598 A JP 26382598A JP 26382598 A JP26382598 A JP 26382598A JP 3508991 B2 JP3508991 B2 JP 3508991B2
Authority
JP
Japan
Prior art keywords
test piece
sheet
heating
sintered body
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26382598A
Other languages
Japanese (ja)
Other versions
JP2000097834A (en
Inventor
内村  勝次
石黒  裕之
和弘 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP26382598A priority Critical patent/JP3508991B2/en
Publication of JP2000097834A publication Critical patent/JP2000097834A/en
Application granted granted Critical
Publication of JP3508991B2 publication Critical patent/JP3508991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス焼結
体に加熱、冷却による熱応力と熱歪みを与えた際の熱応
力と熱歪みに対するセラミックス焼結体の耐熱疲労性を
テストする方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for testing the thermal fatigue resistance of a ceramic sintered body against thermal stress and thermal strain when the ceramic sintered body is subjected to thermal stress and thermal strain due to heating and cooling. Regarding the device.

【0002】[0002]

【従来の技術】従来、セラミックス焼結体の耐熱疲労性
テストは、例えば特開昭60−249035号、特開平
7−20031号、特開平9−189651号公報等で
公知にされている。これらは特殊な試験片を流動床を用
いて急熱急冷するもの、あるいは特殊な中空試験片を用
いて高周波加熱と中空試験片の中に水を通して急冷する
もの、又は熱膨張係数の異なる材質からなる拘束治具で
両端を拘束して加熱冷却による熱膨張差で熱応力を強制
負荷するもの等である。
2. Description of the Related Art Conventionally, the thermal fatigue resistance test of ceramics sintered bodies has been publicly known, for example, in Japanese Patent Laid-Open Nos. 60-249035, 7-20031, 9-189651. These are special test pieces that are rapidly heated and quenched using a fluidized bed, high-frequency heating that uses a special hollow test piece and water that is rapidly cooled in the hollow test piece, or materials with different thermal expansion coefficients. The constraint jigs are used to constrain both ends and forcibly apply thermal stress due to the difference in thermal expansion due to heating and cooling.

【0003】[0003]

【発明が解決しようとする課題】しかし上記のようなセ
ラミックス焼結体の耐熱疲労性テストは、試験機器およ
び操作が大掛かりで特殊な試験片を準備する必要があっ
た。また熱応力および熱歪みの状態が複雑となり、定量
的な熱疲労性(熱疲労寿命)の評価が難しいという問題
があり、より簡便で精度の高いテストができる方法及び
装置の出現が業界から要請されていた。本発明は上記の
問題に鑑みて成されたもので、繰り返し加熱、冷却を受
けるセラミックス焼結体の耐熱疲労性テストについて熱
疲労の経時変化が計測できる等高精度の測定結果を得る
ことができると共に計測操作が簡便になるセラミックス
焼結体の耐熱疲労性テスト方法及びその装置を提供する
ことを目的とする。
However, in the heat fatigue resistance test of the ceramics sintered body as described above, it is necessary to prepare a special test piece due to a large amount of test equipment and operation. There is also a problem that the state of thermal stress and thermal strain becomes complicated and it is difficult to quantitatively evaluate the thermal fatigue property (thermal fatigue life), and the industry demands the appearance of a method and device that can perform simpler and more accurate tests. It had been. The present invention has been made in view of the above problems, and it is possible to obtain highly accurate measurement results such as the change over time of thermal fatigue can be measured in a thermal fatigue resistance test of a ceramics sintered body that is repeatedly heated and cooled. At the same time, it is an object of the present invention to provide a thermal fatigue resistance test method for a ceramics sintered body and an apparatus for the same, which facilitates the measurement operation.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに本発明におけるセラミックス焼結体の耐熱疲労性テ
スト方法は、一方の面に導電性薄膜を密着させた直方体
状のセラミックス焼結体試験片を、支持部材を介して支
持すると共に該試験片の他方の面を、背後に押圧部材を
当接させて支持されたシート状発熱素子に圧着させる工
程と、予め設定された低電圧および高電流の条件で電力
をフィードバック制御の下にシート状発熱素子に電力供
給をしてその発熱量を制御しながら加熱する熱衝撃操作
を60秒間供給、60秒間停止の間歇操作を行いかつそ
の加熱温度を上限600℃、下限150℃にすることに
よって前記シート状発熱素子を間欠的に加熱、冷却して
該試験片の変形により前記押圧部材に加わる荷重を計測
すると共に該試験片の亀裂発生による前記導電性薄膜の
導通性を計測する工程と、から成ることを特徴とするセ
ラミックス焼結体の耐熱疲労性テスト方法。
In order to achieve the above object, the method for testing the thermal fatigue resistance of a ceramics sintered body according to the present invention is a rectangular parallelepiped ceramics sintered body having a conductive thin film adhered to one surface thereof. A step of supporting the test piece through a supporting member and pressing the other surface of the test piece to the sheet-shaped heating element supported by abutting a pressing member on the back, and a preset low voltage and Power under high current conditions
Power is supplied to the sheet heating element under feedback control.
Thermal shock operation that heats while feeding and controlling the amount of heat generation
Supply for 60 seconds, perform intermittent operation for 60 seconds while stopping
The heating temperature of the upper limit of 600 ℃, the lower limit of 150 ℃
Therefore, the step of intermittently heating and cooling the sheet-shaped heating element to measure the load applied to the pressing member due to the deformation of the test piece and to measure the conductivity of the conductive thin film due to the occurrence of cracks in the test piece, A method for testing the thermal fatigue resistance of a ceramics sintered body, comprising:

【0005】また、本発明におけるセラミックス焼結体
の耐熱疲労性テスト装置、昇降機を介して昇降可能に設
けた支持テーブルの上部に、その上部中央に凹部を有す
る支持台を設け、該支持台における凹部の左右外側上部
に支持部材を上方に突出させて設けると共に該支持部材
の外側に導通チェック器に接続する導通電極を設け、前
記支持台の上方に、荷重計測器に接続して固定配置され
たロードセルに連結された取付板を配置すると共に該取
付板の下部に前記凹部に対応する押圧部材を設け、該押
圧部材の下部に、電力調整器に接続された電極にその両
端を接続させたシート状発熱素子を接触させて配置し
て、これにより、一方の面に導電性薄膜を密着させた直
方体状のセラミックス焼結体試験片を、前記支持部材を
介して支持すると共に試験片の他方の面を、前記シート
状発熱素子に圧着させた後、予め設定された低電圧およ
び高電流の条件で電力をフィードバック制御の下にシー
ト状発熱素子に電力供給をしてその発熱量を制御しなが
ら加熱する熱衝撃操作を60秒間供給、60秒間停止の
間歇操作を行いかつその加熱温度を上限600℃、下限
150℃にすることによって前記シート状発熱素子を間
欠的に加熱、冷却して該試験片の変形により前記押圧部
材に加わる荷重を計測すると共に該試験片の亀裂発生に
よる前記導電性薄膜の導通性を計測することを特徴とす
Further, the ceramic sintered body according to the present invention
Heat fatigue tester, which can be moved up and down via an elevator.
There is a recess in the center of the upper part of the support table.
A support base is provided, and the right and left outer upper side of the recess in the support base
A support member protruding upward from the support member
Provide a continuity electrode on the outside of the
Above the support base, it is fixedly connected to the load measuring device.
The mounting plate connected to the load cell and
A pressing member corresponding to the recess is provided on the bottom of the attached plate, and the pressing member is
At the bottom of the pressure member, the electrodes connected to the power regulator
Place the sheet-shaped heating element with the connected ends in contact with each other.
This makes it possible to directly attach the conductive thin film to one surface.
A rectangular ceramic sintered body test piece is attached to the supporting member.
Support the other side of the test piece with the sheet
After applying pressure to the heat generating element,
Power under feedback control under high current and high current conditions.
Do not supply power to the heating element to control the amount of heat generated.
Supply heat shock operation to heat from 60 seconds, stop for 60 seconds
Intermittent operation and its heating temperature is upper limit 600 ℃, lower limit
The sheet-shaped heating element is placed between
The pressing part is deformed by heating and cooling intermittently.
Measures the load applied to the material and causes cracks in the test piece
And measuring the conductivity of the conductive thin film according to
It

【0006】本発明において、セラミックス焼結体試験
片(以下単に試験片という)を直方体状にすることによ
り試験片は、一様な熱流束が形成できると共に加熱によ
る加熱面からの温度勾配が顕著になり、その結果測定値
が精確になる。また電気ヒータとしてのシート状発熱素
子を用いることにより、試験片における加熱すべき表面
を全体的かつほぼ一様に加熱することができるため測定
値が精確になる。さらに試験片の変形による力(荷重)
を検出するため慣用のロードセルを使用でき、繰り返し
急加熱により熱応力の発生変化が読み取れ、熱疲労の進
展度が精確に計測できる。加えて試験片の亀裂の発生を
導電性薄膜の導通性をチェックして容易に検出できるた
め熱疲労の進展速度が精確に評価できる。なおここでセ
ラミックス焼結体とはファインセラミックス、ガラス、
陶磁器、セメント、耐火物等をいう。
In the present invention, by making a ceramics sintered body test piece (hereinafter simply referred to as a test piece) into a rectangular parallelepiped shape, a uniform heat flux can be formed and a temperature gradient from the heating surface due to heating is remarkable. As a result, the measured value becomes accurate. Further, by using the sheet-shaped heating element as the electric heater, the surface to be heated of the test piece can be heated entirely and almost uniformly, so that the measured value becomes accurate. Furthermore, the force (load) due to the deformation of the test piece
A conventional load cell can be used to detect the thermal stress, the thermal stress generation change can be read by repeated rapid heating, and the progress of thermal fatigue can be accurately measured. In addition, since the occurrence of cracks in the test piece can be easily detected by checking the conductivity of the conductive thin film, the progress rate of thermal fatigue can be accurately evaluated. The ceramics sintered body here means fine ceramics, glass,
It refers to ceramics, cement, refractories, etc.

【0007】[0007]

【発明の実施の形態】以下本発明の実施の形態を図面に
基づいて詳しく説明する。基盤1と天井板2とを支柱
3、3により連結した架台4における基盤1には、電動
機5Aの出力軸の回転運動をねじ機構で直線運動に変換
する電動シリンダ5が昇降機として上向きにして設けら
れている。該電動シリンダ5の作動ロッド6の上端には
支持テーブル7が固着されており、該支持テーブル7の
上部にはその上部中央に凹部8を形成した支持台9が設
けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. An electric cylinder 5 for converting the rotational movement of the output shaft of the electric motor 5A into a linear movement by a screw mechanism is provided on the base 1 of the base 4 in which the base 1 and the ceiling plate 2 are connected by the columns 3 and 3 as a lift. Has been. A supporting table 7 is fixed to the upper end of the operating rod 6 of the electric cylinder 5, and a supporting table 9 having a recess 8 formed at the center of the upper part of the supporting table 7 is provided.

【0008】該支持台9における凹部8の左右外側上部
には、下面に導電性薄膜素子10を密着させた直方体状
のセラミックス焼結体試験片T(以下単に試験片Tとい
う)を支持する2個の支持部材11、11が所定の間隔
(30mm)をおくと共にその上面を支持台9の上面か
ら突出させた状態で設けられている。さらに支持台9に
おける支持部材11、11の外側には導通電極12、1
2が支持部材11、11の高さレベルと同じにして取付
けられている。前記試験片Tは、幅7.0mm×長さ4
0mm×厚さ20mmの直方体状に成形されたファイン
セラミックス、ガラス、陶磁器、セメント、耐火物等の
下面に導電性薄膜素子10を焼付けたものである。また
前記支持部材11、11は、全体が丸棒状を成し、熱伝
導率が20〜1W/mKと小さくかつ熱膨張率も10〜
0.1×10−6/℃と小さいセラミックス素材である
ジルコニアあるいは窒化ケイ素が使用されている。
A rectangular parallelepiped ceramic sintered body test piece T (hereinafter simply referred to as a test piece T) having a conductive thin film element 10 adhered to its lower surface is supported on the upper left and right outer sides of the recess 8 of the support base 2 The individual support members 11, 11 are provided with a predetermined interval (30 mm) and the upper surface of the support members 11 and 11 protruding from the upper surface of the support base 9. Further, on the outside of the support members 11 and 11 on the support base 9, conductive electrodes 12 and 1 are provided.
2 are mounted at the same height level as the support members 11, 11. The test piece T has a width of 7.0 mm and a length of 4
The conductive thin film element 10 is baked on the lower surface of fine ceramics, glass, ceramics, cement, refractory or the like, which is molded into a rectangular parallelepiped shape of 0 mm × 20 mm in thickness. The supporting members 11, 11 are formed into a round bar shape as a whole, have a small thermal conductivity of 20 to 1 W / mK, and have a thermal expansion coefficient of 10 to 10.
Zirconia or silicon nitride, which is a small ceramic material of 0.1 × 10 −6 / ° C., is used.

【0009】前記架台4における天井板2の下面は、荷
重(反力)検知のためのロードセル13が固着されてお
り、該ロードセル13には上部が前記天井板2に対し上
下動可能にして貫通された連結体14が下方に突出され
て固着されている。該連結体14の下端には取付板15
を介して押圧部材16が取付けられており、該押圧部材
16も前記支持部材11と同じく全体が丸棒状を成し、
熱伝導率が20〜1W/mKと小さくかつ熱膨張率も1
0〜0.1×10−6/℃と小さいセラミックス素材で
あるジルコニアあるいは窒化ケイ素が使用されている。
また前記取付板15の左右両側端面には通電用の電極1
7、17が下方に突出させて固着されており、該電極1
7、17間には上面を前記押圧部材16に接触させたシ
ート状発熱素子18が接続されている。なおシート状発
熱素子18は平面状の発熱可能な導電性セラミックス素
材であって材質が窒化物、炭化物、ほう化物またはニク
ロム、ステンレス等耐熱金属素材で構成してある。
A load cell 13 for detecting a load (reaction force) is fixedly attached to the lower surface of the ceiling plate 2 of the gantry 4, and the load cell 13 has an upper portion which is vertically movable with respect to the ceiling plate 2 and penetrates the load cell 13. The connected body 14 is fixed so as to protrude downward. A mounting plate 15 is provided at the lower end of the connecting body 14.
The pressing member 16 is attached through the pressing member 16, and the pressing member 16 also has a round bar shape like the supporting member 11,
Small thermal conductivity of 20 to 1 W / mK and thermal expansion coefficient of 1
Zirconia or silicon nitride, which is a small ceramic material of 0 to 0.1 × 10 −6 / ° C., is used.
Further, electrodes 1 for energization are provided on both left and right end surfaces of the mounting plate 15.
The electrodes 1 and 7 are fixed by projecting downward.
A sheet-shaped heating element 18 having an upper surface in contact with the pressing member 16 is connected between 7 and 17. The sheet-shaped heat generating element 18 is a conductive ceramic material capable of generating heat in a flat shape, and is made of a heat resistant metal material such as nitride, carbide, boride or nichrome, stainless steel.

【0010】このように構成された装置本体部分の外側
には制御盤19が設けられていて前記電動シリンダ5の
電動機5Aは制御盤19に配設されたドライバ20に、
また前記導通電極12,12は制御盤19に配設された
導通チェック器21に、さらに前記通電用の電極17、
17は制御盤19に配設された電力調整器22を介して
図示されない電源に、また前記ロードセル13は制御盤
19に設けられた荷重計測器23にそれぞれ電気的に接
続されている。
A control board 19 is provided outside the main body of the apparatus constructed as described above, and the electric motor 5A of the electric cylinder 5 is mounted on a driver 20 provided on the control board 19.
Further, the conduction electrodes 12 and 12 are connected to a conduction checker 21 provided on a control panel 19, and the conduction electrodes 17 and
Reference numeral 17 is electrically connected to a power source (not shown) via an electric power regulator 22 provided on the control panel 19, and the load cell 13 is electrically connected to a load measuring instrument 23 provided on the control panel 19.

【0011】次にこのように構成した装置を用いて前記
試験片Tによる耐熱疲労性テストの手順について説明す
る。図1の状態は、支持台9の支持部材11、11上に
導電性薄膜素子10を下にして試験片Tを載置した後電
動シリンダ5の作動により支持テーブル7及び支持台9
と共に試験片Tが上昇され、該試験片Tの上面がシート
状発熱素子18の下面に密着(試験片Tの上面が押圧部
材16にシート状発熱素子18を介して拘束された状
態)されるまで制御盤19のドライバ20によりコント
ロールされて上昇し、停止された状態にある。
Next, the procedure of the thermal fatigue resistance test with the test piece T using the apparatus thus constructed will be described. In the state shown in FIG. 1, after the test piece T is placed on the support members 11 and 11 of the support base 9 with the conductive thin film element 10 facing downward, the support table 7 and the support base 9 are operated by the operation of the electric cylinder 5.
At the same time, the test piece T is raised, and the upper surface of the test piece T is brought into close contact with the lower surface of the sheet-shaped heat generating element 18 (the upper surface of the test piece T is restrained by the pressing member 16 via the sheet-shaped heat generating element 18). It is controlled by the driver 20 of the control panel 19 to rise, and is in a stopped state.

【0012】この状態で電力調整器22から予め設定さ
れた低電圧および高電流の条件で電力をフィードバック
制御の下にシート状発熱素子18に電力供給をしてその
発熱量を制御しながら加熱する熱衝撃操作を60秒間供
給、60秒間停止の間歇操作を行う。これに伴い試験片
Tは上面だけが加熱され、熱応力が発生して変形しよう
とし、この結果ロードセル13はその変形に対応した力
(荷重)で押圧され、その信号が荷重計測器23に送ら
れ、反力として検知されることになる。そしてロードセ
ル13が検知した反力は経時的に計測され、この計測結
果は図2に示すようになる。また図3は試験片Tの上面
温度を制御したもので加熱温度として上限600℃、下
限150℃(冷却)に設定した時の実施例である。さら
に図4はその時の1サイクルでの詳細加熱冷却温度経時
変化と発生する反力(熱応力)、クラック発生有無の検
知結果である。
In this state, power is fed from the power regulator 22 to the sheet-shaped heating element 18 under feedback control under preset conditions of low voltage and high current, and heating is performed while controlling the amount of heat generated. The thermal shock operation is supplied for 60 seconds, and the intermittent operation is performed for 60 seconds while stopped. Along with this, only the upper surface of the test piece T is heated, thermal stress is generated and it tends to be deformed. As a result, the load cell 13 is pressed by a force (load) corresponding to the deformation, and its signal is sent to the load measuring instrument 23. Will be detected as a reaction force. Then, the reaction force detected by the load cell 13 is measured with time, and the measurement result is as shown in FIG. FIG. 3 shows an example in which the upper surface temperature of the test piece T is controlled and the heating temperature is set to an upper limit of 600 ° C. and a lower limit of 150 ° C. (cooling). Further, FIG. 4 shows the results of detection of detailed heating / cooling temperature changes with time in one cycle, reaction force (thermal stress) generated, and presence / absence of crack occurrence.

【0013】すなわち繰り返し熱応力が発生すると検出
される反力は小さくなり試験片Tの内部に熱歪みによる
亀裂が進展していることが推定される。また試験片Tの
導電性薄膜素子10は最初は導通状態で検出されている
が繰り返し熱応力が発生すると亀裂が進展した時点で試
験片Tの導電性薄膜素子10が断線して電気的導通がな
くなることが検出される。この検出された反力、供給電
力、経過時間、亀裂発生の有無、試験片温度等熱衝撃に
係わる計測データを用いることにより試験片Tの熱応力
について解析することができる。なお上記実施例では一
定時間加熱冷却を行ったが試験片Tの加熱面の温度を制
御して所定反力になるように加熱冷却してもよい。
That is, it is estimated that the reaction force detected when the thermal stress is repeatedly generated becomes small and the crack due to the thermal strain propagates inside the test piece T. Further, the conductive thin film element 10 of the test piece T is initially detected in a conductive state, but when the thermal stress is repeatedly generated, the conductive thin film element 10 of the test piece T is broken at a time point when the crack develops, and the conductive state is maintained. It is detected that it is gone. The thermal stress of the test piece T can be analyzed by using the measured reaction data such as the reaction force, the supplied power, the elapsed time, the presence or absence of cracks, and the test piece temperature which are detected. In the above embodiment, heating and cooling were performed for a certain period of time, but the temperature of the heating surface of the test piece T may be controlled to heat and cool so as to obtain a predetermined reaction force.

【0014】なお上記の実施の形態では試験片Tを支持
部材11、11および押圧部材16とで予め拘束してか
らシート状発熱素子18に通電して熱衝撃を与えている
がこれに限定することなく予めシート状発熱素子18に
通電してシート状発熱素子18を発熱させた後試験片T
上面に接触させて急加熱するようにしてもよい。さらに
試験片Tは破壊起点支持面を導電性薄膜10側になるよ
うに3点で拘束しているがこれに限定されるものではな
く4点支持で拘束してもよい。また支持部材11、11
を試験片Tの下側にし、押圧部材16を試験片Tの上側
に配置したがこの配置を180度回転させて上下逆にし
たり、90度回転して試験片Tを立てた状態にしても同
様の作用効果が得られる。さらに上記テストは大気条件
で行ったが雰囲気を真空にすることにより対流伝熱が省
略でき、より高精度の計測が可能になる。また加熱衝撃
は加熱だけを制御し、冷却は自然放熱により行っている
が強制的に冷却をする手段を用いれば繰り返し熱サイク
ルを短くでき効率がよくなる。
In the above embodiment, the test piece T is restrained in advance by the supporting members 11, 11 and the pressing member 16 and then the sheet-like heating element 18 is energized to give a thermal shock, but the present invention is not limited to this. Without heating the sheet-shaped heating element 18 by heating the sheet-shaped heating element 18 in advance.
You may make it heat rapidly by making it contact an upper surface. Further, in the test piece T, the fracture starting point supporting surface is constrained at three points so as to be on the conductive thin film 10 side, but the invention is not limited to this and may be constrained by four point supporting. Further, the support members 11, 11
Was placed on the lower side of the test piece T, and the pressing member 16 was placed on the upper side of the test piece T, but this arrangement is rotated 180 degrees upside down, or rotated 90 degrees to make the test piece T stand upright. Similar effects can be obtained. Further, the above test was conducted under atmospheric conditions, but convection heat transfer can be omitted by making the atmosphere vacuum, and more accurate measurement becomes possible. Further, the heating impact controls only the heating and the cooling is performed by natural heat dissipation, but if a means for forcibly cooling is used, the repeated thermal cycle can be shortened and the efficiency can be improved.

【0015】[0015]

【発明の効果】本発明は、上記の説明から明らかなよう
に、一方の面に導電性薄膜を密着させた直方体状のセラ
ミックス焼結体試験片を、支持部材を介して支持すると
共に該試験片の他方の面を、背後に押圧部材を当接させ
て支持されたシート状発熱素子に圧着させる工程と、
め設定された低電圧および高電流の条件で電力をフィー
ドバック制御の下にシート状発熱素子に電力供給をして
その発熱量を制御しながら加熱する熱衝撃操作を60秒
間供給、60秒間停止の間歇操作を行いかつその加熱温
度を上限600℃、下限150℃にすることによって
記シート状発熱素子を間欠的に加熱、冷却して該試験片
の変形により前記押圧部材に加わる荷重を計測すると共
に該試験片の亀裂発生による前記導電性薄膜の導通性を
計測する工程と、から成るものであるから、従来のこの
種のセラミックス焼結体の耐熱疲労性テストに比べて試
験片は一様の熱流束が形成でき、また加熱による加熱面
からの温度勾配が顕著になり、しかも電気ヒータとして
シート状発熱素子を用いることにより試験片における加
熱すべき表面を全体的かつほぼ一様に加熱することがで
き、さらに試験片の変形による力(荷重)を検出するた
め慣用のロードセルを使用でき、このため測定値が精確
になり試験片の亀裂発生を電気的導通性のチェックによ
り同時に検出するため熱疲労の進展度を精確に評価でき
る。この結果熱応力および熱歪みを受けた試験片に耐熱
疲労性について高精度の測定結果が得られる上に計測操
作が簡便になる等優れた効果がある。
As is apparent from the above description, the present invention supports a rectangular parallelepiped ceramics sintered body test piece having a conductive thin film adhered to one surface thereof through a support member and performs the test. the other surface of the strip, the step of crimping the pressing member in a sheet-like heating element supported by abutting behind, pre
To supply power under the set low voltage and high current conditions.
Power is supplied to the sheet heating element under feedback control.
Heat shock operation to heat while controlling the amount of heat generated for 60 seconds
Supply for 60 seconds, intermittent operation for 60 seconds and heating temperature
The sheet-like heating element is intermittently heated and cooled by setting the upper limit to 600 ° C. and the lower limit to 150 ° C. to measure the load applied to the pressing member due to the deformation of the test piece and the test. The test piece has a uniform heat flux as compared with the conventional thermal fatigue resistance test of this type of ceramics sintered body, since it consists of the step of measuring the conductivity of the conductive thin film due to the occurrence of cracks in the piece. Can be formed, and the temperature gradient from the heating surface due to heating becomes remarkable, and moreover, the surface to be heated in the test piece can be heated almost uniformly throughout by using the sheet-shaped heating element as the electric heater. In addition, a conventional load cell can be used to detect the force (load) due to the deformation of the test piece, so that the measured value becomes accurate and the crack occurrence of the test piece can be detected at the same time by checking the electrical conductivity. The progress of the order thermal fatigue can be accurately evaluated. As a result, the test piece subjected to the thermal stress and the thermal strain has an excellent effect such that a highly accurate measurement result of the thermal fatigue resistance can be obtained and the measurement operation can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す全体構成正面図であ
る。
FIG. 1 is an overall configuration front view showing an embodiment of the present invention.

【図2】セラミックス焼結体試験片の耐熱疲労性テスト
についての経時的測定結果を示すグラフである。
FIG. 2 is a graph showing a result of time-dependent measurement of a thermal fatigue resistance test of a ceramics sintered body test piece.

【図3】セラミックス焼結体試験片の上面温度を制御し
た熱疲労試験についての経時的測定結果を示すグラフで
ある。
FIG. 3 is a graph showing a time-dependent measurement result of a thermal fatigue test in which an upper surface temperature of a ceramics sintered body test piece is controlled.

【図4】セラミックス焼結体試験片の熱疲労試験サイク
ルデータを示すグラフである。
FIG. 4 is a graph showing thermal fatigue test cycle data of a ceramics sintered body test piece.

【符号の説明】[Explanation of symbols]

5 電動シリンダ 5A 電動機 7 支持テーブル 8 凹部 9 支持台 10 導電性薄膜 11 支持部材 12 導通電極 13 ロードセル 16 押圧部材 17 電極 18 シート状発熱素子 20 ドライバ 21 導通チェック器 22 電力調整器 23 荷重計測器 T セラミックス焼結体試験片 5 electric cylinder 5A electric motor 7 Support table 8 recess 9 Support stand 10 Conductive thin film 11 Support member 12 Conductive electrode 13 load cell 16 Pressing member 17 electrodes 18 Sheet heating element 20 drivers 21 Continuity checker 22 Power regulator 23 load measuring instrument T Ceramics sintered body test piece

フロントページの続き (56)参考文献 特開 平7−20031(JP,A) 特開 平7−12773(JP,A) 特開 平5−66186(JP,A) 特開 平3−152441(JP,A) 特開 平11−218480(JP,A) 水谷安伸、内村勝次、高津学,セラミ ックスの耐熱衝撃性試験装置の開発,第 47期学術講演会講演論文集,日本,日本 材料学会,1998年 5月15日,p.321 −322 (58)調査した分野(Int.Cl.7,DB名) G01N 3/00 - 3/62 JICSTファイル(JOIS)Continuation of the front page (56) Reference JP-A-7-20031 (JP, A) JP-A-7-12773 (JP, A) JP-A-5-66186 (JP, A) JP-A-3-152441 (JP , A) JP-A-11-218480 (JP, A) Yasunobu Mizutani, Katsuji Uchimura, Manabu Takatsu, Development of Thermal Shock Resistance Tester for Ceramics, Proc. 47th Annual Conference, Japan, The Society of Materials Science, Japan , May 15, 1998, p. 321-322 (58) Fields investigated (Int.Cl. 7 , DB name) G01N 3/00-3/62 JISST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方の面に導電性薄膜を密着させた直方
体状のセラミックス焼結体試験片を、支持部材を介して
支持すると共に該試験片の他方の面を、背後に押圧部材
を当接させて支持されたシート状発熱素子に圧着させる
工程と、予め設定された低電圧および高電流の条件で電
力をフィードバック制御の下にシート状発熱素子に電力
供給をしてその発熱量を制御しながら加熱する熱衝撃操
作を60秒間供給、60秒間停止の間歇操作を行いかつ
その加熱温度を上限600℃、下限150℃にすること
によって前記シート状発熱素子を間欠的に加熱、冷却し
て該試験片の変形により前記押圧部材に加わる荷重を計
測すると共に該試験片の亀裂発生による前記導電性薄膜
の導通性を計測する工程と、から成ることを特徴とする
セラミックス焼結体の耐熱疲労性テスト方法。
1. A rectangular parallelepiped ceramic sintered body test piece having a conductive thin film adhered to one surface thereof is supported by a supporting member, and the other surface of the test piece is attached to a pressing member on the back side. The process of pressing the sheet-shaped heating element that is in contact with and supported by pressure, and the power is applied under the preset low voltage and high current conditions.
Power is fed to the sheet heating element under feedback control.
Thermal shock operation that supplies and heats while controlling the calorific value
Supply the work for 60 seconds, perform the intermittent operation for 60 seconds and
Set the heating temperature to 600 ° C as the upper limit and 150 ° C as the lower limit.
A step of measuring the conductivity of the conductive thin film by cracking of the test piece with the sheet-like heating element intermittently heated, to measure the load applied to the pressing member by the deformation of the cooling to the test piece by A method for testing the thermal fatigue resistance of a ceramics sintered body, comprising:
【請求項2】昇降機を介して昇降可能に設けた支持テー
ブル7の上部に、その上部中央に凹部8を有する支持台
9を設け、該支持台9における凹部8の左右外側上部に
支持部材11、11を上方に突出させて設けると共に該
支持部材11、11の外側に導通チェック器21に接続
する導通電極12、12を設け、前記支持台9の上方
に、荷重計測器23に接続して固定配置されたロードセ
ル13に連結された取付板15を配置すると共に該取付
板15の下部に前記凹部8に対応する押圧部材16を設
け、該押圧部材16の下部に、電力調整器22に接続さ
れた電極17、17にその両端を接続させたシート状発
熱素子18を接触させて配設して、 これにより、一方の面に導電性薄膜を密着させた直方体
状のセラミックス焼結体試験片を、前記支持部材を介し
て支持すると共に試験片の他方の面を、前記シート状発
熱素子に圧着させた後、予め設定された低電圧および高
電流の条件で電力をフィードバック制御の下にシート状
発熱素子に電力供給をしてその発熱量を制御しながら加
熱する熱衝撃操作を60秒間供給、60秒間停止の間歇
操作を行いかつその加熱温度を上限600℃、下限15
0℃にすることによって前記シート状発熱素子18を間
欠的に加熱、冷却して該試験片の変形により前記押圧部
材16に加わる荷重を計測すると共に該試験片の亀裂発
生による前記導電性薄膜の導通性を計測することを特徴
とするセラミックス焼結体の耐熱疲労性テスト装置
2. A support table provided so as to be able to move up and down via an elevator.
A support base having a concave portion 8 at the center of the upper portion of the bull 7.
9 are provided on the upper left and right outer sides of the recess 8 in the support base 9.
The support members 11, 11 are provided so as to project upward, and
Connected to the continuity checker 21 on the outside of the support members 11, 11.
The conductive electrodes 12 and 12 are provided above the support base 9.
The load sensor fixedly connected to the load measuring device 23.
The mounting plate 15 connected to the ruler 13 is arranged and
A pressing member 16 corresponding to the recess 8 is provided at the bottom of the plate 15.
The power regulator 22 is connected to the bottom of the pressing member 16.
Sheet-like electrode with both ends connected to the separated electrodes 17,
A rectangular parallelepiped in which the thermal element 18 is disposed in contact with each other, and a conductive thin film is adhered to one surface of the rectangular parallelepiped.
-Shaped ceramics sintered body test piece through the support member
Support the other side of the test piece, and
After crimping to the thermal element, the preset low voltage and high
Sheet-like power under feedback control under current condition
Power is supplied to the heating element to control the heating value.
Supply heat shock operation for 60 seconds, pause for 60 seconds
Operation is performed and the heating temperature is set to an upper limit of 600 ° C. and a lower limit of 15
The temperature of the sheet-shaped heating element 18 is kept between 0 ° C.
The pressing part is deformed by heating and cooling intermittently.
The load applied to the material 16 is measured and cracks are generated in the test piece.
Characterized by measuring the conductivity of the conductive thin film
Heat resistance fatigue test equipment for ceramics sintered body .
JP26382598A 1998-09-18 1998-09-18 Method and apparatus for testing thermal fatigue resistance of sintered ceramics Expired - Fee Related JP3508991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26382598A JP3508991B2 (en) 1998-09-18 1998-09-18 Method and apparatus for testing thermal fatigue resistance of sintered ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26382598A JP3508991B2 (en) 1998-09-18 1998-09-18 Method and apparatus for testing thermal fatigue resistance of sintered ceramics

Publications (2)

Publication Number Publication Date
JP2000097834A JP2000097834A (en) 2000-04-07
JP3508991B2 true JP3508991B2 (en) 2004-03-22

Family

ID=17394758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26382598A Expired - Fee Related JP3508991B2 (en) 1998-09-18 1998-09-18 Method and apparatus for testing thermal fatigue resistance of sintered ceramics

Country Status (1)

Country Link
JP (1) JP3508991B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651639A (en) * 2016-03-24 2016-06-08 中国北方发动机研究所(天津) Inverted type piston thermal fatigue testing device
CN110095364A (en) * 2019-04-26 2019-08-06 哈尔滨工业大学 A kind of high temperature heat seal high-temperature behavior Thermal-mechanical Coupling test platform
KR102267228B1 (en) * 2020-11-23 2021-06-21 주식회사 지노테크 High temperature durability tester

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930713B2 (en) * 2007-06-12 2012-05-16 株式会社Ihi Thermal cycle test apparatus and thermal cycle test method
CN103528883A (en) * 2013-10-16 2014-01-22 长安大学 Cam quantitative repeated loading device
CN104792632B (en) * 2015-03-26 2017-10-17 北京理工大学 A kind of cylinder head simulating piece fatigue test method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水谷安伸、内村勝次、高津学,セラミックスの耐熱衝撃性試験装置の開発,第47期学術講演会講演論文集,日本,日本材料学会,1998年 5月15日,p.321−322

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651639A (en) * 2016-03-24 2016-06-08 中国北方发动机研究所(天津) Inverted type piston thermal fatigue testing device
CN105651639B (en) * 2016-03-24 2018-06-12 中国北方发动机研究所(天津) A kind of inversion type Piston Thermal Fatigue Test device
CN110095364A (en) * 2019-04-26 2019-08-06 哈尔滨工业大学 A kind of high temperature heat seal high-temperature behavior Thermal-mechanical Coupling test platform
KR102267228B1 (en) * 2020-11-23 2021-06-21 주식회사 지노테크 High temperature durability tester

Also Published As

Publication number Publication date
JP2000097834A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
ATE456037T1 (en) DEVICE FOR ALLOWING HEATING OF A HIGH SELF-RESISTANCE TEST SPECIMEN IN DYNAMIC MATERIAL TESTING SYSTEMS AND ACCOMPANYING METHOD FOR USE THEREIN
TW201135211A (en) Shear testing apparatus
JP2008182011A (en) Device and method for evaluating reliability on thermoelectric conversion system
JP3508991B2 (en) Method and apparatus for testing thermal fatigue resistance of sintered ceramics
JP6682895B2 (en) Inspection jig, inspection jig set, and board inspection device
EP3757559B1 (en) Substrate evaluation chip and substrate evaluation device
JPH11218480A (en) Method and apparatus for thermal shock test of ceramic sintered compact
CN105699619A (en) Metal thermal electromotive force measuring instrument
KR102164075B1 (en) Warm test apparatus
EP0984273A3 (en) Device for measuring thermophysical properties of solid materials and method therefor
CN115493947A (en) Open type single-side electromagnetic induction heating coil and temperature control device
KR20090067865A (en) Apparatus and method for measuring friction force with function of heating
JP2003121459A (en) Electric characteristic measuring device and measuring method
JPH0611435A (en) Method and device for tackiness test
US3234778A (en) Dilatometer for heated specimens under external stress
JP7323108B2 (en) Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method
CN107870178A (en) Quick conductive coefficient determination instrument
JPH03237345A (en) Method for measuring thermal conductivity
CN110702551B (en) Linear reciprocating high-temperature friction testing machine capable of rapidly heating graphene coating
JP3670757B2 (en) Sample temperature control method and apparatus
JPH08152391A (en) Material testing machine
JP3939334B2 (en) Thermal shock test equipment
JP2005156413A (en) Apparatus for evaluating characteristics of material
JP3604601B2 (en) Glass thermal shock test method and thermal shock test equipment
CN114527064A (en) Vacuum temperature control current-carrying friction experimental equipment

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees