JP2005156413A - Apparatus for evaluating characteristics of material - Google Patents

Apparatus for evaluating characteristics of material Download PDF

Info

Publication number
JP2005156413A
JP2005156413A JP2003396951A JP2003396951A JP2005156413A JP 2005156413 A JP2005156413 A JP 2005156413A JP 2003396951 A JP2003396951 A JP 2003396951A JP 2003396951 A JP2003396951 A JP 2003396951A JP 2005156413 A JP2005156413 A JP 2005156413A
Authority
JP
Japan
Prior art keywords
sample
temperature
evaluation apparatus
indenter
material property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003396951A
Other languages
Japanese (ja)
Inventor
Kenji Sawa
健司 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akashi Corp
Original Assignee
Akashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akashi Corp filed Critical Akashi Corp
Priority to JP2003396951A priority Critical patent/JP2005156413A/en
Publication of JP2005156413A publication Critical patent/JP2005156413A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce measuring errors caused by the thermal expansion of a sample stand, in an evaluation apparatus for the characteristics of a material for evaluating the predetermined characteristics of the material by heating the sample. <P>SOLUTION: The evaluation apparatus for the characteristics of the material is so constituted as to press a penetrator (3) to the surface of the sample (S) to form a cavity to evaluate the characteristics of the material, on the basis of the cavity and equipped with a sample stand (2), on which the sample is mounted, a heating part (e.g., a heater 6) for heating the sample stand, a temperature sensor (7) for detecting the temperature of the vicinity of the sample on the sample stand and a temperature control means (e.g., CPU 13) for controlling the heating part, to control the temperature of the sample stand. The sample stand is constituted of ceramics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、試料表面に圧子を押し付けてくぼみを形成させ、該くぼみに基づいて試料の所定の材料特性を評価する材料特性評価装置に関する。   The present invention relates to a material property evaluation apparatus that forms a recess by pressing an indenter against a sample surface and evaluates a predetermined material property of a sample based on the recess.

従来、試料表面に圧子により荷重を負荷して、くぼみを形成させ、該くぼみに基づいて試料の所定の材料特性を評価する材料特性評価装置が知られている。また、近年では、試料を加熱した状態で硬さ等の物性値を測定する材料特性評価装置も知られており、試料の材料特性の温度依存性を調べることができるようになっている(例えば、特許文献1)。このような材料特性評価装置は、特に薄膜等の硬さの温度依存性を調べる微小硬さ試験に用いられている。   2. Description of the Related Art Conventionally, there has been known a material property evaluation apparatus that applies a load to a sample surface with an indenter to form a recess and evaluates a predetermined material property of the sample based on the recess. In recent years, a material property evaluation apparatus that measures a physical property value such as hardness while the sample is heated is also known, and the temperature dependency of the material property of the sample can be examined (for example, Patent Document 1). Such a material property evaluation apparatus is used in a micro hardness test for examining the temperature dependence of hardness of a thin film or the like.

特許文献1記載の材料特性評価装置は、例えば、試料が載置される試料台と、この試料台上の試料に圧子を押圧する押圧機構と、この圧子の押し込み荷重を検出する荷重検出器と、この圧子の変位量を検出する変位検出器と、試料台上の試料及び圧子を加熱する加熱機構と、試料を加熱する試料台ヒータ等を備えている。   The material property evaluation apparatus described in Patent Literature 1 includes, for example, a sample table on which a sample is placed, a pressing mechanism that presses an indenter against the sample on the sample table, and a load detector that detects an indentation load of the indenter. A displacement detector for detecting the displacement amount of the indenter, a heating mechanism for heating the sample and the indenter on the sample table, a sample table heater for heating the sample, and the like are provided.

そして材料特性評価試験においては、試料を試料台に載置して、加熱機構によって圧子及び試料を加熱すると同時に、試料台ヒータによって試料台を熱伝導により全体的に加熱する。次いで、試料が設定された温度になったときに押圧機構によって圧子を所定の押込み圧力で試料に押圧させて、試料にくぼみを形成させる。そして、荷重検出器が圧子の押込み荷重を検出するとともに、変位検出器が圧子の押込み変位を検出して、これらの値の関係から試料の硬さ等の物性値を測定する。
特開平5−264428号公報
In the material property evaluation test, the sample is placed on the sample table, the indenter and the sample are heated by the heating mechanism, and at the same time, the sample table is entirely heated by heat conduction by the sample table heater. Next, when the sample reaches a set temperature, the indenter is pressed against the sample with a predetermined pressing pressure by the pressing mechanism, thereby forming a recess in the sample. The load detector detects the indentation load of the indenter, and the displacement detector detects the indentation displacement of the indenter, and measures physical property values such as hardness of the sample from the relationship between these values.
Japanese Patent Application Laid-Open No. 5-264428

しかしながら、圧子が試料に押込まれる際に、加熱により試料台が膨張することがあり、測定誤差が生じてしまうという問題点があった。   However, when the indenter is pushed into the sample, there is a problem that the sample stage may expand due to heating, resulting in a measurement error.

そこで、本発明の課題は、試料台を加熱して試料の所定の材料特性を評価する材料特性評価装置において、圧子動作中における試料台の熱膨張に起因する測定誤差を低減させて、より精度の高い材料特性評価を行うことのできる材料特性評価装置を提供することである。   Therefore, an object of the present invention is to reduce the measurement error caused by the thermal expansion of the sample stage during the operation of the indenter in the material property evaluation apparatus that heats the sample stage and evaluates the predetermined material characteristic of the sample, and thus more accurate. It is to provide a material characteristic evaluation apparatus capable of performing high material characteristic evaluation.

上記課題を解決するため、請求項1記載の発明は、図2に示すように、
試料(S)表面に圧子(3)を押し付けてくぼみを形成させ、該くぼみに基づいて試料の所定の材料特性を評価する材料特性評価装置であって、
前記試料を載置する試料台(2)と、
前記試料台を加熱する加熱部(例えば、ヒータ6)と、
前記試料台における前記試料近傍の温度を検出する温度センサ(7)と、
前記温度センサの検出温度に基づいて、前記加熱部を制御して前記試料台の温度を制御する温度制御手段(例えば、CPU13)と、
を備え、
前記試料台は、セラミックスにより構成されていることを特徴とする。
ここで、所定の材料特性とは、例えば、試料の硬さ、弾性係数、密着力表面物性、対磨耗特性等の材料特性を指す。
In order to solve the above-mentioned problem, as shown in FIG.
A material property evaluation apparatus for forming a recess by pressing an indenter (3) on the surface of a sample (S) and evaluating a predetermined material property of the sample based on the recess,
A sample stage (2) on which the sample is placed;
A heating unit (for example, heater 6) for heating the sample stage;
A temperature sensor (7) for detecting the temperature in the vicinity of the sample on the sample stage;
Temperature control means (for example, CPU 13) for controlling the temperature of the sample stage by controlling the heating unit based on the temperature detected by the temperature sensor;
With
The sample stage is made of ceramics.
Here, the predetermined material characteristics refer to, for example, material characteristics such as sample hardness, elastic modulus, adhesion force surface properties, and wear resistance characteristics.

請求項2記載の発明は、請求項1記載の材料特性評価装置であって、
前記圧子のくぼみ形成時における押込深さを測定する押込深さ測定手段(例えば、変位計9)を備えることを特徴とする。
Invention of Claim 2 is the material characteristic evaluation apparatus of Claim 1, Comprising:
Indentation depth measuring means (for example, displacement meter 9) for measuring the indentation depth when the indenter is formed is provided.

請求項3記載の発明は、請求項1又は2記載の材料特性評価装置であって、
前記セラミックスの材質は、窒化ホウ素であることを特徴とする。
Invention of Claim 3 is the material characteristic evaluation apparatus of Claim 1 or 2, Comprising:
The material of the ceramic is boron nitride.

請求項1記載の発明によれば、材料特性評価装置の試料台は、セラミックスにより構成されているので、熱膨張係数が小さいため、試料台の熱膨張を低減させることができる。従って、加熱時の試料台の熱膨張に起因する測定誤差を低減させて材料特性評価の精度を向上させることができる。   According to the first aspect of the present invention, since the sample stage of the material property evaluation apparatus is made of ceramics, since the thermal expansion coefficient is small, the thermal expansion of the sample stage can be reduced. Therefore, the measurement error resulting from the thermal expansion of the sample stage during heating can be reduced, and the accuracy of the material property evaluation can be improved.

請求項2記載の発明によれば、請求項1記載の発明と同様の効果が得られるのは無論のこと、特に、押込深さ測定手段により圧子のくぼみ形成時における押込深さを測定することができる。従って、この押込深さを材料特性評価のパラメータとして用いて、くぼみの寸法を算出することができるので、くぼみを直接観察できない薄膜等の材料特性評価が可能となる。また、硬さ以外の試料の材料特性のうち、弾性特性、密着力表面物性、対磨耗特性等を圧子の押込深さに基づいて評価することができる。   According to the invention described in claim 2, it is of course possible to obtain the same effect as that of the invention described in claim 1. In particular, the indentation depth when the indentor is formed is measured by the indentation depth measuring means. Can do. Therefore, since the indentation depth can be calculated using this indentation depth as a parameter for evaluating material characteristics, it is possible to evaluate the material characteristics of a thin film or the like in which the indentation cannot be directly observed. In addition, among the material properties of the sample other than the hardness, the elastic properties, adhesion surface properties, wear resistance properties, and the like can be evaluated based on the indentation depth of the indenter.

請求項3記載の発明によれば、請求項1又は2記載の発明と同様の効果が得られるのは無論のこと、特に、セラミックスの材質は窒化ホウ素であるので、熱膨張係数及び熱膨張長さが極めて小さいため、圧子動作中の加熱により生じる試料台の熱膨張を大幅に抑えることができる。従って、材料特性評価の精度を格段に向上させることができる。   According to the third aspect of the invention, it is of course possible to obtain the same effect as that of the first or second aspect of the invention. In particular, since the ceramic material is boron nitride, the thermal expansion coefficient and the thermal expansion length. Therefore, the thermal expansion of the sample stage caused by heating during the operation of the indenter can be greatly suppressed. Therefore, the accuracy of material property evaluation can be significantly improved.

以下、図を参照して実施の形態としての本発明に係る材料特性評価装置について詳細に説明する。
図1は、本発明に係る材料特性評価装置の構成の模式図、図2は、図1の材料特性評価装置の温度制御系のブロック図である。
Hereinafter, a material property evaluation apparatus according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram of a configuration of a material property evaluation apparatus according to the present invention, and FIG. 2 is a block diagram of a temperature control system of the material property evaluation apparatus of FIG.

材料特性評価装置1は、図1に示すように、試料Sを載置する試料台2と、試料Sにくぼみを形成する圧子3と、先端部に圧子3を備える圧子軸4と、圧子軸4に所定の試験力を負荷する荷重負荷機構部5と、圧子3のくぼみ形成時における押込深さを測定する押込深さ測定手段としての変位計9と、試料台2の温度制御を行う温度制御部10と、試料Sの硬さを算出する硬さ算出部20等を備えている。   As shown in FIG. 1, the material property evaluation apparatus 1 includes a sample stage 2 on which a sample S is placed, an indenter 3 that forms a recess in the sample S, an indenter shaft 4 that includes an indenter 3 at the tip, and an indenter shaft. 4, a load loading mechanism 5 for applying a predetermined test force, a displacement meter 9 as an indentation depth measuring means for measuring an indentation depth when the indenter 3 is formed into a depression, and a temperature for controlling the temperature of the sample stage 2 The control part 10 and the hardness calculation part 20 etc. which calculate the hardness of the sample S are provided.

試料台2は、セラミックスにより構成されており、試料台2を加熱するための加熱部としてのヒータ6と、試料S近傍の温度を検出する温度センサ7等を備えている。なお、セラミックスの材質は、窒化ホウ素であることが望ましい。窒化ホウ素は、熱膨張係数が、例えば0.8×10-6と小さいからである。また、温度が1℃変化したときの熱膨張長さは、アルミニウムの約1/100程度と極めて小さい。さらに、熱伝導率も高く、耐蝕性にも優れている点で、試料台2を構成するセラミックスの材質として好適である。 The sample stage 2 is made of ceramics, and includes a heater 6 as a heating unit for heating the sample stage 2, a temperature sensor 7 for detecting the temperature in the vicinity of the sample S, and the like. The ceramic material is preferably boron nitride. This is because boron nitride has a small coefficient of thermal expansion, for example, 0.8 × 10 −6 . Further, the thermal expansion length when the temperature is changed by 1 ° C. is as small as about 1/100 of that of aluminum. Furthermore, it is suitable as a ceramic material constituting the sample table 2 in that it has high thermal conductivity and excellent corrosion resistance.

荷重負荷機構部5は、磁界内に配置される駆動コイル(図示省略)と、駆動コイルに駆動電流を供給する電源(図示省略)等を備えている。この荷重負荷機構部5においては、操作部8の操作に基づいて、所定の試験力が設定され、次いで駆動コイルに駆動電流が供給されることにより設定された所定の試験力が発生する構成となっている。
また、荷重負荷機構部5は、試験力を試験力信号として硬さ算出部20に出力する。試験力を硬さを算出するためのパラメータとして用いるためである。なお、ここでいう試験力信号とは、例えば、駆動コイルに駆動電流を供給する際の電圧信号等を指す。
The load loading mechanism 5 includes a drive coil (not shown) disposed in the magnetic field, a power source (not shown) for supplying a drive current to the drive coil, and the like. The load load mechanism 5 has a configuration in which a predetermined test force is set based on an operation of the operation unit 8 and then a predetermined test force is generated by supplying a drive current to the drive coil. It has become.
Further, the load loading mechanism unit 5 outputs the test force as a test force signal to the hardness calculation unit 20. This is because the test force is used as a parameter for calculating the hardness. The test force signal here refers to, for example, a voltage signal when supplying a drive current to the drive coil.

温度制御部10は、図2に示すように、温度センサ7から出力される温度信号を増幅する増幅器11と、増幅された温度信号をA/D変換するA/D変換器12と、各種演算処理を行うCPU13と、各種処理の作業領域と記憶領域とを備えるRAM14と、温度制御に係る各種プログラムやデータ等を格納するROM15等から構成されている。この温度制御部10には、ヒータ6、温度センサ7、操作部8等が接続されている。   As shown in FIG. 2, the temperature control unit 10 includes an amplifier 11 that amplifies the temperature signal output from the temperature sensor 7, an A / D converter 12 that A / D converts the amplified temperature signal, and various calculations. It comprises a CPU 13 that performs processing, a RAM 14 that includes a work area and a storage area for various processes, a ROM 15 that stores various programs and data related to temperature control, and the like. A heater 6, a temperature sensor 7, an operation unit 8, and the like are connected to the temperature control unit 10.

CPU13は、ROM15に格納されている各種プログラムの中から指定されたプログラムをRAM14の作業領域に展開して、この指定プログラムに従った各種処理を実行する。
具体的には、CPU13は、温度センサ7の検出温度に基づいて、ヒータ6を制御して試料台2の温度を制御する温度制御手段として機能する。例えば、温度センサ7の検出温度を入力し、この検出温度と予め設定された設定温度との関係に基づいて、電源(図示省略)から電圧を所定の周期でヒータ6内の駆動回路(図示省略)に出力させてヒータ6のオンオフをPID制御する。
The CPU 13 expands a program designated from various programs stored in the ROM 15 in the work area of the RAM 14 and executes various processes according to the designated program.
Specifically, the CPU 13 functions as a temperature control unit that controls the temperature of the sample stage 2 by controlling the heater 6 based on the temperature detected by the temperature sensor 7. For example, a detected temperature of the temperature sensor 7 is input, and a drive circuit (not shown) in the heater 6 is supplied with a voltage from a power source (not shown) at a predetermined cycle based on the relationship between the detected temperature and a preset temperature set in advance. ) And PID control of the heater 6 on / off.

変位計9は、操作部8の操作により、荷重負荷機構部5に設定された所定の試験力を負荷したときにおける、圧子3の試料Sに対する押込深さを測定する。この変位計9は、例えば、静電容量差に基づいて圧子3の押込深さを検出する静電容量型の変位計を用いる。   The displacement meter 9 measures the indentation depth of the indenter 3 with respect to the sample S when a predetermined test force set in the load loading mechanism unit 5 is loaded by operating the operation unit 8. The displacement meter 9 uses, for example, a capacitance type displacement meter that detects the indentation depth of the indenter 3 based on the capacitance difference.

硬さ算出部20は、図2に示すように、荷重負荷機構部5及び変位計9と接続されている。この硬さ算出部20は、荷重負荷機構部5から出力される試験力信号を増幅する増幅器21aと、増幅された試験力信号をA/D変換するA/D変換器22aと、変位計9から出力される変位信号を増幅する増幅器21bと、増幅された変位信号をA/D変換するA/D変換器22bと、各種演算処理を行うCPU23と、各種処理の作業領域と記憶領域とを備えるRAM24と、形成されるくぼみの寸法算出や試料Sの硬さ算出等に係る各種プログラムやデータ等を格納するROM25等から構成されている。   As shown in FIG. 2, the hardness calculation unit 20 is connected to the load load mechanism unit 5 and the displacement meter 9. The hardness calculation unit 20 includes an amplifier 21 a that amplifies the test force signal output from the load load mechanism unit 5, an A / D converter 22 a that A / D converts the amplified test force signal, and a displacement meter 9. An amplifier 21b that amplifies the displacement signal output from the A, a A / D converter 22b that A / D converts the amplified displacement signal, a CPU 23 that performs various arithmetic processes, and a work area and a storage area for various processes The RAM 24 includes a ROM 25 that stores various programs, data, and the like related to the calculation of the size of the indentation formed and the hardness of the sample S.

CPU23は、ROM25に格納されている各種プログラムの中から指定されたプログラムをRAM24の作業領域に展開して、この指定プログラムに従った各種処理を実行する。
具体的には、CPU23は、変位計9から出力される圧子3の変位信号(押込深さ)に基づいてくぼみの寸法を算出して、次いで、算出されたくぼみの寸法及び荷重負荷機構部5から出力される試験力信号に基づいて試料Sの硬さ等の材料特性を評価する。
The CPU 23 develops a program designated from various programs stored in the ROM 25 in the work area of the RAM 24 and executes various processes according to the designated program.
Specifically, the CPU 23 calculates the size of the indentation based on the displacement signal (indentation depth) of the indenter 3 output from the displacement meter 9, and then calculates the size of the indentation and the load load mechanism unit 5. The material characteristics such as hardness of the sample S are evaluated on the basis of the test force signal output from.

なお、温度センサ7は、図1に示すように、試料S近傍に設置されており、温度センサ7は試料S近傍の温度を検出するので、この検出温度を実際の試料温度とみなすものとする。
また、操作部8は、例えばキーボードやマウス等からなり、ヒータ6の設定温度等の数値データや材料特性評価に関するコマンドを入力、或いは選択するためのものである。
As shown in FIG. 1, the temperature sensor 7 is installed in the vicinity of the sample S. Since the temperature sensor 7 detects the temperature in the vicinity of the sample S, the detected temperature is regarded as the actual sample temperature. .
The operation unit 8 includes, for example, a keyboard and a mouse, and is used to input or select numerical data such as a set temperature of the heater 6 and a command related to material property evaluation.

次に、上記構成の材料特性評価装置1の材料特性評価としての硬さ試験における温度制御について説明する。この温度制御に入る前提として、図1に示すように、材料特性評価装置1の試料台2に試料Sが載置され、設定温度が設定されているものとする。例えば、設定温度が300℃と設定されている場合は、試料Sが300℃のときの硬さを測定することとなる。   Next, temperature control in the hardness test as the material property evaluation of the material property evaluation apparatus 1 having the above configuration will be described. As a premise for entering this temperature control, as shown in FIG. 1, it is assumed that the sample S is placed on the sample stage 2 of the material property evaluation apparatus 1 and the set temperature is set. For example, when the set temperature is set to 300 ° C., the hardness when the sample S is 300 ° C. is measured.

温度制御では、先ずCPU13が、温度センサ7の検出温度に基づいて、ヒータ6を制御して、試料台2の温度を制御する。具体的には、温度センサ7によって試料台2における試料S近傍の温度が検出され、その検出温度が温度信号として温度制御部10に入力される。この温度信号は、温度制御部10内の増幅器11によって増幅され、次いでA/D変換器12によってA/D変換される。そして、増幅された温度信号がCPU13に入力される。次いで、CPU13がその温度信号と設定温度との関係に基づいて、電源から所定周期のヒータ印加電圧を出力させて、ヒータ6のオンオフをPID制御する。   In the temperature control, first, the CPU 13 controls the heater 6 based on the temperature detected by the temperature sensor 7 to control the temperature of the sample stage 2. Specifically, the temperature near the sample S on the sample stage 2 is detected by the temperature sensor 7, and the detected temperature is input to the temperature control unit 10 as a temperature signal. This temperature signal is amplified by the amplifier 11 in the temperature control unit 10 and then A / D converted by the A / D converter 12. The amplified temperature signal is input to the CPU 13. Next, based on the relationship between the temperature signal and the set temperature, the CPU 13 outputs a heater application voltage with a predetermined period from the power source, and performs on-off control of the heater 6 by PID.

次いで、設定温度に温度制御された状態で、材料特性評価装置1の操作部8を操作すると、この操作入力に基づいて、荷重負荷機構部5が、駆動コイル(図示省略)に所定の駆動電流を供給して駆動力を発生させる。この駆動力により圧子軸4をその軸方向に押圧して、移動させて試料S表面にくぼみを形成させて、このくぼみに基づいて試料Sの硬さを測定する。   Next, when the operation unit 8 of the material property evaluation apparatus 1 is operated with the temperature controlled to the set temperature, the load load mechanism unit 5 applies a predetermined drive current to the drive coil (not shown) based on the operation input. To generate driving force. With this driving force, the indenter shaft 4 is pressed in the axial direction and moved to form a recess on the surface of the sample S, and the hardness of the sample S is measured based on the recess.

より具体的には、例えば、くぼみ形成時に荷重負荷機構部5から出力される試験力信号が硬さ算出部20の増幅器21aによって増幅された後、A/D変換器22aによってA/D変換されて、CPU23に入力されるとともに、くぼみ形成時の圧子3の押込深さが変位計9により測定され、この変位計9から出力される変位信号が硬さ算出部20の増幅器21bによって増幅された後、A/D変換器22bによってA/D変換されて、CPU23に入力される。
そして、CPU23は、入力した変位信号に基づいて圧子3により試料Sに形成されたくぼみの寸法を算出して、次いで、算出されたくぼみの寸法及び入力した試験力信号に基づいて、試料Sの硬さを算出する。
More specifically, for example, a test force signal output from the load / load mechanism unit 5 at the time of formation of the recess is amplified by the amplifier 21a of the hardness calculation unit 20, and then A / D converted by the A / D converter 22a. The indentation depth of the indenter 3 when the depression is formed is measured by the displacement meter 9 and the displacement signal output from the displacement meter 9 is amplified by the amplifier 21 b of the hardness calculation unit 20. Thereafter, it is A / D converted by the A / D converter 22 b and input to the CPU 23.
Then, the CPU 23 calculates the size of the recess formed in the sample S by the indenter 3 based on the input displacement signal, and then, based on the calculated size of the recess and the input test force signal, Calculate the hardness.

以上説明した本発明に係る材料特性評価装置1によれば、試料台2が熱膨張係数の小さいセラミックスにより構成されているので、試料台2の熱膨張を抑えることができる。従って、圧子動作中の試料台2の熱膨張に起因する測定誤差を低減させて、より精度の高い硬さ試験を行うことができる。   According to the material property evaluation apparatus 1 according to the present invention described above, since the sample stage 2 is made of ceramics having a small thermal expansion coefficient, the thermal expansion of the sample stage 2 can be suppressed. Accordingly, it is possible to reduce the measurement error due to the thermal expansion of the sample stage 2 during the operation of the indenter and perform a more accurate hardness test.

なお、温度制御をCPU13により行うとしているが、他に制御回路等を備える構成としてもよい。
また、上記実施形態では、硬さ算出部20を備えて、材料特性評価として試料Sの硬さ試験を行っているが、これに限定されるものではない。例えば、試料Sの弾性係数を算出するプログラムをROM25に格納しておき、試料Sに対する圧子3の押込中の押込深さを経時的に測定することにより、試料Sの弾性係数を測定することも可能である。その他、試料Sの密着力表面物性や対磨耗特性等の物性値も評価することができる。
Although the temperature control is performed by the CPU 13, a configuration including a control circuit or the like may be used.
Moreover, in the said embodiment, although the hardness calculation part 20 is provided and the hardness test of the sample S is performed as material characteristic evaluation, it is not limited to this. For example, the elastic modulus of the sample S may be measured by storing a program for calculating the elastic modulus of the sample S in the ROM 25 and measuring the indentation depth during the indentation of the indenter 3 with respect to the sample S over time. Is possible. In addition, physical property values such as adhesion property surface physical properties and wear resistance properties of the sample S can also be evaluated.

本発明に係る材料特性評価装置の構成の模式図である。It is a schematic diagram of the structure of the material characteristic evaluation apparatus which concerns on this invention. 図1の材料特性評価装置の温度制御系のブロック図である。It is a block diagram of the temperature control system of the material characteristic evaluation apparatus of FIG.

符号の説明Explanation of symbols

1 材料特性評価装置
2 試料台
3 圧子
6 ヒータ(加熱部)
7 温度センサ
9 変位計(押込深さ測定手段)
13 CPU(温度制御手段)
DESCRIPTION OF SYMBOLS 1 Material characteristic evaluation apparatus 2 Sample stand 3 Indenter 6 Heater (heating part)
7 Temperature sensor 9 Displacement meter (Indentation depth measuring means)
13 CPU (temperature control means)

Claims (3)

試料表面に圧子を押し付けてくぼみを形成させ、該くぼみに基づいて試料の所定の材料特性を評価する材料特性評価装置であって、
前記試料を載置する試料台と、
前記試料台を加熱する加熱部と、
前記試料台における前記試料近傍の温度を検出する温度センサと、
前記温度センサの検出温度に基づいて、前記加熱部を制御して前記試料台の温度を制御する温度制御手段と、
を備え、
前記試料台は、セラミックスにより構成されていることを特徴とする材料特性評価装置。
A material property evaluation apparatus for forming a recess by pressing an indenter on a sample surface and evaluating a predetermined material property of the sample based on the recess,
A sample stage on which the sample is placed;
A heating unit for heating the sample stage;
A temperature sensor for detecting the temperature in the vicinity of the sample on the sample stage;
Temperature control means for controlling the temperature of the sample stage by controlling the heating unit based on the temperature detected by the temperature sensor;
With
2. The material property evaluation apparatus according to claim 1, wherein the sample stage is made of ceramics.
前記圧子のくぼみ形成時における押込深さを測定する押込深さ測定手段を備えることを特徴とする請求項1記載の材料特性評価装置。   2. The material property evaluation apparatus according to claim 1, further comprising an indentation depth measuring means for measuring an indentation depth when the indenter is formed. 前記セラミックスの材質は、窒化ホウ素であることを特徴とする請求項1又は2記載の材料特性評価装置。   3. The material property evaluation apparatus according to claim 1, wherein the ceramic material is boron nitride.
JP2003396951A 2003-11-27 2003-11-27 Apparatus for evaluating characteristics of material Pending JP2005156413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396951A JP2005156413A (en) 2003-11-27 2003-11-27 Apparatus for evaluating characteristics of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396951A JP2005156413A (en) 2003-11-27 2003-11-27 Apparatus for evaluating characteristics of material

Publications (1)

Publication Number Publication Date
JP2005156413A true JP2005156413A (en) 2005-06-16

Family

ID=34722247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396951A Pending JP2005156413A (en) 2003-11-27 2003-11-27 Apparatus for evaluating characteristics of material

Country Status (1)

Country Link
JP (1) JP2005156413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047068A (en) * 2005-08-11 2007-02-22 Mitsutoyo Corp Push-in testing machine, indentor shaft, and displacement measurement method
JP2007183108A (en) * 2006-01-04 2007-07-19 Mitsutoyo Corp Indenter shaft, and material testing machine
JP2007218712A (en) * 2006-02-16 2007-08-30 Mitsutoyo Corp Shift quantity estimation mechanism, sample measuring instrument and material tester
JP2017223444A (en) * 2016-06-13 2017-12-21 株式会社ミツトヨ Hardness tester and hardness test method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047068A (en) * 2005-08-11 2007-02-22 Mitsutoyo Corp Push-in testing machine, indentor shaft, and displacement measurement method
JP2007183108A (en) * 2006-01-04 2007-07-19 Mitsutoyo Corp Indenter shaft, and material testing machine
JP2007218712A (en) * 2006-02-16 2007-08-30 Mitsutoyo Corp Shift quantity estimation mechanism, sample measuring instrument and material tester
JP2017223444A (en) * 2016-06-13 2017-12-21 株式会社ミツトヨ Hardness tester and hardness test method

Similar Documents

Publication Publication Date Title
JP4942579B2 (en) Test management method and indentation tester in indentation tester
KR20080057363A (en) Apparatus for detecting friction coefficient of strip
JP2008309729A (en) Device and method for measuring thermal conductivity
JP6286484B2 (en) Method and apparatus for thermomechanical analysis of samples
JP4895302B2 (en) Elastic modulus measuring method, elastic modulus measuring apparatus, and program
JP2005156413A (en) Apparatus for evaluating characteristics of material
JP6594250B2 (en) Temperature measuring device and temperature measuring method
JP2011112544A (en) High-temperature compression testing apparatus
JP2006071632A (en) Indentation test method and indentation test machine
JP2013130315A (en) Sintering device and method of manufacturing sintered body
JP2007178266A (en) Estimation mechanism of expansion quantity of indentor shaft and material testing machine
EP0984273A3 (en) Device for measuring thermophysical properties of solid materials and method therefor
JP2006266964A (en) Strain control type super-high cycle fatigue testing method and fatigue testing apparatus
JP2000321187A (en) Compression creep-testing machine
JP4859224B2 (en) Compression test method, compression tester, and program
JP2018008278A (en) Testing device and testing method
JP2005156412A (en) Evaluation apparatus for characteristics of material
Sun Method for determining defect depth using thermal imaging
JP4783599B2 (en) Indentation tester and displacement measurement method
JP3508991B2 (en) Method and apparatus for testing thermal fatigue resistance of sintered ceramics
JP4328659B2 (en) Material property evaluation system
JP4385520B2 (en) High temperature hardness tester
JP4863354B2 (en) Indenter shaft and material testing machine
JP2005300416A (en) Material characteristics evaluating device
JP3791173B2 (en) High temperature hardness tester

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20050304

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A02 Decision of refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A02