JP2008309729A - Device and method for measuring thermal conductivity - Google Patents

Device and method for measuring thermal conductivity Download PDF

Info

Publication number
JP2008309729A
JP2008309729A JP2007159711A JP2007159711A JP2008309729A JP 2008309729 A JP2008309729 A JP 2008309729A JP 2007159711 A JP2007159711 A JP 2007159711A JP 2007159711 A JP2007159711 A JP 2007159711A JP 2008309729 A JP2008309729 A JP 2008309729A
Authority
JP
Japan
Prior art keywords
side rod
measured
thermal conductivity
film thickness
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007159711A
Other languages
Japanese (ja)
Inventor
Tetsuro Ogushi
哲朗 大串
Hiroshi Chiba
博 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007159711A priority Critical patent/JP2008309729A/en
Publication of JP2008309729A publication Critical patent/JP2008309729A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring thermal conductivity capable of accurately measuring thermal conductivity of an object to be measured having elasticity and an object to be measured having a large contact thermal resistance, and a method therefor. <P>SOLUTION: The device for measuring thermal conductivity comprises: a heating-side rod and a cooling-side rod which are oppositely arranged so as to hold an object to be measured with each end of the rods a temperature sensor provided on each of the rods; a heating unit provided other end of the heating-side rod; and a cooling unit provided at other end of the cooling-side rod, which provides a thermal flow from the heating unit to the cooling unit and measures the temperature gradient between the heating-side rod and the cooling-side rod by a temperature sensor; and calculates the thermal conductivity of the object using the temperature gradient of the object which is calculated by the temperature gradient and the film thickness of the object. The device also comprises a film thickness measuring unit that measures the film thickness of the object at a plurality of points in which the film thickness of the object is determined by the film thickness measured by the film thickness measuring unit. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被測定体の熱伝導率の測定装置および測定方法に関し、特に、弾性を有する被測定体や、接触熱抵抗の大きな被測定体の熱伝導率を正確に測定する測定装置および測定方法に関する。   The present invention relates to a measurement apparatus and measurement method for the thermal conductivity of a measurement object, and in particular, a measurement apparatus and measurement for accurately measuring the thermal conductivity of a measurement object having elasticity and a measurement object having a large contact thermal resistance. Regarding the method.

図5は、全体が500で表される、従来の熱伝導率測定装置の概略図である。
熱伝導率測定装置500では、被測定体23の上下に予め熱伝導率krotが既知な加熱側ロッド21及び冷却側ロッド22が設けられ、加熱側ロッド21の最上部は加熱ブロック11により加熱され、冷却側ロッド22の最下部は冷却ブロック12により冷却される。加熱ブロック11にはヒータ10が挿入され、冷却ブロック12には冷媒が内部を流れている。加熱側ロッド21及び冷却側ロッド22内には、温度分布測定用のために所定間隔毎に孔が設けられており、この孔内に温度測定センサ41、42が埋設されている。また、加熱ブロック11の上部には、ロッド21、22と被測定体23の間の接触面圧力を制御する付加力装置15が配設されており、接触面圧力の測定用にロードセル13が設置されている。
FIG. 5 is a schematic diagram of a conventional thermal conductivity measuring device, indicated as a whole by 500.
In the thermal conductivity measuring apparatus 500, the heating side rod 21 and the cooling side rod 22 whose thermal conductivity krot is known in advance are provided above and below the measured object 23, and the uppermost part of the heating side rod 21 is heated by the heating block 11. The lowermost part of the cooling side rod 22 is cooled by the cooling block 12. A heater 10 is inserted into the heating block 11, and a refrigerant flows through the cooling block 12. Holes are provided in the heating side rod 21 and the cooling side rod 22 at predetermined intervals for temperature distribution measurement, and temperature measurement sensors 41 and 42 are embedded in the holes. In addition, an additional force device 15 for controlling the contact surface pressure between the rods 21 and 22 and the measured object 23 is disposed above the heating block 11, and a load cell 13 is installed for measuring the contact surface pressure. Has been.

被測定体23を通過する熱流束、z軸方向の温度差、z軸方向の膜厚をそれぞれq、ΔT、tsとすると、被測定体23の熱伝導率kuは、
ku=q/(ΔT/ts)
で表される(例えば、非特許文献1参照)。
L.S.Flether et al., "Themal Conductance of Multilayered Metalic Sheets", AIAA26th Thermophysics Conference, June 24-26,1991, Honolulu Hawaii
When the heat flux passing through the measured object 23, the temperature difference in the z-axis direction, and the film thickness in the z-axis direction are q, ΔT, and ts, respectively, the thermal conductivity ku of the measured object 23 is
ku = q / (ΔT / ts)
(For example, refer nonpatent literature 1).
LSFlether et al., "Themal Conductance of Multilayered Metalic Sheets", AIAA26th Thermophysics Conference, June 24-26,1991, Honolulu Hawaii

しかしながら、上述の式から明らかなように、熱伝導率kuは、被測定体23の厚さtsの測定精度に大きく影響される。従って、例えば、被測定体23がグリースやラバーなどの軟らかい材料の場合、被測定体の熱膨張や接触圧の変化などにより測定中に厚さが変化するため、厚さtsの測定値が不正確になり、正確な熱伝導率を求めることが困難であった。   However, as is clear from the above equation, the thermal conductivity ku is greatly influenced by the measurement accuracy of the thickness ts of the measurement target 23. Therefore, for example, when the measured object 23 is a soft material such as grease or rubber, the thickness changes during measurement due to thermal expansion of the measured object or a change in contact pressure. It became accurate and it was difficult to obtain an accurate thermal conductivity.

また、被測定体23と、加熱側ロッド21、冷却側ロッド22との接触面に空気などの膜が存在して接触熱抵抗が生じる場合、ΔTが不正確となり、正確な熱伝導率を求めることが困難であった。   Also, when a contact thermal resistance occurs due to the presence of a film such as air on the contact surface between the measured object 23, the heating side rod 21 and the cooling side rod 22, ΔT becomes inaccurate, and an accurate thermal conductivity is obtained. It was difficult.

そこで、本発明は、弾性を有する被測定体や接触熱抵抗の大きな被測定体の熱伝導率を正確に測定できる、熱伝導率の測定装置および測定方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a thermal conductivity measuring device and a measuring method capable of accurately measuring the thermal conductivity of a measured object having elasticity or a measured object having a large contact thermal resistance.

本発明は、被測定体を、それぞれの一端で挟持するように対向配置された加熱側ロッド及び冷却側ロッドと、加熱側ロッド及び冷却側ロッドのそれぞれに設けられた温度センサと、加熱側ロッドの他端に設けられた加熱手段と、冷却側ロッドの他端に設けられた冷却手段とを含み、加熱手段から冷却手段に熱流を与えて、温度センサで加熱側ロッドと冷却側ロッドとの温度勾配を測定し、温度勾配より計算した被測定体中の被測定体温度勾配と、被測定体の被測定体膜厚から、被測定体の熱伝導率を計算する熱伝導率測定装置であって、熱伝導率測定装置が、更に、被測定体膜厚を複数点で測定する膜厚測定手段を含み、被測定体膜厚が、膜厚測定手段の測定膜厚に基づいて定められることを特徴とする熱伝導率測定装置である。   The present invention relates to a heating side rod and a cooling side rod that are arranged so as to oppose each other to be measured at one end thereof, a temperature sensor provided on each of the heating side rod and the cooling side rod, and a heating side rod. A heating means provided at the other end of the cooling side and a cooling means provided at the other end of the cooling side rod. A heat flow is applied from the heating means to the cooling means, and the temperature sensor detects whether the heating side rod and the cooling side rod are A thermal conductivity measurement device that measures the thermal conductivity of the measured object from the measured object temperature gradient in the measured object and the measured object film thickness of the measured object, measured from the temperature gradient. The thermal conductivity measuring device further includes a film thickness measuring means for measuring the measured object film thickness at a plurality of points, and the measured object film thickness is determined based on the measured film thickness of the film thickness measuring means. This is a thermal conductivity measuring device.

また、本発明は、加熱側ロッドと冷却側ロッドとの間に被測定体を挟む工程と、加熱側ロッドの上端から冷却側ロッドの下端に熱流を流し、加熱側ロッド中および冷却側ロッド中の温度勾配を測定する測定工程と、加熱側ロッドおよび冷却側ロッドの温度勾配の測定結果から、被測定体中の測定体温度勾配(ΔT)を求める工程と、測定工程中に、被測定体の膜厚を複数点で測定し、被測定体膜厚(ts)を求める工程と、被測定体温度勾配(ΔT)と被測定体膜厚(ts)から、被測定体の熱伝導率(ku)を求める工程とを含むことを特徴とする熱伝導率測定方法でもある。   The present invention also includes a step of sandwiching a measurement object between a heating side rod and a cooling side rod, and a heat flow from the upper end of the heating side rod to the lower end of the cooling side rod, in the heating side rod and in the cooling side rod. A measuring step for measuring the temperature gradient of the measuring object, a step for obtaining a measuring body temperature gradient (ΔT) in the measured body from the measurement result of the temperature gradient of the heating side rod and the cooling side rod, and a measured body during the measuring step From the process of measuring the film thickness of the measured object at a plurality of points to obtain the measured object film thickness (ts), the measured object temperature gradient (ΔT) and the measured object film thickness (ts), the thermal conductivity of the measured object ( and a step of obtaining ku).

本発明によれば、被測定体が弾性を有する場合や、被測定体とロッドとの間に接触熱抵抗が生じる場合にも、被測定体の熱抵抗値を正確に求めることができる。   According to the present invention, it is possible to accurately obtain the thermal resistance value of the measured object even when the measured object has elasticity or when the contact thermal resistance is generated between the measured object and the rod.

図1は、全体が100で表される、本発明の実施の形態にかかる熱伝導率測定装置の概略図であり、図1(a)に装置全体の概略図を、図1(b)に、図1(a)をA−A方向にみた場合の、冷却側ロッド22の断面図を示す。図1において、上述の図5と同一符号は同一又は相当箇所を示す。   FIG. 1 is a schematic diagram of a thermal conductivity measuring apparatus according to an embodiment of the present invention, the whole being represented by 100, FIG. 1 (a) is a schematic diagram of the entire apparatus, and FIG. The sectional view of the cooling side rod 22 when FIG. 1A is viewed in the AA direction is shown. 1, the same reference numerals as those in FIG. 5 indicate the same or corresponding parts.

図1(a)に示すように、熱伝導率測定装置100では、例えばグリースやラバーなどの被測定体23が、2つのロッド21及び22に挟まれている。z軸方向(上下方向)に見て被測定体23の上側のロッドを加熱側ロッド21、下側のロッドを冷却側ロッド22とする。   As shown in FIG. 1 (a), in the thermal conductivity measuring device 100, a measured object 23 such as grease or rubber is sandwiched between two rods 21 and 22. The upper rod of the measured object 23 as viewed in the z-axis direction (vertical direction) is referred to as a heating side rod 21 and the lower rod is referred to as a cooling side rod 22.

加熱側ロッド21及び冷却側ロッド22には、z軸方向に沿って複数の孔が設けられ、それぞれの孔内には、ロッド内のz軸方向の温度分布を測定するために、例えば熱電対から構成されるロッド温度測定センサ41、42が挿入されている。なお、ロッド21、22の材料には、銅(熱伝導率400W/mK)、アルミニウム(熱伝導率200W/mK)、ステンレス鋼SUS304(熱伝導率16W/mK)など、被測定体の温度差ΔTと、ロッド21、22のそれぞれの全長に生じる温度差が、同程度になるような材料を選択するのが好ましい。   The heating side rod 21 and the cooling side rod 22 are provided with a plurality of holes along the z-axis direction. In each hole, for example, a thermocouple is measured in order to measure the temperature distribution in the z-axis direction in the rod. The rod temperature measuring sensors 41 and 42 constituted by are inserted. The material of the rods 21, 22 includes copper (thermal conductivity 400W / mK), aluminum (thermal conductivity 200W / mK), stainless steel SUS304 (thermal conductivity 16W / mK), etc. It is preferable to select a material in which the difference in temperature generated between ΔT and the entire length of each of the rods 21 and 22 is approximately the same.

加熱側ロッド21の被測定体23と接触する面の反対側には、ヒータ10が取り付けられた加熱ブロック11が配置されている。ヒータ10には、セラミックヒータ等が用いられる。加熱ブロック11には、加熱ブロック11中での温度差を小さくするために、熱伝導率の大きな銅等を用いることが好ましい。   A heating block 11 to which the heater 10 is attached is arranged on the opposite side of the surface of the heating side rod 21 that contacts the measured object 23. A ceramic heater or the like is used as the heater 10. In order to reduce the temperature difference in the heating block 11, it is preferable to use copper or the like having a high thermal conductivity for the heating block 11.

冷却側ロッド22の被測定体23と接触する面の反対側には、冷媒が内部を流れる冷却ブロック12が配置されている。冷却ブロック12にも、冷却ブロック12中での温度差を小さくするため、熱伝導率の大きな銅等を用いることが好ましい。   On the opposite side of the surface of the cooling side rod 22 that contacts the object to be measured 23, the cooling block 12 in which the refrigerant flows is arranged. In order to reduce the temperature difference in the cooling block 12, it is preferable to use copper or the like having a high thermal conductivity for the cooling block 12 as well.

加熱ブロック11の上には、断熱性の支持部材14、接触面圧力を測定するためのロードセル13が設けられている。支持部材14は、加熱ブロック11から熱が伝わってロードセル13が高温にならないように設けられている。支持部材14としては、断熱性を高くするために、熱伝導率の小さなテフロン(登録商標)やセラミックなどが用いられる。   On the heating block 11, a heat insulating support member 14 and a load cell 13 for measuring the contact surface pressure are provided. The support member 14 is provided so that heat is transmitted from the heating block 11 and the load cell 13 does not reach a high temperature. As the support member 14, Teflon (registered trademark), ceramic, or the like having a low thermal conductivity is used in order to increase heat insulation.

ロードセル13には、バネ15aを介して、付加力装置15により圧力が加わるようになっている。図1では、付加力装置15としてねじ機構で動作するスライド式の加圧装置を示したが、その他の構成の加圧装置であっても良い。   A pressure is applied to the load cell 13 by an additional force device 15 via a spring 15a. In FIG. 1, a slide-type pressurization device that operates by a screw mechanism is shown as the additional force device 15, but a pressurization device having another configuration may be used.

一方、冷却ブロック12および冷却側ロッド22には、これらを下方から貫通する複数の孔が設けられ、その中に、それぞれ接触式変位計測棒(接触式変位計用プローブ)62が挿入されている。接触式変位計測棒62は、例えば、直径が約1mm、長さが約50mmのステンレス鋼の棒からなる。   On the other hand, the cooling block 12 and the cooling side rod 22 are provided with a plurality of holes penetrating them from below, and contact type displacement measuring rods (contact type displacement meter probes) 62 are respectively inserted therein. . The contact-type displacement measuring rod 62 is made of, for example, a stainless steel rod having a diameter of about 1 mm and a length of about 50 mm.

例えば、被測定体23の断面が50mm×50mmの場合、直径1mmの接触式変位計測棒62が5本、図1(b)のように配置される。   For example, when the cross section of the measured object 23 is 50 mm × 50 mm, five contact displacement measuring rods 62 having a diameter of 1 mm are arranged as shown in FIG.

次に、本実施の形態にかかる熱伝導率測定装置100の動作について説明する。
上述のように、2つのロッド21、22の間に被測定体23を挟み、付加力装置15を用いて固定する。2つのロッド21、22と、被測定体23の断面積は略同じである。断面形状は、矩形の他、長方形、円形等であっても構わない。
Next, operation | movement of the thermal conductivity measuring apparatus 100 concerning this Embodiment is demonstrated.
As described above, the measured object 23 is sandwiched between the two rods 21 and 22 and fixed using the additional force device 15. The cross-sectional areas of the two rods 21 and 22 and the measured object 23 are substantially the same. The cross-sectional shape may be a rectangle, a circle, or the like in addition to a rectangle.

加熱ブロック11を加熱し、冷却ブロック12を冷却すると、加熱ブロック11から加熱側ロッド21に熱が流入し、被測定体23を通って、冷却側ロッド22から流出する。
図2に、このときの温度分布を示す。図2において、横軸は上下方向の測定位置であり、縦軸はロッド温度測定センサ41、42で測定したロッド21、22の温度である。
図2において、加熱ブロック11から冷却ブロック12に流れる熱流速をqとすると、qは以下の(式1)で表される。
When the heating block 11 is heated and the cooling block 12 is cooled, heat flows from the heating block 11 to the heating side rod 21, passes through the measurement object 23, and flows out from the cooling side rod 22.
FIG. 2 shows the temperature distribution at this time. In FIG. 2, the horizontal axis is the measurement position in the vertical direction, and the vertical axis is the temperature of the rods 21 and 22 measured by the rod temperature measurement sensors 41 and 42.
In FIG. 2, when the heat flow velocity flowing from the heating block 11 to the cooling block 12 is q, q is expressed by the following (formula 1).

Figure 2008309729
Figure 2008309729

ここで、qは加熱側ロッド21から被測定体23へ流入した熱流束(W/m)、qは被測定体23から冷却側ロッド22へ流入した熱流束(W/m)である。熱流束q、qは以下の(式2)、(式3)で与えられる。 Here, q 1 is a heat flux (W / m 2 ) flowing from the heating side rod 21 to the measured body 23, and q 2 is a heat flux (W / m 2 ) flowing from the measured body 23 to the cooling side rod 22. It is. The heat fluxes q 1 and q 2 are given by the following (formula 2) and (formula 3).

Figure 2008309729
Figure 2008309729

従って、2つのロッド21、22の間の熱抵抗Rcは、測定した2つのロッド21、22の温度勾配から、(式4)により求められる。   Therefore, the thermal resistance Rc between the two rods 21 and 22 is obtained from (Equation 4) from the measured temperature gradient of the two rods 21 and 22.

Figure 2008309729
Figure 2008309729

ここで、熱抵抗Rcは、2つのロッド21、22と、被測定体23との間の接触圧力に依存する。従って、付加力装置15及びロードセル13を使用して、2つのロッド21、22と被測定体23との間の接触圧力を可変しながら、所定の圧力値毎に上記温度勾配を測定して上記熱抵抗Rcを求める。   Here, the thermal resistance Rc depends on the contact pressure between the two rods 21 and 22 and the measured object 23. Therefore, the temperature gradient is measured for each predetermined pressure value while varying the contact pressure between the two rods 21 and 22 and the measured object 23 using the additional force device 15 and the load cell 13. The thermal resistance Rc is obtained.

次に、被測定体23の熱伝導率kuを調べたい場合、z軸方向に厚みのある被測定体23に設けた複数の孔に、それぞれ温度測定センサを埋設し、被測定体23のz軸方向の温度勾配を測定する。このとき、被測定体23を通過する熱流束qは(式5)で定義される。   Next, when it is desired to examine the thermal conductivity ku of the measurement object 23, temperature measurement sensors are respectively embedded in a plurality of holes provided in the measurement object 23 having a thickness in the z-axis direction. Measure the axial temperature gradient. At this time, the heat flux q passing through the measurement object 23 is defined by (Equation 5).

Figure 2008309729
Figure 2008309729

従って、被測定体23の熱伝導率kuは、被測定体23の温度勾配を用いて(式6)で求められる。   Therefore, the thermal conductivity ku of the measured object 23 is obtained by (Equation 6) using the temperature gradient of the measured object 23.

Figure 2008309729
Figure 2008309729

一方、被測定体23のz軸方向の厚みが非常に薄く、複数の孔を設けることができない場合、被測定体23のz軸方向の温度勾配を(式4)のΔT(2つのロッド内のそれぞれの温度勾配の外挿線から求めた温度差)により求めて、(式6)に代入しても良い。   On the other hand, when the thickness of the measured object 23 is very thin and a plurality of holes cannot be provided, the temperature gradient of the measured object 23 in the z-axis direction is expressed by ΔT (Equation 4) (Temperature difference obtained from extrapolation line of each temperature gradient) and may be substituted into (Equation 6).

この場合、被測定体23の熱伝導率kuは、(式7)から以下のように求められる。   In this case, the thermal conductivity ku of the measurement object 23 is obtained as follows from (Equation 7).

ku=q/(ΔT/ts) (式7)
ただし、tsは、被測定体23の厚さ(m)である。
ku = q / (ΔT / ts) (Formula 7)
However, ts is the thickness (m) of the measured object 23.

このように、(式7)から、熱伝導率kuは、被測定体23の厚さtsの測定精度に大きく影響されることがわかる。例えば、被測定体23がグリースやラバーなどのような軟らかい材料の場合、被測定体の熱膨張や接触圧の変化などにより厚さが変化し、熱伝導率kuの値が不正確になる。   Thus, it can be seen from (Equation 7) that the thermal conductivity ku is greatly affected by the measurement accuracy of the thickness ts of the measurement target 23. For example, when the measured object 23 is a soft material such as grease or rubber, the thickness changes due to thermal expansion of the measured object or a change in contact pressure, and the value of the thermal conductivity ku becomes inaccurate.

これに対して、熱伝導率測定装置100では、複数の接触式変位計測棒62を設けることにより、被測定体23の厚さtsを実測し、熱伝導率kuの値をより精度良く求める。   On the other hand, in the thermal conductivity measuring device 100, by providing a plurality of contact-type displacement measuring rods 62, the thickness ts of the measured object 23 is measured, and the value of the thermal conductivity ku is obtained with higher accuracy.

被測定体23の厚さtsの測定方法を以下に示す。
図3は、接触式変位計測棒62の変位の較正方法を示したものである。変位較正ブロック63は、接触式変位計測棒62の変位較正に用いられる治具である。変位較正ブロック63は、片面が平坦であり、他の片面には、既知の深さHbの凹部が設けられている。
A method for measuring the thickness ts of the measurement target 23 will be described below.
FIG. 3 shows a method for calibrating the displacement of the contact-type displacement measuring rod 62. The displacement calibration block 63 is a jig used for displacement calibration of the contact-type displacement measuring rod 62. The displacement calibration block 63 is flat on one side and is provided with a recess having a known depth Hb on the other side.

変位の較正工程では、冷却側ロッド22の上に被測定体23を載せる前に、変位較正ブロック63を載せて較正作業を行う。図3(a)は、被測定体23を平坦な面を下にして載せた場合で、変位0の場合に相当する。一方、図3(b)は、凹部を有する面を下にして載せた場合であり、変位は既知の値Hbである。   In the displacement calibration step, the calibration work is performed by placing the displacement calibration block 63 before placing the measurement object 23 on the cooling side rod 22. FIG. 3A shows a case where the measured object 23 is placed with the flat surface down, and corresponds to a case where the displacement is zero. On the other hand, FIG. 3B shows a case where the surface having the concave portion is placed downward, and the displacement is a known value Hb.

図3(a)、(b)に示すように、変位較正ブロック63の凹部の有無によって、接触式変位計測棒62は伸縮する。その伸縮程度は電気信号に変換され、変位量0およびHbの測定値として計測される。ここでは、これらの変位量と測定値とを用いて、接触式変位計測棒62の変位較正を行う。   As shown in FIGS. 3A and 3B, the contact-type displacement measuring rod 62 expands and contracts depending on the presence or absence of a recess in the displacement calibration block 63. The degree of expansion / contraction is converted into an electric signal and measured as a measured value of displacement 0 and Hb. Here, displacement calibration of the contact-type displacement measuring rod 62 is performed using these displacement amounts and measured values.

続いて、被測定体23に膜厚方向に貫通孔を設け、接触式変位計測棒62が貫通孔を通るように冷却側ロッド22上に被測定体23を載せる。更に、その上部に、接触式変位計測棒62の先端が突き当たるように、加熱側ロッド21を載せる。これにより、接触式変位計測棒62の変位量が、被測定体23の厚さと等しくなり、被測定体23の厚さtsを正確に計測できる。この結果、被測定体23の熱伝導率kuを(式1)、(式7)から精度良く求めることができる。   Subsequently, a through hole is provided in the film thickness direction in the measured object 23, and the measured object 23 is placed on the cooling side rod 22 so that the contact-type displacement measuring rod 62 passes through the through hole. Further, the heating-side rod 21 is placed on the upper portion so that the tip of the contact-type displacement measuring rod 62 abuts. Thereby, the displacement amount of the contact-type displacement measuring rod 62 becomes equal to the thickness of the measured object 23, and the thickness ts of the measured object 23 can be accurately measured. As a result, the thermal conductivity ku of the measured object 23 can be obtained with high accuracy from (Equation 1) and (Equation 7).

特に、図1(b)に示すように、複数の接触式変位計測棒62を用いて、被測定体23の複数の位置で厚さtsを測定するため、被測定体23が傾いて厚さtsが面内で一定でない場合でも、複数の測定結果から平均厚さを求めることにより、被測定体23の熱伝導率kuを精度良く求めることができる。   In particular, as shown in FIG. 1B, since the thickness ts is measured at a plurality of positions of the measured object 23 using a plurality of contact-type displacement measuring rods 62, the measured object 23 is tilted and has a thickness. Even when ts is not constant in the plane, the thermal conductivity ku of the measured object 23 can be accurately obtained by obtaining the average thickness from a plurality of measurement results.

次に、被測定体23と、加熱側ロッド21、冷却側ロッド22との接触面に空気などの膜が存在し、接触熱抵抗Rsが生じる場合について考える。接触熱抵抗Rsがあると、図2に示すような、2つのロッド21、22内の温度勾配の外挿線から求めた温度差ΔTが、実際の被測定体23の温度差とはならない。   Next, consider a case where a film such as air exists on the contact surface between the measured object 23 and the heating side rod 21 and the cooling side rod 22 to generate the contact thermal resistance Rs. When there is the contact thermal resistance Rs, the temperature difference ΔT obtained from the extrapolated line of the temperature gradient in the two rods 21 and 22 as shown in FIG. 2 does not become the actual temperature difference of the measured object 23.

このような場合には、付加力装置15を用いて、接触面圧力を増減させることにより、被測定体23の厚さtsを変化させ、その時の熱抵抗Rcを、測定した2つのロッド21、22の温度勾配から、(式4)により求める。   In such a case, by using the additional force device 15 to increase or decrease the contact surface pressure, the thickness ts of the measured object 23 is changed, and the thermal resistance Rc at that time is measured by the two rods 21, It is calculated from (22) temperature gradient by (Equation 4).

図4は、測定体23の試験辺厚さ(ts)と、その時の熱抵抗Rcとの関係であり、横軸に測定体23の試験辺厚さ(ts)、縦軸に(式4)から求めた熱抵抗(R)を示す。図4に示す直線の傾きより、被測定体23の厚さtsに対するRcの変化(dRc/dts)を求める。 FIG. 4 shows the relationship between the test side thickness (ts) of the measurement body 23 and the thermal resistance Rc at that time. The horizontal axis represents the test side thickness (ts) of the measurement body 23 and the vertical axis represents (Expression 4). The thermal resistance ( RC ) calculated | required from is shown. From the slope of the straight line shown in FIG. 4, the change in Rc (dRc / dts) with respect to the thickness ts of the measured object 23 is obtained.

ここで、2つの接触面を含む被測定体23の熱抵抗Rcは以下の(式8)で表される。   Here, the thermal resistance Rc of the measurement object 23 including the two contact surfaces is expressed by the following (formula 8).

Rc=2×Rs+ts/(ku・A) (式8)           Rc = 2 × Rs + ts / (ku · A) (Formula 8)

従って、(式8)をtsで微分することにより、被測定体23の熱伝導率kuは、以下の(式9)で表される。   Therefore, by differentiating (Equation 8) by ts, the thermal conductivity ku of the measured object 23 is expressed by the following (Equation 9).

ku=1/(dRc/dts・A) (式9)           ku = 1 / (dRc / dts · A) (Formula 9)

従って、被測定体23の厚さtsに対するRcの変化(dRc/dts)を図4の傾きより求め、これを(式9)に代入することにより、熱伝導率kuを正確に求めることができる。   Accordingly, the change in Rc (dRc / dts) with respect to the thickness ts of the measured object 23 is obtained from the slope of FIG. 4 and substituted into (Equation 9), whereby the thermal conductivity ku can be obtained accurately. .

以上のように、本実施の形態にかかる熱伝導率の測定装置および測定方法を用いることにより、被測定体がグリースやラバー等のような弾性体からなり、測定時に膜厚が不均一に変化しても、複数点で被測定体の膜厚を測定することにより、熱伝導率を正確に求めることができる。   As described above, by using the thermal conductivity measurement device and measurement method according to the present embodiment, the object to be measured is made of an elastic body such as grease or rubber, and the film thickness changes nonuniformly during measurement. Even so, the thermal conductivity can be accurately determined by measuring the film thickness of the object to be measured at a plurality of points.

また、本実施の形態にかかる他の熱伝導率の測定装置および測定方法を用いることにより、被測定体と、加熱側ロッド、冷却側ロッドとの接触面に空気などの膜が存在し、接触面において熱抵抗が生じる場合でも、被測定体の熱伝導率を正確に求めることができる。   In addition, by using the other thermal conductivity measuring device and measuring method according to the present embodiment, a film such as air exists on the contact surface between the measured object, the heating side rod, and the cooling side rod. Even when thermal resistance occurs on the surface, the thermal conductivity of the measurement object can be accurately obtained.

本発明の実施の形態にかかる熱伝導率測定装置である。1 is a thermal conductivity measuring device according to an embodiment of the present invention. 本発明の実施の形態にかかる熱伝導率測定装置のロッド及び被測定体の温度分布である。It is a temperature distribution of the rod and to-be-measured body of the thermal conductivity measuring apparatus concerning embodiment of this invention. 本発明の実施の形態にかかる接触式変位計測棒の変位の較正方法である。It is the displacement calibration method of the contact-type displacement measuring rod concerning embodiment of this invention. 測定体の試験辺厚さ(ts)と、その時の熱抵抗(Rc)との関係である。It is the relationship between the test side thickness (ts) of the measurement object and the thermal resistance (Rc) at that time. 従来の熱伝導率測定装置である。It is a conventional thermal conductivity measuring device.

符号の説明Explanation of symbols

10 ヒータ、11 加熱ブロック、12 冷却ブロック、13 ロードセル、14 支持部材、15 付加力装置、15a バネ、21 加熱側ロッド、22 冷却側ロッド、23 被測定体、41、42 ロッド温度測定センサ、62 接触式変位計測棒、100 熱伝導率測定装置。   DESCRIPTION OF SYMBOLS 10 Heater, 11 Heating block, 12 Cooling block, 13 Load cell, 14 Support member, 15 Applied force apparatus, 15a Spring, 21 Heating side rod, 22 Cooling side rod, 23 Measured object, 41, 42 Rod temperature measurement sensor, 62 Contact-type displacement measuring rod, 100 thermal conductivity measuring device.

Claims (5)

被測定体を、それぞれの一端で挟持するように対向配置された加熱側ロッド及び冷却側ロッドと、
該加熱側ロッド及び該冷却側ロッドのそれぞれに設けられた温度センサと、
該加熱側ロッドの他端に設けられた加熱手段と、
該冷却側ロッドの他端に設けられた冷却手段とを含み、
該加熱手段から該冷却手段に熱流を与えて、該温度センサで該加熱側ロッドと該冷却側ロッドとの温度勾配を測定し、該温度勾配より計算した該被測定体中の被測定体温度勾配と、被測定体の被測定体膜厚から、該被測定体の熱伝導率を計算する熱伝導率測定装置であって、
熱伝導率測定装置が、更に、該被測定体膜厚を複数点で測定する膜厚測定手段を含み、被測定体膜厚が、該膜厚測定手段の測定膜厚に基づいて定められることを特徴とする熱伝導率測定装置。
A heating side rod and a cooling side rod, which are opposed to each other so as to sandwich the object to be measured at each end;
A temperature sensor provided in each of the heating side rod and the cooling side rod;
Heating means provided at the other end of the heating side rod;
Cooling means provided at the other end of the cooling side rod,
A heat flow is applied from the heating means to the cooling means, a temperature gradient between the heating side rod and the cooling side rod is measured by the temperature sensor, and a measured object temperature in the measured object calculated from the temperature gradient. A thermal conductivity measuring device that calculates the thermal conductivity of the measured object from the gradient and measured object film thickness of the measured object,
The thermal conductivity measuring device further includes a film thickness measuring means for measuring the measured film thickness at a plurality of points, and the measured film thickness is determined based on the measured film thickness of the film thickness measuring means. A thermal conductivity measuring device characterized by.
上記膜厚測定手段が、上記冷却側ロッド側から上記被測定体を貫通して上記加熱側ロッドに接するように配置された接触式変位計測棒からなることを特徴とする請求項1に記載の熱伝導率測定装置。   The said film thickness measurement means consists of a contact-type displacement measuring rod arrange | positioned so that the said to-be-measured body may be penetrated from the said cooling side rod side, and it may contact | connect the said heating side rod. Thermal conductivity measuring device. 上記加熱側ロッドと上記冷却側ロッドとの間で上記被測定体を加圧する加圧手段を備え、該加圧手段で該被測定体を加圧した状態で、該被測定体の熱伝導率を計算することを特徴とする請求項1又は2に記載の熱伝導率測定装置。   A pressure means for pressurizing the measurement object between the heating side rod and the cooling side rod; and the thermal conductivity of the measurement object in a state where the measurement object is pressurized by the pressure means. The thermal conductivity measuring device according to claim 1, wherein the thermal conductivity measuring device is calculated. 加熱側ロッドと冷却側ロッドとの間に被測定体を挟む工程と、
該加熱側ロッドの上端から冷却側ロッドの下端に熱流を流し、該加熱側ロッド中および該冷却側ロッド中の温度勾配を測定する測定工程と、
該加熱側ロッドおよび該冷却側ロッドの温度勾配の測定結果から、該被測定体中の被測定体温度差(ΔT)を求める工程と、
該測定工程中に、該被測定体の膜厚を複数点で測定し、被測定体膜厚(ts)を求める工程と、
該被測定体温度差(ΔT)と該被測定体膜厚(ts)から、該被測定体の熱伝導率(ku)を求める工程とを含むことを特徴とする熱伝導率測定方法。
Sandwiching the object to be measured between the heating side rod and the cooling side rod;
A measurement step of flowing a heat flow from the upper end of the heating side rod to the lower end of the cooling side rod, and measuring a temperature gradient in the heating side rod and in the cooling side rod;
A step of obtaining a measured object temperature difference (ΔT) in the measured object from a measurement result of a temperature gradient of the heating side rod and the cooling side rod;
Measuring the film thickness of the object to be measured at a plurality of points during the measuring step, and determining the film thickness (ts) of the object to be measured;
A method of measuring a thermal conductivity, comprising: determining a thermal conductivity (ku) of the measured object from the measured object temperature difference (ΔT) and the measured object film thickness (ts).
上記加熱側ロッドと上記冷却側ロッドとの間で上記被測定体を加圧し、該被測定体の膜厚(ts)が加圧により異なった複数の状態で、該加熱側ロッドと該冷却側ロッドとの間の熱抵抗(Rc)をそれぞれ求める工程と、
該被測定体の熱伝導率(ku)を、以下の式:
ku=1/(dRc/dts・A)
から求める工程とを含むことを特徴とする請求項4に記載の熱伝導率測定方法。
The object to be measured is pressurized between the heating side rod and the cooling side rod, and the heating side rod and the cooling side are in a plurality of states in which the film thickness (ts) of the object to be measured differs depending on the pressure. Obtaining a thermal resistance (Rc) between each of the rods;
The thermal conductivity (ku) of the object to be measured is expressed by the following formula:
ku = 1 / (dRc / dts · A)
The method of measuring thermal conductivity according to claim 4, further comprising:
JP2007159711A 2007-06-18 2007-06-18 Device and method for measuring thermal conductivity Pending JP2008309729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159711A JP2008309729A (en) 2007-06-18 2007-06-18 Device and method for measuring thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159711A JP2008309729A (en) 2007-06-18 2007-06-18 Device and method for measuring thermal conductivity

Publications (1)

Publication Number Publication Date
JP2008309729A true JP2008309729A (en) 2008-12-25

Family

ID=40237453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159711A Pending JP2008309729A (en) 2007-06-18 2007-06-18 Device and method for measuring thermal conductivity

Country Status (1)

Country Link
JP (1) JP2008309729A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010606A (en) * 2009-07-02 2011-01-20 Patentstra Co Ltd Fishline, assembly of fishline, spinning reel and fishing rod, assembly of fishline, aerial line, line around snout ring and fishing rod, and method for producing fishline
JP2012032196A (en) * 2010-07-29 2012-02-16 Espec Corp Thermal conduction measuring apparatus and thermal conduction measuring method
JP2012117939A (en) * 2010-12-01 2012-06-21 Espec Corp Heat conductivity measuring device, heat conductivity calculation device, heat conductivity calculation program, and heat conductivity measuring method
KR101334918B1 (en) 2011-12-20 2013-12-02 한국건설기술연구원 Experimental apparatus amd method for coefficient thermal conductivity of fine-grained soil by variation of load and dry density
WO2017073479A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 Thermal conductivity measurement apparatus and thermal conductivity measurement method
KR101904775B1 (en) 2018-03-14 2018-10-05 (재)한국건설생활환경시험연구원 Method of determination proper pressure of heat flow meter
CN108931551A (en) * 2018-05-31 2018-12-04 重庆大学 A kind of surface of solids engaging portion contact conductane measuring device
JP2018200226A (en) * 2017-05-26 2018-12-20 新日鐵住金株式会社 Evaluation method, evaluation device and program
CN109283217A (en) * 2018-10-12 2019-01-29 广州特种承压设备检测研究院 A kind of measurement method and device of grapheme material thermal conductivity
KR20190010705A (en) * 2019-01-23 2019-01-30 한서대학교 산학협력단 Equipment and Method for Mesuring the Conductivity of Ultrathin Thermal Sheet
CN109959676A (en) * 2017-12-14 2019-07-02 核工业西南物理研究院 A kind of graphite and graphite film material thermal contact resistance test method
JP2019120496A (en) * 2017-12-28 2019-07-22 Koa株式会社 Method for measuring thermal conductivity of metallic coating film
JP2019196924A (en) * 2018-05-08 2019-11-14 信越化学工業株式会社 Method for obtaining characteristic of thermal conductive material during application of pressure
US10775329B2 (en) 2017-01-16 2020-09-15 Mitsubishi Electric Corporation Thermal conductivity measurement device and thermal conductivity measurement method
KR20200136553A (en) * 2019-05-27 2020-12-08 주식회사 에스이오 Thermal conductivity measurement system and thermal conductivity measurement method thereof
KR20230007756A (en) * 2021-07-06 2023-01-13 현대로템 주식회사 Stator Segment Heat Transfer Characteristics Test Device for Electric Machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121397A (en) * 2001-10-10 2003-04-23 Hitachi Ltd Method for measuring thermal resistance of resin and measuring apparatus using the same
JP2006145446A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Thermal conductivity measuring device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121397A (en) * 2001-10-10 2003-04-23 Hitachi Ltd Method for measuring thermal resistance of resin and measuring apparatus using the same
JP2006145446A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Thermal conductivity measuring device and method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010606A (en) * 2009-07-02 2011-01-20 Patentstra Co Ltd Fishline, assembly of fishline, spinning reel and fishing rod, assembly of fishline, aerial line, line around snout ring and fishing rod, and method for producing fishline
JP2012032196A (en) * 2010-07-29 2012-02-16 Espec Corp Thermal conduction measuring apparatus and thermal conduction measuring method
JP2012117939A (en) * 2010-12-01 2012-06-21 Espec Corp Heat conductivity measuring device, heat conductivity calculation device, heat conductivity calculation program, and heat conductivity measuring method
KR101334918B1 (en) 2011-12-20 2013-12-02 한국건설기술연구원 Experimental apparatus amd method for coefficient thermal conductivity of fine-grained soil by variation of load and dry density
WO2017073479A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 Thermal conductivity measurement apparatus and thermal conductivity measurement method
JPWO2017073479A1 (en) * 2015-10-30 2018-07-12 三菱電機株式会社 Thermal conductivity measuring device and thermal conductivity measuring method
DE112016004973T5 (en) 2015-10-30 2018-07-26 Mitsubishi Electric Corporation DEVICE FOR MEASURING THE HEAT-CONDUCTIVITY AND HEAT-MEASURING MEASUREMENT METHOD
DE112016004973B4 (en) 2015-10-30 2021-10-14 Mitsubishi Electric Corporation DEVICE FOR MEASURING THERMAL CONDUCTIVITY AND THERMAL CONDUCTIVITY MEASURING METHOD
US10768127B2 (en) 2015-10-30 2020-09-08 Mitsubishi Electric Corporation Thermal conductivity measurement apparatus and thermal conductivity measurement method
US10775329B2 (en) 2017-01-16 2020-09-15 Mitsubishi Electric Corporation Thermal conductivity measurement device and thermal conductivity measurement method
JP2018200226A (en) * 2017-05-26 2018-12-20 新日鐵住金株式会社 Evaluation method, evaluation device and program
CN109959676A (en) * 2017-12-14 2019-07-02 核工业西南物理研究院 A kind of graphite and graphite film material thermal contact resistance test method
CN109959676B (en) * 2017-12-14 2021-11-16 核工业西南物理研究院 Method for testing thermal contact resistance of graphite and graphite film material
JP2019120496A (en) * 2017-12-28 2019-07-22 Koa株式会社 Method for measuring thermal conductivity of metallic coating film
JP7060378B2 (en) 2017-12-28 2022-04-26 Koa株式会社 Thermal conductivity measurement method for metal film
KR101904775B1 (en) 2018-03-14 2018-10-05 (재)한국건설생활환경시험연구원 Method of determination proper pressure of heat flow meter
JP2019196924A (en) * 2018-05-08 2019-11-14 信越化学工業株式会社 Method for obtaining characteristic of thermal conductive material during application of pressure
CN108931551A (en) * 2018-05-31 2018-12-04 重庆大学 A kind of surface of solids engaging portion contact conductane measuring device
CN109283217A (en) * 2018-10-12 2019-01-29 广州特种承压设备检测研究院 A kind of measurement method and device of grapheme material thermal conductivity
KR20190010705A (en) * 2019-01-23 2019-01-30 한서대학교 산학협력단 Equipment and Method for Mesuring the Conductivity of Ultrathin Thermal Sheet
KR102031616B1 (en) 2019-01-23 2019-10-14 한서대학교 산학협력단 Equipment and Method for Mesuring the Conductivity of Ultrathin Thermal Sheet
KR20200136553A (en) * 2019-05-27 2020-12-08 주식회사 에스이오 Thermal conductivity measurement system and thermal conductivity measurement method thereof
KR102257190B1 (en) 2019-05-27 2021-06-01 주식회사 에스이오 Thermal conductivity measurement system and thermal conductivity measurement method thereof
KR20230007756A (en) * 2021-07-06 2023-01-13 현대로템 주식회사 Stator Segment Heat Transfer Characteristics Test Device for Electric Machine
KR102494392B1 (en) 2021-07-06 2023-01-31 현대로템 주식회사 Stator Segment Heat Transfer Characteristics Test Device for Electric Machine

Similar Documents

Publication Publication Date Title
JP2008309729A (en) Device and method for measuring thermal conductivity
US4840495A (en) Method and apparatus for measuring the thermal resistance of an element such as large scale integrated circuit assemblies
JP5509195B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
US10768127B2 (en) Thermal conductivity measurement apparatus and thermal conductivity measurement method
US10775329B2 (en) Thermal conductivity measurement device and thermal conductivity measurement method
CN108931551A (en) A kind of surface of solids engaging portion contact conductane measuring device
CN109997032B (en) Thermal conductivity measuring device, thermal conductivity measuring method, and vacuum degree evaluating device
EP2015041A1 (en) An apparatus and a method for measuring the body core temperature for elevated ambient temperatures
CN102778475B (en) Method for measuring solid-solid thermal contact resistance via up-and-down constant temperature parameter identification method
JP5379760B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
JPH11125566A (en) Surface temperature measurement sensor and temperature measurement probe
JP2006071565A (en) Method and apparatus for testing heat insulation performance of heat insulating material
KR102257190B1 (en) Thermal conductivity measurement system and thermal conductivity measurement method thereof
CN108828007A (en) A kind of annular face contacts surface interface contact conductane measuring device
Kempers et al. Development of a high-accuracy thermal interface material tester
KR101831682B1 (en) Apparatus and method for measuring gas temperature
KR101152839B1 (en) Layered type micro heat flux sensor
US10184843B2 (en) Thermal protection systems material degradation monitoring system
JP2005214858A (en) Method and apparatus for measuring principal axis thermophysical property value of two-dimensional anisotropic substance using heat flowmeter type multipoint temperature measurent method
Al Ashraf Thermal conductivity measurement by hot disk analyzer
JP6634546B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method, and vacuum degree evaluation device
JP3147015U (en) Differential scanning calorimeter
JP2024027952A (en) Thermal resistance evaluation device, thermal resistance evaluation method, and thermal resistance evaluation program
Rosso et al. Development of a heat-pipe-based hot plate for surface-temperature measurements
Dunn et al. Capstone Engineering Project to Design an Apparatus for Testing the Thermal Impedance and Apparent Thermal Conductivity of Different Thermal Interface Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A02