JP2005214858A - Method and apparatus for measuring principal axis thermophysical property value of two-dimensional anisotropic substance using heat flowmeter type multipoint temperature measurent method - Google Patents

Method and apparatus for measuring principal axis thermophysical property value of two-dimensional anisotropic substance using heat flowmeter type multipoint temperature measurent method Download PDF

Info

Publication number
JP2005214858A
JP2005214858A JP2004023725A JP2004023725A JP2005214858A JP 2005214858 A JP2005214858 A JP 2005214858A JP 2004023725 A JP2004023725 A JP 2004023725A JP 2004023725 A JP2004023725 A JP 2004023725A JP 2005214858 A JP2005214858 A JP 2005214858A
Authority
JP
Japan
Prior art keywords
measured
heat
temperature
point
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004023725A
Other languages
Japanese (ja)
Other versions
JP2005214858A5 (en
JP4203893B2 (en
Inventor
Eiji Nemoto
栄治 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004023725A priority Critical patent/JP4203893B2/en
Publication of JP2005214858A publication Critical patent/JP2005214858A/en
Publication of JP2005214858A5 publication Critical patent/JP2005214858A5/ja
Application granted granted Critical
Publication of JP4203893B2 publication Critical patent/JP4203893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure three constants of principal axis thermophysical property values (i.e., principal axis thermal conductivity, principal axis thermal diffusivity and specific heat) of a two-dimensional anisotropic substance, using a heat flowmeter type multipoint temperature measurement method. <P>SOLUTION: It is known that when the center of a sample to be measured is loaded with a certain amount of heat generated by a point-like heat source, the heat from the point-like heat source is propagated, while indicating a specific thermal propagation pattern reflecting the characteristics of the two-dimensional anisotropic substance and depending on its crystal structure. Consequently, a nine pieces of thermocouple assembly, composed of three sets/three pairs of thermocouples arranged at identical distances from the center point, is mounted on the surface of an anisotropic thermal conductive substance, and temperature changes are measured, thereby simultaneously and precisely separating/measuring the principal axis angle and the principal axis thermophysical property values, i.e., the principal axis thermal conductivity, principal axis thermal diffusivity and specific heat of the two-dimensional anisotropic substance, by carrying out one measurement operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二次元異方性物質の主軸熱物性である主軸熱伝導率、主軸熱拡散率、および主軸角測定方法およびその測定装置に関するものである。   The present invention relates to a method for measuring a principal axis thermal conductivity, a principal axis thermal diffusivity, and a principal axis angle, which are principal axis thermophysical properties of a two-dimensional anisotropic substance, and a measuring apparatus therefor.

二次元異方性物質の効率的、高精度の主軸熱物性値(主軸熱伝導率、主軸熱拡散率など)の分離測定法を確立することは重要である。   It is important to establish an efficient and highly accurate separation and measurement method for principal axis thermophysical properties (such as principal axis thermal conductivity and principal axis thermal diffusivity) of two-dimensional anisotropic materials.

即ち、現状の技術では、二次元異方性物質の効率的,高精度の主軸熱物性値(主軸熱伝導率、主軸熱拡散率など)の分離測定を行うことは極めて困難である。   In other words, with the current technology, it is extremely difficult to perform separate measurement of the main spindle thermophysical property values (main axis thermal conductivity, main axis thermal diffusivity, etc.) of a two-dimensional anisotropic material with high accuracy.

本発明は、二次元異方性物質の効率的,高精度の主軸熱物性値(主軸熱伝導率、主軸熱拡散率など)を測定する方法およびその装置を提供することを目的としている。   An object of the present invention is to provide a method and an apparatus for measuring an efficient and highly accurate principal axis thermophysical property (principal thermal conductivity, principal axis thermal diffusivity, etc.) of a two-dimensional anisotropic material.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

点熱源プローブ2で被測定物体1の表面を加熱し、二次元の異方性熱伝導物質の主軸熱物性値をある特定の形状に分布させた多数点の非定常温度分布として、熱電対等の温度センサー4で測定し、二次元異方性熱伝導物質の主軸熱物性値(主軸熱伝導率、主軸熱拡散率)を高精度で測定することを特徴とする主軸熱物性値測定方法に係るものである。   The surface of the object 1 to be measured is heated by the point heat source probe 2, and the unsteady temperature distribution of the multipoints in which the principal axis thermophysical value of the two-dimensional anisotropic heat conducting material is distributed in a specific shape, A main axis thermophysical property measurement method characterized by measuring with a temperature sensor 4 and measuring a main axis thermophysical property value (main axis thermal conductivity, main axis thermal diffusivity) of a two-dimensional anisotropic thermal conductive material with high accuracy. Is.

また、前記被測定物体1の表面上に前記温度センサー4の温度測定素子(熱電対などの温度センサーの測定温度素子)を少なくとも多数点分布させ、各測定点の時間に関する温度変化から、熱伝導現象を表す熱伝導方程式をテーラー展開した偏微分方程式に関する近似式を構成し、表面上に配置した各温度測定点の温度変化を用いて、各測定軸方向の熱伝導率、および熱拡散率を実験値として算出し、これらの結果を用いて主軸熱伝導率、主軸熱拡散率、および主軸角を算出して測定することを特徴とする請求項1記載の主軸熱物性値測定方法に係るものである。   Further, at least a large number of temperature measurement elements of the temperature sensor 4 (measurement temperature elements of a temperature sensor such as a thermocouple) are distributed on the surface of the object to be measured 1, and heat conduction is determined from temperature changes with respect to time at each measurement point. By constructing an approximate expression for the partial differential equation, which is a Taylor expansion of the heat conduction equation representing the phenomenon, and using the temperature change at each temperature measurement point placed on the surface, the thermal conductivity and thermal diffusivity in each measurement axis direction are calculated. 2. The spindle thermal property measurement method according to claim 1, wherein the spindle thermal conductivity, spindle thermal diffusivity, and spindle angle are calculated and measured using these results as experimental values. It is.

また、細い棒状の熱伝導体12aに抵抗細線12bを一定間隔で巻き付け、この抵抗細線12bに一定電流を通電させ、発生したジュール熱を棒状の細い熱伝導体12aに蓄えた後、熱物性を測定すべき前記被測定物体1に一定圧力で点接触させるように前記点熱源プローブ2を構成し、この点熱源プローブ2を前記被測定物体1と一定圧力で接触させ、この被測定物体1の表面に放射状に熱を流し、二次元異方性物質を反映した温度勾配などの非定常温度変化を利用し、主軸熱物性値を測定することを特徴とする請求項1,2のいずれか1項に記載の主軸熱物性値測定方法に係るものである。   Further, a thin wire-like thermal conductor 12a is wound with a thin resistance wire 12b at a constant interval, and a constant current is passed through the thin resistance wire 12b, and the generated Joule heat is stored in the thin rod-like heat conductor 12a. The point heat source probe 2 is configured to make point contact with the measured object 1 to be measured at a constant pressure, and the point heat source probe 2 is brought into contact with the measured object 1 at a constant pressure. The main axis thermophysical property value is measured by using a non-steady temperature change such as a temperature gradient reflecting a two-dimensional anisotropic material by flowing heat radially on the surface. This relates to the method for measuring the principal thermophysical property value described in the paragraph.

また、前記点熱源プローブ2とする加熱棒状ヒーター12に2カ所の温度測定点を設け、随時温度変化を測定し、被測定物体1に流入する総熱量Qを検出して、試料の熱伝導率などの熱物性値を高精度で測定することを特徴とする請求項3記載の主軸熱物性値測定方法に係るものである。   In addition, two temperature measuring points are provided on the heating rod heater 12 serving as the point heat source probe 2, the temperature change is measured at any time, and the total heat quantity Q flowing into the measured object 1 is detected to detect the thermal conductivity of the sample. The thermophysical property value measurement method according to claim 3, wherein the thermophysical property value is measured with high accuracy.

また、熱物性を測定するために、被測定物体1の表面の機密性を利用して、前記点熱源プローブ2、および前記温度センサー4の温度測定素子をホルダー5で隔離した後、その空間全体を真空に排気して対流等による熱損失を無くし熱物性値を測定することを特徴とする請求項1〜4のいずれか1項に記載の主軸熱物性値測定方法に係るものである。   In order to measure the thermophysical properties, the temperature measurement elements of the point heat source probe 2 and the temperature sensor 4 are isolated by the holder 5 using the confidentiality of the surface of the object 1 to be measured. The thermophysical property value measuring method according to any one of claims 1 to 4, wherein the thermophysical property value is measured by evacuating the vacuum to eliminate heat loss due to convection or the like.

また、発熱体12bから発生する一定の熱量を生じ被測定物体1の表面を加熱するための点熱源である小さな面積を有する点熱源プローブ2と、前記点熱源プローブ2で前記被測定物体1の表面を加熱し、二次元の異方性熱伝導物質の主軸熱物性値をある特定の形状に分布させた多数点の非定常温度分布として測定するための前記熱電対等の温度センサー4とを備えて、二次元異方性熱伝導物質の主軸熱物性値(主軸熱伝導率、主軸熱拡散率)を高精度で測定し得るように構成したことを特徴とする主軸熱物性値測定装置に係るものである。   Further, a point heat source probe 2 having a small area which is a point heat source for generating a certain amount of heat generated from the heating element 12b and heating the surface of the object 1 to be measured, and the point heat source probe 2 of the object 1 to be measured. A temperature sensor 4 such as a thermocouple for heating the surface and measuring the principal axis thermophysical value of the two-dimensional anisotropic heat conductive material as a multipoint unsteady temperature distribution distributed in a specific shape. The main axis thermophysical property measuring device is characterized in that the main axis thermophysical property value (main axis thermal conductivity, main axis thermal diffusivity) of the two-dimensional anisotropic thermal conductive material can be measured with high accuracy. Is.

また、前記温度センサー4を、この温度測定素子(熱電対などの温度センサー4の測定温度素子)を被測定物体1の表面上に少なくとも多数点分布させて測定するように構成し、各測定点の時間に関する温度変化から、熱伝導現象を表す熱伝導方程式をテーラー展開した偏微分方程式に関する近似式を構成し、表面上に配置した各温度測定点の温度変化を用いて、各測定軸方向の熱伝導率、および熱拡散率を実験値として算出し、これらの結果を用いて主軸熱伝導率、主軸熱拡散率、および主軸角を算出して測定するように構成したことを特徴とする請求項6記載の主軸熱物性値測定装置に係るものである。   In addition, the temperature sensor 4 is configured to measure the temperature measurement element (measurement temperature element of the temperature sensor 4 such as a thermocouple) by distributing at least a number of points on the surface of the object 1 to be measured. The approximate equation for the partial differential equation, which is a Taylor expansion of the heat conduction equation representing the heat conduction phenomenon, is constructed from the temperature change with respect to the time, and the temperature change at each temperature measurement point placed on the surface is used to The thermal conductivity and thermal diffusivity are calculated as experimental values, and the spindle thermal conductivity, spindle thermal diffusivity, and spindle angle are calculated and measured using these results. This relates to the main spindle thermophysical property measuring device according to Item 6.

また、前記点熱源プローブ2を、細い棒状の熱伝導体12aに抵抗細線12bを一定間隔で巻き付け、この抵抗細線12bに一定電流を通電させることで発生したジュール熱をこの棒状の細い熱伝導体12aに蓄え、熱物性を測定すべき前記被測定物体1に前記ジュール熱を蓄えた熱伝導体12aを一定圧力で接触させてこの被測定物体1の表面に放射状に熱を流し得るように構成し、この点熱源プローブ2によって前記被測定物体1の表面に放射状に熱を流して二次元異方性物質を反映した非定常温度勾配の変化を構成し、主軸熱物性値を測定するように構成したことを特徴とする請求項6,7のいずれか1項に記載の主軸熱物性値測定装置に係るものである。   Further, the point heat source probe 2 is wound around a thin rod-shaped heat conductor 12a with a resistance thin wire 12b at regular intervals, and Joule heat generated by applying a constant current to the resistance thin wire 12b is applied to the rod-shaped thin heat conductor. The thermal conductor 12a that stores the Joule heat is brought into contact with the object to be measured 1 whose thermal physical properties are to be measured and contacted at a constant pressure so that heat can flow radially on the surface of the object to be measured 1 Then, the point heat source probe 2 causes heat to flow radially to the surface of the measured object 1 to form a change in the unsteady temperature gradient reflecting the two-dimensional anisotropic material, and measure the thermophysical property value of the spindle. It is comprised, It concerns on the principal-axis thermophysical-value measuring apparatus of any one of Claim 6, 7 characterized by the above-mentioned.

また、前記熱伝導体12aと前記抵抗細線12bとから成る加熱棒状ヒーター12に2カ所の温度測定点B,Cを設けた構成とし、前記温度測定点B,Cの温度を随時測定し、被測定物体1に流入する総熱流入量Qを検出して、熱物性値を高精度で測定するように構成したことを特徴とする請求項8記載の主軸熱物性値測定装置に係るものである。   The heating rod-like heater 12 composed of the heat conductor 12a and the resistance thin wire 12b is provided with two temperature measurement points B and C, and the temperature of the temperature measurement points B and C is measured as needed, 9. The spindle thermophysical property measuring apparatus according to claim 8, wherein the total heat inflow amount Q flowing into the measuring object 1 is detected and the thermophysical property value is measured with high accuracy. .

また、前記熱物性値を測定するために、被測定物体1の表面を加工することなく測定するため、前記点熱源プローブ2の大気測定雰囲気の影響を極力減少させるため、前記点熱源プローブ2、および温度測定素子(熱電対などの温度センサー4の測定温度素子)を表面に密着性の良いホルダー5で隔離し、その部分を真空に排気した構成として、対流等による熱損失を無くし、熱物性を測定するように構成したことを特徴とする請求項6〜9のいずれか1項に記載の主軸熱物性値測定装置に係るものである。   In order to measure the thermophysical value without processing the surface of the object 1 to be measured, in order to reduce the influence of the atmosphere measurement atmosphere of the point heat source probe 2 as much as possible, the point heat source probe 2, In addition, the temperature measurement element (measurement temperature element of temperature sensor 4 such as a thermocouple) is isolated on the surface with a holder 5 having good adhesion, and the portion is evacuated to a vacuum to eliminate heat loss due to convection, etc. 10. The spindle thermophysical property measuring apparatus according to claim 6, wherein the spindle thermophysical property measuring apparatus is measured.

本発明は上述のようにするから、二次元異方性物質の効率的,高精度の主軸熱物性値(主軸熱伝導率、主軸熱拡散率など)を測定することができる。   Since the present invention is as described above, it is possible to measure the spindle thermal property values (spindle thermal conductivity, spindle thermal diffusivity, etc.) of a two-dimensional anisotropic material with high accuracy and high accuracy.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

この発明による測定方法は、例えば、棒状で先端が微少な直径に加工した熱伝導体12aとなる金属体12aに発熱体12bであるニクロム線などの抵抗細線12bを均等に巻き付け一定電流を通電してヒーター12とした点状熱源2(点熱源プローブ2)を、二次元異方性物質である被測定物体1に接触させ、試料表面の一点の加熱点を中心として一様に熱を拡散させるため、熱は二次元異方性物質の特性を反映した形で拡散していくので、異方性特性を考慮した二次元的な測定試料の表面の非定常的な温度分布を測定することにより、二次元異方性物質の主軸熱伝導率、および主軸熱拡散率を測定できることとなる。   In the measuring method according to the present invention, for example, a resistive element 12b such as a nichrome wire that is a heating element 12b is evenly wound around a metal body 12a that is a rod-like heat conductor 12a that has been processed into a small diameter, and a constant current is applied. Then, the point heat source 2 (point heat source probe 2) which is a heater 12 is brought into contact with the object 1 to be measured which is a two-dimensional anisotropic substance, and heat is uniformly diffused around one heating point of the sample surface. Therefore, since heat diffuses in a form that reflects the characteristics of the two-dimensional anisotropic material, by measuring the unsteady temperature distribution on the surface of the two-dimensional measurement sample that takes into account the anisotropic characteristics, Thus, the principal axis thermal conductivity and the principal axis thermal diffusivity of the two-dimensional anisotropic substance can be measured.

即ち、この発明によると、二次元異方性固体表面に直接設定した熱電対4により、ヒーター12に一定電流を加え、発生したジュール熱を微少面積の点熱源プローブ12から、測定試料の表面に熱を加え、測定試料の表面、および内部を熱が拡散していく状況を、例えば一方向に3点づつ等間隔に設置した熱電対4により熱伝導率、及び熱拡散率を測定し、その幾何学的関係を利用して、3方向の熱伝導率、および熱拡散率より主軸角の方向と、各主軸熱物性値である、二つの主軸熱伝導率、および二つの主軸熱拡散率を直接決定できることとなる。   That is, according to the present invention, a constant current is applied to the heater 12 by the thermocouple 4 set directly on the surface of the two-dimensional anisotropic solid, and the generated Joule heat is transferred from the point heat source probe 12 having a small area to the surface of the measurement sample. Heat is applied to the surface of the measurement sample and the situation in which heat diffuses. For example, the thermal conductivity and thermal diffusivity are measured by thermocouples 4 arranged at equal intervals in three directions. Using the geometrical relationship, the direction of the main axis angle from the thermal conductivity in three directions and the thermal diffusivity, and the two main axis thermal conductivity values and the two main axis thermal diffusivities, which are the respective main axis thermal properties It can be decided directly.

従って、本発明は、二次元異方性物質の効率的,高精度の主軸熱物性値(主軸熱伝導率、主軸熱拡散率など)を測定することができる。   Therefore, the present invention can measure an efficient and highly accurate principal axis thermophysical value (principal thermal conductivity, principal axis thermal diffusivity, etc.) of a two-dimensional anisotropic material.

また、この発明に用いる装置について述べれば、前述のように、一定形状の前記熱伝導体12aとなる棒状金属体12aに電気抵抗細線12bを巻き付けたもので、一定電流を流すとジュール熱を発生しこの棒状金属体12aが、点状の熱源2となり点接触した測定試料の表面に熱が流れていく熱流場を形成し、点熱源2から同一間隔で離れた3カ所の位置に、等角度(例えば30度、45度、60度など)で9点の温度測定点を設け、これらの温度測定点の非定常温度変化を測定し、円柱座表系の熱伝導方程式に従って熱が流れていくので、この方程式を差分近似して、等間隔にある3方向の熱伝導率、および熱拡散率を測定し、これらの測定値から、主軸方向を算出し、最終的に、主軸熱伝導率、主軸熱拡散率、および主軸角を測定する構成となっている。   Further, as described above, the apparatus used in the present invention is the one in which the electric wire 12b is wound around the rod-shaped metal body 12a which becomes the heat conductor 12a having a constant shape, and Joule heat is generated when a constant current is passed. This rod-shaped metal body 12a becomes a point-like heat source 2 and forms a heat flow field in which heat flows on the surface of the measurement sample that is in point contact, and is equiangular at three positions away from the point heat source 2 at the same interval. Nine temperature measurement points are provided (for example, 30 degrees, 45 degrees, 60 degrees, etc.), unsteady temperature changes at these temperature measurement points are measured, and heat flows according to the heat conduction equation of the cylindrical seat system. Therefore, this equation is approximated by a difference, and the thermal conductivity and thermal diffusivity in three directions at equal intervals are measured. From these measured values, the principal axis direction is calculated, and finally, the principal axis thermal conductivity, The main axis thermal diffusivity and main axis angle are measured. There.

二次元異方性物質の表面上に設定された各温度測定点の温度測定は、点状熱源2による印可熱量が、試料に如何に吸収、拡散されるかを測定するものである。   The temperature measurement at each temperature measurement point set on the surface of the two-dimensional anisotropic material measures how the amount of heat applied by the point heat source 2 is absorbed and diffused by the sample.

この実験に当たっては、二次元異方性物質の熱のリーク損失を防ぐため試料全体、ヒーター12加熱部をホルダー5で覆い、温度が常に一定になるよう制御、保持しておく。   In this experiment, in order to prevent heat leakage loss of the two-dimensional anisotropic substance, the entire sample and the heater 12 heating part are covered with the holder 5 and controlled and held so that the temperature is always constant.

主軸熱物性測定においてより精度の高い測定を行う場合には、点状熱源2による固体表面にある9点の測定温度点温度をmKの高分解能温度で測定する必要がある。本装置は、この要求を十分に満たしており、二次元異方性熱伝導物質の主軸物性値を測定、算出する手段を備えた構成となっている。   In the measurement of the main shaft thermophysical properties, it is necessary to measure nine measurement temperature point temperatures on the solid surface by the point heat source 2 at a high resolution temperature of mK. The present apparatus sufficiently satisfies this requirement, and has a configuration including means for measuring and calculating the physical property values of the principal axis of the two-dimensional anisotropic heat conductive material.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、点熱源プローブ2で被測定物体1(試料1)の表面を加熱し、二次元の異方性熱伝導物質の主軸熱物性値をある特定の形状に分布させた多数点の非定常温度分布として、熱電対等の温度センサー4で測定し、二次元異方性熱伝導物質の主軸熱物性値(主軸熱伝導率、主軸熱拡散率)を高精度で測定できる主軸熱定数測定方法に係るものである。   In this embodiment, the surface of the object to be measured 1 (sample 1) is heated by the point heat source probe 2, and the principal axis thermophysical property values of the two-dimensional anisotropic heat conductive material are distributed in a specific shape. Main axis thermal constant measurement that can be measured with temperature sensor 4 such as thermocouple as unsteady temperature distribution and can measure main axis thermophysical property (main axis thermal conductivity, main axis thermal diffusivity) of two-dimensional anisotropic heat conductive material with high accuracy It concerns the method.

先ず、本実施例に係る主軸熱定数測定方法に用いる測定装置、即ち、二次元熱物性測定部、測定装置および測定装置全体を、それぞれ図1〜図3に基づいて説明する。   First, a measuring device used in the spindle thermal constant measuring method according to the present embodiment, that is, a two-dimensional thermophysical property measuring unit, a measuring device, and the entire measuring device will be described with reference to FIGS.

図1は、その熱流計式多点温度測定法による二次元異方性物質の主軸熱定数測定装置の点熱源2、および9箇所の温度測定点(点4aから4iのr,r,rの各位置に取り付け)の配置状況を示している。試料1の半径Dとし、熱電対4の取り付け位置は角度αとして、α=45度の場合を示しているが、α=45度の同一角上の異なる3軸、すなわち、0度、45度、90度における測定軸上の9点の温度変化を測定することにより、実測熱伝導率(下記式(1))と実測熱拡散率(下記式(5))を求めることにより、2種類の異なる主軸熱伝導率(下記式(2)、(3))、主軸熱拡散率(下記式(6)、(7))、および主軸角の位置φλ(下記式(4))を同時に測定できることを示している。 FIG. 1 shows a point heat source 2 of a principal axis thermal constant measuring device for a two-dimensional anisotropic material by the heat flow meter type multi-point temperature measuring method, and nine temperature measuring points (r 1 , r 2 , points 4 a to 4 i, shows the disposition of an attachment) to the position of r 3. Although the radius D of the sample 1 and the mounting position of the thermocouple 4 are indicated by an angle α and α = 45 degrees, three different axes on the same angle of α = 45 degrees, that is, 0 degrees and 45 degrees are shown. By measuring the temperature change at nine points on the measurement axis at 90 degrees, the measured thermal conductivity (the following formula (1)) and the measured thermal diffusivity (the following formula (5)) are obtained. Different spindle thermal conductivity (following formulas (2) and (3)), spindle thermal diffusivity (following formulas (6) and (7)), and spindle angle position φ λ (following formula (4)) It shows what you can do.

図2は、ヒーター・試料ホルダー部の詳細を示している。ヒーター12の抵抗細線12bに一定電流を加え、流入熱量Qを発生させ、点熱源2を試料1に接触させて熱を加える。流入熱量Qは、熱流計3の点B、および点Cの温度を測定し、既知であるヒーターの熱伝導率を用いて、フーリエの法則からQを求める。試料1の表面部は、対流による熱損出を減少させるため、真空排気系6により排気し、主軸熱物性値の測定精度を高めることができる。   FIG. 2 shows details of the heater / sample holder section. A constant current is applied to the resistance thin wire 12b of the heater 12 to generate an inflow heat quantity Q, and the point heat source 2 is brought into contact with the sample 1 to apply heat. The inflow heat quantity Q is obtained by measuring the temperature at points B and C of the heat flow meter 3 and using the known heat conductivity of the heater, Q from the Fourier law. The surface portion of the sample 1 is evacuated by the evacuation system 6 in order to reduce heat loss due to convection, and the measurement accuracy of the main shaft thermophysical property value can be improved.

図3は、測定装置の全体概要図を示している。二次元異方性物質である試料1を試料設置台10にのせ、ホルダー5で試料全体を覆った後、点熱源2を用いて試料1を局所的に加熱し、試料1表面に配置した9点の熱電対4の温度変化を、マルチ温度計11を使って測定し、これらの測定データをコンピュータ7に格納する。これらの温度測定値は、直ちに、コンピュータ7により二次元異方性熱伝導物質の主軸熱伝導率、主軸熱拡散率、比熱、および主軸角として瞬時に解析されCRT9上に表示される。   FIG. 3 shows an overall schematic diagram of the measuring apparatus. The sample 1 which is a two-dimensional anisotropic material is placed on the sample setting table 10, and the entire sample is covered with the holder 5, and then the sample 1 is locally heated using the point heat source 2 and placed on the surface of the sample 1 9 The temperature change of the point thermocouple 4 is measured using the multi-thermometer 11, and these measurement data are stored in the computer 7. These measured temperature values are immediately analyzed by the computer 7 as the principal axis thermal conductivity, the principal axis thermal diffusivity, the specific heat, and the principal axis angle of the two-dimensional anisotropic heat conductive material, and displayed on the CRT 9.

前記測定装置を用いて本実施例に係る主軸熱定数測定方法を行う。   The spindle thermal constant measurement method according to the present embodiment is performed using the measurement apparatus.

即ち、二次元異方性物体の測定試料表面に設置した3組×3対の熱電対4の中央に、点熱源2のヒーター部にジュール熱を発生させ、点熱源3の熱を接触させ、熱を加えると、熱が拡散し、二次元異方性物質の特性を反映した温度分布を示すが、この温度の変化を測定して、二次元異方性物質の主軸熱伝導率と主軸熱拡散率が測定できることを理論的に明らかにする。   That is, Joule heat is generated in the heater part of the point heat source 2 at the center of the three sets × 3 pairs of thermocouples 4 installed on the surface of the measurement sample of the two-dimensional anisotropic object, and the heat of the point heat source 3 is contacted. When heat is applied, the heat diffuses and shows a temperature distribution that reflects the properties of the two-dimensional anisotropic material, and the change in temperature is measured to determine the principal axis thermal conductivity and the principal axis heat of the two-dimensional anisotropic material. Theoretically clarify that the diffusivity can be measured.

3対の熱電対4による一方向の熱伝導率は、熱電対4の点熱源2からの距離と測定温度差の式(1)で表すことができる。   The thermal conductivity in one direction by the three pairs of thermocouples 4 can be expressed by the equation (1) of the distance from the point heat source 2 of the thermocouple 4 and the measured temperature difference.

Figure 2005214858
Figure 2005214858

ここで、Q:点熱源から供給される熱量、h:二次元異方性物質の試料厚さ、λ:測定軸方向の実測熱伝導率、r、r:温度測定位置までの半径を表す。 Here, Q: the amount of heat supplied from the point heat source, h 1 : sample thickness of the two-dimensional anisotropic material, λ i : measured thermal conductivity in the measurement axis direction, r 1 , r 2 : up to the temperature measurement position Represents the radius.

式(1)で実験的に求められた0度、45度、および90度における熱伝導率は、二次元異方性の熱物性値を表しているので、次式より一つの主軸熱伝導率λp1は、式(2)により算出される。 The thermal conductivity at 0 °, 45 °, and 90 ° experimentally obtained by the equation (1) represents the thermophysical value of two-dimensional anisotropy. λ p1 is calculated by equation (2).

Figure 2005214858
Figure 2005214858

ここで、λp1:一つの主軸熱伝導率、λ、λ、λ:各0度、45度、90度における熱拡散率の実測値を示す。 Here, λ p1 : one main shaft thermal conductivity, λ 1 , λ 2 , λ 3 : measured values of thermal diffusivity at 0 degrees, 45 degrees, and 90 degrees, respectively.

同様にλp2は、次式(3)で算出される。 Similarly, λ p2 is calculated by the following equation (3).

Figure 2005214858
Figure 2005214858

ここで、λp2は他方の主軸熱伝導率を示す。 Here, λ p2 represents the other principal axis thermal conductivity.

さらに、二次元異方性物質の主軸角φλは、式(4)により求められる。 Further, the principal axis angle φ λ of the two-dimensional anisotropic material is obtained by the equation (4).

Figure 2005214858
Figure 2005214858

ここで、φλは実験的に角度0度、45度、90度の実測熱伝導率λ、λ、λによって決定される主軸角である。 Here, φ λ is a principal axis angle determined experimentally by measured thermal conductivities λ 1 , λ 2 , and λ 3 at angles of 0 degrees, 45 degrees, and 90 degrees.

一方、非定常状態の0度、45度、および90度の9点の温度を測定することにより、次式(5)を用いて、これらの各軸方向における熱拡散率を求めることができる。   On the other hand, by measuring nine temperatures of 0 degree, 45 degrees, and 90 degrees in the unsteady state, the thermal diffusivity in each of these axial directions can be obtained using the following equation (5).

Figure 2005214858
Figure 2005214858

ここで、Δr:r−r、もしくはr−rで表される設置熱電対間距離、Δt:温度の実測時間間隔、κ:測定軸方向の実測熱拡散率の測定値を示す。 Here, Δr: distance between installed thermocouples represented by r 2 -r 1 or r 3 -r 2 , Δt: measured time interval of temperature, κ i : measured value of measured thermal diffusivity in measurement axis direction Show.

これら0度、45度、および90度における熱拡散率の実測値により、次式(6)を用いて、一つの主軸熱拡散率κp1を求めることができる。 From the measured values of the thermal diffusivity at 0 degrees, 45 degrees, and 90 degrees, one main shaft thermal diffusivity κ p1 can be obtained using the following equation (6).

Figure 2005214858
Figure 2005214858

ここで、κp1:一つの主軸熱拡散率,κ、κ、κ:各0度、45度、90度における熱拡散率の実測値を表す。 Here, κ p1 : one main axis thermal diffusivity, κ 1 , κ 2 , κ 3 : each measured value of thermal diffusivity at 0 degree, 45 degree, and 90 degree.

同様に、もう一方の主軸熱拡散率κp2を、次式(7)により、求めることができる。 Similarly, the other principal axis thermal diffusivity κ p2 can be obtained by the following equation (7).

Figure 2005214858
Figure 2005214858

ここで、λp2は他方の主軸熱伝導率である。 Here, λ p2 is the other principal axis thermal conductivity.

さらに、試料の比熱は、これらの主軸熱伝導率、および主軸熱拡散率より、次式により算出できる。   Furthermore, the specific heat of the sample can be calculated from the principal axis thermal conductivity and the principal axis thermal diffusivity according to the following equation.

Figure 2005214858
Figure 2005214858

ここで、cは比熱、ρは試料密度である。   Here, c is the specific heat and ρ is the sample density.

上述した主軸熱伝導率の式(2)、(3)、及び主軸熱拡散率(6)、(7)、その主軸角の算出式(4)に従い、二次元異方性物質の主軸熱伝導率、主軸熱拡散率、および主軸角を測定する。   In accordance with the principal axis thermal conductivity equations (2) and (3), the principal axis thermal diffusivity (6) and (7), and the principal axis angle calculation formula (4), the principal axis thermal conductivity of the two-dimensional anisotropic material Rate, principal axis thermal diffusivity, and principal axis angle.

従って、本実施例は、二次元異方性固体表面に直接設定した熱電対4により、ヒーター12に一定電流を加え、発生したジュール熱を微少面積の点熱源2から、測定試料1の表面に熱を加え、測定試料1の表面、および内部を熱が拡散していく状況を、一方向に3点づつ等間隔に設置した熱電対4により熱伝導率、及び熱拡散率を測定し、その幾何学的関係を利用して、3方向の熱伝導率、および熱拡散率より主軸角の方向と、各主軸熱物性値である、二つの主軸熱伝導率、および二つの主軸熱拡散率を直接決定することができる。   Therefore, in this embodiment, a constant current is applied to the heater 12 by the thermocouple 4 set directly on the surface of the two-dimensional anisotropic solid, and the generated Joule heat is transferred from the point heat source 2 having a small area to the surface of the measurement sample 1. Heat is applied to the surface of the measurement sample 1 and the state of heat diffusing, and the thermal conductivity and thermal diffusivity are measured by thermocouples 4 arranged at equal intervals in three directions. Using the geometrical relationship, the direction of the main axis angle from the thermal conductivity in three directions and the thermal diffusivity, and the two main axis thermal conductivity values and the two main axis thermal diffusivities, which are the respective main axis thermal properties Can be determined directly.

尚、本発明は、実施例1に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   In addition, this invention is not restricted to Example 1, The specific structure of each component can be designed suitably.

二次元異方性物質の点熱源加熱点に対する測定温度点の配置状況の詳細を示す説明図である。It is explanatory drawing which shows the detail of the arrangement | positioning condition of the measurement temperature point with respect to the point heat source heating point of a two-dimensional anisotropic substance. 二次元異方性物質における点熱源部・ホルダー部の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the point heat source part and holder part in a two-dimensional anisotropic substance. 二次元異方性物質の主軸熱伝導率、主軸熱拡散率、および主軸角測定装置の構成概要を示す説明図である。It is explanatory drawing which shows the structure outline | summary of the principal-axis thermal conductivity of a two-dimensional anisotropic substance, a principal-axis thermal diffusivity, and a principal-axis angle measuring apparatus.

符号の説明Explanation of symbols

1 被測定物体
2 点熱源プローブ
4 温度センサー
5 ホルダー
12 加熱棒状ヒータ
12a 熱伝導体
12b 抵抗細線,発熱体
Q 総熱量
B 温度測定点
C 温度測定点

1 Object to be measured 2 Point heat source probe 4 Temperature sensor 5 Holder
12 Heating rod heater
12a Thermal conductor
12b Resistance wire, heating element Q Total heat B Temperature measuring point C Temperature measuring point

Claims (10)

点熱源プローブで被測定物体の表面を加熱し、二次元の異方性熱伝導物質の主軸熱物性値をある特定の形状に分布させた多数点の非定常温度分布として、熱電対等の温度センサーで測定し、二次元異方性熱伝導物質の主軸熱物性値(主軸熱伝導率、主軸熱拡散率)を高精度で測定することを特徴とする主軸熱物性値測定方法。   A temperature sensor such as a thermocouple is used as a multipoint unsteady temperature distribution in which the surface of the object to be measured is heated with a point heat source probe and the principal axis thermophysical values of a two-dimensional anisotropic heat conducting material are distributed in a specific shape. And measuring the principal axis thermophysical property value (principal axis thermal conductivity, principal axis thermal diffusivity) of the two-dimensional anisotropic thermal conductive material with high accuracy. 前記被測定物体の表面上に前記温度センサーの温度測定素子(熱電対などの温度センサーの測定温度素子)を少なくとも多数点分布させ、各測定点の時間に関する温度変化から、熱伝導現象を表す熱伝導方程式をテーラー展開した偏微分方程式に関する近似式を構成し、表面上に配置した各温度測定点の温度変化を用いて、各測定軸方向の熱伝導率、および熱拡散率を実験値として算出し、これらの結果を用いて主軸熱伝導率、主軸熱拡散率、および主軸角を算出して測定することを特徴とする請求項1記載の主軸熱物性値測定方法。   The temperature measurement element of the temperature sensor (measurement temperature element of a temperature sensor such as a thermocouple) is distributed at least on the surface of the object to be measured, and the heat representing the heat conduction phenomenon from the temperature change with respect to time at each measurement point. Construct an approximate equation for the partial differential equation, which is a Taylor expansion of the conduction equation, and calculate the thermal conductivity and thermal diffusivity in the direction of each measurement axis as experimental values using the temperature change at each temperature measurement point placed on the surface. The main shaft thermophysical property measurement method according to claim 1, wherein the main shaft thermal conductivity, the main shaft thermal diffusivity, and the main shaft angle are calculated and measured using these results. 細い棒状の熱伝導体に抵抗細線を一定間隔で巻き付け、この抵抗細線に一定電流を通電させ、発生したジュール熱を棒状の細い熱伝導体に蓄えた後、熱物性を測定すべき前記被測定物体に一定圧力で点接触させるように前記点熱源プローブを構成し、この点熱源プローブを前記被測定物体と一定圧力で接触させ、この被測定物体の表面に放射状に熱を流し、二次元異方性物質を反映した温度勾配などの非定常温度変化を利用し、主軸熱物性値を測定することを特徴とする請求項1,2のいずれか1項に記載の主軸熱物性値測定方法。   A thin wire-like heat conductor is wound with a thin resistance wire at regular intervals, a constant current is passed through the thin wire, the generated Joule heat is stored in the thin stick-shaped heat conductor, and the physical properties to be measured are to be measured. The point heat source probe is configured to make point contact with an object at a constant pressure, the point heat source probe is brought into contact with the object to be measured at a constant pressure, and heat is flowed radially on the surface of the object to be measured, so The spindle thermophysical property value measurement method according to any one of claims 1 and 2, wherein the spindle thermophysical property value is measured using an unsteady temperature change such as a temperature gradient reflecting an isotropic substance. 前記点熱源プローブとする加熱棒状ヒーターに2カ所の温度測定点を設け、随時温度変化を測定し、被測定物体に流入する総熱量を検出して、試料の熱伝導率などの熱物性値を高精度で測定することを特徴とする請求項3記載の主軸熱物性値測定方法。   Two temperature measurement points are provided on the heating rod heater as the point heat source probe, the temperature change is measured at any time, the total amount of heat flowing into the object to be measured is detected, and the thermal properties such as the thermal conductivity of the sample are obtained. 4. The spindle thermophysical property measurement method according to claim 3, wherein the measurement is performed with high accuracy. 熱物性を測定するために、被測定物体の表面の機密性を利用して、前記点熱源プローブ、および前記温度センサーの温度測定素子をホルダーで隔離した後、その空間全体を真空に排気して対流等による熱損失を無くし熱物性値を測定することを特徴とする請求項1〜4のいずれか1項に記載の主軸熱物性値測定方法。   In order to measure thermophysical properties, using the confidentiality of the surface of the object to be measured, the point heat source probe and the temperature measuring element of the temperature sensor are isolated by a holder, and then the entire space is evacuated to a vacuum. 5. The method for measuring a spindle thermophysical property value according to any one of claims 1 to 4, wherein the thermophysical property value is measured by eliminating heat loss due to convection or the like. 発熱体から発生する一定の熱量を生じ被測定物体の表面を加熱するための点熱源である小さな面積を有する点熱源プローブと、前記点熱源プローブで前記被測定物体の表面を加熱し、二次元の異方性熱伝導物質の主軸熱物性値をある特定の形状に分布させた多数点の非定常温度分布として測定するための前記熱電対等の温度センサーとを備えて、二次元異方性熱伝導物質の主軸熱物性値(主軸熱伝導率、主軸熱拡散率)を高精度で測定し得るように構成したことを特徴とする主軸熱物性値測定装置。   A point heat source probe having a small area that is a point heat source for generating a certain amount of heat generated from the heating element and heating the surface of the object to be measured, and the surface of the object to be measured by the point heat source probe to be two-dimensional A temperature sensor such as the thermocouple for measuring the principal axis thermophysical property value of the anisotropic heat conductive material as a multipoint unsteady temperature distribution distributed in a specific shape, and a two-dimensional anisotropic heat A main spindle thermophysical property measuring apparatus configured to measure a main spindle thermophysical property value (main shaft thermal conductivity, main shaft thermal diffusivity) of a conductive material with high accuracy. 前記温度センサーを、この温度測定素子(熱電対などの温度センサーの測定温度素子)を被測定物体の表面上に少なくとも多数点分布させて測定するように構成し、各測定点の時間に関する温度変化から、熱伝導現象を表す熱伝導方程式をテーラー展開した偏微分方程式に関する近似式を構成し、表面上に配置した各温度測定点の温度変化を用いて、各測定軸方向の熱伝導率、および熱拡散率を実験値として算出し、これらの結果を用いて主軸熱伝導率、主軸熱拡散率、および主軸角を算出して測定するように構成したことを特徴とする請求項6記載の主軸熱物性値測定装置。   The temperature sensor is configured to measure the temperature measurement element (measurement temperature element of a temperature sensor such as a thermocouple) by distributing at least a plurality of points on the surface of the object to be measured, and the temperature change with respect to time of each measurement point From the above, the approximate equation for the partial differential equation, which is a Taylor expansion of the heat conduction equation representing the heat conduction phenomenon, is constructed, and using the temperature change at each temperature measurement point placed on the surface, the thermal conductivity in the direction of each measurement axis, and 7. The spindle according to claim 6, wherein the thermal diffusivity is calculated as an experimental value, and the spindle thermal conductivity, the spindle thermal diffusivity, and the spindle angle are calculated and measured using these results. Thermophysical property measuring device. 前記点熱源プローブを、細い棒状の熱伝導体に抵抗細線を一定間隔で巻き付け、この抵抗細線に一定電流を通電させることで発生したジュール熱をこの棒状の細い熱伝導体に蓄え、熱物性を測定すべき前記被測定物体に前記ジュール熱を蓄えた熱伝導体を一定圧力で接触させてこの被測定物体の表面に放射状に熱を流し得るように構成し、この点熱源プローブによって前記被測定物体の表面に放射状に熱を流して二次元異方性物質を反映した非定常温度勾配の変化を構成し、主軸熱物性値を測定するように構成したことを特徴とする請求項6,7のいずれか1項に記載の主軸熱物性値測定装置。   The point heat source probe is wound around a thin rod-shaped heat conductor at a constant interval, and Joule heat generated by applying a constant current to the resistance thin wire is stored in the thin rod-shaped heat conductor, and thermophysical properties are obtained. A heat conductor storing the Joule heat is brought into contact with the object to be measured at a constant pressure so that heat can flow radially to the surface of the object to be measured, and the point heat source probe is used to measure the object to be measured. 8. A structure in which a main body thermophysical property value is measured by causing a heat flow radially on the surface of the object to constitute a change in an unsteady temperature gradient reflecting a two-dimensional anisotropic material. The main-axis thermophysical property value measuring apparatus according to any one of the above. 前記熱伝導体と前記抵抗細線とから成る加熱棒状ヒーターに2カ所の温度測定点を設けた構成とし、前記温度測定点の温度を随時測定し、被測定物体に流入する総熱流入量を検出して、熱物性値を高精度で測定するように構成したことを特徴とする請求項8記載の主軸熱物性値測定装置。   The heating rod-shaped heater consisting of the heat conductor and the resistive thin wire is provided with two temperature measurement points, and the temperature at the temperature measurement points is measured at any time to detect the total heat inflow flowing into the object to be measured. 9. The spindle thermophysical property measuring apparatus according to claim 8, wherein the thermophysical property value is measured with high accuracy. 前記熱物性値を測定するために、被測定物体の表面を加工することなく測定するため、前記点熱源プローブの大気測定雰囲気の影響を極力減少させるため、前記点熱源プローブ、および温度測定素子(熱電対などの温度センサーの測定温度素子)を表面に密着性の良いホルダーで隔離し、その部分を真空に排気した構成として、対流等による熱損失を無くし、熱物性を測定するように構成したことを特徴とする請求項6〜9のいずれか1項に記載の主軸熱物性値測定装置。
In order to measure the thermophysical value without processing the surface of the object to be measured, in order to reduce the influence of the atmosphere measurement atmosphere of the point heat source probe as much as possible, the point heat source probe and the temperature measuring element ( The temperature element of the temperature sensor such as a thermocouple) is isolated on the surface with a holder with good adhesion, and the part is evacuated to a vacuum so that heat loss due to convection is eliminated and the thermophysical properties are measured. 10. The spindle thermophysical property value measuring apparatus according to any one of claims 6 to 9.
JP2004023725A 2004-01-30 2004-01-30 Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device Expired - Fee Related JP4203893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023725A JP4203893B2 (en) 2004-01-30 2004-01-30 Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023725A JP4203893B2 (en) 2004-01-30 2004-01-30 Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device

Publications (3)

Publication Number Publication Date
JP2005214858A true JP2005214858A (en) 2005-08-11
JP2005214858A5 JP2005214858A5 (en) 2007-03-15
JP4203893B2 JP4203893B2 (en) 2009-01-07

Family

ID=34906645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023725A Expired - Fee Related JP4203893B2 (en) 2004-01-30 2004-01-30 Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device

Country Status (1)

Country Link
JP (1) JP4203893B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164032A (en) * 2010-02-12 2011-08-25 Eiji Nemoto Method for measuring principal-axis thermal constant of two-dimensional anisotropic heat conductor using multi-point temperature measurement by pulse/period method, and measurement apparatus thereof
EP2685248A1 (en) 2012-07-13 2014-01-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for measuring the thermal conductivity of an anisotropic thin material
CN108896606A (en) * 2018-09-25 2018-11-27 国电环境保护研究院有限公司 A kind of unstable state cylinder heat resource method temperature becomes effective thermal conductivity measurement device and method
JP2021067651A (en) * 2019-10-28 2021-04-30 一般財団法人電力中央研究所 Method and device for measuring arc generation position and heat transfer coefficient from arc to object
CN113049629A (en) * 2019-12-27 2021-06-29 长圣仪器股份有限公司 Thermal diffusion performance measurement system and method
CN113155893A (en) * 2021-03-29 2021-07-23 北京工业大学 Device and method for detecting different crystal orientation heat conductivity coefficient ratios of anisotropic material
CN116754607A (en) * 2023-08-17 2023-09-15 北京科技大学 Heat exchange and abrasion comprehensive test device and method for dispersion body and solid wall surface

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164032A (en) * 2010-02-12 2011-08-25 Eiji Nemoto Method for measuring principal-axis thermal constant of two-dimensional anisotropic heat conductor using multi-point temperature measurement by pulse/period method, and measurement apparatus thereof
EP2685248A1 (en) 2012-07-13 2014-01-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for measuring the thermal conductivity of an anisotropic thin material
FR2993360A1 (en) * 2012-07-13 2014-01-17 Commissariat Energie Atomique METHOD FOR MEASURING THERMAL CONDUCTIVITY OF ANISOTROPIC THIN MATERIAL
CN108896606A (en) * 2018-09-25 2018-11-27 国电环境保护研究院有限公司 A kind of unstable state cylinder heat resource method temperature becomes effective thermal conductivity measurement device and method
CN108896606B (en) * 2018-09-25 2024-02-06 国电环境保护研究院有限公司 Device and method for measuring effective heat conductivity coefficient of temperature change by using unsteady cylindrical heat source method
JP2021067651A (en) * 2019-10-28 2021-04-30 一般財団法人電力中央研究所 Method and device for measuring arc generation position and heat transfer coefficient from arc to object
JP7335129B2 (en) 2019-10-28 2023-08-29 一般財団法人電力中央研究所 Measuring method and measuring device for arc generation position and heat transfer coefficient from arc to object
CN113049629A (en) * 2019-12-27 2021-06-29 长圣仪器股份有限公司 Thermal diffusion performance measurement system and method
CN113155893A (en) * 2021-03-29 2021-07-23 北京工业大学 Device and method for detecting different crystal orientation heat conductivity coefficient ratios of anisotropic material
CN113155893B (en) * 2021-03-29 2024-01-05 北京工业大学 Device and method for detecting different crystal orientation heat conduction coefficient ratios of anisotropic material
CN116754607A (en) * 2023-08-17 2023-09-15 北京科技大学 Heat exchange and abrasion comprehensive test device and method for dispersion body and solid wall surface
CN116754607B (en) * 2023-08-17 2023-10-27 北京科技大学 Heat exchange and abrasion comprehensive test device and method for dispersion body and solid wall surface

Also Published As

Publication number Publication date
JP4203893B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
EP3567367B1 (en) Steady-state test method for heat-conducting property in the direction along plane of sheet material
Jannot et al. Thermal properties measurement of materials
Buttsworth Assessment of effective thermal product of surface junction thermocouples on millisecond and microsecond time scales
Agarwal et al. Experimental techniques for thermal product determination of coaxial surface junction thermocouples during short duration transient measurements
Mohammed et al. Design and fabrication of coaxial surface junction thermocouples for transient heat transfer measurements
Elkholy et al. An improved transient plane source technique and methodology for measuring the thermal properties of anisotropic materials
Kumar et al. Conduction based calibration of handmade platinum thin film heat transfer gauges for transient measurements
JP2008309729A (en) Device and method for measuring thermal conductivity
JP4203893B2 (en) Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device
Jannot et al. Thermal conductivity measurement of insulating materials up to 1000° C with a needle probe
Paniagua et al. Thermocouple probes for accurate temperature measurements in short duration facilities
JP5345574B2 (en) Measuring method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method and measuring device
Löhle et al. Characterization of a heat flux sensor using short pulse laser calibration
US2924771A (en) Method and apparatus for identifying metals
EP1565715A1 (en) Fluid temperature measurement
EP3047284B1 (en) Sensor for high temperature turbulent flow
JP2018040653A (en) Heat conductivity measuring method and apparatus therefor
Nishimura et al. Measurement of in-plane thermal and electrical conductivities of thin film using a micro-beam sensor: A feasibility study using gold film
US20220397438A1 (en) Non-invasive thermometer
Manshadi et al. A new approach about heat transfer of hot-wire anemometer
Koniorczyk et al. Step-wise transient method for analysis of thermal properties of materials Part 2. Experimental investigations
JP3246860B2 (en) Thermal characteristic measuring device and soil moisture content measuring device using the same
CN114424035A (en) Non-invasive thermometer
Jiang et al. Sheathed probe thermal gas mass flow meter heat transfer analysis
JP3146357B2 (en) Precise measurement method of thermal conductivity of liquid material using short-time microgravity environment

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Effective date: 20080502

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080515

A521 Written amendment

Effective date: 20080714

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080908

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111024

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees