JP5345574B2 - Measuring method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method and measuring device - Google Patents

Measuring method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method and measuring device Download PDF

Info

Publication number
JP5345574B2
JP5345574B2 JP2010029494A JP2010029494A JP5345574B2 JP 5345574 B2 JP5345574 B2 JP 5345574B2 JP 2010029494 A JP2010029494 A JP 2010029494A JP 2010029494 A JP2010029494 A JP 2010029494A JP 5345574 B2 JP5345574 B2 JP 5345574B2
Authority
JP
Japan
Prior art keywords
measured
temperature
measurement
heat
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010029494A
Other languages
Japanese (ja)
Other versions
JP2011164032A (en
Inventor
栄治 根本
晴樹 額賀
恭平 山下
Original Assignee
栄治 根本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栄治 根本 filed Critical 栄治 根本
Priority to JP2010029494A priority Critical patent/JP5345574B2/en
Publication of JP2011164032A publication Critical patent/JP2011164032A/en
Application granted granted Critical
Publication of JP5345574B2 publication Critical patent/JP5345574B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately measuring values of the principal-axis thermophysical properties of a two-dimensional anisotropic heat conductor by using pulses or a heat source which periodically changes, and to provide a measuring apparatus thereof. <P>SOLUTION: In the method for measuring a principal-axis thermal constant of the two-dimensional anisotropic heat conductor using multi-point temperature measurement by a pulse/period method, a spot-like heat source 2 capable of changing over heating and heat absorption is brought into contact with the surface of an object 1 to be measured, the two-dimensional anisotropic heat conductor to heat and absorb heat from the surface of the object 1 to be measured by the spot-like heat source 2. Temperature-measuring elements 3 arranged at a plurality of locations on the surface of the object 1 to be measured measure phase differences and temperature differences of temperature waves in a non-stationary state that the temperature field of the object 1 to be measured changes or in a stationary state that the temperature field does not change to measure values of the principal-axis thermophysical properties such as principal-axis thermal conductivity; principal axis thermal diffusivity; and the specific heat of the object 1 to be measured. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、二次元異方性熱伝導物質の主軸熱物性である主軸熱伝導率,主軸熱拡散率,及び主軸角測定方法並びにこれらを測定する測定装置に関するものである。   The present invention relates to a method for measuring principal axis thermal conductivity, principal axis thermal diffusivity, and principal axis angle, which are principal axis thermophysical properties of a two-dimensional anisotropic thermal conductive material, and a measuring apparatus for measuring these.

二次元異方性熱伝導物質の効率的,高精度の主軸熱物性値(主軸熱伝導率、主軸熱拡散率など)の分離測定法を確立することは重要である(特許文献1参照)。   It is important to establish a method for separating and measuring an efficient and highly accurate principal axis thermal property value (such as principal axis thermal conductivity, principal axis thermal diffusivity, etc.) of a two-dimensional anisotropic thermal conductive material (see Patent Document 1).

従来の二次元異方性熱伝導物質の主軸熱物性値(主軸熱伝導率,主軸熱拡散率など)の分離測定法では、一定出力の熱源を用いて測定していたが、非定常状態の温度分布から主軸熱伝導率,主軸熱拡散率を同時に精度よく求める事が難しかった。   In the conventional separation measurement method of principal axis thermophysical values (main axis thermal conductivity, principal axis thermal diffusivity, etc.) of two-dimensional anisotropic heat conducting materials, it was measured using a constant output heat source. It was difficult to accurately determine the thermal conductivity of the spindle and the thermal diffusivity of the spindle simultaneously from the temperature distribution.

特開2005−214858号公報JP 2005-214858 A

本発明は、従来の測定法が有していた問題点を解決するものであり、パルス若しくは周期的に変化する熱源を用いることで、二次元異方性熱伝導物質の主軸熱物性値(主軸熱伝導率,主軸熱拡散率など)を精度よく測定する方法及びその測定装置を提供することを目的とする。   The present invention solves the problems of conventional measurement methods, and by using a heat source that changes in a pulse or periodically, the main axis thermophysical value of the two-dimensional anisotropic heat conductive material (main axis It is an object of the present invention to provide a method for accurately measuring a thermal conductivity, a spindle thermal diffusivity, and the like and a measuring apparatus therefor.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

ペルチエ素子8を接続し加熱と吸熱とに切替え可能に構成した点状熱源2を、二次元異方性熱伝導物質若しくは二次元等方性熱伝導物質である被測定物体1の表面に接触し、前記ペルチエ素子8にパルス電流若しくはsin関数,cos関数などの周期的な電流を通電して前記被測定物体1の表面を前記点状熱源2によりパルス若しくは周期的に加熱吸熱し、この被測定物体1の表面に、前記点状熱源2を中心とする互いに等角度を成す複数の放射方向を測定軸方向としてこの測定軸方向に等間隔に配置した温度測定素子3で、この被測定物体1の温度場の変化する非定常状態若しくは温度場の変化しない定常状態における各測定点の温度波の位相差及び温度差を測定して、各測定軸方向の実測熱伝導率を前記点状熱源2から単位時間当たりに流れる熱量,前記点状熱源2からこの放射方向である前記測定軸方向の前記各測定点までの距離の対数比,前記被測定物体1の厚さ,及び前記測定点の温度差で表されるQ・ln(r/r)/(2πhΔT)により算出すると共に、各測定軸方向の実測熱拡散率をパルス周期若しくは周期関数で表される周期の温度波の時間に関する位相差で表されるtΔr/(4πτ)により算出し、これら実測熱伝導率及び実測熱拡散率より、前記被測定物体1の二つの主軸熱伝導率,二つの主軸熱拡散率,主軸角及び比熱を測定することを特徴とするパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定方法に係るものである。 A point heat source 2 connected to a Peltier element 8 and configured to be switchable between heating and heat absorption is brought into contact with the surface of the object 1 to be measured, which is a two-dimensional anisotropic heat conductive material or a two-dimensional isotropic heat conductive material. Then, a periodic current such as a pulse current or a sin function or a cos function is applied to the Peltier element 8 so that the surface of the object 1 to be measured is heated or absorbed by the point heat source 2 in a pulsed manner or periodically. A temperature measuring element 3 is disposed on the surface of the object 1 at equal intervals in the measurement axis direction with a plurality of radiation directions that are equiangular with respect to the point-like heat source 2 as the measurement axis direction. The phase difference and the temperature difference of the temperature wave at each measurement point in the unsteady state where the temperature field changes or the steady state where the temperature field does not change are measured, and the measured thermal conductivity in the direction of each measurement axis is measured as the point heat source 2. Per unit time It is represented by the amount of heat flowing, the logarithmic ratio of the distance from the point heat source 2 to each measurement point in the radial direction of the measurement, the thickness of the object 1 to be measured, and the temperature difference between the measurement points. Calculated by Q · ln (r 2 / r 1 ) / (2πhΔT), and the measured thermal diffusivity in the direction of each measurement axis is expressed by the phase difference with respect to the time of the temperature wave of the period represented by the pulse period or periodic function. TΔr 2 / (4πτ 2 ), and from these measured thermal conductivity and measured thermal diffusivity, the two principal axis thermal conductivities, the two principal axis thermal diffusivities, the principal axis angle and the specific heat of the measured object 1 are measured. The present invention relates to a principal axis thermal constant measurement method for a two-dimensional anisotropic thermal conductive material using multipoint temperature measurement by a pulse / period method.

また、前記温度測定素子3を、前記点状熱源2を中心とする0°,120°,240°の三放射方向を測定軸方向としてこの測定軸方向に等間隔に三つずつ配置することを特徴とする請求項1記載のパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定方法に係るものである。   Further, three temperature measuring elements 3 are arranged at equal intervals in the measurement axis direction with three radiation directions of 0 °, 120 °, and 240 ° centered on the point heat source 2 as measurement axis directions. The principal axis thermal constant measurement method for a two-dimensional anisotropic thermal conductive material using multipoint temperature measurement by a pulse / period method according to claim 1.

また、前記ペルチエ素子8にパルス電流若しくはsin関数,cos関数などの周期的な電流を通電して前記点状熱源2が前記被測定物体1の表面に対して加熱と吸熱とを繰り返す熱流束の印加条件を設定し、絶対法を用いて前記被測定物体1の二つの主軸熱伝導率,二つの主軸熱拡散率,主軸角及び比熱を同時に測定することを特徴とする請求項1,2のいずれか1項に記載のパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定方法に係るものである。   The Peltier element 8 is supplied with a periodic current such as a pulse current or a sin function, a cos function, etc. so that the point heat source 2 repeats heating and heat absorption on the surface of the object 1 to be measured. The application condition is set, and two principal axis thermal conductivities, two principal axis thermal diffusivities, principal axis angles and specific heat of the object to be measured 1 are simultaneously measured using an absolute method. The present invention relates to a principal axis thermal constant measurement method for a two-dimensional anisotropic thermal conductive material using multipoint temperature measurement by the pulse / period method described in any one of the items.

また、被測定物体1の温度場の変化する非定常状態若しくは温度場の変化しない定常状態における各測定点の温度波の位相差及び温度差を測定して、前記被測定物体1の二つの主軸熱伝導率,二つの主軸熱拡散率,主軸角及び比熱を測定するパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定装置であって、ペルチエ素子8を接続し加熱と吸熱とに切替え可能に構成した点状熱源2と、被測定物体1の温度場の変化する非定常状態若しくは温度場の変化しない定常状態における各測定点の温度波の位相差及び温度差を測定する温度測定素子3と、前記温度測定素子3を配置した各測定点の時間に関するパルス周期若しくは周期関数で表される周期の温度波の位相差および温度差を用いて各測定軸方向の熱伝導率及び熱拡散率を実測値として算出する実測値算出部16とを具備し、前記実測値算出部16は、前記各測定軸上の実測熱伝導率を、前記点状熱源2から単位時間当たりに流れる熱量,前記点状熱源2から放射方向線上の前記測定点までの距離の対数比,前記被測定物体1の厚さ,及び前記測定点の温度差で表されるQ・ln(r /r )/(2πhΔT)により算出する手段と、前記各測定軸上の実測熱拡散率を、パルス周期若しくは周期関数で表される周期の温度波の時間に関する位相差で表されるtΔr /(4πτ )により算出する手段とで構成したことを特徴とするパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定装置に係るものである。 Further, by measuring the phase difference and temperature difference of the temperature wave at each measurement point in the unsteady state where the temperature field of the measured object 1 changes or in the steady state where the temperature field does not change, the two main axes of the measured object 1 are measured. A principal axis thermal constant measuring device for a two-dimensional anisotropic thermal conductive material using multi-point temperature measurement by pulse / periodic method to measure thermal conductivity, two principal axis thermal diffusivities, principal axis angle and specific heat, and a Peltier element 8 and a point-like heat source 2 configured to be switchable between heating and heat absorption, and the temperature wave of each measurement point in a non-steady state where the temperature field of the object to be measured 1 changes or a steady state where the temperature field does not change A temperature measuring element 3 for measuring a phase difference and a temperature difference, and a phase difference and a temperature difference of a temperature wave having a period represented by a pulse period or a periodic function with respect to time at each measurement point where the temperature measuring element 3 is arranged. Heat transfer in the measuring axis direction An actual measurement value calculation unit 16 for calculating a thermal conductivity and a thermal diffusivity as an actual measurement value. The actual measurement value calculation unit 16 calculates the actual thermal conductivity on each measurement axis from the point heat source 2 per unit time. Q · ln (r 2) expressed by the amount of heat flowing to the point, the logarithmic ratio of the distance from the point heat source 2 to the measurement point on the radial line, the thickness of the object 1 to be measured, and the temperature difference of the measurement point / r 1) / (means for calculating the 2πhΔT), tΔr said measured thermal diffusivity on each measurement axis, represented by a phase difference with respect to time of the temperature wave period represented by the pulse period or periodic function 2 The present invention relates to an apparatus for measuring the principal axis thermal constant of a two-dimensional anisotropic heat conducting material using multipoint temperature measurement by a pulse / period method, characterized by comprising means for calculating by / (4πτ 2 ) .

また、前記温度測定素子3を、前記点状熱源2を中心とする0°,120°,240°の三放射方向を測定軸方向としてこの測定軸方向に等間隔に三つずつ配置したことを特徴とする請求項4記載のパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定装置に係るものである。   Further, three temperature measuring elements 3 are arranged at equal intervals in the measurement axis direction with three radiation directions of 0 °, 120 °, and 240 ° centered on the point heat source 2 as measurement axis directions. 5. The apparatus according to claim 4, wherein the main-axis heat constant measuring device for a two-dimensional anisotropic heat conducting material using multi-point temperature measurement by a pulse / periodic method.

また、前記ペルチエ素子8にパルス電流若しくはsin関数,cos関数などの周期的な電流を加えて前記点状熱源2が前記被測定物体1の表面に対してパルス周期若しくは周期関数で表される周期で加熱と吸熱とを繰り返す熱流束の印加条件を設定し、絶対法を用いて前記被測定物体1の二つの主軸熱伝導率,二つの主軸熱拡散率,主軸角及び比熱を同時に測定するように構成したことを特徴とする請求項4,5のいずれか1項に記載のパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定装置に係るものである。 Further, a periodic current such as a pulse current or a sin function or a cos function is applied to the Peltier element 8 so that the point-like heat source 2 is represented by a pulse period or a periodic function with respect to the surface of the object 1 to be measured. The application condition of heat flux that repeats heating and endotherm is set at, and the two principal axis thermal conductivities, the two principal axis thermal diffusivities, the principal axis angle and the specific heat of the measured object 1 are measured simultaneously using the absolute method. 6. The apparatus for measuring the principal axis thermal constant of a two-dimensional anisotropic heat conducting material using multi-point temperature measurement by the pulse / period method according to claim 4 or 5 , characterized by comprising: It is.

本発明は上述のようにしたから、二次元異方性熱伝導物質の効率的且つ高精度の主軸熱物性値(主軸熱伝導率、主軸熱拡散率など)を測定することができる。   Since the present invention is configured as described above, it is possible to measure the spindle thermal physical properties (spindle thermal conductivity, spindle thermal diffusivity, etc.) of the two-dimensional anisotropic thermal conductive material with high efficiency and high accuracy.

また、二次元異方性熱伝導物質の主軸熱物性を測定することで二次元等方性熱伝導物質との識別が容易に可能となる。即ち、例えば、二次元異方性熱伝導物質は、主軸熱伝導率が通常二つの異なる値となるが、二次元等方性熱伝導物質の場合は、この値が同一となるため値が一つとなることで容易に識別ができる。   Further, by measuring the principal axis thermophysical property of the two-dimensional anisotropic heat conductive material, it is possible to easily distinguish it from the two-dimensional isotropic heat conductive material. That is, for example, a two-dimensional anisotropic thermal conductive material usually has two different values of principal axis thermal conductivity, but in the case of a two-dimensional isotropic thermal conductive material, this value is the same and the value is one. It can be easily identified by connecting.

本実施例の二次元異方性熱伝導物質の点状熱源に対する温度測定素子の配置状況を示す説明図である。It is explanatory drawing which shows the arrangement | positioning condition of the temperature measurement element with respect to the point-like heat source of the two-dimensional anisotropic heat conductive material of a present Example. 本実施例の点状熱源、ペルチエ素子、試料ホルダー部を示す説明概要図である。It is an explanatory outline figure showing a point heat source of this example, a Peltier device, and a sample holder part. 本実施例の二次元異方性熱伝導物質の主軸熱物性値及び主軸角を測定する測定装置の構成図である。It is a block diagram of the measuring apparatus which measures the principal-axis thermophysical property value and principal-axis angle of the two-dimensional anisotropic heat conductive material of a present Example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

本発明による測定方法は、例えば、熱源であるペルチエ素子8の片面に同一面積の薄い銅などの金属板9を貼り付けこの面上に細い金属棒10を溶接したものを点状熱源2とし、この点状熱源2の熱源となるペルチエ素子8にパルス電流若しくはsin関数,cos関数などの周期的な電流を通電した状態の点状熱源2の先端を二次元異方性熱伝導物質である被測定物体1に接触させ、被測定物体1の表面に接触させた一点の熱源点を中心として一様に熱を拡散させるため、熱は二次元異方性熱伝導物質の特性を反映した形で拡散していくので、異方性特性を考慮した二次元的な被測定物体1の表面の温度分布から、温度場の変化する非定常状態若しくは温度場の変化しない定常状態における温度波の位相差及び温度差を測定することにより二次元異方性熱伝導物質の主軸熱伝導率,主軸熱拡散率,比熱など主軸熱物性値を測定する。   In the measuring method according to the present invention, for example, a point-like heat source 2 is formed by attaching a metal plate 9 such as thin copper of the same area on one side of a Peltier element 8 as a heat source and welding a thin metal rod 10 on this surface. The tip of the point heat source 2 in a state where a periodic current such as a pulse current or a sin function or a cos function is passed through the Peltier element 8 serving as a heat source of the point heat source 2 is covered with a two-dimensional anisotropic heat conductive material. In order to diffuse heat uniformly around one heat source point that is brought into contact with the surface of the object to be measured 1 and in contact with the surface of the object 1 to be measured, the heat reflects the characteristics of the two-dimensional anisotropic heat conductive material. The phase difference of the temperature wave in the unsteady state where the temperature field changes or in the steady state where the temperature field does not change from the temperature distribution on the surface of the two-dimensional object 1 to be measured considering the anisotropic characteristics. And measuring the temperature difference Spindle thermal conductivity of the original anisotropic thermal conductive material, the spindle thermal diffusivity measures the spindle thermal physical properties such as specific heat.

また、本発明による測定装置は、例えば、一定形状の棒状金属体10にペルチエ素子8を接続したもので、この棒状金属体10が、点状熱源2となり点接触した被測定物体1の表面に熱が流れていく熱流場を形成し、点状熱源2から同一間隔で離れた三カ所の位置に、等角度(例えば120°間隔)で9点の温度測定点を設け、これら温度測定点の温度場の変化する非定常状態若しく温度場の変化しない定常状態における温度波の位相差及び温度差を測定し、等間隔にある三方向の熱伝導率、及び熱拡散率を測定し、これらの測定値から主軸方向を算出し、最終的に、主軸熱伝導率、主軸熱拡散率、及び主軸角を測定する装置である。   The measuring apparatus according to the present invention has, for example, a Peltier element 8 connected to a rod-shaped metal body 10 having a fixed shape, and this rod-shaped metal body 10 becomes a point heat source 2 on the surface of the object 1 to be measured which is in point contact. A heat flow field in which heat flows is formed, and nine temperature measurement points are provided at three equidistant positions (for example, 120 ° intervals) at three positions away from the point-like heat source 2 at the same interval. Measure phase difference and temperature difference of temperature wave in unsteady state where temperature field changes or steady state where temperature field does not change, and measure thermal conductivity and thermal diffusivity in three directions at equal intervals. The main axis direction is calculated from the measured values, and finally, the main axis thermal conductivity, the main axis thermal diffusivity, and the main axis angle are measured.

また、例えば、二次元異方性物質の表面上に設定された各温度測定点の温度測定は、点状熱源2によって加えられた熱量が、被測定物体1に如何に加熱、吸収、拡散されるかを測定するものであり、例えば、実験に当たっては、二次元異方性熱伝導物質の熱のリーク損失を防ぐため被測定物体1全体及び点状熱源2をホルダー11で覆う。   Further, for example, in the temperature measurement at each temperature measurement point set on the surface of the two-dimensional anisotropic material, the amount of heat applied by the point heat source 2 is heated, absorbed, and diffused by the object 1 to be measured. For example, in the experiment, the entire object to be measured 1 and the point-like heat source 2 are covered with the holder 11 in order to prevent heat leakage loss of the two-dimensional anisotropic heat conductive material.

また、例えば、主軸熱物性測定においてより精度の高い測定を行う場合には、点状熱源2による被測定物体1の表面上にある9点の測定温度点温度をmKの高分解能温度で測定する必要があるが、本装置は、この要求を十分に満たしており、二次元異方性熱伝導物質の主軸物性値を測定、算出する手段を備えている。   Also, for example, when measuring with higher accuracy in measuring the thermophysical properties of the spindle, nine measurement temperature point temperatures on the surface of the object 1 to be measured by the point heat source 2 are measured at a high resolution temperature of mK. Although necessary, this apparatus sufficiently satisfies this requirement, and is provided with means for measuring and calculating the principal axis physical property value of the two-dimensional anisotropic heat conductive material.

従って、本発明は、二次元異方性熱伝導物質である被測定物体1の表面に直接設定した点状熱源2により、例えばペルチエ素子8にパルス電流若しくは周期関数で表される周期的な電流を加え、発生した熱を微少面積の点状熱源2から、被測定物体1の表面に熱を加え、被測定物体1の表面、及び内部を熱が拡散していく状況を、例えば、一方向に3点ずつ等間隔に設置した温度測定素子3により時間を関数として測定し、その幾何学的関係を利用して、三方向の熱伝導率、及び熱拡散率より主軸角の方向と、各主軸熱物性値である、二つの主軸熱伝導率、及び二つの主軸熱拡散率を直接決定することができる。   Therefore, according to the present invention, a periodic current represented by, for example, a pulse current or a periodic function is applied to the Peltier element 8 by the point-like heat source 2 set directly on the surface of the measured object 1 which is a two-dimensional anisotropic heat conductive material. A situation where the generated heat is applied from the point-like heat source 2 having a small area to the surface of the object 1 to be measured and the heat diffuses on the surface of the object 1 to be measured and the inside thereof is, for example, unidirectional The temperature is measured as a function of time by means of temperature measuring elements 3 installed at three equal intervals, and the geometrical relationship is used to determine the direction of the principal axis angle from the three directions of thermal conductivity and thermal diffusivity. The two main shaft thermal conductivities and the two main shaft thermal diffusivities can be directly determined.

本発明の具体的な実施例について図1〜図3に基づいて説明する。   A specific embodiment of the present invention will be described with reference to FIGS.

本実施例は、ペルチエ素子8により加熱と吸熱とに切替え可能な点状熱源2を二次元異方性熱伝導物質若しくは二次元等方性熱伝導物質である被測定物体1の表面に接触し、ペルチエ素子8にパルス電流若しくはsin関数,cos関数などの周期的な電流を通電して被測定物体1の表面を周期的に加熱吸熱し、点状熱源2を接触させる被測定物体1の表面に複数箇所に配置した温度測定素子3で、被測定物体1の温度場の変化する非定常状態若しくは温度場の変化しない定常状態における温度波の位相差及び温度差を測定して、被測定物体1の主軸熱伝導率,主軸熱拡散率,比熱など主軸熱物性値を測定するパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定方法である。   In this embodiment, a point heat source 2 that can be switched between heating and heat absorption by the Peltier element 8 is brought into contact with the surface of the object 1 to be measured, which is a two-dimensional anisotropic heat conductive material or a two-dimensional isotropic heat conductive material. The surface of the measured object 1 is brought into contact with the point-like heat source 2 by periodically applying a pulsed current or a periodic current such as a sin function or a cos function to the Peltier element 8 to heat and absorb the surface of the measured object 1. The temperature measurement elements 3 arranged in a plurality of locations in the temperature measurement element 3 measure the phase difference and temperature difference of the temperature wave in the unsteady state where the temperature field of the measured object 1 changes or in the steady state where the temperature field does not change. 1 is a method for measuring the principal axis thermal constant of a two-dimensional anisotropic thermal conductive material using multi-point temperature measurement by a pulse-periodic method for measuring principal axis thermal physical properties such as principal axis thermal conductivity, principal axis thermal diffusivity, and specific heat.

先ず、本実施例の二次元異方性熱伝導物質の主軸熱伝導率、主軸熱拡散率、及び主軸角を測定するための二次元熱物性測定部,測定装置及び測定装置全体図を、それぞれ図1〜図3に基づいて説明する。   First, a two-dimensional thermophysical property measuring unit, a measuring device, and an overall view of the measuring device for measuring the principal axis thermal conductivity, the principal axis thermal diffusivity, and the principal axis angle of the two-dimensional anisotropic thermal conductive material of this example, respectively, A description will be given with reference to FIGS.

図1は、その熱流計式多点温度測定法による二次元異方性熱伝導物質の主軸熱定数測定装置の点状熱源2、及び9箇所の温度測定点(点(ア)から点(ケ)のr,r,rの各位置に取り付け)の配置状況を示している。温度測定素子3としての熱電対3の取り付け位置は角度αとして、α=120°の場合を示しているが、α=120°の同一角上の異なる3軸、即ち、熱電対設置軸L(0°)4、熱電対設置軸L(120°)5、熱電対設置軸L(240°)6における測定軸上の9点の温度変化を測定することにより、実測熱伝導率(式(1))と実測熱拡散率(式(8))を求めることにより、2種類の異なる主軸熱伝導率(式(4),式(5))、主軸熱拡散率(式(11),式(12))及び主軸角の位置φλ(式(7))を同時に測定できることを示している。 FIG. 1 shows a point heat source 2 of a main axis thermal constant measuring device for a two-dimensional anisotropic heat conducting material by the heat flow meter type multi-point temperature measurement method, and nine temperature measurement points (point (a) to point ( ) Is shown at the positions of r 1 , r 2 , r 3 ). The attachment position of the thermocouple 3 as the temperature measuring element 3 is shown as a case where the angle α is α = 120 °, but three different axes on the same angle of α = 120 °, that is, the thermocouple installation axis L 1 (0 °) 4, Thermocouple installation axis L 2 (120 °) 5, Thermocouple installation axis L 3 (240 °) 6 Measured thermal conductivity ( By obtaining the formula (1)) and the measured thermal diffusivity (formula (8)), two different main shaft thermal conductivities (formula (4), formula (5)), main shaft thermal diffusivity (formula (11)) , Equation (12)) and the spindle angle position φ λ (equation (7)) can be measured simultaneously.

図2は、点状熱源2とペルチエ素子8及び試料ホルダー部の詳細を示している。   FIG. 2 shows details of the point heat source 2, the Peltier element 8, and the sample holder.

具体的には、ペルチエ素子8の片面に例えば同一面積の薄い銅などの金属板9を貼り付けこの面上に細い円柱状の金属棒10を溶接して点状熱源2を構成し、この点状熱源2の先端が試料1(被測定物体1)の表面に接触するように点状熱源2を試料1上に立設し、二次元異方性熱伝導物質の熱のリーク損失を防ぐため試料1全体及び点状熱源2をホルダー11で覆った構成としている。   Specifically, a metal plate 9 such as thin copper having the same area is attached to one side of the Peltier element 8 and a thin cylindrical metal rod 10 is welded on this surface to constitute the point heat source 2. In order to prevent heat leakage loss of the two-dimensional anisotropic heat conducting material, the point heat source 2 is erected on the sample 1 so that the tip of the heat source 2 contacts the surface of the sample 1 (object 1 to be measured). The entire sample 1 and the point-like heat source 2 are covered with a holder 11.

また、上述のように構成した点状熱源2に設けたペルチエ素子8にペルチエ素子用電源14でパルス電流若しくはsin関数,cos関数などの周期的な電流を周期的に加え、点状熱源2に流入熱量Qを発生させ、二次元異方性熱伝導物質である試料1の表面に熱を加える。   Further, a periodic current such as a pulse current or a sin function or a cosine function is periodically applied to the Peltier element 8 provided in the point-shaped heat source 2 configured as described above by the Peltier element power source 14 to the point-like heat source 2. An inflow heat quantity Q is generated, and heat is applied to the surface of the sample 1 which is a two-dimensional anisotropic heat conductive material.

この流入熱量Qは、熱流計7で温度測定点(コ)及び温度測定点(サ)の温度を測定し、既知である円柱状の金属体10の熱伝導率を用いて、フーリエの法則から求めることができる。   This inflow heat quantity Q is obtained from the Fourier law by measuring the temperature at the temperature measurement point (co) and the temperature measurement point (sa) with the heat flow meter 7 and using the known thermal conductivity of the cylindrical metal body 10. Can be sought.

また、試料1の表面は、対流による熱損出を減少させるため、点状熱源2とペルチエ素子8及び試料ホルダー部を断熱材12で覆い、主軸熱物性値の測定精度を高めることができる。   Further, since the surface of the sample 1 reduces heat loss due to convection, the point heat source 2, the Peltier element 8 and the sample holder part can be covered with the heat insulating material 12, and the measurement accuracy of the principal axis thermophysical property value can be improved.

図3は、測定装置の全体概要図を示している。二次元異方性熱伝導物質である試料1を試料設置台13にのせ、ホルダー11で被測定物体1の全体を覆った後、点状熱源2を用いて試料1を局所的にパルス周期若しくは周期関数で表される周期で周期的に加熱、吸熱し、試料1の表面に配置した9点の熱電対3の温度変化と位相温度変化を、マルチ温度計15を使って測定し、これらの測定データを実測値算出部16としてのコンピュータ16に格納する。   FIG. 3 shows an overall schematic diagram of the measuring apparatus. After placing the sample 1 which is a two-dimensional anisotropic heat conductive material on the sample mounting table 13 and covering the entire object to be measured 1 with the holder 11, the sample 1 is locally pulsed using the point heat source 2. The temperature and phase temperature changes of the nine thermocouples 3 that are periodically heated and absorbed by the period represented by the periodic function and placed on the surface of the sample 1 are measured using the multi-thermometer 15, and these The measurement data is stored in the computer 16 as the actual measurement value calculation unit 16.

これらの温度変化の測定値は、直ちに、コンピュータ16により二次元異方性熱伝導物質の主軸熱伝導率、主軸熱拡散率、比熱、及び主軸角として、瞬時に解析・表示されることとなる。   The measured values of these temperature changes are immediately analyzed and displayed by the computer 16 as the main axis thermal conductivity, main axis thermal diffusivity, specific heat, and main axis angle of the two-dimensional anisotropic heat conductive material. .

また、上述した測定方法及び測定装置を用いて、二次元異方性熱伝導物質である試料1の表面に設置した3組×3対の熱電対3の中央にペルチエ素子8により加熱と吸熱とに切替え可能な点状熱源2を設置し、ペルチエ素子8にパルス電流若しくはsin関数,cos関数などの周期的な電流を通電してパルス周期若しくはsin関数,cos関数などの周期関数で表される周期で発生させた点状熱源2の熱を加え、この熱が拡散して二次元異方性熱伝導物質の特性を反映した非定常温度分布若しくは定常温度分布を示すことになるが、この温度の変化若しくは分布状態を測定して、二次元異方性熱伝導物質の主軸熱伝導率と主軸熱拡散率とが同時に分離測定できることを以下に理論的に示す。   Further, by using the measurement method and the measurement apparatus described above, heating and endotherm are performed by the Peltier element 8 at the center of the 3 sets × 3 pairs of thermocouples 3 installed on the surface of the sample 1 which is a two-dimensional anisotropic heat conductive material. The point-like heat source 2 that can be switched to is installed, and a periodic current such as a pulse current or a sin function or a cos function is supplied to the Peltier element 8 by a periodic function such as a pulse period or a sin function or a cos function. The heat of the point-like heat source 2 generated in a period is added, and this heat diffuses to show an unsteady temperature distribution or a steady temperature distribution reflecting the characteristics of the two-dimensional anisotropic heat conductive material. It is theoretically shown below that the principal axis thermal conductivity and the principal axis thermal diffusivity of the two-dimensional anisotropic thermal conductive material can be separated and measured simultaneously by measuring the change or distribution state.

3対の熱電対による一方向の熱伝導率は、熱電対3の点状熱源2からの距離と定常状態の測定温度差の式(1)で表すことができる。測定温度は周期を帯びているが、この周期をフーリエ変換もしくは1次近似等により取り除いた値を使用して、測定温度差を求める。   The one-way thermal conductivity of the three pairs of thermocouples can be expressed by equation (1) of the distance from the point-like heat source 2 of the thermocouple 3 and the measured temperature difference in the steady state. The measured temperature has a period, and the measured temperature difference is obtained by using a value obtained by removing this period by Fourier transform or first-order approximation.

ここで、Q:点状熱源2から供給される熱量、h:二次元異方性熱伝導物質の試料の厚さ、λ:測定軸方向の実測熱伝導率、r、r:温度測定位置までの半径を表す。 Here, Q: the amount of heat supplied from the point-like heat source 2, h: thickness of the sample of the two-dimensional anisotropic heat conductive material, λ i : measured thermal conductivity in the measurement axis direction, r 1 , r 2 : temperature Indicates the radius to the measurement position.

一般的に、3つの測定軸における熱伝導率を用いて、次式より主軸熱伝導率は、式(2)により算出される。   In general, using the thermal conductivities on the three measurement axes, the principal axis thermal conductivity is calculated by the following formula (2).

ここで、λp1:一つの主軸熱伝導率、α:三つの測定軸の間の角度、λ、λ、λ:三つの軸における熱伝導率の実測値を示す。 Here, λ p1 is one principal axis thermal conductivity, α is an angle between three measurement axes, and λ 1 , λ 2 , and λ 3 are measured values of thermal conductivity on the three axes.

同様にλP2は、次式(3)で算出される。 Similarly, λ P2 is calculated by the following equation (3).

ここで、λp2は他方の主軸熱伝導率を示す。 Here, λ p2 represents the other principal axis thermal conductivity.

特に、式(1)で実験的に求められた0°,120°,及び240°における熱伝導率は、二次元異方性熱伝導物質の熱物性値を表しているので、次式より1つの主軸熱伝導率λP1は、式(4)により算出される。 In particular, the thermal conductivity at 0 °, 120 °, and 240 ° obtained experimentally by the equation (1) represents the thermophysical value of the two-dimensional anisotropic heat conductive material. The main spindle thermal conductivity λ P1 is calculated by the equation (4).

同様にλP2は、次式(5)で算出される。 Similarly, λ P2 is calculated by the following equation (5).

更に、二次元異方性熱伝導物質の主軸角φλは、一般的に式(6)により求められる。 Further, the principal axis angle φ λ of the two-dimensional anisotropic heat conductive material is generally obtained by the equation (6).

ここで、φλは実験的に3つの測定軸の実測熱伝導率λ、λ、λによって決定される主軸角、λk1k2は定数である。 Here, phi lambda main axis angle determined by experimentally three measured thermal conductivity lambda 1 of the measuring axis, lambda 2, lambda 3, the lambda k1, lambda k2 are constants.

特に0°,120°及び240°における主軸角φλは、式(7)により求められる。 In particular, the principal axis angle φ λ at 0 °, 120 °, and 240 ° is obtained by Equation (7).

一方、0°,120°及び240°の9点の温度を測定することにより、非定常状態における温度波の位相差から時間遅れを求め、更に次式(8)を用いて、これらの各軸方向における熱拡散率を求めることができる。   On the other hand, by measuring the temperature at 9 points of 0 °, 120 ° and 240 °, the time delay is obtained from the phase difference of the temperature wave in the unsteady state, and each of these axes is calculated using the following equation (8). The thermal diffusivity in the direction can be determined.

ここで、Δr:r−r若しくはr−rで表される設置熱電対間距離、t:熱源の周期、τ:2つの温度波の時間遅れ、κ:測定軸方向の実測熱拡散率の測定値を示す。 Here, Δr: distance between installed thermocouples represented by r 2 -r 1 or r 3 -r 2 , t: period of heat source, τ: time delay of two temperature waves, κ i : actual measurement in measurement axis direction The measured value of thermal diffusivity is shown.

一般的に、3つの測定軸における熱拡散率を用いて、次式より主軸熱拡散率は、式(9)により算出される。   Generally, using the thermal diffusivities on the three measurement axes, the principal axis thermal diffusivity is calculated by the following equation (9).

ここで、κp1:一つの主軸熱伝導率、κ、κ、κ:3つの測定軸における熱拡散率の実測値を示す。 Here, κ p1 : one main axis thermal conductivity, κ 1 , κ 2 , κ 3 : actual measured values of thermal diffusivity in three measurement axes.

同様に、もう一方の主軸熱拡散率κP2を、次式(10)により求めることができる。 Similarly, the other main shaft thermal diffusivity κ P2 can be obtained by the following equation (10).

ここで、λp2は他方の主軸熱伝導率である。 Here, λ p2 is the other principal axis thermal conductivity.

特に、0°,120°,及び240°における熱拡散率の実測値により、次式(11)を用いて、一つの主軸熱拡散率κP1を求めることができる。 In particular, one main axis thermal diffusivity κ P1 can be obtained from the measured values of thermal diffusivity at 0 °, 120 °, and 240 ° using the following equation (11).

同様に、もう一方の主軸熱拡散率κP2を、次式(12)により求めることができる。 Similarly, the other principal axis thermal diffusivity κ P2 can be obtained by the following equation (12).

更に、被測定物体の比熱は、これらの主軸熱伝導率及び主軸熱拡散率から、次式(13)により算出できる。   Further, the specific heat of the object to be measured can be calculated from the principal axis thermal conductivity and the principal axis thermal diffusivity by the following equation (13).

ここで、cは比熱、ρは試料密度である。   Here, c is the specific heat and ρ is the sample density.

上述した主軸熱伝導率の算出式、式(4),式(5)及び主軸熱拡散率の算出式、式(11),式(12)、その主軸角の算出式、式(7)に従って二次元異方性熱伝導物質の主軸熱伝導率,主軸熱拡散率及び主軸角を高精度に測定することが可能となる。   According to the calculation formula of the main shaft thermal conductivity, the formula (4), the formula (5), the calculation formula of the main shaft thermal diffusivity, the formula (11), the formula (12), the calculation formula of the main shaft angle, the formula (7). It becomes possible to measure the principal axis thermal conductivity, the principal axis thermal diffusivity, and the principal axis angle of the two-dimensional anisotropic heat conductive material with high accuracy.

従って、本実施例は、二次元異方性熱伝導物質である試料1の表面に、ペルチエ素子8により加熱吸熱の切替え可能な点状熱源2を接触させ、このペルチエ素子8にパルス電流若しくはsin関数,cos関数などの周期的な電流を通電してパルス周期若しくはsin関数,cos関数などの周期関数で表される周期で発生させた点状熱源2の熱を加え、この熱が拡散して二次元異方性熱伝導物質の特性を反映した非定常状態若しくは定常状態における温度分布の変化状態を測定して、二次元異方性熱伝導物質の主軸熱伝導率と主軸熱拡散率とが同時に分離測定できる効率的且つ高精度に二次元異方性熱伝導物質の主軸熱物性値(主軸熱伝導率,主軸熱拡散率など)を測定する方法並びにその測定装置となる。   Therefore, in this embodiment, the point heat source 2 capable of switching the heat absorption by the Peltier element 8 is brought into contact with the surface of the sample 1 which is a two-dimensional anisotropic heat conductive material, and the pulse current or sin is applied to the Peltier element 8. The heat of the point heat source 2 generated by applying a periodic current such as a function or a cos function to generate a pulse period or a period represented by a periodic function such as a sin function or a cos function is diffused. By measuring the temperature distribution change state in the unsteady state or steady state reflecting the characteristics of the two-dimensional anisotropic heat conducting material, the principal axis thermal conductivity and the principal axis thermal diffusivity of the two-dimensional anisotropic heat conducting material are determined. This provides a method and apparatus for measuring principal axis thermophysical properties (principal thermal conductivity, principal axis thermal diffusivity, etc.) of a two-dimensional anisotropic thermal conductive material that can be separated and measured simultaneously with high accuracy.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

1 被測定物体
2 点状熱源
3 温度測定素子
8 ペルチエ素子
16 実測値算出部
DESCRIPTION OF SYMBOLS 1 Object to be measured 2 Point heat source 3 Temperature measuring element 8 Peltier element
16 Actual value calculation unit

Claims (6)

ペルチエ素子を接続し加熱と吸熱とに切替え可能に構成した点状熱源を、二次元異方性熱伝導物質若しくは二次元等方性熱伝導物質である被測定物体の表面に接触し、前記ペルチエ素子にパルス電流若しくはsin関数,cos関数などの周期的な電流を通電して前記被測定物体の表面を前記点状熱源によりパルス若しくは周期的に加熱吸熱し、この被測定物体の表面に、前記点状熱源を中心とする互いに等角度を成す複数の放射方向を測定軸方向としてこの測定軸方向に等間隔に配置した温度測定素子で、この被測定物体の温度場の変化する非定常状態若しくは温度場の変化しない定常状態における各測定点の温度波の位相差及び温度差を測定して、各測定軸方向の実測熱伝導率を前記点状熱源から単位時間当たりに流れる熱量,前記点状熱源からこの放射方向である前記測定軸方向の前記各測定点までの距離の対数比,前記被測定物体の厚さ,及び前記測定点の温度差で表されるQ・ln(r/r)/(2πhΔT)により算出すると共に、各測定軸方向の実測熱拡散率をパルス周期若しくは周期関数で表される周期の温度波の時間に関する位相差で表されるtΔr/(4πτ)により算出し、これら実測熱伝導率及び実測熱拡散率より、前記被測定物体の二つの主軸熱伝導率,二つの主軸熱拡散率,主軸角及び比熱を測定することを特徴とするパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定方法。 A point heat source configured to connect a Peltier element and switch between heating and heat absorption is brought into contact with the surface of the object to be measured, which is a two-dimensional anisotropic heat conductive material or a two-dimensional isotropic heat conductive material, and the Peltier A pulse current or a periodic current such as a sin function or a cos function is applied to the element to heat or absorb the surface of the object to be measured in a pulsed manner or periodically by the point heat source. A temperature measuring element in which a plurality of radiation directions that are equiangular with each other around a point heat source are set as measurement axis directions at equal intervals in the measurement axis direction, and the temperature field of the object to be measured changes in an unsteady state or Measure the phase difference and temperature difference of the temperature wave at each measurement point in the steady state where the temperature field does not change, and measure the measured thermal conductivity in the direction of each measurement axis from the point heat source. It said measuring axis direction said is this radial direction from the source log ratio of the distance to each measurement point, the thickness of the object to be measured, and represented by the above temperature difference between measurement points Q · ln (r 2 / r 1 ) / (2πhΔT) and the measured thermal diffusivity in each measurement axis direction is represented by a phase difference with respect to time of a temperature wave having a period represented by a pulse period or a periodic function, tΔr 2 / (4πτ 2 ) The two main axis thermal conductivities, two main axis thermal diffusivities, the main axis angle and the specific heat of the measured object are measured from these measured thermal conductivity and measured thermal diffusivity. Measurement method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by the method. 前記温度測定素子を、前記点状熱源を中心とする0°,120°,240°の三放射方向を測定軸方向としてこの測定軸方向に等間隔に三つずつ配置することを特徴とする請求項1記載のパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定方法。   3. The temperature measuring elements are arranged three by three at equal intervals in the measurement axis direction, with three radiation directions of 0 °, 120 °, and 240 ° centered on the point heat source as measurement axis directions. A method for measuring a principal axis thermal constant of a two-dimensional anisotropic thermal conductive material using multipoint temperature measurement by the pulse / period method according to Item 1. 前記ペルチエ素子にパルス電流若しくはsin関数,cos関数などの周期的な電流を通電して前記点状熱源が前記被測定物体の表面に対して加熱と吸熱とを繰り返す熱流束の印加条件を設定し、絶対法を用いて前記被測定物体の二つの主軸熱伝導率,二つの主軸熱拡散率,主軸角及び比熱を同時に測定することを特徴とする請求項1,2のいずれか1項に記載のパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定方法。   By applying a periodic current such as a pulse current or a sin function or a cos function to the Peltier element, a condition for applying a heat flux in which the point heat source repeatedly heats and absorbs heat on the surface of the object to be measured is set. The two principal axis thermal conductivities, the two principal axis thermal diffusivities, the principal axis angle, and the specific heat of the object to be measured are measured simultaneously using an absolute method. Of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method. 被測定物体の温度場の変化する非定常状態若しくは温度場の変化しない定常状態における各測定点の温度波の位相差及び温度差を測定して、前記被測定物体の二つの主軸熱伝導率,二つの主軸熱拡散率,主軸角及び比熱を測定するパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定装置であって、ペルチエ素子を接続し加熱と吸熱とに切替え可能に構成した点状熱源と、被測定物体の温度場の変化する非定常状態若しくは温度場の変化しない定常状態における各測定点の温度波の位相差及び温度差を測定する温度測定素子と、前記温度測定素子を配置した各測定点の時間に関するパルス周期若しくは周期関数で表される周期の温度波の位相差および温度差を用いて各測定軸方向の熱伝導率及び熱拡散率を実測値として算出する実測値算出部とを具備し、前記実測値算出部は、前記各測定軸上の実測熱伝導率を、前記点状熱源から単位時間当たりに流れる熱量,前記点状熱源から放射方向線上の前記測定点までの距離の対数比,前記被測定物体の厚さ,及び前記測定点の温度差で表されるQ・ln(r /r )/(2πhΔT)により算出する手段と、前記各測定軸上の実測熱拡散率を、パルス周期若しくは周期関数で表される周期の温度波の時間に関する位相差で表されるtΔr /(4πτ )により算出する手段とで構成したことを特徴とするパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定装置。 Measuring the phase difference and temperature difference of the temperature wave at each measurement point in the unsteady state where the temperature field of the measured object changes or in the steady state where the temperature field does not change, and the two principal axis thermal conductivities of the measured object, A main axis thermal constant measuring device for two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method to measure two main axis thermal diffusivity, main axis angle and specific heat, heating by connecting Peltier element measured and the and the point-like heat source configured to be switched to the heat absorption, the phase difference and the temperature difference between the temperature wave of the measurement points in a steady state in which no change in the non-steady-state or the temperature field changes in temperature field of the object to be measured Thermal conductivity and heat in each measurement axis direction using the temperature measurement element and the phase difference and temperature difference of the temperature wave of the period represented by the pulse period or periodic function with respect to the time of each measurement point where the temperature measurement element is arranged Realize diffusion rate An actual value calculation unit that calculates the value, and the actual value calculation unit radiates the actual heat conductivity on each measurement axis from the point heat source and the amount of heat flowing from the point heat source per unit time. Means for calculating by Q · ln (r 2 / r 1 ) / (2πhΔT) expressed by the logarithmic ratio of the distance to the measurement point on the direction line, the thickness of the measured object, and the temperature difference of the measurement point And means for calculating the measured thermal diffusivity on each measurement axis by tΔr 2 / (4πτ 2 ) represented by a phase difference with respect to time of a temperature wave having a period represented by a pulse period or a periodic function. An apparatus for measuring the principal axis thermal constant of a two-dimensional anisotropic heat-conducting material using multipoint temperature measurement by the pulse / period method. 前記温度測定素子を、前記点状熱源を中心とする0°,120°,240°の三放射方向を測定軸方向としてこの測定軸方向に等間隔に三つずつ配置したことを特徴とする請求項4記載のパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定装置。   3. The temperature measuring elements are arranged three by three at equal intervals in the measurement axis direction with three radiation directions of 0 °, 120 °, and 240 ° centered on the point heat source as measurement axis directions. Item 5. An apparatus for measuring the principal axis thermal constant of a two-dimensional anisotropic thermal conductive material using multipoint temperature measurement by the pulse / period method according to Item 4. 前記ペルチエ素子にパルス電流若しくはsin関数,cos関数などの周期的な電流を加えて前記点状熱源が前記被測定物体の表面に対してパルス周期若しくは周期関数で表される周期で加熱と吸熱とを繰り返す熱流束の印加条件を設定し、絶対法を用いて前記被測定物体の二つの主軸熱伝導率,二つの主軸熱拡散率,主軸角及び比熱を同時に測定するように構成したことを特徴とする請求項4,5のいずれか1項に記載のパルス・周期法による多点温度測定を用いた二次元異方性熱伝導物質の主軸熱定数測定装置。 A pulse current or a periodic current such as a sin function or a cos function is applied to the Peltier element so that the point-like heat source is heated and absorbed by a pulse period or a period represented by a periodic function with respect to the surface of the object to be measured. The heat flux application condition is repeated, and the two principal axis thermal conductivities, the two principal axis thermal diffusivities, the principal axis angle and the specific heat of the measured object are measured simultaneously using the absolute method. An apparatus for measuring a principal axis thermal constant of a two-dimensional anisotropic thermal conductive material using the multipoint temperature measurement by the pulse / period method according to any one of claims 4 and 5 .
JP2010029494A 2010-02-12 2010-02-12 Measuring method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method and measuring device Expired - Fee Related JP5345574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029494A JP5345574B2 (en) 2010-02-12 2010-02-12 Measuring method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029494A JP5345574B2 (en) 2010-02-12 2010-02-12 Measuring method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method and measuring device

Publications (2)

Publication Number Publication Date
JP2011164032A JP2011164032A (en) 2011-08-25
JP5345574B2 true JP5345574B2 (en) 2013-11-20

Family

ID=44594868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029494A Expired - Fee Related JP5345574B2 (en) 2010-02-12 2010-02-12 Measuring method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method and measuring device

Country Status (1)

Country Link
JP (1) JP5345574B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985019B1 (en) * 2011-12-21 2014-01-24 Irsn SELF-CALIBRATION FLUXMETER
JP2013250115A (en) * 2012-05-31 2013-12-12 Univ Of Tokyo Measurement sensor and measurement apparatus
FR2993360B1 (en) * 2012-07-13 2015-02-20 Commissariat Energie Atomique METHOD FOR MEASURING THERMAL CONDUCTIVITY OF ANISOTROPIC THIN MATERIAL
CN105527315A (en) * 2014-09-30 2016-04-27 常州星宇车灯股份有限公司 Method for testing temperature of light fixture sample piece
JP7335129B2 (en) 2019-10-28 2023-08-29 一般財団法人電力中央研究所 Measuring method and measuring device for arc generation position and heat transfer coefficient from arc to object

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189547A (en) * 1989-12-20 1991-08-19 Hitachi Ltd Method and device for measuring heat diffusivity
JPH07229865A (en) * 1994-02-22 1995-08-29 Hitachi Ltd Device for detecting pipe inside deposit
JP3723267B2 (en) * 1996-01-24 2005-12-07 栄治 根本 Method and apparatus for simultaneous measurement of principal axis thermal conductivity and principal axis angle of two-dimensional anisotropic material by heating and cooling method with stationary point heat source
JP3849295B2 (en) * 1998-05-08 2006-11-22 松下電器産業株式会社 Thermal diffusion coefficient measuring device
JP2001305084A (en) * 2000-04-19 2001-10-31 Eiji Nemoto Method and device for simultaneous measurement of spindle thermal diffusivity and spindle angle of three- dimensional anisotropic substance using laser pulse point heat source heating method
JP2005140509A (en) * 2003-11-04 2005-06-02 Toppan Printing Co Ltd Equivalent thermal conductivity calculation device and equivalent thermal conductivity calculation method for composite material
JP4203893B2 (en) * 2004-01-30 2009-01-07 栄治 根本 Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device
JP4855004B2 (en) * 2005-08-02 2012-01-18 一般財団法人カケンテストセンター Thermal property test evaluation method and test apparatus for fabric fiber material

Also Published As

Publication number Publication date
JP2011164032A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
Jannot et al. Thermal properties measurement of materials
Zhao et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials
JP5345574B2 (en) Measuring method of principal axis thermal constant of two-dimensional anisotropic heat conducting material using multi-point temperature measurement by pulse / periodic method and measuring device
Agarwal et al. Experimental techniques for thermal product determination of coaxial surface junction thermocouples during short duration transient measurements
Agrawal et al. An experimental study on the rewetting of a hot vertical surface by circular water jet impingement
CN102608154A (en) System for measuring thermal performance transiently by using pulsing method or constant current method
Mohammed et al. Dynamic calibration and performance of reliable and fast-response coaxial temperature probes in a shock tube facility
Park et al. Design of micro-temperature sensor array with thin film thermocouples
Blumm et al. Thermal characterization of liquids and pastes using the flash technique
CN103713013A (en) Device for testing axial heat conduction coefficient of tubular material
CN106226351A (en) A kind of thin-wall circular tube material thermal conductivity computational methods
JP6278083B1 (en) Thermal conductivity measurement method and apparatus
JP4203893B2 (en) Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device
CN108072680A (en) A kind of use for laboratory heat conductivity of heat-conduction silicone grease evaluating apparatus
JP2009105132A (en) Thermoelectric characteristic measuring sensor
JP2005227010A (en) Heat conductivity measuring instrument and heat conductivity measuring method
RU148273U1 (en) DEVICE FOR CONTROL OF THERMAL CONDUCTIVITY OF PLATES FROM ALUMONITRIDE CERAMICS
Hubble et al. Development and evaluation of the time-resolved heat and temperature array
Talaghat et al. Determination of heat transfer parameters by use of finite integral transform and experimental data for regular geometric shapes
JP2009042127A (en) Measurement method for thin-film shaped sample
JP2009257846A (en) Evaluation method of heat permeability
Ryu et al. Probe-based microscale measurement setup for the thermal diffusivity of soft materials
Milošević et al. Measurements of thermophysical properties of solids at the Institute VINČA
RU167045U1 (en) DEVICE FOR MEASURING THERMO-EMF OF MATERIALS
Lin et al. Thermal Diffusivity Measurement of Vapor Chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees