JP7060378B2 - Thermal conductivity measurement method for metal film - Google Patents

Thermal conductivity measurement method for metal film Download PDF

Info

Publication number
JP7060378B2
JP7060378B2 JP2017252869A JP2017252869A JP7060378B2 JP 7060378 B2 JP7060378 B2 JP 7060378B2 JP 2017252869 A JP2017252869 A JP 2017252869A JP 2017252869 A JP2017252869 A JP 2017252869A JP 7060378 B2 JP7060378 B2 JP 7060378B2
Authority
JP
Japan
Prior art keywords
film
thermal conductivity
metal film
resistor film
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017252869A
Other languages
Japanese (ja)
Other versions
JP2019120496A (en
Inventor
洋稔 青木
浩一 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2017252869A priority Critical patent/JP7060378B2/en
Publication of JP2019120496A publication Critical patent/JP2019120496A/en
Application granted granted Critical
Publication of JP7060378B2 publication Critical patent/JP7060378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は、金属皮膜の熱伝導率計測方法に関する。 The present invention relates to a method for measuring thermal conductivity of a metal film.

熱伝導率を計測する代表的な手法として定常法がある(例えば、特許文献1参照)。定常法は、断熱された2本の電極(内部に熱電対が組み込まれている)の間にサンプルを挟み、電極の上側からサンプルに熱を流したときの、サンプル上下の温度差ΔT(電極とサンプルとの接触熱抵抗を含めたサンプルの温度差)を計測して、熱伝導率に換算する方法である。定常法では電極側から熱を流しサンプル内を通過させているため、サンプル自体は発熱していない。 There is a steady-state method as a typical method for measuring thermal conductivity (see, for example, Patent Document 1). In the stationary method, the sample is sandwiched between two insulated electrodes (a thermocouple is incorporated inside), and the temperature difference between the top and bottom of the sample ΔT (electrode) when heat is passed through the sample from above the electrodes. This is a method of measuring the temperature difference of the sample including the thermal resistance of the contact between the sample and the sample) and converting it into thermal conductivity. In the stationary method, heat is passed from the electrode side and passed through the sample, so that the sample itself does not generate heat.

特開2016-024083公報Japanese Unexamined Patent Publication No. 2016-024083

現在、フラットチップ抵抗器の構成材料である抵抗体皮膜の熱伝導率を計測することは難しく、特に実製品形状に近い、アルミナ基板(基材)上に抵抗体皮膜が印刷・焼成された状態での熱伝導率を測定することが特に難しい。 At present, it is difficult to measure the thermal conductivity of the resistor film, which is the constituent material of the flat chip resistor, and the resistor film is printed and fired on the alumina substrate (base material), which is close to the actual product shape. It is especially difficult to measure the thermal conductivity in.

特許文献1に示されるように、従来の定常法を活用して抵抗体皮膜(厚膜)の計測を行うと、装置電極と皮膜との間の接触熱抵抗が不安定になり計測自体困難になる。計測が難しい理由はサンプル作製が難しい点にある。抵抗体ペーストを単体で焼成しサンプルを作製すると焼成後のサンプルが大きく変形し、結果的に電極とサンプルとの間の接触熱抵抗が安定せず、正しい測定結果が得られなくなる。 As shown in Patent Document 1, when the resistance film (thick film) is measured by utilizing the conventional steady-state method, the contact thermal resistance between the device electrode and the film becomes unstable and the measurement itself becomes difficult. Become. The reason why measurement is difficult is that it is difficult to prepare a sample. When the resistor paste is fired by itself to prepare a sample, the sample after firing is greatly deformed, and as a result, the thermal resistance of contact between the electrode and the sample is not stable, and correct measurement results cannot be obtained.

本発明は、赤外線放射温度計を利用し、基材上に印刷・焼成した抵抗体皮膜の熱伝導率を精度良く測定することを目的とする。 An object of the present invention is to accurately measure the thermal conductivity of a resistor film printed and fired on a substrate by using an infrared radiation thermometer.

本発明は、板体に形成された金属皮膜の熱伝導率を測定演算する方法であって、前記板体を冷却プレートに固定し、熱平衡が得られるまで前記金属皮膜に対して熱を加え、金属皮膜の表面温度と、板体の表面温度若しくは金属皮膜の下面温度である基準温度とから、金属皮膜の熱伝導率を測定するステップを有する前記方法である。また、前記金属皮膜の熱伝導率を測定するステップは、前記金属皮膜の表面温度を赤外線放射温度計により測定するステップを含んでいてもよい。また、前記板体の表面温度を、基準温度としてもよい。 The present invention is a method of measuring and calculating the thermal conductivity of a metal film formed on a plate body, in which the plate body is fixed to a cooling plate and heat is applied to the metal film until thermal equilibrium is obtained. The method comprising the step of measuring the thermal conductivity of the metal film from the surface temperature of the metal film and the reference temperature which is the surface temperature of the plate body or the lower surface temperature of the metal film. Further, the step of measuring the thermal conductivity of the metal film may include a step of measuring the surface temperature of the metal film with an infrared radiation thermometer. Further, the surface temperature of the plate may be used as a reference temperature.

本発明によれば、赤外線放射温度計を利用し、基材上に印刷・焼成した抵抗体皮膜などの金属皮膜の熱伝導率を精度良く測定することができる。 According to the present invention, it is possible to accurately measure the thermal conductivity of a metal film such as a resistor film printed and fired on a substrate by using an infrared radiation thermometer.

本実施の形態によるモデルの一構成例を示す図である。It is a figure which shows one structural example of the model by this embodiment. 熱状態における抵抗体皮膜内部の温度分布を示す図である。It is a figure which shows the temperature distribution inside a resistor film in a thermal state. 本実施の形態による測定治具の一構成例を示す図である。It is a figure which shows one configuration example of the measuring jig by this embodiment. 熱伝導率の評価に使用するサンプルの構造例を示す図である。It is a figure which shows the structural example of the sample used for the evaluation of thermal conductivity. アルミナ基板の下部以外からの放熱を示す図である。It is a figure which shows the heat dissipation from other than the lower part of an alumina substrate.

以下に、本発明の一実施の形態による電子部品の金属皮膜の熱伝導率計測技術について図面を参照しながら詳細に説明する。 Hereinafter, the technique for measuring the thermal conductivity of the metal film of the electronic component according to the embodiment of the present invention will be described in detail with reference to the drawings.

近年、電子機器の小型化や電子部品の高密度実装化が進み、基板上の発熱密度は上昇している。そのような状況下で、電子機器設計における熱解析の重要性は高まっている。熱解析の精度を向上させるには、各材料の正しい熱物性値を把握する必要があり、熱物性値を測定する技術が重要になる。 In recent years, the miniaturization of electronic devices and the high-density mounting of electronic components have progressed, and the heat generation density on the substrate has increased. Under such circumstances, the importance of thermal analysis in electronic device design is increasing. In order to improve the accuracy of thermal analysis, it is necessary to grasp the correct thermal physical characteristic value of each material, and the technique for measuring the thermal physical characteristic value is important.

発明者らは、これまで、金属皮膜、例えば抵抗器の伝熱解析に必要な抵抗体皮膜の熱伝導率を測定するため、過渡熱測定を利用した測定方法を検討してきた。しかしながら、測定された値に対して比較データが得られない場合も多く、そのような場合には、測定の妥当性を判断できていなかった。そこで、抵抗器に使用される抵抗体皮膜の熱伝導率を測定する方法として、赤外線放射温度計を利用した簡易的な手法を提案する。具体的には、アルミナ基板上に製膜された厚み数十μmの抵抗体皮膜を測定対象としている。本実施の形態では赤外線放射温度計を利用した測定方法を用い、抵抗体皮膜材料の熱伝導率を測定し検証した。 The inventors have studied a measurement method using transient heat measurement in order to measure the thermal conductivity of a metal film, for example, a resistor film required for heat transfer analysis of a resistor. However, in many cases, comparative data cannot be obtained for the measured values, and in such cases, the validity of the measurement could not be determined. Therefore, we propose a simple method using an infrared radiation thermometer as a method for measuring the thermal conductivity of the resistor film used in the resistor. Specifically, the measurement target is a resistor film having a thickness of several tens of μm formed on an alumina substrate. In this embodiment, the thermal conductivity of the resistor film material was measured and verified by using a measurement method using an infrared radiation thermometer.

本発明は、赤外線放射温度計により、定常温度上昇時の抵抗体皮膜(厚膜)の上下面の温度差ΔT[K]を計測し、計測したΔT[K]から抵抗体皮膜(厚膜)の熱伝導率を算出する方法である。このとき抵抗体皮膜(厚膜)は皮膜全体が常時発熱しながら、皮膜内に温度分布ができる体積発熱体になっている。抵抗体皮膜(厚膜)の上面から距離Xまでの温度差ΔT(x)は、皮膜の形状(L:寸法・W:寸法・厚みt)と皮膜上面からの距離X、皮膜の熱伝導率λ、皮膜に与える熱量Qにより決まり、関係式(1)が成り立つ。ΔT(X)は皮膜上面からの距離Xの2乗に比例する関数になる。 In the present invention, the temperature difference ΔT [K] between the upper and lower surfaces of the resistor film (thick film) when the steady temperature rises is measured by an infrared radiation thermometer, and the measured ΔT [K] is used to measure the resistor film (thick film). It is a method of calculating the thermal conductivity of. At this time, the resistance film (thick film) is a volume heating element that can generate a temperature distribution in the film while the entire film constantly generates heat. The temperature difference ΔT (x) from the upper surface of the resistor film (thick film) to the distance X is the shape of the film (L: dimension / W: dimension / thickness t), the distance X from the upper surface of the film, and the thermal conductivity of the film. It is determined by λ and the amount of heat Q given to the film, and the relational expression (1) holds. ΔT (X) is a function proportional to the square of the distance X from the upper surface of the film.

Figure 0007060378000001
Figure 0007060378000001

関係式(1)中の皮膜上面からの距離Xが皮膜厚みtの時、皮膜上下面の温度差ΔTとして表すことができ、実測から求めた抵抗体皮膜(厚膜)の上下面の温度差ΔTと、関係式(2)により比較することができる。 When the distance X from the upper surface of the film in the relational expression (1) is the film thickness t, it can be expressed as the temperature difference ΔT between the upper and lower surfaces of the film, and the temperature difference between the upper and lower surfaces of the resistor film (thick film) obtained from the actual measurement. It can be compared with ΔT by the relational expression (2).

Figure 0007060378000002
Figure 0007060378000002

赤外線放射温度計で実測したΔT、サンプル寸法調査から得られる皮膜形状(L:寸法・W:寸法・厚みt)、そして抵抗体皮膜の総発熱量Qを関係式(2)に代入することで熱伝導率λを算出することができる。 By substituting ΔT measured by an infrared thermometer, the film shape (L: dimension / W: dimension / thickness t) obtained from the sample size survey, and the total calorific value Q of the resistor film into the relational expression (2). The thermal conductivity λ can be calculated.

本発明の一観点によれば、板体に形成された金属皮膜の熱伝導率を測定する方法であって、前記板体を冷却プレートに固定し、熱平衡が得られるまで前記金属皮膜に対して熱を加え、金属皮膜の表面温度T0と、基板表面温度若しくは金属皮膜の下面温度である基準温度Ttとから、金属皮膜の熱伝導率を測定する方法が提供される。 According to one aspect of the present invention, it is a method of measuring the thermal conductivity of a metal film formed on a plate body, in which the plate body is fixed to a cooling plate and the metal film is subjected to heat equilibrium until thermal equilibrium is obtained. A method of applying heat and measuring the thermal conductivity of a metal film from the surface temperature T 0 of the metal film and the reference temperature T t which is the surface temperature of the substrate or the bottom surface temperature of the metal film is provided.

前記金属皮膜の熱伝導率を測定するステップは、前記表面温度T0と前記基準温度Ttとの温度差(T0-Tt)を赤外線放射温度計により測定するステップと、熱伝導率λを以下の式により求めるステップと、を有することが好ましい。 The steps for measuring the thermal conductivity of the metal film are the step of measuring the temperature difference (T 0 −T t ) between the surface temperature T 0 and the reference temperature T t with an infrared radiation thermometer, and the thermal conductivity λ. It is preferable to have a step of obtaining the above by the following formula.

Figure 0007060378000003
Figure 0007060378000003

ここで、Qは、抵抗体皮膜の発熱量、L (縦), W(横), t(深さ)は、それぞれ抵抗体皮膜の寸法である。上記の手法によれば、電流計や電圧計、寸法測定器を利用することで金属皮膜の熱伝導率を求めることができる。 Here, Q is the calorific value of the resistor film, and L (vertical), W (horizontal), and t (depth) are the dimensions of the resistor film, respectively. According to the above method, the thermal conductivity of the metal film can be obtained by using an ammeter, a voltmeter, and a dimensional measuring instrument.

前記金属皮膜の表面温度T0を厚膜金属皮膜により測定し、前記板体の表面温度Ttを、前記金属皮膜を薄膜金属皮膜に代えて測定することが好ましい。 It is preferable to measure the surface temperature T 0 of the metal film with a thick metal film and measure the surface temperature T t of the plate body in place of the thin film metal film.

本発明によれば、赤外線放射温度計を利用し、基材上に印刷・焼成した抵抗体皮膜などの金属皮膜の熱伝導率を精度良く測定することができる。
以下、赤外線放射温度計を利用した熱伝導率測定の原理、測定結果について説明する。
According to the present invention, it is possible to accurately measure the thermal conductivity of a metal film such as a resistor film printed and fired on a substrate by using an infrared radiation thermometer.
Hereinafter, the principle and measurement results of thermal conductivity measurement using an infrared radiation thermometer will be described.

抵抗器に通電すると抵抗体皮膜は自己発熱して温度上昇する。抵抗体皮膜で発生した熱は抵抗体皮膜が形成された基板の下部に向かって流れ、熱平衡状態に達した抵抗体皮膜の内部には、自己発熱体特有の温度分布ができる。本実施の形態では、抵抗体皮膜内の温度分布と熱伝導率の関係に着目し、抵抗体皮膜の熱伝導率測定に応用した。 When the resistor is energized, the resistor film self-heats and the temperature rises. The heat generated by the resistor film flows toward the lower part of the substrate on which the resistor film is formed, and a temperature distribution peculiar to a self-heating element is formed inside the resistor film that has reached a thermal equilibrium state. In this embodiment, we focused on the relationship between the temperature distribution in the resistor film and the thermal conductivity, and applied it to the measurement of the thermal conductivity of the resistor film.

図1は、本実施の形態による物理モデルの一構成例を示す斜視図である。図1(A)は本モデルの全体構造である。アルミナから成るセラミックス基板(アルミナ基板、板体ともいう)1上に、一対の電極5a、5bと、その電極5a、5b間を導通させる抵抗体皮膜(金属皮膜)3と、を形成している。電極5a、5bは銀等の導電金属からなり、抵抗体皮膜3は酸化ルテニウム等の導電金属からなるが、これらに限られない。これは、いわゆるチップ型固定抵抗器と同じ構造を有している。かかるアルミナ基板1を熱伝導の良好なグリース4を介在させて冷却プレート7上に搭載する。電極5a、5bに配線を接続してDC電源6により通電することで、抵抗体皮膜3に電流8が流れ自己発熱する。図1(B)は、図1(A)の破線部分に示す、抵抗体皮膜3とアルミナ基板1の積層部分を拡大した図である。図1(B)においてグリース4は省略している。 FIG. 1 is a perspective view showing a configuration example of a physical model according to the present embodiment. FIG. 1A shows the overall structure of this model. A pair of electrodes 5a and 5b and a resistor film (metal film) 3 for conducting between the electrodes 5a and 5b are formed on a ceramic substrate (also referred to as an alumina substrate or a plate) 1 made of alumina. .. The electrodes 5a and 5b are made of a conductive metal such as silver, and the resistor film 3 is made of a conductive metal such as ruthenium oxide, but the resistance film 3 is not limited thereto. It has the same structure as a so-called chip-type fixed resistor. The alumina substrate 1 is mounted on the cooling plate 7 with the grease 4 having good thermal conductivity interposed therebetween. By connecting the wiring to the electrodes 5a and 5b and energizing with the DC power supply 6, the current 8 flows through the resistor film 3 and self-heats. FIG. 1B is an enlarged view of the laminated portion of the resistor film 3 and the alumina substrate 1 shown by the broken line portion of FIG. 1A. Grease 4 is omitted in FIG. 1 (B).

ここで、各パラメータは以下のように定義される。
λ:抵抗体皮膜の熱伝導率[W/(m・K)]
L,W,t:抵抗体皮膜の寸法[m]
Q:抵抗体皮膜全体の発熱量[W]
:微小区間dを通過する熱流束[W/m]
:抵抗体皮膜の表面温度[℃]
:アルミナ基板の表面温度[℃]
x:抵抗体皮膜表面からの距離[m]
dx:距離xの位置での微小区間[m]
dR:微小区間dxの熱抵抗[K/W]
dT:微小区間dxで発生する温度差[K]
Here, each parameter is defined as follows.
λ: Thermal conductivity of resistor film [W / (m ・ K)]
L, W, t: Dimensions of resistor film [m]
Q: Calorific value of the entire resistor film [W]
q X : Heat flux passing through a minute interval d X [W / m 2 ]
T 0 : Surface temperature of resistor film [° C]
T t : Surface temperature of alumina substrate [° C]
x: Distance from the surface of the resistor film [m]
dx: Small interval at the position of distance x [m]
dR: Thermal resistance of minute section dx [K / W]
dT: Temperature difference generated in a minute interval dx [K]

図1に示す物理モデルのように、アルミナ基板1の下面を冷却プレート7により冷却しながら抵抗体皮膜3に通電すると、自己発熱により温度上昇する。抵抗体皮膜で発生した熱は符号9に示す白抜き矢印9に示すようにアルミナ基板1の下部に向かって流れ、熱平衡状態に達した抵抗体皮膜の内部には、自己発熱体特有の温度分布ができる。以下、抵抗体皮膜全体から総発熱量Qの熱が発生した場合について、抵抗体皮膜内部の温度と熱伝導率の関係式を導いていく。まず距離xの位置での微小区間dxを+x方向に通過する熱流束qを考える。アルミナ基板下部からの冷却が十分であれば、熱流束qは区間0からxまでの総発熱量を抵抗体皮膜の面積で割った(1)式で表すことができる。また微小区間dxの熱抵抗dRは(2)式で表すことができるため、(1)式と(2)式、そして抵抗体皮膜の面積の積をとることで、微小区間dxに発生する温度差を(3)式で表すことができる。 As in the physical model shown in FIG. 1, when the resistor film 3 is energized while the lower surface of the alumina substrate 1 is cooled by the cooling plate 7, the temperature rises due to self-heating. The heat generated in the resistor film flows toward the lower part of the alumina substrate 1 as shown by the white arrow 9 indicated by reference numeral 9, and the temperature distribution peculiar to the self-heating element is inside the resistor film that has reached the thermal equilibrium state. Can be done. Hereinafter, the relational expression between the temperature inside the resistor film and the thermal conductivity will be derived for the case where the heat of the total calorific value Q is generated from the entire resistor film. First, consider the heat flux q X passing through the minute interval dx at the position of the distance x in the + x direction. If the cooling from the lower part of the alumina substrate is sufficient, the heat flux q X can be expressed by the equation (1) obtained by dividing the total calorific value from the section 0 to x by the area of the resistor film. Further, since the thermal resistance dR of the minute section dx can be expressed by the equation (2), the temperature generated in the minute interval dx by taking the product of the equations (1) and (2) and the area of the resistor film. The difference can be expressed by Eq. (3).

Figure 0007060378000004
Figure 0007060378000004

抵抗体皮膜表面とアルミナ基板表面の温度差 は、(3)式をx=0からtまで積分することで求めることができ、(4)式として表せる。 The temperature difference between the surface of the resistor film and the surface of the alumina substrate can be obtained by integrating Eq. (3) from x = 0 to t, and can be expressed as Eq. (4).

Figure 0007060378000005
Figure 0007060378000005

抵抗体皮膜表面とアルミナ基板表面の温度差 は、抵抗体皮膜の熱伝導率λと寸法L,W,tそして総発熱量Qにより決まり、抵抗体皮膜の内部には放物線状の温度分布ができる。図2のX=0から40μmに示す温度分布は、抵抗体皮膜の熱伝導率λと寸法L,W,t総発熱量Q、そして表面温度Tを表1の値としたときの温度分布である。 The temperature difference between the surface of the resistor film and the surface of the alumina substrate is determined by the thermal conductivity λ of the resistor film, the dimensions L, W, t and the total calorific value Q, and a parabolic temperature distribution is formed inside the resistor film. .. The temperature distribution shown in FIG. 2 from X = 0 to 40 μm is the temperature distribution when the thermal conductivity λ of the resistor film, the total calorific value Q of the dimensions L, W, t, and the surface temperature T 0 are the values in Table 1. Is.

Figure 0007060378000006
Figure 0007060378000006

実施形態においては、(4)式を熱伝導率について式変形した(5)式を利用する。 In the embodiment, the equation (5), which is a modification of the equation (4) with respect to the thermal conductivity, is used.

Figure 0007060378000007
Figure 0007060378000007

熱平衡状態における抵抗体皮膜の表面温度Tと、アルミナ基板の表面温度Tは、赤外線放射温度計により測定する。また、抵抗体皮膜の総発熱量Qは電流計と電圧計により算出し、抵抗体皮膜の寸法L,W,tは寸法測定により求める。この方法では(5)式に示すように比較的少ないパラメータから熱伝導率を導くことができる。 The surface temperature T 0 of the resistor film and the surface temperature T t of the alumina substrate in the thermal equilibrium state are measured by an infrared radiation thermometer. Further, the total calorific value Q of the resistor film is calculated by an ammeter and a voltmeter, and the dimensions L, W, and t of the resistor film are obtained by dimensional measurement. In this method, the thermal conductivity can be derived from a relatively small number of parameters as shown in the equation (5).

次に、図3により、実験方法について述べる。アルミナ基板1の上面に、抵抗体皮膜3と金属端子(電極)5a,5bを形成したサンプルAを準備する。固定具であるプレート31a,31bを用いてサンプルAの両端部分を押さえて、ボルト33a,33bにより冷却プレート7に取り付ける。アルミナ基板1と冷却プレート7の間には熱伝導の良好なグリース4が介在している。 Next, the experimental method will be described with reference to FIG. A sample A in which the resistor film 3 and the metal terminals (electrodes) 5a and 5b are formed on the upper surface of the alumina substrate 1 is prepared. Both ends of the sample A are pressed by the plates 31a and 31b which are fixtures, and attached to the cooling plate 7 by the bolts 33a and 33b. A grease 4 having good heat conduction is interposed between the alumina substrate 1 and the cooling plate 7.

測定サンプルAのアルミナ基板1の下部を冷却プレート7によって冷却する一方で、抵抗体皮膜3に通電することで温度上昇させる。アルミナ基板下部と冷却プレートとの間には熱伝導率2.95W/(m・K)のグリースを塗布しており、アルミナ基板下部と冷却プレートの間の接触熱抵抗を安定化させている。熱伝導率の良いグリースを使用することで、接触熱抵抗のばらつきを全熱抵抗の10%程度に抑え、抵抗体皮膜とアルミナ基板の表面温度T,Tを安定化させる。接触熱抵抗のばらつきは、過渡熱測定により評価した結果である。十分時間が経過し、測定サンプルAが熱平衡状態に達したところで、抵抗体皮膜3とアルミナ基板1の表面温度T,Tを赤外線放射温度計により測定する。表面温度Tの測定には、熱伝導率の測定対象である抵抗体皮膜を製膜したサンプル(以降、「Tサンプル」と称する。)を使用する。また表面温度Tの測定には、Tサンプルのうち抵抗体皮膜のみ金属薄膜に変更したサンプル(以降、「Tサンプル」と称する。)を使用する。 While the lower part of the alumina substrate 1 of the measurement sample A is cooled by the cooling plate 7, the temperature is raised by energizing the resistor film 3. Grease with a thermal conductivity of 2.95 W / (m · K) is applied between the lower part of the alumina substrate and the cooling plate to stabilize the contact thermal resistance between the lower part of the alumina substrate and the cooling plate. By using a grease having good thermal conductivity, the variation in contact thermal resistance is suppressed to about 10% of the total thermal resistance, and the surface temperatures T 0 and T t of the resistor film and the alumina substrate are stabilized. The variation in contact thermal resistance is the result of evaluation by transient heat measurement. When a sufficient time has elapsed and the measurement sample A has reached a thermal equilibrium state, the surface temperatures T 0 and T t of the resistor film 3 and the alumina substrate 1 are measured with an infrared radiation thermometer. For the measurement of the surface temperature T 0 , a sample obtained by forming a resistor film to be measured for thermal conductivity (hereinafter referred to as “T 0 sample”) is used. Further, for the measurement of the surface temperature T t , a sample in which only the resistor film is changed to a metal thin film among the T 0 samples (hereinafter referred to as “T t sample”) is used.

金属薄膜は熱伝導率が高く、かつ皮膜厚みが0.15μmと薄いことから、皮膜上下面の温度差が無視できるほど小さい。そのため、金属薄膜の表面温度とアルミナ基板の表面温度を同等として扱うことができる。つまり、アルミナ基板1の表面温度を金属皮膜の下面温度(基準温度)とみなすことができる。測定に使用するサンプルの構造イメージ図を図4に示し、抵抗体皮膜の寸法と表面の放射率εを表2に示す。放射率は、参考文献(NEC三栄株式会社「TH31-402データキャプチャプログラム取扱説明書」(1999)第6章p.5-6)に基づき測定した値であり、赤外線放射温度計で温度を測定するときの設定値とした。また電流計と電圧計を使用することで、抵抗体皮膜の総発熱量Qを算出している。 Since the metal thin film has high thermal conductivity and the film thickness is as thin as 0.15 μm, the temperature difference between the upper and lower surfaces of the film is so small that it can be ignored. Therefore, the surface temperature of the metal thin film and the surface temperature of the alumina substrate can be treated as equivalent. That is, the surface temperature of the alumina substrate 1 can be regarded as the lower surface temperature (reference temperature) of the metal film. The structural image of the sample used for the measurement is shown in FIG. 4, and the dimensions of the resistor film and the emissivity ε on the surface are shown in Table 2. The emissivity is a value measured based on the reference (NEC Sanei Co., Ltd. "TH31-402 Data Capture Program Instruction Manual" (1999) Chapter 6, p.5-6), and the temperature is measured with an infrared thermometer. It was set as the setting value when Further, the total calorific value Q of the resistor film is calculated by using an ammeter and a voltmeter.

Figure 0007060378000008
Figure 0007060378000008

Figure 0007060378000009
Figure 0007060378000009

抵抗体皮膜の熱伝導率の測定結果を表3に示す。測定から0.74~0.80W/(m・K)の熱伝導率が得られ、一般的なソーダガラスの熱伝導率1.03W/(m・K)に近い値を示した、抵抗体皮膜は、主にSiOと金属酸化物の複合材料であり、主成分がSiOであることからガラスに近い熱伝導率を持っていると考えられる。 Table 3 shows the measurement results of the thermal conductivity of the resistor film. From the measurement, a thermal conductivity of 0.74 to 0.80 W / (m · K) was obtained, and the thermal conductivity of general soda glass was close to 1.03 W / (m · K). The film is mainly a composite material of SiO 2 and a metal oxide, and since the main component is SiO 2 , it is considered that the film has a thermal conductivity close to that of glass.

熱漏れによる熱伝導率測定誤差に対する考察として、本実施形態においては、抵抗体皮膜で発生した全ての熱がアルミナ基板下部に向かって流れることを前提条件にしている。しかし実際には、自然対流や放射による放熱により、サンプルやハーネス表面から熱が漏れている。この熱漏れの割合が大きいと測定誤差が大きくなる。ここでは熱解析により、抵抗体皮膜の総発熱量Qに対する熱漏れの割合を評価し、熱漏れによる測定誤差について考察した(図5)。図5は熱解析モデルを示したものであり、図3に示す構造の、電極5a,5bにハーネス51a,51bを固定している。自然対流と放射による放熱は、(6)(7)式に示す平均熱伝達率により考慮した。自然対流は25℃の空気に対する放熱とし、放射は周囲からの反射がない25℃環境への放熱を想定した。 As a consideration for the thermal conductivity measurement error due to heat leakage, in this embodiment, it is a precondition that all the heat generated in the resistor film flows toward the lower part of the alumina substrate. However, in reality, heat leaks from the sample and harness surface due to heat dissipation due to natural convection and radiation. If the rate of this heat leakage is large, the measurement error becomes large. Here, the ratio of heat leakage to the total calorific value Q of the resistor film was evaluated by thermal analysis, and the measurement error due to heat leakage was considered (FIG. 5). FIG. 5 shows a thermal analysis model, and harnesses 51a and 51b are fixed to electrodes 5a and 5b in the structure shown in FIG. Heat dissipation due to natural convection and radiation was considered by the average heat transfer coefficient shown in equations (6) and (7). Natural convection is assumed to be heat radiation to air at 25 ° C, and radiation is assumed to be heat radiation to a 25 ° C environment where there is no reflection from the surroundings.

Figure 0007060378000010
Figure 0007060378000010

ここで、パラメータの定義は以下の通りである。
con :自然対流の平均熱伝達率 [W/(mK)]
rad :放射の平均熱伝達率[W/(mK)]
C :寸法,設置状態により決まる係数[ - ]
S :サンプル,ワイヤーハーネスの表面積[m]
K :代表長 [m]
σ :ステファンボルツマン係数[W/(m・K)]
ε :放射率[ - ]
cel :表面の摂氏温度 [°C]
ad :表面の絶対温度 [K]
Here, the definition of the parameter is as follows.
h con : Average heat transfer coefficient of natural convection [W / (m 2 K)]
h rad : Average heat transfer coefficient of radiation [W / (m 2 K)]
C: Coefficient determined by dimensions and installation conditions [-]
S: Surface area of sample and wire harness [m 2 ]
K: Representative length [m]
σ: Stefan-Boltzmann coefficient [W / (m 2 · K 4 )]
ε: Emissivity [-]
T cell : Surface temperature in degrees Celsius [° C]
T ad : Absolute surface temperature [K]

解析結果より、サンプル表面からの熱漏れQsと、ハーネス表面からの熱漏れQwは表4に示す結果となった。総発熱量Qに対する熱漏れ総量Qs+Qwの割合は0.15%と小さく、測定誤差への影響も小さいことがわかった。 From the analysis results, the heat leakage Qs from the sample surface and the heat leakage Qw from the harness surface are shown in Table 4. It was found that the ratio of the total heat leakage amount Qs + Qw to the total calorific value Q was as small as 0.15%, and the influence on the measurement error was also small.

Figure 0007060378000011
Figure 0007060378000011

以上に述べた、赤外線放射温度計を利用した測定方法を用いて、抵抗体皮膜の熱伝導率を測定した結果、0.74~0.80W/(m・K)の熱伝導率が得られた。 As a result of measuring the thermal conductivity of the resistor film by using the measurement method using the infrared radiation thermometer described above, a thermal conductivity of 0.74 to 0.80 W / (m · K) was obtained. rice field.

本実施の形態によれば、アルミナ基板上に印刷・焼成された実際の製品に極めて近い抵抗体皮膜の熱伝導率を計測することができる。
定常温度上昇時の抵抗体皮膜の上下面の温度差を赤外線放射温度計により計測している。対象とする抵抗体皮膜(厚膜)のサンプルを使用し皮膜上面の温度を測定し、抵抗体皮膜(薄膜)を形成したサンプルを使用し基材上面温度を計測する方法をとっている。
体積発熱体である抵抗体皮膜(厚膜)の上下面温度差は関係式(2)により表すことができ、この関係式を利用することで簡単に熱伝導率を算出することができる。
測定時のサンプル取り付け条件(放熱グリース4の選定・サンプル固定時のトルク管理・基材の種類・冷却プレート側の表面粗さなど)の工夫により、測定精度を向上させることが可能である。
According to this embodiment, it is possible to measure the thermal conductivity of the resistor film, which is very close to the actual product printed and fired on the alumina substrate.
The temperature difference between the upper and lower surfaces of the resistor film when the steady temperature rises is measured with an infrared radiation thermometer. A method is adopted in which the temperature of the upper surface of the film is measured using a sample of the target resistor film (thick film), and the temperature of the upper surface of the substrate is measured using the sample in which the resistor film (thin film) is formed.
The temperature difference between the upper and lower surfaces of the resistor film (thick film), which is a volume heating element, can be expressed by the relational expression (2), and the thermal conductivity can be easily calculated by using this relational expression.
It is possible to improve the measurement accuracy by devising the sample mounting conditions (selection of thermal paste 4, torque control when fixing the sample, type of base material, surface roughness on the cooling plate side, etc.) at the time of measurement.

上記で説明した演算処理および制御は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)によるソフトウェア処理、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)によるハードウェア処理によって実現することができる。 The arithmetic processing and control described above are software processing by CPU (Central Processing Unit) and GPU (Graphics Processing Unit), ASIC (Application Specific Integrated Circuit), and FPGA (Field Programmable) hardware implementation by FPGA (Field Programmable). Can be done.

上記の実施の形態において、図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。
In the above embodiment, the configuration and the like shown in the illustration are not limited to these, and can be appropriately changed within the range in which the effect of the present invention is exhibited. In addition, it can be appropriately modified and implemented as long as it does not deviate from the scope of the object of the present invention.
In addition, each component of the present invention can be arbitrarily selected, and an invention having the selected configuration is also included in the present invention.

また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
例えば、本発明の対象は、上記に記載の熱伝導率計測方法をコンピュータに実行させるためのプログラムであっても良く、当該プログラムを記録するコンピュータ読み取り可能な記録媒体であっても良い。
Further, the program for realizing the function described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed to process each part. May be done. The term "computer system" as used herein includes hardware such as an OS and peripheral devices.
For example, the object of the present invention may be a program for causing a computer to execute the thermal conductivity measuring method described above, or may be a computer-readable recording medium for recording the program.

本発明は、電子部品皮膜の熱伝導率計測方法に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used as a method for measuring the thermal conductivity of an electronic component film.

1 アルミナ基板
3 抵抗体皮膜
4 放熱グリース
5a,5b 金属端子(電極)
7 冷却プレート
21 赤外線放射温度計
1 Alumina substrate 3 Resistor film 4 Thermal grease 5a, 5b Metal terminals (electrodes)
7 Cooling plate 21 Infrared radiation thermometer

Claims (3)

板体に形成された金属皮膜の熱伝導率を測定演算する方法であって、
前記板体を冷却プレートに固定し、
熱平衡が得られるまで前記金属皮膜に通電して自己発熱させ
金属皮膜の表面温度と、板体の表面温度若しくは金属皮膜の下面温度である基準温度とから、金属皮膜の熱伝導率を測定するステップを有する前記方法。
It is a method of measuring and calculating the thermal conductivity of a metal film formed on a plate.
The plate is fixed to the cooling plate and
The metal film is energized to generate heat by itself until thermal equilibrium is obtained.
The method comprising the step of measuring the thermal conductivity of the metal film from the surface temperature of the metal film and the reference temperature which is the surface temperature of the plate body or the bottom surface temperature of the metal film.
前記金属皮膜の熱伝導率を測定するステップは、
前記金属皮膜の表面温度を赤外線放射温度計により測定するステップを含む請求項1に記載の方法。
The step of measuring the thermal conductivity of the metal film is
The method according to claim 1, comprising the step of measuring the surface temperature of the metal film with an infrared radiation thermometer.
前記板体の表面温度を、基準温度とすることを特徴とする請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the surface temperature of the plate is set as a reference temperature.
JP2017252869A 2017-12-28 2017-12-28 Thermal conductivity measurement method for metal film Active JP7060378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017252869A JP7060378B2 (en) 2017-12-28 2017-12-28 Thermal conductivity measurement method for metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017252869A JP7060378B2 (en) 2017-12-28 2017-12-28 Thermal conductivity measurement method for metal film

Publications (2)

Publication Number Publication Date
JP2019120496A JP2019120496A (en) 2019-07-22
JP7060378B2 true JP7060378B2 (en) 2022-04-26

Family

ID=67307164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017252869A Active JP7060378B2 (en) 2017-12-28 2017-12-28 Thermal conductivity measurement method for metal film

Country Status (1)

Country Link
JP (1) JP7060378B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002435A1 (en) 2001-11-19 2005-01-06 Toshimasa Hashimoto Method for thermal analysis and system for thermal analysis
JP2005249427A (en) 2004-03-01 2005-09-15 National Institute Of Advanced Industrial & Technology Thermophysical property measuring method and device
JP2007327755A (en) 2006-06-06 2007-12-20 Kyushu Nogeden:Kk Detector of flaw part or like of inspection target and detection method using it
JP2008286720A (en) 2007-05-21 2008-11-27 Panasonic Corp Method for measuring thermal physical properties, and instrument
JP2008309729A (en) 2007-06-18 2008-12-25 Mitsubishi Electric Corp Device and method for measuring thermal conductivity
JP2013011563A (en) 2011-06-30 2013-01-17 Nichias Corp Heat conductivity measurement method and device
JP2014122843A (en) 2012-12-21 2014-07-03 Japan Aerospace Exploration Agency Heat conductivity measuring apparatus and measuring method
JP2015225034A (en) 2014-05-29 2015-12-14 株式会社超高温材料研究センター Measurement method of thermal diffusivity of translucent material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002435A1 (en) 2001-11-19 2005-01-06 Toshimasa Hashimoto Method for thermal analysis and system for thermal analysis
JP2005249427A (en) 2004-03-01 2005-09-15 National Institute Of Advanced Industrial & Technology Thermophysical property measuring method and device
JP2007327755A (en) 2006-06-06 2007-12-20 Kyushu Nogeden:Kk Detector of flaw part or like of inspection target and detection method using it
JP2008286720A (en) 2007-05-21 2008-11-27 Panasonic Corp Method for measuring thermal physical properties, and instrument
JP2008309729A (en) 2007-06-18 2008-12-25 Mitsubishi Electric Corp Device and method for measuring thermal conductivity
JP2013011563A (en) 2011-06-30 2013-01-17 Nichias Corp Heat conductivity measurement method and device
JP2014122843A (en) 2012-12-21 2014-07-03 Japan Aerospace Exploration Agency Heat conductivity measuring apparatus and measuring method
JP2015225034A (en) 2014-05-29 2015-12-14 株式会社超高温材料研究センター Measurement method of thermal diffusivity of translucent material

Also Published As

Publication number Publication date
JP2019120496A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
Martin Protocols for the high temperature measurement of the Seebeck coefficient in thermoelectric materials
CN105358949B (en) For measuring the method and system of heat flux
CN107389206B (en) Thermopile sensor and control method thereof
EP0159438A2 (en) Multi-layered thin film heat transfer gauge
Völklein et al. Optimized MEMS Pirani sensor with increased pressure measurement sensitivity in the fine and high vacuum regime
Missal et al. Miniaturized ceramic differential scanning calorimeter with integrated oven and crucible in LTCC technology
JP6131406B2 (en) Calorimeter and calorimeter design method
Roh et al. Harman measurements for thermoelectric materials and modules under non-adiabatic conditions
CN110873730A (en) Measuring device for determining the thermal conductivity of a fluid
JP6398807B2 (en) Temperature difference measuring device
Park et al. Design of micro-temperature sensor array with thin film thermocouples
JP7060378B2 (en) Thermal conductivity measurement method for metal film
EP3146301B1 (en) Infrared temperature measurement and stabilization thereof
Phinney et al. Raman thermometry measurements and thermal simulations for MEMS bridges at pressures from 0.05 Torr to 625 Torr
KR101662713B1 (en) Thermal properties measurement sensors for thermoelectric thin film in cross-plane direction
Ras et al. " LaTIMA" an innovative test stand for thermal and electrical characterization of highly conductive metals, die attach, and substrate materials
Greiner et al. Direct Measurement of the Electrocaloric Temperature Change in Multilayer Ceramic Components using Resistance‐Welded Thermocouple Wires
US8821013B2 (en) Thermocouples with two tabs spaced apart along a transverse axis and methods
Rizzo et al. Calibration methodology for contact heat flux sensors with enhanced accuracy
Edler et al. Reference material for Seebeck coefficients
Edler et al. Analysis of the ‘cold finger effect’in measuring the Seebeck coefficient
JP5862510B2 (en) Semiconductor device evaluation system and evaluation method
Sarajlić et al. Thin-film four-resistor temperature sensor for measurements in air
CN110430625A (en) Aerosol generating system, heating module, temperature checking method and device
Zribi et al. Design, calibration and operational error analysis of a heat flux sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R150 Certificate of patent or registration of utility model

Ref document number: 7060378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150