JP2008286720A - Method for measuring thermal physical properties, and instrument - Google Patents
Method for measuring thermal physical properties, and instrument Download PDFInfo
- Publication number
- JP2008286720A JP2008286720A JP2007133727A JP2007133727A JP2008286720A JP 2008286720 A JP2008286720 A JP 2008286720A JP 2007133727 A JP2007133727 A JP 2007133727A JP 2007133727 A JP2007133727 A JP 2007133727A JP 2008286720 A JP2008286720 A JP 2008286720A
- Authority
- JP
- Japan
- Prior art keywords
- temperature side
- measured
- heat flow
- flow density
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
本発明は、真空断熱材など高性能断熱材の断熱性能を評価するための熱物性を測定する方法および装置に関するものである。 The present invention relates to a method and apparatus for measuring thermophysical properties for evaluating the heat insulation performance of a high performance heat insulating material such as a vacuum heat insulating material.
近年、真空断熱材は、冷蔵庫、自動販売機などの冷凍冷蔵機器やジャーポットなどの温熱機器に多く用いられ、これらの機器の消費エネルギーを格段に削減し、省エネ効果を大幅に向上した。 In recent years, vacuum insulation materials have been widely used in refrigerators and vending machines and other freezing and refrigeration equipment, and jar pots and other thermal equipment, greatly reducing the energy consumed by these equipment and greatly improving the energy-saving effect.
一般に、このような用途で用いられる真空断熱材は、真空断熱材の強度を確保するための芯材と、ガスバリア性を有し芯材を覆う外被材と、外被材内部の余分な水分を吸着する水分吸着剤で構成される。 In general, the vacuum heat insulating material used in such applications includes a core material for ensuring the strength of the vacuum heat insulating material, a jacket material that has gas barrier properties and covers the core material, and excess moisture inside the jacket material. It consists of a moisture adsorbent that adsorbs
なお、芯材は、グラスウール、ロックウール、セラミックファイバーなどの繊維系や、非結晶珪素、シリカなどの粉末系が一般的に用いられる。また、外被材としては、外部から真空断熱材内部へのガス浸入を抑制するように、樹脂フィルム、蒸着フィルム、金属箔フィルムなどのガスバリア性に優れたフィルム材料を用いる。 As the core material, fiber systems such as glass wool, rock wool, and ceramic fibers, and powder systems such as amorphous silicon and silica are generally used. Further, as the jacket material, a film material having excellent gas barrier properties such as a resin film, a vapor deposition film, and a metal foil film is used so as to suppress gas intrusion from the outside into the vacuum heat insulating material.
また、一般に断熱材の断熱性能は、断熱材の片面から反対面への単位面積当たりの熱流密度を厚みで除した熱伝導率で評価される。この熱伝導率が小さいものほど断熱性能が高いことを意味する。 Moreover, generally the heat insulation performance of a heat insulating material is evaluated by the heat conductivity which remove | divided the heat flow density per unit area from the one side of a heat insulating material to an opposite surface by thickness. A smaller thermal conductivity means higher thermal insulation performance.
熱伝導率の測定は、断熱材を温度調整可能な平行平板で挟み、断熱材の厚み方向に所定の温度差をつけたときの単位面積当たりの熱流密度を測定する。同時に平行平板間の厚みを測定し、熱伝導率を算出する。 The heat conductivity is measured by sandwiching the heat insulating material between parallel flat plates whose temperature can be adjusted, and measuring the heat flow density per unit area when a predetermined temperature difference is provided in the thickness direction of the heat insulating material. At the same time, the thickness between parallel flat plates is measured, and the thermal conductivity is calculated.
このとき、真空断熱材のような多層構造の断熱材では、厚み方向の熱伝導率と比較して、それに垂直な方向への熱伝導率が著しく大きくなり、伝熱経路が複数になることがある。このため、熱流密度を厚み方向と、それに垂直な方向の複数を測定し、全体の見かけの熱流密度から見かけの熱伝導率を得る測定する方法がある(例えば、特許文献1参照)。 At this time, in the heat insulating material having a multilayer structure such as a vacuum heat insulating material, the heat conductivity in the direction perpendicular to the heat conductivity in the thickness direction is remarkably increased, and there may be a plurality of heat transfer paths. is there. For this reason, there is a method of measuring the heat flow density in the thickness direction and a plurality of directions perpendicular to the thickness direction and obtaining the apparent heat conductivity from the overall apparent heat flow density (see, for example, Patent Document 1).
図2は、厚みに対して垂直方向に熱流計を備えた従来の熱伝導率測定装置の構造を示す概略断面図である。 FIG. 2 is a schematic cross-sectional view showing the structure of a conventional thermal conductivity measuring device provided with a heat flow meter in a direction perpendicular to the thickness.
縦方向熱流計fu,flは、被測定断熱材Sを厚み方向に貫流する熱流を検出するものであり、各々同一構成のものを上下に配置する。横方向熱流計fuh,flhは、それぞれ上下に配置した縦方向熱流計fu,flに密着され、且つ、間に挟んだ被測定断熱材Sの表皮を流れる熱流を検出するものである。 The longitudinal heat flow meters fu and fl are for detecting the heat flow that flows through the measurement heat insulating material S in the thickness direction, and the same configuration is arranged vertically. The lateral heat flow meters fuh and flh are in close contact with the vertical heat flow meters fu and fl arranged above and below, respectively, and detect the heat flow flowing through the skin of the measurement heat insulating material S sandwiched therebetween.
すなわち、熱流計fu,fl,fuh,flhは二層構成となり、被測定断熱材Sから見て、この両面に密着する上下方向に配置した横方向熱流計fuh,flhは内層となり、この外側に配置した縦方向熱流計fu,flは外層となる。なお、被測定断熱材S上面中央温度T1、下面中央温度T2、周囲温度Taを測定する。 That is, the heat flow meters fu, fl, fuh, and flh have a two-layer structure, and the horizontal heat flow meters fuh and flh arranged in the vertical direction in close contact with both surfaces as viewed from the heat insulating material S to be measured are inner layers, The arranged longitudinal heat flow meters fu, fl are outer layers. In addition, the upper surface center temperature T1, the lower surface center temperature T2, and the ambient temperature Ta are measured.
まず、断熱性の大きい熱伝導率が既知の標準試料を装着し、縦方向熱流計fu,flを校正する。なお、厚みに垂直な方向の熱流密度は、誤差範囲内でゼロである。 First, a standard sample having a large thermal insulation and a known thermal conductivity is mounted, and the longitudinal heat flow meters fu and fl are calibrated. The heat flow density in the direction perpendicular to the thickness is zero within the error range.
次に、被測定断熱材Sに使用される表皮材のシート状サンプルを密着させて装着し、厚み方向の熱流密度と、それに垂直な方向の熱流密度を検出し、先の校正で得られた関係式に基づき、厚み方向とそれに垂直方向の2つの伝熱経路を合計した見かけの熱伝導率と、厚み方向の熱伝導率と、さらに表皮材の見かけの熱伝導率を求めることが可能になる。
しかしながら、上記従来の構成では、被測定断熱材Sの熱伝導率を求めるために、被測定断熱材Sの上下面に温度差を設け、厚み方向への熱流密度と、厚みに垂直方向である表面の熱流密度を検出し、標準試料による校正から得られる関係式から算出される。 However, in the above conventional configuration, in order to obtain the thermal conductivity of the measured heat insulating material S, a temperature difference is provided on the upper and lower surfaces of the measured heat insulating material S, and the heat flow density in the thickness direction is perpendicular to the thickness. The surface heat flow density is detected and calculated from a relational expression obtained from calibration with a standard sample.
つまり、被測定断熱材Sの熱伝導率として、厚み方向への熱流密度が支配的な場合は、断熱材としての指標として適しているが、厚み方向の断熱性能が向上すると、垂直方向の熱流密度の影響度が相対的に大きくなり、本方法での算出値は適当でなくなるという課題があった。 That is, when the heat flow density in the thickness direction is dominant as the thermal conductivity of the heat insulating material S to be measured, it is suitable as an index as a heat insulating material. However, when the heat insulating performance in the thickness direction is improved, the heat flow in the vertical direction is improved. There is a problem that the degree of influence of density becomes relatively large, and the calculated value by this method is not appropriate.
また、被測定断熱材Sが真空断熱材である場合、断熱部の熱抵抗が一般的な断熱材と比較して著しく増大することに加えて、その周縁にヒレ部があり、表面が均一に温度調整できず、ヒレ部からの放熱または吸熱により、表面に大きな温度勾配が形成され、さらに厚みの垂直方向への熱流密度が増大するという課題があった。 In addition, when the heat insulating material S to be measured is a vacuum heat insulating material, the thermal resistance of the heat insulating portion is significantly increased as compared with a general heat insulating material, and in addition, there is a fin portion at the periphery, and the surface is uniform. There was a problem that the temperature could not be adjusted, and a large temperature gradient was formed on the surface due to heat dissipation or heat absorption from the fin portion, and the heat flow density in the vertical direction of the thickness increased.
さらに、本来ヒレ部にあたる部分の温度調整をするために設けられている温度調整器は、被測定断熱材Sと接触しておらず、そのまま所定の低温設定値に温度調整しようとすると、空間内の水分が結露することにより水の凝縮潜熱により温度調整が困難であるという課題があった。 Furthermore, the temperature regulator that is originally provided to adjust the temperature of the portion that corresponds to the fin portion is not in contact with the measured heat insulating material S, and if the temperature is adjusted to a predetermined low temperature set value as it is, There was a problem that it was difficult to adjust the temperature due to the latent heat of condensation of water due to condensation of water.
本発明は、被測定断熱材表面で厚み方向への熱流密度を精度良く測定できるように、厚みに垂直方向への熱流密度を低減して熱伝導率など熱物性測定方法および装置を提供することを目的とする。 The present invention provides a thermophysical property measuring method and apparatus such as thermal conductivity by reducing the heat flow density in the direction perpendicular to the thickness so that the heat flow density in the thickness direction can be accurately measured on the surface of the heat insulating material to be measured. With the goal.
上記目的を達成するために本発明の熱物性測定方法は、第1の高温側調整器を板状の被測定物における厚み方向に垂直な対向する2つの表面のうちの一方の表面の中央部と当接させると共に、前記第1の高温側調整器の外周側に位置する第2の高温側調整器を前記被測定物の前記一方の表面の外周部と当接させ、第1の低温側調整器を板状の被測定物における厚み方向に垂直な対向する2つの表面のうちの他方の表面の中央部と当接させると共に、前記第1の低温側調整器の外周側に位置する第2の低温側調整器を前記被測定物の前記他方の表面の外周部と当接させ、前記被測定物の前記一方の表面温度が所定の高温度帯で一様になるように前記第1の高温側調整器と前記第2の高温側調整器の出力を調整すると共に、前記被測定物の前記他方の表面温度が所定の低温度帯で一様になるように前記第1の低温側調整器と前記第2の低温側調整器の出力を調整した後、前記第1の高温側調整器から前記被測定物に向かう熱流密度を高温側熱流密度検知手段で検知すると共に、前記被測定物から前記第1の低温側調整器に向かう熱流密度を低温側熱流密度検知手段で検知し、前記高温側熱流密度検知手段で検知した熱流密度と前記低温側熱流密度検知手段で検知した熱流密度とを基にして前記被測定物の厚み方向への熱流密度を得るのである。 In order to achieve the above object, the thermophysical property measuring method of the present invention is characterized in that the first high-temperature side adjuster has a central portion of one surface of two opposing surfaces perpendicular to the thickness direction of a plate-like object to be measured. And a second high-temperature side adjuster located on the outer peripheral side of the first high-temperature side adjuster is brought into contact with the outer peripheral portion of the one surface of the object to be measured. The adjuster is brought into contact with the central portion of the other surface of the two opposing surfaces perpendicular to the thickness direction of the plate-shaped object to be measured, and the adjuster is positioned on the outer peripheral side of the first low temperature side adjuster. 2, the first low temperature side adjuster is brought into contact with the outer peripheral portion of the other surface of the object to be measured, and the first surface temperature of the object to be measured is uniform in a predetermined high temperature zone. And adjusting the outputs of the high temperature side regulator and the second high temperature side regulator, and the other of the object to be measured After adjusting the outputs of the first low-temperature side adjuster and the second low-temperature side adjuster so that the surface temperature is uniform in a predetermined low temperature zone, the first high-temperature side adjuster The heat flow density toward the object to be measured is detected by the high temperature side heat flow density detecting means, and the heat flow density from the object to be measured toward the first low temperature side regulator is detected by the low temperature side heat flow density detecting means, and the high temperature side The heat flow density in the thickness direction of the object to be measured is obtained based on the heat flow density detected by the heat flow density detection means and the heat flow density detected by the low temperature side heat flow density detection means.
これにより、被測定物の上下面を加熱または冷却して温度差を設けて、被測定物表面中央部に位置する高温側熱流密度検出手段と低温側熱流密度検出手段とによって、厚み方向への熱流密度を検出する時に、高温側および低温側熱流密度検出手段の外周側の被測定物の表面温度は、高温側および低温側熱流密度検出手段の位置する被測定物の中央部の表面温度と一様な温度になるように調整しているので、被測定物表面の横方向への熱移動が抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Thereby, the upper and lower surfaces of the object to be measured are heated or cooled to provide a temperature difference, and the high temperature side heat flow density detecting means and the low temperature side heat flow density detecting means located in the center of the surface of the object to be measured are moved in the thickness direction. When detecting the heat flow density, the surface temperature of the object to be measured on the outer peripheral side of the high temperature side and low temperature side heat flow density detecting means is the surface temperature of the center part of the object to be measured where the high temperature side and low temperature side heat flow density detecting means is located. Since the temperature is adjusted to be uniform, the heat transfer in the lateral direction on the surface of the object to be measured is suppressed, and the heat flow density in the thickness direction can be accurately detected.
また、本発明の熱物性測定装置は、板状の被測定物における厚み方向に垂直な対向する2つの表面のうちの一方の表面の中央部と当接し前記被測定物の前記一方の表面の中央部の温度を高温度帯に調整する第1の高温側調整器と、前記第1の高温側調整器の外周側に位置し前記被測定物の前記一方の表面の外周部と当接し前記被測定物の前記一方の表面の外周部の温度を高温度帯に調整する第2の高温側調整器と、前記被測定物における厚み方向に垂直な対向する2つの表面のうちの他方の表面の中央部と当接し前記被測定物の前記他方の表面の中央部の温度を低温度帯に調整する第1の低温側調整器と、前記第1の低温側調整器の外周側に位置し前記被測定物の前記他方の表面の外周部と当接し前記被測定物の前記他方の表面の外周部の温度を低温度帯に調整する第2の低温側調整器と、前記被測定物の前記一方の表面温度が所定の高温度帯で一様になるように前記第1の高温側調整器と前記第2の高温側調整器の出力を調整すると共に、前記被測定物の前記他方の表面温度が所定の低温度帯で一様になるように前記第1の低温側調整器と前記第2の低温側調整器の出力を調整する温度制御手段と、前記第1の高温側調整器から前記被測定物に向かう熱流密度を検知する高温側熱流密度検知手段と、前記被測定物から前記第1の低温側調整器に向かう熱流密度を検知する低温側熱流密度検知手段とを備えるものである。 Further, the thermophysical property measuring apparatus of the present invention is in contact with the central portion of one of the two opposing surfaces perpendicular to the thickness direction of the plate-like object to be measured, on the one surface of the object to be measured. A first high-temperature side adjuster that adjusts the temperature of the central portion to a high temperature zone; and an outer peripheral portion of the one surface of the object to be measured that is located on the outer peripheral side of the first high-temperature side adjuster, and A second high-temperature side adjuster for adjusting the temperature of the outer peripheral portion of the one surface of the device under test to a high temperature zone, and the other surface of the two surfaces facing each other perpendicular to the thickness direction of the device under test A first low-temperature side regulator that adjusts the temperature of the central portion of the other surface of the object to be measured to a low temperature zone, and an outer peripheral side of the first low-temperature side regulator. The temperature of the outer peripheral portion of the other surface of the object to be measured is in contact with the outer peripheral portion of the other surface of the object to be measured. A second low temperature side adjuster that adjusts the temperature to a low temperature zone, the first high temperature side adjuster and the first temperature so that the one surface temperature of the object to be measured is uniform in a predetermined high temperature zone. And adjusting the output of the second high temperature side adjuster, and the first low temperature side adjuster and the second low temperature so that the other surface temperature of the object to be measured is uniform in a predetermined low temperature zone. Temperature control means for adjusting the output of the side adjuster, high temperature side heat flow density detecting means for detecting the heat flow density from the first high temperature side adjuster toward the object to be measured, and the first object from the object to be measured. A low-temperature-side heat flow density detecting means for detecting the heat-flow density toward the low-temperature side regulator.
これにより、第1、第2の高温側調整器と第1、第2の低温側調整器とにより被測定物の上下面を加熱または冷却して温度差を設けて、被測定物表面中央部に位置する高温側熱流密度検出手段と低温側熱流密度検出手段とによって、厚み方向への熱流密度を検出する時に、高温側および低温側熱流密度検出手段の外周側の被測定物の表面温度は、高温側および低温側熱流密度検出手段の位置する被測定物の中央部の表面温度と一様な温度になるように温度制御手段が第1、第2の高温側調整器の出力と第1、第2の低温側調整器の出力とを調整しているので、被測定物表面の横方向への熱移動が抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Thereby, the upper and lower surfaces of the object to be measured are heated or cooled by the first and second high temperature side conditioners and the first and second low temperature side conditioners to provide a temperature difference, and the surface area of the object to be measured When detecting the heat flow density in the thickness direction by the high temperature side heat flow density detection means and the low temperature side heat flow density detection means, the surface temperature of the object to be measured on the outer periphery side of the high temperature side and the low temperature side heat flow density detection means is The temperature control means controls the outputs of the first and second high-temperature side regulators and the first temperature so that the surface temperature is uniform with the surface temperature of the central part of the measurement object where the high-temperature side and low-temperature side heat flow density detection means are located. Since the output of the second low-temperature side regulator is adjusted, the heat transfer in the lateral direction on the surface of the object to be measured is suppressed, and the heat flow density in the thickness direction can be detected with high accuracy.
本発明によれば、被測定物の上下面を加熱または冷却して温度差を設けて、被測定物表面中央部に位置する高温側熱流密度検出手段と低温側熱流密度検出手段とによって、厚み方向への熱流密度を検出する時に、高温側および低温側熱流密度検出手段の外周側の被測定物の表面温度は、高温側および低温側熱流密度検出手段の位置する被測定物の中央部の表面温度と一様な温度になるように調整しているので、被測定物表面の横方向への熱移動が抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 According to the present invention, the upper and lower surfaces of the object to be measured are heated or cooled to provide a temperature difference, and the thickness is determined by the high temperature side heat flow density detecting means and the low temperature side heat flow density detecting means located at the center of the surface of the object to be measured. When the heat flow density in the direction is detected, the surface temperature of the object to be measured on the outer periphery side of the high temperature side and low temperature side heat flow density detection means is the center temperature of the object to be measured where the high temperature side and low temperature side heat flow density detection means are located. Since the temperature is adjusted to be equal to the surface temperature, the heat transfer in the lateral direction on the surface of the object to be measured is suppressed, and the heat flow density in the thickness direction can be accurately detected.
本発明の請求項1に記載の熱物性測定方法の発明は、第1の高温側調整器を板状の被測定物における厚み方向に垂直な対向する2つの表面のうちの一方の表面の中央部と当接させると共に、前記第1の高温側調整器の外周側に位置する第2の高温側調整器を前記被測定物の前記一方の表面の外周部と当接させ、第1の低温側調整器を板状の被測定物における厚み方向に垂直な対向する2つの表面のうちの他方の表面の中央部と当接させると共に、前記第1の低温側調整器の外周側に位置する第2の低温側調整器を前記被測定物の前記他方の表面の外周部と当接させ、前記被測定物の前記一方の表面温度が所定の高温度帯で一様になるように前記第1の高温側調整器と前記第2の高温側調整器の出力を調整すると共に、前記被測定物の前記他方の表面温度が所定の低温度帯で一様になるように前記第1の低温側調整器と前記第2の低温側調整器の出力を調整した後、前記第1の高温側調整器から前記被測定物に向かう熱流密度を高温側熱流密度検知手段で検知すると共に、前記被測定物から前記第1の低温側調整器に向かう熱流密度を低温側熱流密度検知手段で検知し、前記高温側熱流密度検知手段で検知した熱流密度と前記低温側熱流密度検知手段で検知した熱流密度とを基にして前記被測定物の厚み方向への熱流密度を得るのである。 The thermophysical property measuring method according to claim 1 of the present invention is characterized in that the first high-temperature side adjuster is formed at the center of one of the two opposing surfaces perpendicular to the thickness direction of the plate-like object to be measured. And a second high temperature side adjuster located on the outer peripheral side of the first high temperature side adjuster is brought into contact with the outer peripheral portion of the one surface of the object to be measured to thereby make a first low temperature The side adjuster is brought into contact with the central portion of the other surface of the two opposing surfaces perpendicular to the thickness direction of the plate-like object to be measured, and is positioned on the outer peripheral side of the first low-temperature side adjuster. A second low temperature side adjuster is brought into contact with the outer peripheral portion of the other surface of the object to be measured, and the first surface temperature of the object to be measured is uniform in a predetermined high temperature zone. Adjusting the outputs of the first high-temperature side regulator and the second high-temperature side regulator, and the other of the measured objects After adjusting the outputs of the first low temperature side regulator and the second low temperature side regulator so that the surface temperature is uniform in a predetermined low temperature zone, The heat flow density toward the measurement object is detected by the high temperature side heat flow density detection means, and the heat flow density from the object to be measured toward the first low temperature side regulator is detected by the low temperature side heat flow density detection means, and the high temperature side heat flow is detected. The heat flow density in the thickness direction of the object to be measured is obtained based on the heat flow density detected by the density detection means and the heat flow density detected by the low temperature side heat flow density detection means.
これにより、被測定物の上下面を加熱または冷却して温度差を設けて、被測定物表面中央部に位置する高温側熱流密度検出手段と低温側熱流密度検出手段とによって、厚み方向への熱流密度を検出する時に、高温側および低温側熱流密度検出手段の外周側の被測定物の表面温度は、高温側および低温側熱流密度検出手段の位置する被測定物の中央部の表面温度と一様な温度になるように調整しているので、被測定物表面の横方向への熱移動が抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Thereby, the upper and lower surfaces of the object to be measured are heated or cooled to provide a temperature difference, and the high temperature side heat flow density detecting means and the low temperature side heat flow density detecting means located in the center of the surface of the object to be measured are moved in the thickness direction. When detecting the heat flow density, the surface temperature of the object to be measured on the outer peripheral side of the high temperature side and low temperature side heat flow density detecting means is the surface temperature of the center part of the object to be measured where the high temperature side and low temperature side heat flow density detecting means is located. Since the temperature is adjusted to be uniform, the heat transfer in the lateral direction on the surface of the object to be measured is suppressed, and the heat flow density in the thickness direction can be accurately detected.
また、請求項2に記載の熱物性測定方法の発明は、請求項1に記載の発明において、高温側熱流密度検知手段を、第1の高温側調整器よりも小さい面で被測定物と接触させると共に、低温側熱流密度検知手段を、第1の低温側調整器よりも小さな面で前記被測定物と接触させることを特徴とするものであり、被測定物表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Moreover, the invention of the thermophysical property measuring method according to claim 2 is the invention according to claim 1, wherein the high temperature side heat flow density detecting means is brought into contact with the object to be measured on a smaller surface than the first high temperature side regulator. And the low temperature side heat flow density detecting means is brought into contact with the object to be measured on a smaller surface than the first low temperature side adjuster, and the heat flow density in the surface of the object to be measured is detected. The heat transfer in the lateral direction is further suppressed, and the heat flow density in the thickness direction can be detected with high accuracy.
また、請求項3に記載の熱物性測定方法の発明は、請求項1または2に記載の発明において、第1の高温側調整器と第2の高温側調整器とからなる高温側調整手段と、第1の低温側調整器と第2の低温側調整器とからなる低温側調整手段との間隔を調節可能且つ前記間隔を測定可能に構成して、前記高温側調整手段と前記低温側調整手段とで被測定物を挟んだ時の前記高温側調整手段と前記低温側調整手段との間隔を基に前記被測定物の厚みを測定し、高温側熱流密度検知手段と低温側熱流密度検知手段とで得られた熱流密度と前記被測定物の厚みとを基に前記被測定物の熱伝導率を算出することを特徴とするものであり、被測定物表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することに加えて、断熱材の断熱性能の指標として有用な熱伝導率の算出が可能になる。 Further, the invention of the thermophysical property measuring method according to claim 3 is the invention according to claim 1 or 2, wherein the high temperature side adjusting means comprising the first high temperature side regulator and the second high temperature side regulator; The high temperature side adjustment means and the low temperature side adjustment are configured such that the interval between the low temperature side adjustment means including the first low temperature side adjuster and the second low temperature side adjuster can be adjusted and the interval can be measured. The thickness of the measurement object is measured based on the distance between the high temperature side adjustment means and the low temperature side adjustment means when the measurement object is sandwiched between the high temperature side heat flow density detection means and the low temperature side heat flow density detection. The heat conductivity of the object to be measured is calculated based on the heat flow density obtained by the means and the thickness of the object to be measured, and the heat flow density in the surface of the object to be measured is detected. The heat transfer in the transverse direction is further suppressed, and the heat flow density in the thickness direction can be detected accurately. In addition to, it is possible to calculate the useful heat conductivity as an indicator of the heat insulating performance of the insulation.
また、請求項4に記載の熱物性測定方法の発明は、請求項1から3のいずれか一項に記載の発明における被測定物を、真空断熱材としたものであり、ヒレ部を有する被測定物表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 According to a fourth aspect of the present invention, there is provided a thermophysical property measuring method in which the object to be measured according to any one of claims 1 to 3 is a vacuum heat insulating material and has a fin portion. The heat flow in the surface of the object to be measured is further restrained from the heat transfer in the lateral direction of the detection unit, and the heat flow density in the thickness direction can be detected with high accuracy.
また、請求項5に記載の熱物性測定方法の発明は、請求項1から4のいずれか一項に記載の発明において、被測定物が配置される空間を除湿する除湿手段を用いて、前記被測定物が配置される空間の湿度を所定湿度以下にした後に、第1の高温側調整器から前記被測定物に向かう熱流密度を高温側熱流密度検知手段で検知すると共に、前記被測定物から第1の低温側調整器に向かう熱流密度を低温側熱流密度検知手段で検知することを特徴とするものであり、大気中の湿度の影響を抑制して、被測定物表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Further, the invention of the thermophysical property measuring method according to claim 5 is the invention according to any one of claims 1 to 4, wherein the dehumidifying means for dehumidifying the space in which the object to be measured is disposed, After the humidity of the space in which the object to be measured is arranged is set to a predetermined humidity or lower, the heat flow density from the first high temperature side adjuster to the object to be measured is detected by the high temperature side heat flow density detecting means, and the object to be measured The heat flow density toward the first low-temperature side regulator is detected by the low-temperature side heat flow density detecting means, and the influence of humidity in the atmosphere is suppressed, and the heat flow density in the surface of the object to be measured The heat transfer in the lateral direction of the detection unit is further suppressed, and the heat flow density in the thickness direction can be accurately detected.
また、請求項6に記載の熱物性測定装置の発明は、板状の被測定物における厚み方向に垂直な対向する2つの表面のうちの一方の表面の中央部と当接し前記被測定物の前記一方の表面の中央部の温度を高温度帯に調整する第1の高温側調整器と、前記第1の高温側調整器の外周側に位置し前記被測定物の前記一方の表面の外周部と当接し前記被測定物の前記一方の表面の外周部の温度を高温度帯に調整する第2の高温側調整器と、前記被測定物における厚み方向に垂直な対向する2つの表面のうちの他方の表面の中央部と当接し前記被測定物の前記他方の表面の中央部の温度を低温度帯に調整する第1の低温側調整器と、前記第1の低温側調整器の外周側に位置し前記被測定物の前記他方の表面の外周部と当接し前記被測定物の前記他方の表面の外周部の温度を低温度帯に調整する第2の低温側調整器と、前記被測定物の前記一方の表面温度が所定の高温度帯で一様になるように前記第1の高温側調整器と前記第2の高温側調整器の出力を調整すると共に、前記被測定物の前記他方の表面温度が所定の低温度帯で一様になるように前記第1の低温側調整器と前記第2の低温側調整器の出力を調整する温度制御手段と、前記第1の高温側調整器から前記被測定物に向かう熱流密度を検知する高温側熱流密度検知手段と、前記被測定物から前記第1の低温側調整器に向かう熱流密度を検知する低温側熱流密度検知手段とを備えるものである。 The invention of a thermophysical property measuring apparatus according to claim 6 is in contact with a central portion of one of two opposing surfaces perpendicular to the thickness direction in a plate-like object to be measured. A first high temperature side adjuster that adjusts the temperature of the central portion of the one surface to a high temperature zone; and an outer periphery of the one surface of the object to be measured that is located on the outer peripheral side of the first high temperature side adjuster A second high-temperature side adjuster that abuts the portion and adjusts the temperature of the outer peripheral portion of the one surface of the object to be measured to a high temperature zone, and two opposing surfaces perpendicular to the thickness direction of the object to be measured. A first low-temperature side adjuster that contacts the central portion of the other surface and adjusts the temperature of the central portion of the other surface of the object to be measured to a low temperature zone; and The other surface of the object to be measured is located on the outer peripheral side and is in contact with the outer peripheral part of the other surface of the object to be measured. A second low-temperature side adjuster that adjusts the temperature of the outer periphery of the object to a low temperature zone, and the first high-temperature side so that the one surface temperature of the object to be measured is uniform in a predetermined high temperature zone Adjusting the outputs of the adjuster and the second high temperature side adjuster and the first low temperature side adjuster so that the other surface temperature of the object to be measured is uniform in a predetermined low temperature zone; Temperature control means for adjusting the output of the second low-temperature side regulator, high-temperature side heat flow density detection means for sensing the heat flow density from the first high-temperature side regulator toward the measurement object, and the measurement object And a low temperature side heat flow density detecting means for detecting the heat flow density toward the first low temperature side regulator.
これにより、第1、第2の高温側調整器と第1、第2の低温側調整器とにより被測定物の上下面を加熱または冷却して温度差を設けて、被測定物表面中央部に位置する高温側熱流密度検出手段と低温側熱流密度検出手段とによって、厚み方向への熱流密度を検出する時に、高温側および低温側熱流密度検出手段の外周側の被測定物の表面温度は、高温側および低温側熱流密度検出手段の位置する被測定物の中央部の表面温度と一様な温度になるように温度制御手段が第1、第2の高温側調整器の出力と第1、第2の低温側調整器の出力とを調整しているので、被測定物表面の横方向への熱移動が抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Thereby, the upper and lower surfaces of the object to be measured are heated or cooled by the first and second high temperature side conditioners and the first and second low temperature side conditioners to provide a temperature difference, and the surface area of the object to be measured When detecting the heat flow density in the thickness direction by the high temperature side heat flow density detection means and the low temperature side heat flow density detection means, the surface temperature of the object to be measured on the outer periphery side of the high temperature side and the low temperature side heat flow density detection means is The temperature control means controls the outputs of the first and second high-temperature side regulators and the first temperature so that the surface temperature is uniform with the surface temperature of the central part of the measurement object where the high-temperature side and low-temperature side heat flow density detection means are located. Since the output of the second low-temperature side regulator is adjusted, the heat transfer in the lateral direction on the surface of the object to be measured is suppressed, and the heat flow density in the thickness direction can be detected with high accuracy.
また、請求項7に記載の熱物性測定装置の発明は、請求項6に記載の発明における高温側熱流密度検知手段が、第1の高温側調整器よりも小さい面で被測定物と接触し、低温側熱流密度検知手段が、第1の低温側調整器よりも小さな面で前記被測定物と接触することを特徴とするものであり、被測定物表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Further, in the thermophysical property measuring apparatus according to claim 7, the high temperature side heat flow density detecting means in the invention according to claim 6 is in contact with the object to be measured on a smaller surface than the first high temperature side regulator. The low-temperature side heat flow density detecting means is in contact with the object to be measured on a smaller surface than the first low-temperature side adjuster, and the heat flow density in the surface of the object to be measured is measured next to the detection unit. The heat transfer in the direction is further suppressed, and the heat flow density in the thickness direction can be accurately detected.
また、請求項8に記載の熱物性測定装置の発明は、請求項6または7に記載の発明において、第1の高温側調整器と第2の高温側調整器とからなる高温側調整手段と、第1の低温側調整器と第2の低温側調整器とからなる低温側調整手段との間隔を調節可能且つ前記間隔を測定可能に構成され、前記高温側調整手段と前記低温側調整手段とで被測定物を挟んだ時の前記高温側調整手段と前記低温側調整手段との間隔を基に前記被測定物の厚みを測定する厚み測定手段を備えたことを特徴とするものであり、厚み測定手段により測定した被測定物の厚みと、高温側熱流密度検知手段と低温側熱流密度検知手段で測定される熱流密度の平均値とから断熱材の断熱性能の指標として有用な熱伝導率を算出することが可能になる。 According to an eighth aspect of the present invention, there is provided the thermophysical property measuring apparatus according to the sixth or seventh aspect, wherein the high temperature side adjusting means comprises a first high temperature side regulator and a second high temperature side regulator. The high temperature side adjusting means and the low temperature side adjusting means are configured to be capable of adjusting the distance between the low temperature side adjusting means including the first low temperature side adjuster and the second low temperature side adjuster and capable of measuring the distance. And a thickness measuring means for measuring the thickness of the object to be measured based on an interval between the high temperature side adjusting means and the low temperature side adjusting means when the object to be measured is sandwiched between Thermal conductivity useful as an index of the heat insulation performance of the heat insulating material from the thickness of the object measured by the thickness measuring means and the average value of the heat flow density measured by the high temperature side heat flow density detecting means and the low temperature side heat flow density detecting means The rate can be calculated.
また、請求項9に記載の熱物性測定装置の発明は、請求項6から8のいずれか一項に記載の発明に加えて、被測定物が配置される空間を除湿する除湿手段を備えたことを特徴とするものであり、除湿手段により測定雰囲気を除湿することにより、大気中の湿度の影響を抑制して、被測定物表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 In addition to the invention according to any one of claims 6 to 8, the invention of the thermophysical property measuring apparatus according to claim 9 includes a dehumidifying means for dehumidifying the space in which the object to be measured is arranged. By dehumidifying the measurement atmosphere with the dehumidifying means, the influence of the humidity in the atmosphere is suppressed, and the heat flow density in the surface of the object to be measured is changed in the lateral direction of the detection unit. Further, the heat flow density in the thickness direction can be accurately detected.
以下、本発明の実施の形態について、図面を参照しながら説明する。また、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Further, the present invention is not limited to the embodiments.
(実施の形態1)
図1は本発明の実施の形態1における熱物性測定装置の概略断面図である。
(Embodiment 1)
FIG. 1 is a schematic sectional view of a thermophysical property measuring apparatus according to Embodiment 1 of the present invention.
図1に示すように、熱物性測定装置101は、測定室102内に天側で上下に可動する高温側調整手段103と、底側で固定された低温側調整手段104を備えており、低温側調整手段104上には被測定物105である真空断熱材を静置し、上方から高温側調整手段103を下降させて、被測定物105を挟む。 As shown in FIG. 1, a thermophysical property measuring apparatus 101 includes a high temperature side adjusting means 103 that can move up and down on the top side in a measurement chamber 102 and a low temperature side adjusting means 104 fixed on the bottom side. A vacuum heat insulating material, which is the object to be measured 105, is allowed to stand on the side adjusting means 104, and the high temperature side adjusting means 103 is lowered from above to sandwich the object to be measured 105.
被測定物105である真空断熱材は、粉体または発泡樹脂である芯材106と水分吸着剤107を袋状の外被材108内に挿入し、内部を10Pa以下に減圧した構成である。一般的に外被材108で袋体を作製するときには、シート状の2枚の周縁部を熱溶着するため、熱溶着部分は芯材106がないヒレとなる。 The vacuum heat insulating material that is the object to be measured 105 has a configuration in which a core material 106 and a moisture adsorbent 107 that are powder or foamed resin are inserted into a bag-shaped outer covering material 108 and the inside is decompressed to 10 Pa or less. In general, when a bag body is manufactured with the jacket material 108, two sheet-like peripheral portions are heat-welded, so that the heat-welded portion is a fin without the core material 106.
高温側調整手段103は、モーター109と軸110によって連結されている。また、高温側調整手段103内部には、中央部を所定の温度に調整する第1の高温側調整器111と、その外側の温度を調整する第2の高温側調整器112が備えられている。第2の高温側調整器112は、第1の高温側調整器111の形状に合わせて、リング状の取り囲むように配置しても構わないし、複数を周囲に並べても良い。 The high temperature side adjusting means 103 is connected by a motor 109 and a shaft 110. Further, inside the high temperature side adjusting means 103, a first high temperature side regulator 111 for adjusting the central portion to a predetermined temperature and a second high temperature side regulator 112 for adjusting the temperature outside thereof are provided. . The second high temperature side adjuster 112 may be arranged so as to surround a ring shape in accordance with the shape of the first high temperature side adjuster 111, or a plurality of the high temperature side adjusters 112 may be arranged around the periphery.
通常、第1の高温側調整器111および第2の高温側調整器112は電気ヒーターやペルチェ素子などが用いられ、室温よりも高い温度に設定される。さらに、第1の高温側調整器111の下部には高温側熱流密度検知手段113が備えられており、高温側調整手段103から被測定物105に流れる熱流密度を検出する。 Usually, the first high temperature side regulator 111 and the second high temperature side regulator 112 use an electric heater, a Peltier element, or the like, and are set to a temperature higher than room temperature. Further, a high temperature side heat flow density detecting means 113 is provided below the first high temperature side adjuster 111 to detect the heat flow density flowing from the high temperature side adjusting means 103 to the object 105 to be measured.
低温側調整手段104は、中央部を所定の温度に調整する第1の低温側調整器114と、その外側の温度を調整する第2の低温側調整器115が備えられている。第1の低温側調整器114および第2の低温側調整器115は、一般に冷却水やブライン等を循環させることにより、室温よりも低い温度に設定される。さらに、第1の低温側調整器114の下部には低温側熱流密度検知手段116が備えられており、被測定物105から低温側調整手段104に流れる熱流密度を検出する。 The low temperature side adjusting means 104 is provided with a first low temperature side adjuster 114 that adjusts the central portion to a predetermined temperature, and a second low temperature side adjuster 115 that adjusts the temperature outside thereof. The first low temperature side adjuster 114 and the second low temperature side adjuster 115 are generally set to a temperature lower than room temperature by circulating cooling water, brine, or the like. Further, a low-temperature side heat flow density detection means 116 is provided below the first low-temperature side adjuster 114 to detect the heat flow density flowing from the DUT 105 to the low-temperature side adjustment means 104.
測定室102内の相対湿度が高い場合には、低温側調整手段104表面で大気中の水分が結露することにより、その凝縮伝熱によって低温側熱流密度検出手段116の検出値に影響を与えるため、測定室102と熱物性測定装置101の外部に備えられた除湿手段117が配管118で接続されており、配管118上には開閉バルブ119が備えられている。 When the relative humidity in the measurement chamber 102 is high, moisture in the atmosphere is condensed on the surface of the low-temperature side adjusting means 104, and the condensation heat transfer affects the detection value of the low-temperature side heat flow density detecting means 116. A dehumidifying means 117 provided outside the measurement chamber 102 and the thermophysical property measuring apparatus 101 is connected by a pipe 118, and an open / close valve 119 is provided on the pipe 118.
制御装置120は、厚み測定手段121、温度制御手段122、高温側熱流密度計123、低温側熱流密度計124、除湿制御手段125で構成されている。厚み測定手段121はモーター109と、温度制御手段122は高温側調整手段103および低温側調整手段104と、高温側熱流密度計123は高温側熱流密度検知手段113と、低温側熱流密度計124は低温側熱流密度検出手段116と、除湿制御手段125は除湿手段117と、それぞれ配線されている。 The control device 120 includes a thickness measuring means 121, a temperature control means 122, a high temperature side heat flow density meter 123, a low temperature side heat flow density meter 124, and a dehumidification control means 125. The thickness measuring means 121 is the motor 109, the temperature control means 122 is the high temperature side adjusting means 103 and the low temperature side adjusting means 104, the high temperature side heat flow density meter 123 is the high temperature side heat flow density detecting means 113, and the low temperature side heat flow density meter 124 is The low temperature side heat flow density detecting means 116 and the dehumidifying control means 125 are wired to the dehumidifying means 117, respectively.
以上のように構成された熱物性測定装置について、以下その動作について説明する。 The operation of the thermophysical property measuring apparatus configured as described above will be described below.
まず、測定室102内が空の状態で、高温側調整手段103を低温側調整手段104に接触するまで下降させる。この状態をゼロ点として、高温側調整手段103が測定室102天面に接触するまで上昇させ、ゼロ点からのモーター109の回転数を厚み測定手段121に記憶する。 First, the high temperature side adjusting means 103 is lowered until it comes into contact with the low temperature side adjusting means 104 while the measurement chamber 102 is empty. Using this state as the zero point, the high temperature side adjusting means 103 is raised until it comes into contact with the top surface of the measurement chamber 102, and the rotation speed of the motor 109 from the zero point is stored in the thickness measuring means 121.
次に、被測定物105を低温側調整手段104上に静置した後、再び高温側調整手段103を被測定物105に接触するまで下降させる。この下降するのに要した回転数を先に測定した回転数から差し引いた値を長さ換算したものが、被測定物105の厚みとなる。なお、被測定物105の厚み測定は、厚みゲージ等を用いて予め測定し、制御手段120に手入力しても良い。 Next, after the object to be measured 105 is left on the low temperature side adjusting means 104, the high temperature side adjusting means 103 is lowered again until it comes into contact with the object to be measured 105. A value obtained by converting a value obtained by subtracting the number of revolutions required for the descent from the number of revolutions previously measured is the thickness of the DUT 105. The thickness of the object 105 may be measured in advance using a thickness gauge or the like and manually input to the control unit 120.
高温側調整手段103の位置決めが完了すると、温度制御手段121により、高温側調整手段103および低温側調整手段104を所定の温度に調整する。たとえば、高温側調整手段103は10から100℃、低温側調整手段104は−20から20℃の間で設定できる。 When the positioning of the high temperature side adjusting means 103 is completed, the temperature control means 121 adjusts the high temperature side adjusting means 103 and the low temperature side adjusting means 104 to a predetermined temperature. For example, the high temperature side adjusting means 103 can be set between 10 and 100 ° C., and the low temperature side adjusting means 104 can be set between −20 and 20 ° C.
高温側調整手段103では、中央部の第1の高温側調整器111と、その外側の第2の高温側調整器112は独立して制御可能である。また、低温側調整手段104も中央部の第1の低温側調整器114と、その外側の第2の低温側調整器115は独立して制御可能である。 In the high temperature side adjusting means 103, the first high temperature side regulator 111 at the center and the second high temperature side regulator 112 outside thereof can be controlled independently. Also, the low temperature side adjusting means 104 can be controlled independently of the first low temperature side adjuster 114 at the center and the second low temperature side adjuster 115 outside.
被測定物105として真空断熱材のようなヒレを有するものを測定する場合、第2の高温側調整器112および第2の低温側調整器114は被測定物105と接触しない部分があり、第1の高温側調整器111および第1の低温側調整器113と比較して出力を大きくし、加熱または冷却能力を増大させる。 When measuring the object to be measured 105 having a fin such as a vacuum heat insulating material, the second high temperature side adjuster 112 and the second low temperature side adjuster 114 have a portion that does not come into contact with the object to be measured 105. Compared with the first high temperature side regulator 111 and the first low temperature side regulator 113, the output is increased and the heating or cooling capacity is increased.
さらに、高温側調整手段103と低温側調整手段104との間で被測定物105がない空間部分の湿度が高い場合、低温側調整手段104表面で水分が結露することにより温度調整が不安定になり易いので、除湿制御手段125に予め記録された湿度以下になるまで除湿手段117により除湿を行う。 Further, when the humidity of the space where the object 105 is not measured is high between the high temperature side adjustment unit 103 and the low temperature side adjustment unit 104, the temperature adjustment becomes unstable due to moisture condensation on the surface of the low temperature side adjustment unit 104. Therefore, dehumidification is performed by the dehumidifying means 117 until the humidity is previously recorded in the dehumidifying control means 125.
被測定物105の高温側と低温側の温度が安定した後、高温側熱流密度検知手段113および低温側熱流密度検知手段116により被測定物105中央付近の熱流密度を測定し、それらの平均値から被測定物105の熱流密度を算出する。 After the temperature of the high temperature side and low temperature side of the object 105 to be measured is stabilized, the heat flow density in the vicinity of the center of the object 105 is measured by the high temperature side heat flow density detecting means 113 and the low temperature side heat flow density detecting means 116, and the average value thereof. From this, the heat flow density of the DUT 105 is calculated.
また、この値を厚みで除した値が熱伝導率であり、断熱材の断熱性能を評価する指標として有効である。なお、熱物性測定装置101を真空断熱材の製造工程に適用することで、真空断熱材の品質を向上することができる。 Moreover, the value which remove | divided this value by thickness is thermal conductivity, and is effective as a parameter | index which evaluates the heat insulation performance of a heat insulating material. In addition, the quality of a vacuum heat insulating material can be improved by applying the thermophysical property measuring apparatus 101 to the manufacturing process of a vacuum heat insulating material.
以上のように、本実施の形態の熱物性測定方法は、第1の高温側調整器111を板状の被測定物105における厚み方向に垂直な対向する2つの表面のうちの一方の表面の中央部と当接させると共に、第1の高温側調整器111の外周側に位置する第2の高温側調整器112を被測定物105の一方の表面の外周部と当接させ、第1の低温側調整器114を板状の被測定物105における厚み方向に垂直な対向する2つの表面のうちの他方の表面の中央部と当接させると共に、第1の低温側調整器114の外周側に位置する第2の低温側調整器115を被測定物105の他方の表面の外周部と当接させ、被測定物105の一方の表面温度が所定の高温度帯で一様になるように第1の高温側調整器111と第2の高温側調整器112の出力を調整すると共に、被測定物105の他方の表面温度が所定の低温度帯で一様になるように第1の低温側調整器114と第2の低温側調整器115の出力を調整した後、第1の高温側調整器111から被測定物105に向かう熱流密度を高温側熱流密度検知手段113で検知すると共に、被測定物105から第1の低温側調整器114に向かう熱流密度を低温側熱流密度検知手段116で検知し、高温側熱流密度検知手段113で検知した熱流密度と低温側熱流密度検知手段116で検知した熱流密度とを基にして被測定物105の厚み方向への熱流密度を得るのである。 As described above, in the thermophysical property measurement method of the present embodiment, the first high temperature side adjuster 111 is placed on one of the two surfaces facing each other perpendicular to the thickness direction of the plate-like object to be measured 105. While making it contact | abut with a center part, the 2nd high temperature side regulator 112 located in the outer peripheral side of the 1st high temperature side regulator 111 is made to contact | abut with the outer peripheral part of one surface of the to-be-measured object 105, and 1st The low temperature side adjuster 114 is brought into contact with the center portion of the other surface of the two opposite surfaces perpendicular to the thickness direction of the plate-like object to be measured 105, and the outer peripheral side of the first low temperature side adjuster 114. The second low-temperature side adjuster 115 positioned at the position is brought into contact with the outer peripheral portion of the other surface of the object to be measured 105 so that the surface temperature of one of the objects to be measured 105 is uniform in a predetermined high temperature zone. Adjust the outputs of the first high temperature side regulator 111 and the second high temperature side regulator 112. In addition, after adjusting the outputs of the first low temperature side adjuster 114 and the second low temperature side adjuster 115 so that the other surface temperature of the DUT 105 is uniform in a predetermined low temperature zone, The high-temperature side heat flow density detector 113 detects the heat flow density from one high-temperature side adjuster 111 toward the object to be measured 105, and the low-temperature side heat flow determines the heat flow density from the object to be measured 105 toward the first low-temperature side adjuster 114. Based on the heat flow density detected by the density detection means 116 and detected by the high temperature side heat flow density detection means 113 and the heat flow density detected by the low temperature side heat flow density detection means 116, the heat flow density in the thickness direction of the DUT 105 is measured. To get.
これにより、被測定物105の上下面を加熱または冷却して温度差を設けて、被測定物105表面中央部に位置する高温側熱流密度検出手段113と低温側熱流密度検出手段116とによって、厚み方向への熱流密度を検出する時に、高温側および低温側熱流密度検出手段113,116の外周側の被測定物105の表面温度は、高温側および低温側熱流密度検出手段113,116の位置する被測定物105の中央部の表面温度と一様な温度になるように調整しているので、被測定物105表面の横方向への熱移動が抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Thus, the upper and lower surfaces of the object 105 to be measured are heated or cooled to provide a temperature difference, and the high temperature side heat flow density detecting means 113 and the low temperature side heat flow density detecting means 116 located at the center of the surface of the object 105 to be measured, When detecting the heat flow density in the thickness direction, the surface temperature of the object 105 on the outer periphery side of the high temperature side and low temperature side heat flow density detection means 113, 116 is the position of the high temperature side and low temperature side heat flow density detection means 113, 116. Since the temperature is adjusted so as to be uniform with the surface temperature of the center of the object 105 to be measured, heat transfer in the lateral direction of the surface of the object 105 to be measured is suppressed, and the heat flow density in the thickness direction is accurate. It becomes possible to detect.
また、被測定物105の厚みに対して垂直方向への温度勾配はほとんどないので熱流密度も抑制されている。つまり、被測定物105の高温側から低温側への熱流は、ほぼ厚み方向のみとなることから、被測定物105真空断熱材のようにヒレを有する形状であり、さらに厚み方向への熱抵抗が大きく、厚みに対して垂直方向へ熱流が生じ易い断熱材であっても、精度良く熱物性を測定することができる。 Further, since there is almost no temperature gradient in the direction perpendicular to the thickness of the DUT 105, the heat flow density is also suppressed. That is, since the heat flow from the high temperature side to the low temperature side of the device under test 105 is almost only in the thickness direction, it has a fin shape like the vacuum heat insulating material of the device under test 105 and further has a heat resistance in the thickness direction. Even if the heat insulating material is large and heat flow is likely to occur in a direction perpendicular to the thickness, the thermophysical properties can be accurately measured.
また、高温側熱流密度検知手段113を、第1の高温側調整器111よりも小さい面で被測定物105と接触させると共に、低温側熱流密度検知手段116を、第1の低温側調整器114よりも小さな面で被測定物105と接触させるので、被測定物105表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Further, the high temperature side heat flow density detecting means 113 is brought into contact with the DUT 105 on a surface smaller than the first high temperature side adjuster 111, and the low temperature side heat flow density detecting means 116 is brought into contact with the first low temperature side adjuster 114. Since the surface to be measured 105 is brought into contact with the surface 105 to be measured, the heat flow density in the surface of the object 105 to be measured is further suppressed in the lateral movement of the detection unit, and the heat flow density in the thickness direction can be accurately detected. It becomes possible.
また、第1の高温側調整器111と第2の高温側調整器112とからなる高温側調整手段103と、第1の低温側調整器114と第2の低温側調整器115とからなる低温側調整手段104との間隔を調節可能且つ、その間隔を測定可能に構成して、高温側調整手段103と低温側調整手段104とで被測定物105を挟んだ時の高温側調整手段103と低温側調整手段104との間隔を基に被測定物105の厚みを測定し、高温側熱流密度検知手段113と低温側熱流密度検知手段116とで得られた熱流密度と被測定物105の厚みとを基に被測定物105の熱伝導率を算出するので、被測定物105表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することに加えて、断熱材の断熱性能の指標として有用な熱伝導率の算出が可能になる。 Moreover, the low temperature which consists of the high temperature side adjustment means 103 which consists of the 1st high temperature side regulator 111 and the 2nd high temperature side regulator 112, the 1st low temperature side regulator 114, and the 2nd low temperature side regulator 115. The high temperature side adjusting means 103 when the object 105 is sandwiched between the high temperature side adjusting means 103 and the low temperature side adjusting means 104 is configured so that the interval with the side adjusting means 104 can be adjusted and the distance can be measured. The thickness of the object to be measured 105 is measured based on the distance from the low temperature side adjusting means 104, and the heat flow density obtained by the high temperature side heat flow density detecting means 113 and the low temperature side heat flow density detecting means 116 and the thickness of the object to be measured 105 are measured. Since the thermal conductivity of the device under test 105 is calculated based on the above, the heat flow density in the surface of the device under test 105 is further suppressed in the lateral direction of the detection unit, and the heat flow density in the thickness direction is detected accurately. In addition to doing heat insulation of insulation Allowing calculation of useful heat conductivity as an indicator of performance.
また、被測定物105を、真空断熱材としたもので、ヒレ部を有する被測定物表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 In addition, the object to be measured 105 is a vacuum heat insulating material, and the heat flow in the surface of the object to be measured having a fin portion is further restrained from heat transfer in the lateral direction of the detection unit, and the heat flow density in the thickness direction is accurate. It becomes possible to detect well.
また、被測定物105が配置される空間を除湿する除湿手段117を用いて、被測定物105が配置される空間の湿度を所定湿度以下にした後に、第1の高温側調整器111から被測定物105に向かう熱流密度を高温側熱流密度検知手段113で検知すると共に、被測定物105から第1の低温側調整器114に向かう熱流密度を低温側熱流密度検知手段116で検知するので、大気中の湿度の影響を抑制して、被測定物105表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Further, the dehumidifying means 117 for dehumidifying the space in which the object to be measured 105 is disposed is used to reduce the humidity of the space in which the object to be measured 105 is disposed to a predetermined humidity or less, and then the first high-temperature side adjuster 111 performs measurement. The heat flow density toward the measurement object 105 is detected by the high temperature side heat flow density detection means 113 and the heat flow density from the measurement object 105 toward the first low temperature side adjuster 114 is detected by the low temperature side heat flow density detection means 116. The influence of humidity in the atmosphere is suppressed, the heat flow density in the surface of the object 105 to be measured is further suppressed from moving in the lateral direction of the detection unit, and the heat flow density in the thickness direction can be accurately detected. .
また、本実施の形態の熱物性測定装置は、板状の被測定物105における厚み方向に垂直な対向する2つの表面のうちの一方の表面の中央部と当接し被測定物105の一方の表面の中央部の温度を高温度帯に調整する第1の高温側調整器111と、第1の高温側調整器111の外周側に位置し被測定物105の一方の表面の外周部と当接し被測定物105の一方の表面の外周部の温度を高温度帯に調整する第2の高温側調整器112と、被測定物105における厚み方向に垂直な対向する2つの表面のうちの他方の表面の中央部と当接し被測定物105の他方の表面の中央部の温度を低温度帯に調整する第1の低温側調整器114と、第1の低温側調整器114の外周側に位置し被測定物105の他方の表面の外周部と当接し被測定物105の他方の表面の外周部の温度を低温度帯に調整する第2の低温側調整器115と、被測定物105の一方の表面温度が所定の高温度帯で一様になるように第1の高温側調整器111と第2の高温側調整器112の出力を調整すると共に、被測定物105の他方の表面温度が所定の低温度帯で一様になるように第1の低温側調整器114と第2の低温側調整器115の出力を調整する温度制御手段122と、第1の高温側調整器111から被測定物105に向かう熱流密度を検知する高温側熱流密度検知手段113と、被測定物105から第1の低温側調整器114に向かう熱流密度を検知する低温側熱流密度検知手段116とを備えるものである。 Further, the thermophysical property measuring apparatus according to the present embodiment is in contact with the central portion of one of the two opposing surfaces perpendicular to the thickness direction of the plate-like object to be measured 105, and is one of the objects to be measured 105. A first high temperature side adjuster 111 that adjusts the temperature of the central portion of the surface to a high temperature zone, and an outer peripheral portion of one surface of the object 105 to be measured located on the outer peripheral side of the first high temperature side adjuster 111. A second high-temperature side adjuster 112 that adjusts the temperature of the outer peripheral portion of one surface of the object 105 to be measured to a high temperature zone, and the other of the two opposing surfaces perpendicular to the thickness direction of the object 105 to be measured A first low-temperature side adjuster 114 that abuts the central portion of the surface of the target object 105 and adjusts the temperature of the central portion of the other surface of the object 105 to be measured to a low temperature zone, and an outer peripheral side of the first low-temperature side adjuster 114. The object to be measured 105 that is positioned and abuts the outer peripheral portion of the other surface of the object to be measured 105 A second low-temperature side adjuster 115 that adjusts the temperature of the outer peripheral portion of the other surface to a low temperature zone, and a first temperature so that one surface temperature of the DUT 105 is uniform in a predetermined high temperature zone. While adjusting the outputs of the high temperature side adjuster 111 and the second high temperature side adjuster 112, the first low temperature side adjuster so that the other surface temperature of the DUT 105 is uniform in a predetermined low temperature zone. 114 and the temperature control means 122 for adjusting the output of the second low temperature side adjuster 115, the high temperature side heat flow density detection means 113 for detecting the heat flow density from the first high temperature side adjuster 111 toward the object 105 to be measured, A low-temperature side heat flow density detecting means 116 for detecting the heat flow density from the DUT 105 toward the first low-temperature side regulator 114 is provided.
これにより、第1、第2の高温側調整器111,112と第1、第2の低温側調整器114,115とにより被測定物105の上下面を加熱または冷却して温度差を設けて、被測定物105表面中央部に位置する高温側熱流密度検出手段113と低温側熱流密度検出手段116とによって、厚み方向への熱流密度を検出する時に、高温側および低温側熱流密度検出手段113,116の外周側の被測定物105の表面温度は、高温側および低温側熱流密度検出手段113,116の位置する被測定物105の中央部の表面温度と一様な温度になるように温度制御手段122が第1、第2の高温側調整器111,112の出力と第1、第2の低温側調整器114,115の出力とを調整しているので、被測定物105表面の横方向への熱移動が抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 As a result, the first and second high temperature side adjusters 111 and 112 and the first and second low temperature side adjusters 114 and 115 are used to heat or cool the upper and lower surfaces of the object 105 to provide a temperature difference. When the heat flow density in the thickness direction is detected by the high temperature side heat flow density detection means 113 and the low temperature side heat flow density detection means 116 located at the center of the surface of the object 105, the high temperature side and low temperature side heat flow density detection means 113 are detected. , 116 is such that the surface temperature of the object 105 on the outer peripheral side is uniform with the surface temperature of the center of the object 105 where the high-temperature side and low-temperature side heat flow density detecting means 113, 116 are located. Since the control means 122 adjusts the outputs of the first and second high temperature side adjusters 111 and 112 and the outputs of the first and second low temperature side adjusters 114 and 115, Heat transfer in the direction Is braking, the heat flow density in the thickness direction becomes possible to accurately detect.
また、高温側熱流密度検知手段113が、第1の高温側調整器111よりも小さい面で被測定物105と接触し、低温側熱流密度検知手段116が、第1の低温側調整器114よりも小さな面で被測定物105と接触するので、被測定物105表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Further, the high temperature side heat flow density detecting means 113 comes into contact with the DUT 105 on a surface smaller than the first high temperature side adjuster 111, and the low temperature side heat flow density detecting means 116 is supplied from the first low temperature side adjuster 114. Since the contact with the object 105 to be measured is a small surface, the heat flow density in the surface of the object 105 is further suppressed in the lateral direction of the detection unit, and the heat flow density in the thickness direction can be accurately detected. become.
また、第1の高温側調整器111と第2の高温側調整器112とからなる高温側調整手段103と、第1の低温側調整器114と第2の低温側調整器115とからなる低温側調整手段104との間隔を調節可能且つ、その間隔を測定可能に構成され、高温側調整手段103と低温側調整手段104とで被測定物105を挟んだ時の高温側調整手段103と低温側調整手段104との間隔を基に被測定物105の厚みを測定する厚み測定手段121を備えたので、厚み測定手段121により測定した被測定物105の厚みと、高温側熱流密度検知手段113と低温側熱流密度検知手段116で測定される熱流密度の平均値とから断熱材の断熱性能の指標として有用な熱伝導率を算出することが可能になる。 Moreover, the low temperature which consists of the high temperature side adjustment means 103 which consists of the 1st high temperature side regulator 111 and the 2nd high temperature side regulator 112, the 1st low temperature side regulator 114, and the 2nd low temperature side regulator 115. The high temperature side adjusting means 103 and the low temperature when the object to be measured 105 is sandwiched between the high temperature side adjusting means 103 and the low temperature side adjusting means 104 are configured so that the distance between the high temperature side adjusting means 103 and the low temperature side adjusting means 104 can be measured. Since the thickness measuring means 121 for measuring the thickness of the measured object 105 based on the distance from the side adjusting means 104 is provided, the thickness of the measured object 105 measured by the thickness measuring means 121 and the high temperature side heat flow density detecting means 113 are provided. And the average value of the heat flow density measured by the low temperature side heat flow density detecting means 116, it is possible to calculate a thermal conductivity useful as an index of the heat insulating performance of the heat insulating material.
また、被測定物105が配置される空間を除湿する除湿手段117を備えたので、除湿手段117により測定雰囲気を除湿することにより、大気中の湿度の影響を抑制して、被測定物105表面内の熱流密度を検出部の横方向への熱移動がさらに抑制され、厚み方向の熱流密度が精度良く検出することが可能になる。 Further, since the dehumidifying means 117 for dehumidifying the space in which the measured object 105 is disposed is provided, the measurement atmosphere is dehumidified by the dehumidifying means 117, thereby suppressing the influence of humidity in the atmosphere, and the surface of the measured object 105 The heat transfer in the horizontal direction of the detector is further suppressed, and the heat flow density in the thickness direction can be accurately detected.
以上のように、本発明にかかる熱物性測定方法および装置は、熱抵抗が大きく、厚み方向に垂直な対向する2つの表面の温度を均一にし難い板状の被測定物の厚み方向の熱流密度および熱伝導率を精度良く測定できるので、真空断熱材等の断熱材の熱物性測定に適している。 As described above, the thermophysical property measuring method and apparatus according to the present invention has a large heat resistance and a heat flow density in the thickness direction of a plate-like object to be measured which makes it difficult to make the temperatures of two opposing surfaces perpendicular to the thickness direction uniform. In addition, since the thermal conductivity can be measured with high accuracy, it is suitable for measuring the thermal properties of a heat insulating material such as a vacuum heat insulating material.
101 熱物性測定装置
103 高温側調整手段
104 低温側調整手段
105 被測定物(真空断熱材)
111 第1の高温側調整器
112 第2の高温側調整器
113 高温側熱流密度検知手段
114 第1の低温側調整器
115 第2の低温側調整器
116 低温側熱流密度検知手段
117 除湿手段
121 厚み測定手段
122 温度制御手段
DESCRIPTION OF SYMBOLS 101 Thermophysical property measuring apparatus 103 High temperature side adjustment means 104 Low temperature side adjustment means 105 Measured object (vacuum heat insulating material)
111 1st high temperature side regulator 112 2nd high temperature side regulator 113 High temperature side heat flow density detection means 114 1st low temperature side regulator 115 2nd low temperature side regulator 116 Low temperature side heat flow density detection means 117 Dehumidification means 121 Thickness measuring means 122 Temperature control means
Claims (9)
第1の低温側調整器を板状の被測定物における厚み方向に垂直な対向する2つの表面のうちの他方の表面の中央部と当接させると共に、前記第1の低温側調整器の外周側に位置する第2の低温側調整器を前記被測定物の前記他方の表面の外周部と当接させ、
前記被測定物の前記一方の表面温度が所定の高温度帯で一様になるように前記第1の高温側調整器と前記第2の高温側調整器の出力を調整すると共に、前記被測定物の前記他方の表面温度が所定の低温度帯で一様になるように前記第1の低温側調整器と前記第2の低温側調整器の出力を調整した後、
前記第1の高温側調整器から前記被測定物に向かう熱流密度を高温側熱流密度検知手段で検知すると共に、前記被測定物から前記第1の低温側調整器に向かう熱流密度を低温側熱流密度検知手段で検知し、
前記高温側熱流密度検知手段で検知した熱流密度と前記低温側熱流密度検知手段で検知した熱流密度とを基にして前記被測定物の厚み方向への熱流密度を得ることを特徴とする熱物性測定方法。 The first high-temperature side adjuster is brought into contact with the central portion of one of two opposing surfaces perpendicular to the thickness direction of the plate-shaped object to be measured, and the outer periphery of the first high-temperature side adjuster A second high temperature side adjuster located on the side of the object to be in contact with the outer peripheral portion of the one surface of the object to be measured;
The first low temperature side adjuster is brought into contact with the center of the other surface of the two opposite surfaces perpendicular to the thickness direction of the plate-shaped object to be measured, and the outer periphery of the first low temperature side adjuster A second low-temperature side adjuster located on the side of the object to be in contact with the outer peripheral portion of the other surface of the object to be measured
The outputs of the first high temperature side regulator and the second high temperature side regulator are adjusted so that the one surface temperature of the object to be measured is uniform in a predetermined high temperature zone, and the measurement object After adjusting the outputs of the first low temperature side regulator and the second low temperature side regulator so that the other surface temperature of the object is uniform in a predetermined low temperature zone,
The heat flow density from the first high temperature side adjuster toward the object to be measured is detected by the high temperature side heat flow density detecting means, and the heat flow density from the object to be measured to the first low temperature side adjuster is detected as the low temperature side heat flow. Detect with density detection means,
A heat physical property in the thickness direction of the object to be measured is obtained based on the heat flow density detected by the high temperature side heat flow density detecting means and the heat flow density detected by the low temperature side heat flow density detecting means. Measuring method.
前記第1の高温側調整器の外周側に位置し前記被測定物の前記一方の表面の外周部と当接し前記被測定物の前記一方の表面の外周部の温度を高温度帯に調整する第2の高温側調整器と、
前記被測定物における厚み方向に垂直な対向する2つの表面のうちの他方の表面の中央部と当接し前記被測定物の前記他方の表面の中央部の温度を低温度帯に調整する第1の低温側調整器と、
前記第1の低温側調整器の外周側に位置し前記被測定物の前記他方の表面の外周部と当接し前記被測定物の前記他方の表面の外周部の温度を低温度帯に調整する第2の低温側調整器と、
前記被測定物の前記一方の表面温度が所定の高温度帯で一様になるように前記第1の高温側調整器と前記第2の高温側調整器の出力を調整すると共に、前記被測定物の前記他方の表面温度が所定の低温度帯で一様になるように前記第1の低温側調整器と前記第2の低温側調整器の出力を調整する温度制御手段と、
前記第1の高温側調整器から前記被測定物に向かう熱流密度を検知する高温側熱流密度検知手段と、
前記被測定物から前記第1の低温側調整器に向かう熱流密度を検知する低温側熱流密度検知手段とを備えることを特徴とする熱物性測定装置。 The temperature of the central part of the one surface of the object to be measured is adjusted to a high temperature zone by contacting the central part of one of the two opposing surfaces perpendicular to the thickness direction of the plate-shaped object to be measured. A first high temperature side regulator;
It is located on the outer peripheral side of the first high-temperature side adjuster and abuts on the outer peripheral portion of the one surface of the device under test to adjust the temperature of the outer peripheral portion of the one surface of the device under test to a high temperature zone. A second high temperature side regulator;
A first temperature adjusting the temperature of the center of the other surface of the object to be measured to a low temperature zone by contacting the center of the other surface of the two surfaces perpendicular to the thickness direction of the object to be measured. The low temperature side of the
The temperature of the outer peripheral portion of the other surface of the object to be measured is adjusted to a low temperature zone by being in contact with the outer peripheral portion of the other surface of the object to be measured and positioned on the outer peripheral side of the first low temperature side adjuster. A second low temperature regulator;
The outputs of the first high temperature side regulator and the second high temperature side regulator are adjusted so that the one surface temperature of the object to be measured is uniform in a predetermined high temperature zone, and the measurement object Temperature control means for adjusting the outputs of the first low temperature side regulator and the second low temperature side regulator so that the other surface temperature of the object becomes uniform in a predetermined low temperature zone;
High temperature side heat flow density detecting means for detecting a heat flow density from the first high temperature side regulator toward the object to be measured;
A thermophysical property measuring apparatus comprising: a low temperature side heat flow density detecting means for detecting a heat flow density from the object to be measured toward the first low temperature side adjuster.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007133727A JP2008286720A (en) | 2007-05-21 | 2007-05-21 | Method for measuring thermal physical properties, and instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007133727A JP2008286720A (en) | 2007-05-21 | 2007-05-21 | Method for measuring thermal physical properties, and instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008286720A true JP2008286720A (en) | 2008-11-27 |
Family
ID=40146569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007133727A Pending JP2008286720A (en) | 2007-05-21 | 2007-05-21 | Method for measuring thermal physical properties, and instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008286720A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102288634A (en) * | 2010-06-17 | 2011-12-21 | 中国科学院理化技术研究所 | Thermal property measuring device |
WO2013115592A1 (en) * | 2012-02-01 | 2013-08-08 | Samsung Electronics Co., Ltd. | Thermal insulation performance measurement apparatus and measurement method using the same |
CN103389320A (en) * | 2013-08-02 | 2013-11-13 | 北京科技大学 | Measuring device and method of coiled material radial equivalent heat conductivity coefficient |
JP5466333B1 (en) * | 2013-11-25 | 2014-04-09 | 株式会社パルメトリクス | Thermal measurement device |
CN106198617A (en) * | 2012-02-01 | 2016-12-07 | 三星电子株式会社 | Thermal insulation properties is measured equipment and uses the measuring method of this equipment |
JP2019120496A (en) * | 2017-12-28 | 2019-07-22 | Koa株式会社 | Method for measuring thermal conductivity of metallic coating film |
-
2007
- 2007-05-21 JP JP2007133727A patent/JP2008286720A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102288634A (en) * | 2010-06-17 | 2011-12-21 | 中国科学院理化技术研究所 | Thermal property measuring device |
CN102288634B (en) * | 2010-06-17 | 2013-03-13 | 中国科学院理化技术研究所 | Thermal property measuring device |
US8882344B2 (en) | 2012-02-01 | 2014-11-11 | Samsung Electronics Co., Ltd. | Thermal insulation performance measurement apparatus and measurement method using the same |
CN103245690A (en) * | 2012-02-01 | 2013-08-14 | 三星电子株式会社 | Thermal insulation performance measurement apparatus and measurement method using the same |
WO2013115592A1 (en) * | 2012-02-01 | 2013-08-08 | Samsung Electronics Co., Ltd. | Thermal insulation performance measurement apparatus and measurement method using the same |
EP2634554A3 (en) * | 2012-02-01 | 2016-08-10 | Samsung Electronics Co., Ltd | Thermal insulation performance measurement apparatus and measurement method using the same |
EP3098583A1 (en) * | 2012-02-01 | 2016-11-30 | Samsung Electronics Co., Ltd. | Thermal insulation performance measurement apparatus and measurement method using the same |
CN106198617A (en) * | 2012-02-01 | 2016-12-07 | 三星电子株式会社 | Thermal insulation properties is measured equipment and uses the measuring method of this equipment |
US9618402B2 (en) | 2012-02-01 | 2017-04-11 | Samsung Electronics Co., Ltd. | Thermal insulation performance measurement apparatus and measurement method using the same |
CN106198617B (en) * | 2012-02-01 | 2019-05-28 | 三星电子株式会社 | Thermal insulation properties measuring device and the measurement method for using the equipment |
CN103389320A (en) * | 2013-08-02 | 2013-11-13 | 北京科技大学 | Measuring device and method of coiled material radial equivalent heat conductivity coefficient |
CN103389320B (en) * | 2013-08-02 | 2015-11-25 | 北京科技大学 | A kind of measurement mechanism with the radial Equivalent Thermal Conductivities of roll of material and measuring method |
JP5466333B1 (en) * | 2013-11-25 | 2014-04-09 | 株式会社パルメトリクス | Thermal measurement device |
JP2019120496A (en) * | 2017-12-28 | 2019-07-22 | Koa株式会社 | Method for measuring thermal conductivity of metallic coating film |
JP7060378B2 (en) | 2017-12-28 | 2022-04-26 | Koa株式会社 | Thermal conductivity measurement method for metal film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008286720A (en) | Method for measuring thermal physical properties, and instrument | |
CN1329720C (en) | Determination of the gas pressure in an evacuated thermal insulating board (vacuum panel) by using a heat sink and test layer that are integrated therein | |
Kobari et al. | Development of guarded hot plate apparatus utilizing Peltier module for precise thermal conductivity measurement of insulation materials | |
CN103245690B (en) | Thermal insulation properties measuring apparatus and the measuring method using the equipment | |
EP2836808B1 (en) | Method and apparatus for measuring heat flow through constructions | |
WO2013059007A1 (en) | Thermal resistance measuring device | |
CN106841287B (en) | A kind of High Accuracy Flat method measuring thermal conductivity device based on saturated vapor heating | |
CN103389320B (en) | A kind of measurement mechanism with the radial Equivalent Thermal Conductivities of roll of material and measuring method | |
KR101786963B1 (en) | Apparatus for measuring performance of thermal insulation and measuring method using the same | |
Ren et al. | Hygric properties of porous building materials (V): Comparison of different methods to determine moisture diffusivity | |
CN206656979U (en) | It is a kind of to be used to measure rubber and the experimental provision of intermetallic contact thermal resistance | |
US11454599B2 (en) | Thermal conductivity measuring device, heating device, thermal conductivity measuring method, and quality assurance method | |
CN103464233A (en) | Portable type constant-temperature groove | |
CN107741436A (en) | Method of the water-bath against the thermal conductivity factor under different vacuums inside vacuum measurement VIP | |
US20110094292A1 (en) | Apparatus for air property measurement | |
KR102257190B1 (en) | Thermal conductivity measurement system and thermal conductivity measurement method thereof | |
CN207488852U (en) | A kind of gas constant temperature device and detecting system | |
CN208476717U (en) | A kind of device of precise measurement adsorbent open type absorption vapor | |
JP2006078185A (en) | Method and apparatus for inspecting heat insulating capacity | |
CN108663397B (en) | Thermal conductivity measuring device for vacuum glass | |
JP3324858B2 (en) | Apparatus and method for measuring thermal conductivity of insulation wrapped with skin material | |
Marcarino et al. | Towards new temperature standards for contact thermometry above 660 C | |
CN117607198B (en) | Fabric thermal resistance measuring device and measuring equipment | |
CN108732062A (en) | A kind of accurate device and method for measuring adsorbent open type absorption vapor | |
JP2003166930A (en) | Performance testing apparatus for vapor movement controller |