JP2019196924A - Method for obtaining characteristic of thermal conductive material during application of pressure - Google Patents

Method for obtaining characteristic of thermal conductive material during application of pressure Download PDF

Info

Publication number
JP2019196924A
JP2019196924A JP2018089620A JP2018089620A JP2019196924A JP 2019196924 A JP2019196924 A JP 2019196924A JP 2018089620 A JP2018089620 A JP 2018089620A JP 2018089620 A JP2018089620 A JP 2018089620A JP 2019196924 A JP2019196924 A JP 2019196924A
Authority
JP
Japan
Prior art keywords
conductive material
relationship
pressure
product name
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018089620A
Other languages
Japanese (ja)
Other versions
JP6946235B2 (en
Inventor
俊晴 森村
Toshiharu Morimura
俊晴 森村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2018089620A priority Critical patent/JP6946235B2/en
Publication of JP2019196924A publication Critical patent/JP2019196924A/en
Application granted granted Critical
Publication of JP6946235B2 publication Critical patent/JP6946235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method that is able to easily acquire a relation between pressure on a thermal conductive material and heat resistance, a relation between pressure and thickness, and a relation between pressure and equivalent thermal conductivity.SOLUTION: A method for obtaining a characteristic of a thermal conductive material during application of pressure to a thermal conductive material, comprises: a step of entering a characteristic database into a computer, the database storing a relation between applied pressure and thermal resistance of the thermal conductive material, for each of thermal conductive material product names, a relation between applied pressure and thickness of the thermal conductive material, and a relation between applied pressure and equivalent thermal conductivity of the thermal conductive material; a step of selecting a thermal conductive material product name in the computer; and a step of causing the computer to display on a screen of screen display means a relation between applied pressure and each of characteristic, for each thermal conductive material product name thus selected.SELECTED DRAWING: Figure 3

Description

本発明は、加圧時の熱伝導性材料の特性を求める方法に関する。   The present invention relates to a method for determining characteristics of a thermally conductive material during pressurization.

発熱部材から放熱部材への熱の伝達を高めるために使用される材料として熱伝導性材料がある。例えば、従来、CPU、GPU、パワーモジュール等の大きな発熱を伴う電子部品をヒートシンクに取り付ける際に、部品間に生じる隙間をなくし、電子部品で発生する熱を効率良くヒートシンクに伝達するために使用される熱伝導性材料として、特許文献1に示されるようなシリコーン樹脂に熱伝導性粉末を混合してシート化したものが広く用いられている。   There is a thermally conductive material as a material used to enhance the transfer of heat from the heat generating member to the heat radiating member. For example, conventionally, when attaching electronic components with large heat generation such as CPU, GPU, power module, etc. to the heat sink, it is used to eliminate the gap between the components and efficiently transfer the heat generated in the electronic component to the heat sink As a heat conductive material, a sheet obtained by mixing a heat conductive powder with a silicone resin as disclosed in Patent Document 1 is widely used.

熱伝導性材料は、サーマルインターフェースマテリアル(Thermal Interface Material、TIM)とも呼ばれる材料である。熱伝導性材料としては、硬度が低い「放熱パッド」と呼ばれる材料や、硬度が高い「放熱シート」と呼ばれる材料がある。ただし、この「パッド」、「シート」という用語は、硬度の高低によらず混在して用いられることがある。例えば、硬度の低い放熱パッドは「ソフトパッド(Soft Pad)」、硬度の高い放熱シートは「ハードパッド(Hard Pad)」と呼ばれたり、硬度の高低に拘わらず、両者とも「シート」と呼ばれることもある。   The thermally conductive material is a material also called a thermal interface material (TIM). Examples of the thermally conductive material include a material called “heat radiation pad” having a low hardness and a material called “heat radiation sheet” having a high hardness. However, the terms “pad” and “sheet” may be used together regardless of hardness. For example, a heat dissipation pad with low hardness is called a “soft pad”, a heat dissipation sheet with high hardness is called a “hard pad”, and both are called “sheets” regardless of the hardness. Sometimes.

熱伝導性材料の放熱性能を示す指標の一つとして熱抵抗があり、熱抵抗値は熱伝導性材料の厚みや熱伝導率、熱伝導性材料が接触する面との接触熱抵抗によって決まってくる。   Thermal resistance is one of the indicators of the heat dissipation performance of thermally conductive materials, and the thermal resistance value is determined by the thickness and thermal conductivity of the thermally conductive material, and the contact thermal resistance with the surface that the thermally conductive material contacts. come.

図6は発熱部材52と放熱部材(冷却部材)53間に熱伝導性材料51を挟んで使用した時の断面図である。熱は発熱部材52から放熱部材(冷却部材)53に矢印54の方向で移動する。熱伝導性材料51は、発熱部材52で発生した熱を効率良く放熱部材(冷却部材)53に伝える機能を有する。熱伝導性材料の熱伝導率をλTIM、厚みをL、接触熱抵抗をR、断面積をAとすると、接触熱抵抗を含まない熱伝導性材料の熱抵抗Rは数式(1)で表され、接触熱抵抗を含む熱伝導性材料の熱抵抗Rは数式(2)のように表される。 FIG. 6 is a cross-sectional view when the heat conductive material 51 is sandwiched between the heat generating member 52 and the heat radiating member (cooling member) 53. The heat moves from the heat generating member 52 to the heat radiating member (cooling member) 53 in the direction of the arrow 54. The thermally conductive material 51 has a function of efficiently transmitting heat generated by the heat generating member 52 to the heat radiating member (cooling member) 53. Assuming that the thermal conductivity of the thermally conductive material is λ TIM , the thickness is L, the contact thermal resistance is R C , and the cross-sectional area is A, the thermal resistance R 0 of the thermal conductive material not including the contact thermal resistance is expressed by Equation (1). The thermal resistance R of the thermally conductive material including the contact thermal resistance is expressed as shown in Equation (2).

接触熱抵抗を加味した熱伝導性材料の等価熱伝導率は上記数式(1)と数式(2)を連立して、これを解くことにより求めることができ、数式(3)より、数式(4)のように表せる。
The equivalent thermal conductivity of the thermally conductive material with contact thermal resistance taken into account can be obtained by simultaneously solving the above formulas (1) and (2). From formula (3), formula (4) ).

一般的に熱抵抗を測定する方法には温度一定の条件で熱抵抗を測定する定常法と、温度が上昇または下降中に熱抵抗を測定する非定常法の二通りの方法がある。   Generally, there are two methods for measuring thermal resistance: a steady method for measuring thermal resistance under a constant temperature condition and a non-steady method for measuring thermal resistance while the temperature is rising or falling.

特許文献2に開示される技術では、電子部品と配線パターンを有する基板を接続するはんだバンプモデルに対して、等価熱伝導率の計算方法が示されているが、はんだと空気の並列モデルにおける等価熱伝導率の算出方法であり、熱伝導性材料と空気のように熱抵抗が直列に並ぶモデルに対してはこの等価熱伝導率算出方法は適用できない。   In the technique disclosed in Patent Document 2, an equivalent thermal conductivity calculation method is shown for a solder bump model that connects an electronic component and a substrate having a wiring pattern. This is a calculation method of thermal conductivity, and this equivalent thermal conductivity calculation method cannot be applied to a model in which thermal resistances are arranged in series such as a thermal conductive material and air.

特開2005−54099号公報JP 2005-54099 A 特開2008−275579号公報JP 2008-275579 A

前述の熱伝導性材料には様々な硬度、厚さ、熱伝導率のものがあり、多くの熱伝導性材料の中から所望の要求特性に合った材料を選定するのは困難であった。   The above-mentioned heat conductive materials have various hardnesses, thicknesses, and heat conductivities, and it has been difficult to select a material that meets desired desired characteristics from many heat conductive materials.

熱伝導性材料の熱抵抗は加圧力によって変化するため、実際に使用する圧力での熱抵抗値が重要である。しかしながら、様々な圧力条件での熱伝導性材料の熱抵抗値を簡単に入手することは困難であった。   Since the thermal resistance of the thermally conductive material changes depending on the applied pressure, the thermal resistance value at the pressure actually used is important. However, it has been difficult to easily obtain the thermal resistance value of the thermally conductive material under various pressure conditions.

同様に熱伝導性材料の等価熱伝導率も加圧力によって接触熱抵抗や厚みが変化するため、実際に使用する圧力での等価熱伝導率が重要である。しかしながら、様々な圧力条件での熱伝導性材料の等価熱伝導率を簡単に入手することは困難であった。   Similarly, the equivalent thermal conductivity of the thermally conductive material changes in contact thermal resistance and thickness depending on the applied pressure, and therefore the equivalent thermal conductivity at the pressure actually used is important. However, it has been difficult to easily obtain the equivalent thermal conductivity of the thermally conductive material under various pressure conditions.

本発明の目的は、熱伝導性材料の圧力と熱抵抗の関係・圧力と厚みの関係・圧力と等価熱伝導率の関係を簡単に取得できる方法を提供することである。   An object of the present invention is to provide a method for easily obtaining the relationship between the pressure and thermal resistance of a thermally conductive material, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity.

本発明は上記課題を解決するためになされたものであり、本発明は、発熱部材から放熱部材への熱の伝達を高めるために使用される熱伝導性材料を加圧する際の前記熱伝導性材料の特性を求める方法であって、前記熱伝導性材料の製品名毎の、前記加圧する際の圧力と前記熱伝導性材料の熱抵抗の関係、前記加圧する際の圧力と前記熱伝導性材料の厚みの関係、及び前記加圧する際の圧力と前記熱伝導性材料の等価熱伝導率の関係が保存されている特性データベースを、コンピュータに組み込む工程と、前記コンピュータにおいて前記熱伝導性材料の製品名を選択する工程と、前記コンピュータが、前記選択された熱伝導性材料の製品名毎に、前記加圧する際の圧力と前記熱伝導性材料の熱抵抗の関係、前記加圧する際の圧力と前記熱伝導性材料の厚みの関係、及び前記加圧する際の圧力と前記熱伝導性材料の等価熱伝導率の関係を画面表示手段の画面に表示する工程とにより、加圧時の熱伝導性材料の特性を求める方法を提供する。   The present invention has been made to solve the above-described problems, and the present invention relates to the thermal conductivity in pressurizing a thermally conductive material used to enhance the transfer of heat from the heat generating member to the heat radiating member. A method for obtaining characteristics of a material, wherein for each product name of the thermally conductive material, the relationship between the pressure during pressurization and the thermal resistance of the thermally conductive material, the pressure during pressurization and the thermal conductivity Incorporating into the computer a characteristic database in which the relationship between the thickness of the material and the relationship between the pressure during pressing and the equivalent thermal conductivity of the thermally conductive material is stored; A step of selecting a product name, and a relationship between the pressure applied by the computer and the thermal resistance of the thermally conductive material for each product name of the selected thermal conductive material, and the pressure applied during the pressurization. And the thermal conductivity The characteristics of the heat conductive material at the time of pressurization are displayed by the step of displaying the relationship between the thickness of the material and the relationship between the pressure at the time of pressurization and the equivalent thermal conductivity of the heat conductive material on the screen of the screen display means. Provide the way you want.

このような加圧時の熱伝導性材料の特性を求める方法であれば、熱伝導性材料の圧力と熱抵抗の関係・圧力と厚みの関係・圧力と等価熱伝導率の関係を簡単に取得できる。   With this method of obtaining the characteristics of thermally conductive materials during pressurization, the relationship between the pressure and thermal resistance of the thermally conductive material, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity can be easily obtained. it can.

この場合、前記熱伝導性材料の製品名毎の、前記加圧する際の圧力と前記熱伝導性材料の熱抵抗の関係及び前記加圧する際の圧力と前記熱伝導性材料の厚みの関係は、温度一定の条件で熱抵抗を測定する定常法で前記熱伝導性材料の製品名毎に測定した熱抵抗及び厚みに基づいて求められたものであり、前記熱伝導性材料の製品名毎の、前記加圧する際の圧力と前記熱伝導性材料の等価熱伝導率の関係は、前記定常法で前記熱伝導性材料の製品名毎に測定した熱抵抗及び厚みに基づいて求められた前記加圧する際の圧力と前記熱伝導性材料の熱抵抗の関係及び前記加圧する際の圧力と前記熱伝導性材料の厚みの関係に基づいて求められたものであることが好ましい。   In this case, for each product name of the thermally conductive material, the relationship between the pressure at the time of pressurization and the thermal resistance of the thermally conductive material and the relationship between the pressure at the time of pressurization and the thickness of the thermally conductive material are as follows: It is obtained based on the thermal resistance and thickness measured for each product name of the thermally conductive material in a steady method of measuring thermal resistance under a constant temperature condition, and for each product name of the thermally conductive material, The relationship between the pressure at the time of pressurization and the equivalent thermal conductivity of the thermally conductive material is determined by the pressurization obtained based on the thermal resistance and thickness measured for each product name of the thermally conductive material by the steady method. It is preferable to be obtained based on the relationship between the pressure at the time of heating and the thermal resistance of the heat conductive material and the relationship between the pressure at the time of pressurization and the thickness of the heat conductive material.

このように、本発明で用いる熱伝導性材料の圧力と熱抵抗の関係・圧力と厚みの関係・圧力と等価熱伝導率の関係は、温度一定の条件で熱抵抗を測定する定常法によって熱伝導性材料の製品名毎に実際に測定した熱抵抗に基づいて求められた関係を好適に採用することができる。これにより、より実際の使用条件に即して、圧力と熱伝導性材料の各特性の関係を取得することができる。   As described above, the relationship between the pressure and the thermal resistance of the heat conductive material used in the present invention, the relationship between the pressure and the thickness, and the relationship between the pressure and the equivalent thermal conductivity are determined by a steady-state method in which the thermal resistance is measured under a constant temperature condition. The relationship determined based on the thermal resistance actually measured for each product name of the conductive material can be suitably employed. Thereby, the relationship between the pressure and each characteristic of the heat conductive material can be acquired in accordance with the actual use condition.

また、前記熱伝導性材料の製品名を選択する前に、前記特性データベースに保存された前記熱伝導性材料の製品名の中から、前記選択する熱伝導性材料の製品名の候補を絞り込む工程を有し、前記製品名の候補を絞り込む工程を、前記製品名と、前記製品名を有する熱伝導性材料の硬度に応じて分類された硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧の各条件が関連づけられた製品データベースを前記コンピュータに組み込む段階と、前記コンピュータに、前記硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧のうち少なくとも1つの条件を入力する段階と、前記コンピュータが、前記製品データベースに基づいて、前記入力した条件に適合する製品名を列挙する段階と、により、前記入力した条件に適合する製品名の候補を絞り込むことにより行うことが好ましい。   Further, before selecting a product name of the heat conductive material, a step of narrowing down candidates for the product name of the heat conductive material to be selected from the product names of the heat conductive material stored in the characteristic database And narrowing down the candidates for the product name, the product name, the hardness classification classified according to the hardness of the thermally conductive material having the product name, product thickness, catalog thermal conductivity, and dielectric breakdown Incorporating into the computer a product database associated with each voltage condition; and inputting at least one condition of the hardness classification, product thickness, catalog thermal conductivity, and breakdown voltage into the computer; The computer enumerates product names that meet the entered conditions based on the product database, and the products that meet the entered conditions It is preferably carried out by narrowing down the candidates.

このように、硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧の各条件が関連づけられた製品データベースをコンピュータに組み込んでおけば、全製品リストから条件にあった製品だけを絞り込むことができ、簡単に所望の製品名を選定することができる。   In this way, if a product database that associates hardness classification, product thickness, catalog thermal conductivity, and dielectric breakdown voltage conditions is built into the computer, only products that meet the conditions can be narrowed down from the entire product list. The desired product name can be selected easily.

本発明によれば、熱伝導性材料の圧力と熱抵抗の関係・圧力と厚みの関係・圧力と等価熱伝導率の関係の情報を簡単に取得することができる。   According to the present invention, it is possible to easily obtain information on the relationship between the pressure and thermal resistance of the thermally conductive material, the relationship between the pressure and the thickness, and the relationship between the pressure and the equivalent thermal conductivity.

本発明の加圧時の熱伝導性材料の特性を求める方法の一例の概略を示すフロー図である。It is a flowchart which shows the outline of an example of the method of calculating | requiring the characteristic of the heat conductive material at the time of pressurization of this invention. 本発明において、熱伝導性材料の製品名を絞り込む方法を説明する図である。In this invention, it is a figure explaining the method to narrow down the product name of a heat conductive material. 本発明で用いられる製品リストから圧力と熱抵抗の関係、圧力と厚みの関係、圧力と等価熱伝導率の関係を画面表示手段の画面に表示(描画)する方法を説明する図である。It is a figure explaining the method of displaying (drawing) the relationship between pressure and thermal resistance, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity on the screen of a screen display means from the product list used by this invention. 本発明を用いて熱伝導性材料の製品名の絞り込みを行う入力画面である。It is an input screen which narrows down the product name of a heat conductive material using this invention. 本発明を用いて熱伝導性材料の製品名からその製品名の加圧時の熱抵抗・厚み・等価熱伝導率を求める計算シートの操作画面である。It is the operation screen of the calculation sheet | seat which calculates | requires the heat resistance, thickness, and equivalent thermal conductivity at the time of the pressurization of the product name from the product name of a heat conductive material using this invention. 発熱部材と放熱部材の間で使用される熱伝導性材料の熱抵抗と接触熱抵抗の関係を説明する図である。It is a figure explaining the relationship between the thermal resistance of the heat conductive material used between a heat generating member and a heat radiating member, and contact thermal resistance.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.

図1に、本発明の加圧時の熱伝導性材料の特性を求める方法の一例の概略を示した。本発明は、発熱部材から放熱部材への熱の伝達を高めるために使用される熱伝導性材料を加圧する際の熱伝導性材料の特性を求める方法である。ここで、熱伝導性材料の特性とは、具体的には、熱伝導性材料の熱抵抗、厚み及び等価熱伝導率である。本発明では、まず、熱伝導性材料の製品名毎の、加圧する際の圧力と熱伝導性材料の熱抵抗の関係、加圧する際の圧力と熱伝導性材料の厚みの関係、及び加圧する際の圧力と熱伝導性材料の等価熱伝導率の関係が保存されている特性データベースを、コンピュータに組み込む(図1の工程a)。次に、コンピュータにおいて熱伝導性材料の製品名を選択する(図1の工程b)。次に、コンピュータが、選択された熱伝導性材料の製品名毎に、加圧する際の圧力と熱伝導性材料の熱抵抗の関係、加圧する際の圧力と熱伝導性材料の厚みの関係、及び加圧する際の圧力と熱伝導性材料の等価熱伝導率の関係を画面表示手段の画面に表示する(図1の工程c)。このようにして、本発明の方法では、加圧時の熱伝導性材料の特性を求めることができる。   FIG. 1 shows an outline of an example of a method for obtaining the characteristics of the thermally conductive material during pressurization according to the present invention. The present invention is a method for determining the characteristics of a thermally conductive material when pressurizing a thermally conductive material used to enhance the transfer of heat from a heat generating member to a heat radiating member. Here, the characteristics of the thermally conductive material are specifically the thermal resistance, thickness, and equivalent thermal conductivity of the thermally conductive material. In the present invention, first, for each product name of the heat conductive material, the relationship between the pressure during pressurization and the thermal resistance of the heat conductive material, the relationship between the pressure during pressurization and the thickness of the heat conductive material, and pressurization. A characteristic database in which the relationship between the pressure and the equivalent thermal conductivity of the heat conductive material is stored is incorporated into a computer (step a in FIG. 1). Next, the product name of the heat conductive material is selected in the computer (step b in FIG. 1). Next, for each product name of the selected thermal conductive material, the computer applies a relationship between the pressure during pressurization and the thermal resistance of the thermal conductive material, the relationship between the pressure during pressurization and the thickness of the thermal conductive material, And the relationship between the pressure at the time of pressurization and the equivalent thermal conductivity of the heat conductive material is displayed on the screen of the screen display means (step c in FIG. 1). Thus, in the method of the present invention, the characteristics of the thermally conductive material at the time of pressurization can be obtained.

このような加圧時の熱伝導性材料の特性を求める方法であれば、特定の熱伝導性材料の圧力と熱抵抗の関係・圧力と厚みの関係・圧力と等価熱伝導率の関係を簡単に取得できる。   With this method of determining the characteristics of thermally conductive materials during pressurization, the relationship between the pressure and thermal resistance of a specific thermally conductive material, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity can be simplified. Can be obtained.

以下では、本発明を、順を追って説明する。   In the following, the present invention will be described step by step.

上記のように、本発明では、まず、熱伝導性材料の製品名毎の、加圧する際の圧力と熱伝導性材料の熱抵抗の関係、加圧する際の圧力と熱伝導性材料の厚みの関係、及び加圧する際の圧力と熱伝導性材料の等価熱伝導率の関係が保存されている特性データベースを、コンピュータに組み込む(工程a)。   As described above, in the present invention, first, for each product name of the heat conductive material, the relationship between the pressure during pressurization and the thermal resistance of the heat conductive material, the pressure during pressurization and the thickness of the heat conductive material. A characteristic database in which the relationship and the relationship between the pressure at the time of pressurization and the equivalent thermal conductivity of the heat conductive material are stored is incorporated in the computer (step a).

ここでの熱伝導性材料の製品名毎の、加圧する際の圧力と熱伝導性材料の熱抵抗の関係及び加圧する際の圧力と熱伝導性材料の厚みの関係は、温度一定の条件で熱抵抗を測定する定常法で熱伝導性材料の製品名毎に測定した熱抵抗及び厚みに基づいて求められたものであることが好ましい。このように、本発明では、定常法によって熱伝導性材料の製品名毎に、実際に測定した熱抵抗及び厚みに基づいて求められた関係を好適に採用することができる。これにより、より実際の使用条件に即して加圧する際の圧力と熱伝導性材料の熱抵抗の関係及び加圧する際の圧力と熱伝導性材料の厚みの関係を求めることができる。   The relationship between the pressure during pressurization and the thermal resistance of the heat conductive material and the relationship between the pressure during pressurization and the thickness of the heat conductive material for each product name of the heat conductive material here are constant temperature conditions. It is preferable to be obtained based on the thermal resistance and thickness measured for each product name of the thermally conductive material by a steady method for measuring thermal resistance. Thus, in this invention, the relationship calculated | required based on the actually measured thermal resistance and thickness can be suitably employ | adopted for every product name of a heat conductive material by a steady method. Thereby, the relationship between the pressure at the time of pressurization and the thermal resistance of the thermally conductive material and the relationship between the pressure at the time of pressurization and the thickness of the thermally conductive material can be obtained more in line with actual use conditions.

また、熱伝導性材料の製品名毎の、加圧する際の圧力と熱伝導性材料の等価熱伝導率の関係は、定常法で熱伝導性材料の製品名毎に測定した熱抵抗及び厚みに基づいて求められた加圧する際の圧力と熱伝導性材料の熱抵抗の関係及び加圧する際の圧力と熱伝導性材料の厚みの関係に基づいて求められたものであることが好ましい。これにより、より実際の使用条件に即して加圧する際の圧力と熱伝導性材料の等価熱伝導率の関係を求めることができる。   In addition, the relationship between the pressure during pressurization and the equivalent thermal conductivity of the heat conductive material for each product name of the heat conductive material is based on the thermal resistance and thickness measured for each product name of the heat conductive material by the steady method. It is preferable to be obtained based on the relationship between the pressure at the time of pressurization determined based on the thermal resistance of the heat conductive material and the relationship between the pressure at the time of pressurization and the thickness of the heat conductive material. Thereby, the relationship between the pressure at the time of pressurization according to the actual use condition and the equivalent thermal conductivity of the heat conductive material can be obtained.

上記のように、熱伝導性材料の熱抵抗は定常法によって測定することができる。例えば、以下のような方法によって行うことができるが、これに限定されない。   As described above, the thermal resistance of the thermally conductive material can be measured by a steady method. For example, although it can carry out by the following method, it is not limited to this.

(定常法による熱抵抗の測定方法)
まず、直径33mmの熱伝導性材料のサンプルを冷却プレートとヒーターで挟み込み、所定の圧力をかけた状態でヒーターを加熱する。次に、定常状態での熱量と、サンプル上下の温度差から熱抵抗値を算出する。熱抵抗は、以下の数式(5)で表される。
ここで、
R : 熱抵抗(cm・K/W)
: ヒーター側温度(℃)
: 冷却プレート側温度(℃)
Q : 熱量(W)
S : 面積(cm
である。
(Measurement method of thermal resistance by steady method)
First, a sample of a heat conductive material having a diameter of 33 mm is sandwiched between a cooling plate and a heater, and the heater is heated with a predetermined pressure applied. Next, the thermal resistance value is calculated from the amount of heat in the steady state and the temperature difference between the upper and lower sides of the sample. The thermal resistance is expressed by the following formula (5).
here,
R: Thermal resistance (cm 2 · K / W)
Th : Heater side temperature (° C)
T c : cooling plate side temperature (° C.)
Q: Amount of heat (W)
S: Area (cm 2 )
It is.

このようにして熱伝導性材料の熱抵抗を測定し、圧力と熱抵抗、圧力と厚みの相関関係を測定すればよい。すなわち、熱伝導性材料のサンプルにかける圧力を変化させて熱抵抗を測定し、熱伝導性材料にかかる圧力と熱抵抗の関係を求められる。また、熱伝導性材料のサンプルにかける圧力を変化させることにより、熱伝導性材料のサンプルの厚みを変化させ、熱伝導性材料にかかる圧力と厚みの関係を求めることができる。上記熱抵抗の測定を熱伝導性材料の製品名毎に行うことにより、熱伝導性材料の製品名毎に、圧力と熱抵抗の関係、圧力と厚みの関係を求めることができる。また、等価熱伝導率は下記の式より求めることができる。
In this way, the thermal resistance of the heat conductive material is measured, and the correlation between pressure and thermal resistance, and pressure and thickness may be measured. That is, the thermal resistance is measured by changing the pressure applied to the sample of the thermally conductive material, and the relationship between the pressure applied to the thermally conductive material and the thermal resistance can be obtained. Further, by changing the pressure applied to the sample of the heat conductive material, the thickness of the sample of the heat conductive material can be changed, and the relationship between the pressure applied to the heat conductive material and the thickness can be obtained. By measuring the thermal resistance for each product name of the thermally conductive material, the relationship between pressure and thermal resistance and the relationship between pressure and thickness can be determined for each product name of the thermally conductive material. The equivalent thermal conductivity can be obtained from the following equation.

工程aで熱伝導性材料の圧力と熱抵抗の関係、圧力と厚みの関係、圧力と等価熱伝導率の関係のデータベースをコンピュータに組み込んだ後、コンピュータにおいて熱伝導性材料の製品名を選択する(工程b)。特性データベースに熱伝導性材料の製品名を保存しておけば、熱伝導性材料の製品名を選択することにより、加圧時の圧力と熱伝導性材料の各特性の関係の取得を簡便に行うことができる。   In step a, the database of the relationship between the pressure and thermal resistance of the thermal conductive material, the relationship between the pressure and thickness, and the relationship between the pressure and the equivalent thermal conductivity is incorporated into the computer, and then the product name of the thermal conductive material is selected in the computer. (Step b). If the product name of the heat conductive material is stored in the property database, the relationship between the pressure during pressurization and each property of the heat conductive material can be easily obtained by selecting the product name of the heat conductive material. It can be carried out.

工程bでコンピュータにおいて熱伝導性材料の製品名を選択した後は、コンピュータが、選択された熱伝導性材料の製品名毎に、加圧する際の圧力と熱伝導性材料の熱抵抗の関係、加圧する際の圧力と熱伝導性材料の厚みの関係、及び加圧する際の圧力と熱伝導性材料の等価熱伝導率の関係を画面表示手段の画面に表示(描画)する(工程c)。このようにして、本発明の方法では、加圧時の熱伝導性材料の特性を求めることができる。   After the product name of the heat conductive material is selected in the computer in step b, the relationship between the pressure applied by the computer and the heat resistance of the heat conductive material for each product name of the selected heat conductive material, The relationship between the pressure during pressurization and the thickness of the thermally conductive material and the relationship between the pressure during pressurization and the equivalent thermal conductivity of the thermally conductive material are displayed (drawn) on the screen of the screen display means (step c). Thus, in the method of the present invention, the characteristics of the thermally conductive material at the time of pressurization can be obtained.

また、本発明は、熱伝導性材料の製品名を選択する前に(すなわち、工程bの前に)、特性データベースに保存された熱伝導性材料の製品名の中から、選択する熱伝導性材料の製品名の候補を絞り込む工程を有することができる(図1の工程d)。この工程dは少なくとも工程bの前に行われればよい。この製品名の候補を絞り込む工程dは、具体的には以下のような段階によることができる。まず、熱伝導性材料の製品名と、製品名を有する熱伝導性材料の硬度に応じて分類された硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧の各条件が関連づけられた製品データベースをコンピュータに組み込む(段階d−1)。なお、「硬度分類」とは、製品の硬度に基づいて与えられる分類であり、例えば、「低硬度」、「高硬度」、「低硬度と高硬度の複合品」などの分類区分が各製品に付される。また、「カタログ熱伝導率」とは、以下の測定方法によって測定される熱伝導性材料の熱伝導率である。
(カタログ熱伝導率の測定方法)
60mm×60mm×厚さ6mmのサンプル2枚でセンサーを挟み、センサーに定電流を流し、一定発熱させて、センサーの温度上昇から熱伝導率(カタログ熱伝導率)を算出する。熱伝導率(カタログ熱伝導率)は以下の数式(7)から求めることができる。
ここで、
τ:
で定義される無次元パラメータ
ΔTave(τ): センサーの温度上昇(℃)
D(τ): 無次元化されたτの関数
: センサーに加えられる全出力(W)
π: 円周率
r: センサーの半径(m)
λ: サンプルの熱伝導率(W/m−K)
α: サンプルの熱拡散率(m/s)
t: 測定時間(sec)
である。
The present invention also provides a method of selecting a thermal conductivity from among product names of thermal conductive materials stored in the property database before selecting a product name of the thermal conductive material (that is, before step b). It is possible to have a step of narrowing down candidate material product names (step d in FIG. 1). This step d may be performed at least before step b. Specifically, the step d of narrowing down the product name candidates can be performed according to the following steps. First, a product in which the product name of the heat conductive material is associated with the conditions of hardness classification, product thickness, catalog thermal conductivity, and breakdown voltage classified according to the hardness of the heat conductive material having the product name. The database is incorporated into the computer (step d-1). “Hardness classification” is a classification given based on the hardness of the product. For example, classification such as “low hardness”, “high hardness”, “composite product of low hardness and high hardness” is assigned to each product. It is attached to. The “catalog thermal conductivity” is the thermal conductivity of a thermally conductive material measured by the following measurement method.
(Catalog thermal conductivity measurement method)
The sensor is sandwiched between two samples of 60 mm × 60 mm × thickness 6 mm, a constant current is passed through the sensor to generate a constant heat, and the thermal conductivity (catalytic thermal conductivity) is calculated from the temperature rise of the sensor. The thermal conductivity (catalog thermal conductivity) can be obtained from the following formula (7).
here,
τ:
Dimensionless parameter defined by ΔT ave (τ): Sensor temperature rise (° C)
D (τ): Dimensionless function of τ P 0 : Total power applied to the sensor (W)
π: Circumference ratio r: Radius of sensor (m)
λ: Sample thermal conductivity (W / m-K)
α: Thermal diffusivity of sample (m 2 / s)
t: Measurement time (sec)
It is.

次に、コンピュータに、上記の硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧のうち少なくとも1つの条件を入力する(段階d−2)。次に、コンピュータが、製品データベースに基づいて、入力した条件に適合する製品名を列挙する(段階d−3)。以上段階d−1〜d3を経て、入力した条件に適合する製品名の候補を絞り込むことができる。このように、硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧の各条件が関連づけられた製品データベースをコンピュータに組み込んでおけば、全製品リストから条件にあった製品だけを絞り込むことができ、簡単に所望の製品名を選定することができる。   Next, at least one condition among the above-described hardness classification, product thickness, catalog thermal conductivity, and dielectric breakdown voltage is input to the computer (step d-2). Next, the computer lists product names that meet the input conditions based on the product database (step d-3). Through the above steps d-1 to d3, product name candidates that match the input conditions can be narrowed down. In this way, if a product database that associates hardness classification, product thickness, catalog thermal conductivity, and dielectric breakdown voltage conditions is built into the computer, only products that meet the conditions can be narrowed down from the entire product list. The desired product name can be selected easily.

工程dにおいて、熱伝導性材料の硬度分類、製品厚み、カタログ熱伝導率、絶縁破壊電圧の条件を選択・入力し、製品データベースの製品リストの中から条件にあった熱伝導性材料を選定した後は、工程bにおいて、その選定した製品名を入力することにより、熱伝導性材料の製品名からその製品名の加圧時の圧力と熱抵抗・厚み・等価熱伝導率の関係を求めることができる。製品名を有する熱伝導性材料の硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧の各条件が関連づけられた製品データベースの製品リストは任意に作成することができる。例えば、信越化学工業株式会社製の熱伝導性材料の製品リストとすることができる。   In step d, select and enter the hardness classification, product thickness, catalog thermal conductivity, and breakdown voltage conditions of the thermal conductive material, and select the thermal conductive material that meets the conditions from the product database product list. After that, in step b, by inputting the selected product name, the relationship between the pressure when the product name is pressurized and the thermal resistance / thickness / equivalent thermal conductivity is obtained from the product name of the heat conductive material. Can do. The product list of the product database in which the hardness classification, the product thickness, the catalog thermal conductivity, and the breakdown voltage conditions of the thermally conductive material having the product name are associated can be arbitrarily created. For example, it can be a product list of thermally conductive materials manufactured by Shin-Etsu Chemical Co., Ltd.

本発明では、上記のように、熱伝導性材料の製品名毎に圧力と熱抵抗の関係、圧力と厚みの関係、圧力と等価熱伝導率の関係を有する特性データベースを用いるわけであるが、この熱伝導性材料の製品名毎の関係等は、いつでも特性データベースに追加することができる。すなわち、既に構築されている特性データベースに対し、例えば、製品名毎に設定された熱伝導性材料の圧力と熱抵抗の関係、圧力と厚みの関係及び圧力と等価熱伝導率の関係を新たに追加することができる。   In the present invention, as described above, for each product name of the thermally conductive material, the relationship between the pressure and the thermal resistance, the relationship between the pressure and the thickness, the characteristic database having the relationship between the pressure and the equivalent thermal conductivity is used. The relationship for each product name of the thermally conductive material can be added to the characteristic database at any time. That is, for the characteristic database that has already been constructed, for example, the relationship between the pressure and thermal resistance of the heat conductive material set for each product name, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity are newly added. Can be added.

より具体的な実施態様を、図2〜5を参照しながら説明する。図2は、上記した工程dにおいて、製品データベースに保存された製品リストの中から、硬度分類、製品厚み、カタログ熱伝導率、絶縁破壊電圧の条件にあった製品を選定する方法を説明する図である。図2に示したように、各製品には、硬度分類として「低硬度」「低硬度+高硬度」「高硬度」のいずれかが付されている。また、各製品の製品厚みの下限値及び上限値、カタログ熱伝導率の下限値及び上限値、絶縁破壊電圧の下限値が保存されている。   A more specific embodiment will be described with reference to FIGS. FIG. 2 is a diagram for explaining a method of selecting a product that meets the conditions of hardness classification, product thickness, catalog thermal conductivity, and dielectric breakdown voltage from the product list stored in the product database in step d described above. It is. As shown in FIG. 2, each product has a hardness classification of “low hardness”, “low hardness + high hardness”, or “high hardness”. Moreover, the lower limit value and upper limit value of the product thickness of each product, the lower limit value and upper limit value of the catalog thermal conductivity, and the lower limit value of the dielectric breakdown voltage are stored.

図2のように、製品データベースが組み込まれたコンピュータに対し、入力部で、熱伝導性材料の硬度の分類、製品厚み、カタログ熱伝導率、絶縁破壊電圧を選択・入力し、品番検索ボタンをクリックする。そうすると製品リストの中から条件にあった製品名が出力される。なお、全製品リストを表示することもでき、その場合は図2に示したようにリセットボタンをクリックすればよい。   As shown in Fig. 2, select and enter the classification of hardness of the thermal conductive material, product thickness, catalog thermal conductivity, and dielectric breakdown voltage at the input section for the computer with the product database built in, and click the part number search button. click. Then, the product name that meets the condition is output from the product list. It is also possible to display a list of all products, in which case the reset button may be clicked as shown in FIG.

図3に示したように、コンピュータに組み込まれた特性データベースには、熱伝導性材料の製品名毎に関係づけられた「熱伝導性材料にかかる圧力と熱抵抗の関係」と「熱伝導性材料にかかる圧力と厚みの関係」と「熱伝導性材料にかかる圧力と等価熱伝導率の関係」が保存されている。   As shown in FIG. 3, the characteristic database incorporated in the computer includes “relationship between pressure and thermal resistance applied to the thermal conductive material” and “thermal conductivity” related to each product name of the thermal conductive material. The relationship between the pressure applied to the material and the thickness and the relationship between the pressure applied to the thermally conductive material and the equivalent thermal conductivity are preserved.

図3は特性データベースを基にして、本発明で用いられる製品リストから圧力と熱抵抗の関係、圧力と厚みの関係、圧力と等価熱伝導率の関係を画面表示手段の画面に表示(描画)する方法を説明する図である。   FIG. 3 shows (draws) the relationship between pressure and thermal resistance, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity on the screen of the screen display means from the product list used in the present invention based on the characteristic database. It is a figure explaining the method to do.

図3に示したように熱伝導性材料の製品名を選択すると、コンピュータに組み込まれた特性データベースを参照し、製品名の圧力と熱抵抗の関係、圧力と厚みの関係、圧力と等価熱伝導率の関係がグラフとして画面表示手段の画面に描画される。   When the product name of the heat conductive material is selected as shown in FIG. 3, the characteristic database incorporated in the computer is referred to, the relationship between the pressure of the product name and the thermal resistance, the relationship between the pressure and the thickness, the pressure and the equivalent heat conduction. The rate relationship is drawn on the screen of the screen display means as a graph.

図4と図5を参照して、より具体的な本発明の実施態様を説明する。図4は製品リストの中から熱伝導性材料の硬度の分類、製品厚み、カタログ熱伝導率、絶縁破壊電圧の条件にあった製品を選定する計算シートの入力画面の一例を示す図である。この計算シートは、例えば、Microsoft Excel(登録商標)等の表計算ソフトウェアを用いて作成することができる。   A more specific embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a diagram showing an example of an input screen of a calculation sheet for selecting a product that satisfies the conditions of hardness of the thermal conductive material, product thickness, catalog thermal conductivity, and dielectric breakdown voltage from the product list. This calculation sheet can be created using spreadsheet software such as Microsoft Excel (registered trademark).

図5は図4で選定した熱伝導性材料の製品名を選択することにより、その製品名の圧力と熱抵抗の関係、圧力と厚みの関係、圧力と等価熱伝導率の関係を描画する計算シートの入力画面の一例を示す図である。この計算シートは、例えば、Microsoft Excel(登録商標)等の表計算ソフトウェアを用いて作成することができる。   FIG. 5 shows a calculation that draws the relationship between pressure and thermal resistance, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity by selecting the product name of the thermally conductive material selected in FIG. It is a figure which shows an example of the input screen of a sheet | seat. This calculation sheet can be created using spreadsheet software such as Microsoft Excel (registered trademark).

図4、図5には、硬度の低い放熱パッド(Soft Pad)と硬度の高い放熱シート(Hard Pad)及び放熱パッドと放熱シートの積層品の製品名が登録されている。加圧しない状態の厚さ(0.5mm、1.0mm等)によって、「50CAS−10」「100CAS−10」「50CAB−10」「100CAB−10」のように登録されており、例えば、製品名「50CAS−10」は製品名「TC−50CAS−10」の略称である。図4では硬度の分類、製品厚み、カタログ熱伝導率、絶縁破壊電圧の条件を選択・入力すると条件にあった製品名が表示され、図5では製品名を選択するとその製品名の圧力と熱抵抗の関係、圧力と厚みの関係、圧力と等価熱伝導率の関係が描画される。   In FIG. 4 and FIG. 5, product names of a heat dissipation pad (Soft Pad) having a low hardness, a heat dissipation sheet (Hard Pad) having a high hardness, and a laminated product of the heat dissipation pad and the heat dissipation sheet are registered. Depending on the thickness (0.5 mm, 1.0 mm, etc.) in the unpressurized state, it is registered as “50CAS-10”, “100CAS-10”, “50CAB-10”, “100CAB-10”, The name “50CAS-10” is an abbreviation for the product name “TC-50CAS-10”. In Fig. 4, when the classification of hardness, product thickness, catalog thermal conductivity, and breakdown voltage conditions are selected and entered, the product name that meets the conditions is displayed. In Fig. 5, when the product name is selected, the pressure and heat of that product name are displayed. The relationship between resistance, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity are drawn.

図4、図5の計算シートを用いて、熱伝導性材料の特性を求めた。まず、図4の計算シートにて硬度の分類に低硬度を選択し、製品厚みに0mm以上5mm以下、カタログ熱伝導率に4W/m−K以上5W/m−K以下、絶縁破壊電圧10kV以上の条件を入力したところ、50CAT20、100CAT20、150CAT20、200CAT20、300CAT20の5製品が選定された。次に、図5において、前述の5製品を選択し、5製品について圧力と熱抵抗の関係、圧力と厚みの関係、圧力と等価熱伝導率の関係を描画した。このように、熱伝導性材料の圧力と熱抵抗の関係・圧力と厚みの関係・圧力と等価熱伝導率の関係を簡単に取得できた。   The characteristics of the thermally conductive material were determined using the calculation sheets of FIGS. First, low hardness is selected for the hardness classification in the calculation sheet of FIG. 4, the product thickness is 0 mm to 5 mm, the catalog thermal conductivity is 4 W / m-K to 5 W / m-K, and the dielectric breakdown voltage is 10 kV or more. As a result, five products of 50CAT20, 100CAT20, 150CAT20, 200CAT20, and 300CAT20 were selected. Next, in FIG. 5, the five products described above were selected, and the relationship between pressure and thermal resistance, the relationship between pressure and thickness, and the relationship between pressure and equivalent thermal conductivity were drawn for the five products. As described above, the relationship between the pressure and the thermal resistance of the heat conductive material, the relationship between the pressure and the thickness, and the relationship between the pressure and the equivalent thermal conductivity were easily obtained.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

51…熱伝導性材料、 52…発熱部材、 53…放熱部材(冷却部材)、
54…熱の移動。
51 ... Thermally conductive material, 52 ... Heat generating member, 53 ... Heat radiating member (cooling member),
54. Transfer of heat.

Claims (3)

発熱部材から放熱部材への熱の伝達を高めるために使用される熱伝導性材料を加圧する際の前記熱伝導性材料の特性を求める方法であって、
前記熱伝導性材料の製品名毎の、前記加圧する際の圧力と前記熱伝導性材料の熱抵抗の関係、前記加圧する際の圧力と前記熱伝導性材料の厚みの関係、及び前記加圧する際の圧力と前記熱伝導性材料の等価熱伝導率の関係が保存されている特性データベースを、コンピュータに組み込む工程と、
前記コンピュータにおいて前記熱伝導性材料の製品名を選択する工程と、
前記コンピュータが、前記選択された熱伝導性材料の製品名毎に、前記加圧する際の圧力と前記熱伝導性材料の熱抵抗の関係、前記加圧する際の圧力と前記熱伝導性材料の厚みの関係、及び前記加圧する際の圧力と前記熱伝導性材料の等価熱伝導率の関係を画面表示手段の画面に表示する工程と
により、加圧時の熱伝導性材料の特性を求める方法。
A method for determining the characteristics of the heat conductive material when pressurizing the heat conductive material used to increase the heat transfer from the heat generating member to the heat radiating member,
For each product name of the thermally conductive material, the relationship between the pressure during pressurization and the thermal resistance of the thermally conductive material, the relationship between the pressure during pressurization and the thickness of the thermally conductive material, and the pressurization. Incorporating into the computer a property database in which the relationship between the pressure at the time and the equivalent thermal conductivity of the thermally conductive material is stored;
Selecting a product name of the thermally conductive material in the computer;
The computer, for each product name of the selected thermal conductive material, the relationship between the pressure during the pressurization and the thermal resistance of the thermal conductive material, the pressure during the pressurization and the thickness of the thermal conductive material And the step of displaying the relationship between the pressure during pressurization and the equivalent thermal conductivity of the thermal conductive material on the screen of the screen display means.
前記熱伝導性材料の製品名毎の、前記加圧する際の圧力と前記熱伝導性材料の熱抵抗の関係及び前記加圧する際の圧力と前記熱伝導性材料の厚みの関係は、温度一定の条件で熱抵抗を測定する定常法で前記熱伝導性材料の製品名毎に測定した熱抵抗及び厚みに基づいて求められたものであり、
前記熱伝導性材料の製品名毎の、前記加圧する際の圧力と前記熱伝導性材料の等価熱伝導率の関係は、前記定常法で前記熱伝導性材料の製品名毎に測定した熱抵抗及び厚みに基づいて求められた前記加圧する際の圧力と前記熱伝導性材料の熱抵抗の関係及び前記加圧する際の圧力と前記熱伝導性材料の厚みの関係に基づいて求められたものであることを特徴とする請求項1に記載の加圧時の熱伝導性材料の特性を求める方法。
For each product name of the thermally conductive material, the relationship between the pressure during pressing and the thermal resistance of the thermally conductive material and the relationship between the pressure during pressing and the thickness of the thermally conductive material are constant. It was determined based on the thermal resistance and thickness measured for each product name of the thermal conductive material in a steady method of measuring thermal resistance under conditions,
For each product name of the thermally conductive material, the relationship between the pressure during pressing and the equivalent thermal conductivity of the thermally conductive material is the thermal resistance measured for each product name of the thermally conductive material by the steady method. And the relationship between the pressure at the time of pressurization determined based on the thickness and the thermal resistance of the heat conductive material, and the relationship between the pressure at the time of pressurization and the thickness of the heat conductive material. The method for obtaining the characteristics of the thermally conductive material at the time of pressurization according to claim 1.
前記熱伝導性材料の製品名を選択する前に、前記特性データベースに保存された前記熱伝導性材料の製品名の中から、前記選択する熱伝導性材料の製品名の候補を絞り込む工程を有し、
前記製品名の候補を絞り込む工程を、
前記製品名と、前記製品名を有する熱伝導性材料の硬度に応じて分類された硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧の各条件が関連づけられた製品データベースを前記コンピュータに組み込む段階と、
前記コンピュータに、前記硬度分類、製品厚み、カタログ熱伝導率、及び絶縁破壊電圧のうち少なくとも1つの条件を入力する段階と、
前記コンピュータが、前記製品データベースに基づいて、前記入力した条件に適合する製品名を列挙する段階と、
により、前記入力した条件に適合する製品名の候補を絞り込むことにより行うことを特徴とする請求項1又は請求項2に記載の加圧時の熱伝導性材料の特性を求める方法。
Before selecting the product name of the thermal conductive material, there is a step of narrowing down candidates for the product name of the selected thermal conductive material from the product names of the thermal conductive material stored in the property database. And
The process of narrowing down the product name candidates,
A product database in which the product name and the hardness classification classified according to the hardness of the heat conductive material having the product name, product thickness, catalog thermal conductivity, and dielectric breakdown voltage are associated with the computer. The stage of incorporation,
Inputting at least one condition of the hardness classification, product thickness, catalog thermal conductivity, and breakdown voltage to the computer;
The computer enumerating product names that meet the entered conditions based on the product database;
The method of obtaining the characteristics of the thermally conductive material at the time of pressurization according to claim 1 or 2, characterized by narrowing down candidates of product names that meet the input conditions.
JP2018089620A 2018-05-08 2018-05-08 A method for determining the properties of a thermally conductive material during pressurization Active JP6946235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089620A JP6946235B2 (en) 2018-05-08 2018-05-08 A method for determining the properties of a thermally conductive material during pressurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089620A JP6946235B2 (en) 2018-05-08 2018-05-08 A method for determining the properties of a thermally conductive material during pressurization

Publications (2)

Publication Number Publication Date
JP2019196924A true JP2019196924A (en) 2019-11-14
JP6946235B2 JP6946235B2 (en) 2021-10-06

Family

ID=68538648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089620A Active JP6946235B2 (en) 2018-05-08 2018-05-08 A method for determining the properties of a thermally conductive material during pressurization

Country Status (1)

Country Link
JP (1) JP6946235B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121397A (en) * 2001-10-10 2003-04-23 Hitachi Ltd Method for measuring thermal resistance of resin and measuring apparatus using the same
US20050058178A1 (en) * 2003-09-11 2005-03-17 Shih Chih C. Thermal interface material characterizing system
JP2007316032A (en) * 2006-05-29 2007-12-06 Fujitsu Ltd Analytical data producing device, analytical data producing method, analytical data producing program, and analyzer
JP2008304302A (en) * 2007-06-07 2008-12-18 Beteru:Kk Device and method for measuring thermal characteristic
JP2008309729A (en) * 2007-06-18 2008-12-25 Mitsubishi Electric Corp Device and method for measuring thermal conductivity
JP2015233104A (en) * 2014-06-10 2015-12-24 信越化学工業株式会社 Thermally conductive sheet
WO2018070351A1 (en) * 2016-10-14 2018-04-19 信越化学工業株式会社 Thermally conductive composite silicone rubber sheet and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121397A (en) * 2001-10-10 2003-04-23 Hitachi Ltd Method for measuring thermal resistance of resin and measuring apparatus using the same
US20050058178A1 (en) * 2003-09-11 2005-03-17 Shih Chih C. Thermal interface material characterizing system
JP2007316032A (en) * 2006-05-29 2007-12-06 Fujitsu Ltd Analytical data producing device, analytical data producing method, analytical data producing program, and analyzer
JP2008304302A (en) * 2007-06-07 2008-12-18 Beteru:Kk Device and method for measuring thermal characteristic
JP2008309729A (en) * 2007-06-18 2008-12-25 Mitsubishi Electric Corp Device and method for measuring thermal conductivity
JP2015233104A (en) * 2014-06-10 2015-12-24 信越化学工業株式会社 Thermally conductive sheet
WO2018070351A1 (en) * 2016-10-14 2018-04-19 信越化学工業株式会社 Thermally conductive composite silicone rubber sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP6946235B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
Prasher A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology
Xu et al. Sodium silicate based thermal interface material for high thermal contact conductance
Shih et al. Height effect on heat-transfer characteristics of aluminum-foam heat sinks
Hammerschmidt et al. Critical review of industrial techniques for thermal-conductivity measurements of thermal insulation materials
Fabris et al. Application of carbon nanotubes to thermal interface materials
Baby et al. A neural network-based optimization of thermal performance of phase change material-based finned heat sinks—an experimental study
Lee et al. Estimation of temperature distributions and thermal stresses in a functionally graded hollow cylinder simultaneously subjected to inner-and-outer boundary heat fluxes
Patankar et al. A method for thermal performance characterization of ultrathin vapor chambers cooled by natural convection
Chiavazzo et al. A sensor for direct measurement of small convective heat fluxes: Validation and application to micro-structured surfaces
Xu et al. Lithium doped polyethylene-glycol-based thermal interface pastes for high thermal contact conductance
Zenkour et al. Hygrothermo-mechanical buckling of FGM plates resting on elastic foundations using a quasi-3D model
Chang et al. Evaporative thermal performance of vapor chambers under nonuniform heating conditions
Chvála et al. Advanced characterization techniques and analysis of thermal properties of AlGaN/GaN multifinger power HEMTs on SiC substrate supported by three-dimensional simulation
JP2019196924A (en) Method for obtaining characteristic of thermal conductive material during application of pressure
Chang et al. Estimation of heat flux and thermal stresses in functionally graded hollow circular cylinders
Bahrami et al. Thermal joint resistance of polymer-metal rough interfaces
Ma et al. An inverse approach to characterize anisotropic thermal conductivities of a dry fibrous preform composite
Gharaibeh et al. Applying Anand versus Garofalo creep constitutive models for simulating sintered silver die attachments in power electronics
TWI310833B (en) Device and method for measuring thermal conductivity
Koyanagi et al. Local out-of-plane deformation of CFRP ablator subjected to rapid heating
Hosseini et al. Experimental study of air pressure effects on natural convection from a horizontal cylinder
Murwamadala et al. Advances in thermal contact resistance studies
Schuler et al. A reduced model based on proper generalized decomposition for the fast analysis of igbt power modules lifetime
Rape et al. Thermal reliability of copper alloy–diamond composites produced by field-assisted sintering technology
Yazdani et al. A high temperature instrument for consecutive measurements of thermal conductivity, electrical conductivity, and Seebeck coefficient

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6946235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150