JP3147015U - Differential scanning calorimeter - Google Patents

Differential scanning calorimeter Download PDF

Info

Publication number
JP3147015U
JP3147015U JP2008006819U JP2008006819U JP3147015U JP 3147015 U JP3147015 U JP 3147015U JP 2008006819 U JP2008006819 U JP 2008006819U JP 2008006819 U JP2008006819 U JP 2008006819U JP 3147015 U JP3147015 U JP 3147015U
Authority
JP
Japan
Prior art keywords
detector
temperature
furnace body
sample
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008006819U
Other languages
Japanese (ja)
Inventor
孝二 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008006819U priority Critical patent/JP3147015U/en
Application granted granted Critical
Publication of JP3147015U publication Critical patent/JP3147015U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】示差走査熱量測定装置の輻射熱伝達の増大に起因する検出感度の低下を改善する手段を提供する。また加熱温度範囲または作動雰囲気に制限を生じることなく、検出器と、検出器を囲繞する炉体や加熱体との熱膨張率の差から高温時に検出器に発生する応力に起因する検出器の変形や破損を防止し、検出器の耐久性を改善する手段を提供する。
【解決手段】加熱炉の炉体6Nと、検出器21の両端に設けた熱伝導通路との接触面を摺動可能な構造とし、この構造により高温時に熱伝導通路長を伸張させて熱伝導で検出器21に単位時間当たりに伝達される熱量を低下させ、合わせて炉体6Nと検出器21の熱膨張率の差から生じる熱応力を吸収させる。
【選択図】図1
The present invention provides means for improving a decrease in detection sensitivity caused by an increase in radiant heat transfer of a differential scanning calorimeter. In addition, without limiting the heating temperature range or the working atmosphere, the detector is caused by the stress generated in the detector at a high temperature due to the difference in the coefficient of thermal expansion between the detector and the furnace or heater surrounding the detector. A means for preventing deformation and breakage and improving the durability of the detector is provided.
A contact surface between a furnace body 6N of a heating furnace and a heat conduction path provided at both ends of a detector 21 is slidable, and this structure extends the heat conduction path length at high temperatures to conduct heat. Thus, the amount of heat transmitted to the detector 21 per unit time is reduced, and the thermal stress resulting from the difference in thermal expansion coefficient between the furnace body 6N and the detector 21 is absorbed.
[Selection] Figure 1

Description

本考案は基準物質および試料を加熱し、両者の温度差から試料のエンタルピの温度昇降に伴う変化を測定する示差走査熱量測定装置に関する。   The present invention relates to a differential scanning calorimeter that heats a reference material and a sample and measures a change in temperature of the enthalpy of the sample accompanying a temperature rise and fall from the temperature difference between the two.

示差走査熱量測定(Differential Scanning Calorimetry、以下、原則としてDSCと称す)装置は、加熱炉中に試料と基準物質とを置き、所定のプログラムに従って加熱炉の温度を上昇・下降させ、上昇・下降途上の試料と基準物質の時々刻々の温度および温度差を検出し試料のエンタルピ変化を測定する装置である(特許文献1参照)。   A differential scanning calorimetry (hereinafter, referred to as DSC in principle) apparatus places a sample and a reference material in a heating furnace, and raises or lowers the temperature of the heating furnace according to a predetermined program. This is a device that detects the temperature and temperature difference between the sample and the reference material every time and measures the enthalpy change of the sample (see Patent Document 1).

基準物質としては、昇・降温範囲内で相転移などが無い熱的に安定な物質が選ばれる。試料に相転移などの熱的な変化が無い場合には、基準物質および試料の温度は共に加熱炉温度に追随してなめらかに変化する。また試料に融解などの相転移があり、吸熱・発熱などが生じている場合は、試料と基準物質との間の温度差は相転移中に急激に変化する。   As the reference substance, a thermally stable substance having no phase transition within the temperature rise / fall range is selected. When there is no thermal change such as phase transition in the sample, both the reference material and the temperature of the sample change smoothly following the furnace temperature. In addition, when the sample has a phase transition such as melting and endotherm / exotherm is generated, the temperature difference between the sample and the reference material changes rapidly during the phase transition.

基準物質および試料の温度差から試料のエンタルピ変化が測定される。基準物質および試料は加熱炉内に設けられたそれぞれの載置台(以下、検出器と称す)上に載置されている。基準物質および試料の温度は検出器下面に溶接された熱電対により測定される。熱電対の素材にはたとえばクロメル線およびアルメル線などが使用されている。   The change in the enthalpy of the sample is measured from the temperature difference between the reference substance and the sample. The reference material and the sample are placed on respective placement tables (hereinafter referred to as detectors) provided in the heating furnace. The temperature of the reference material and the sample is measured by a thermocouple welded to the lower surface of the detector. For example, chromel wire and alumel wire are used as the thermocouple material.

図6はDSC本体の加熱炉の断面構造の一例、図7は検出器4の平面図である。基準物質および試料を内蔵した基準物質容器2と試料容器3は検出器4上に載置され、検出器4は検出器固定板5にて炉体6内に固定される。検出器固定板5は4本の固定ネジ7によって、検出器4とともに炉体6に螺設されている。炉体6はヒータ8によって、所定のプログラムにより昇・降温される。   FIG. 6 is an example of a cross-sectional structure of the heating furnace of the DSC main body, and FIG. 7 is a plan view of the detector 4. A reference material container 2 and a sample container 3 containing a reference material and a sample are placed on a detector 4, and the detector 4 is fixed in a furnace body 6 by a detector fixing plate 5. The detector fixing plate 5 is screwed to the furnace body 6 together with the detector 4 by four fixing screws 7. The furnace body 6 is heated and lowered by a heater 8 according to a predetermined program.

図7は前記のように検出器4の構造を示している。円盤形状の検出器4は図に黒色で示した箇所が切り抜かれており、検出器4の周囲から熱伝導により基準物質容器2または試料容器3に流入する熱流は、左右それぞれ3か所の熱伝導通路12の熱抵抗により適切な値に制限される。図8は図6の検出器固定板5の上方から見た加熱炉の平面図である。   FIG. 7 shows the structure of the detector 4 as described above. The disk-shaped detector 4 is cut out in black in the figure, and the heat flow flowing from the periphery of the detector 4 into the reference material container 2 or the sample container 3 by heat conduction is performed at three locations on the left and right sides. The heat resistance of the conduction path 12 is limited to an appropriate value. FIG. 8 is a plan view of the heating furnace as viewed from above the detector fixing plate 5 of FIG.

ところで図6に示す炉蓋1、炉体6および検出器固定板5の材質は通常、熱伝導率の大きい銀などが使用され、検出器4にはコンスタンタン板などが使用されている。炉体6には炉体6の温度を計測する炉体熱電対9が埋設されている。また検出器4の下面には基準物質容器2の温度Trを計測する基準物質熱電対10および、試料容器3の温度Tsを計測する試料熱電対11が固設され、試料と基準物質との温度差△T=Ts−Trが測定される。   Incidentally, the material of the furnace lid 1, the furnace body 6 and the detector fixing plate 5 shown in FIG. 6 is usually made of silver having a high thermal conductivity, and the detector 4 is made of a constantan plate or the like. A furnace body thermocouple 9 for measuring the temperature of the furnace body 6 is embedded in the furnace body 6. Further, a reference material thermocouple 10 for measuring the temperature Tr of the reference material container 2 and a sample thermocouple 11 for measuring the temperature Ts of the sample container 3 are fixed on the lower surface of the detector 4, and the temperature between the sample and the reference material is fixed. The difference ΔT = Ts−Tr is measured.

図11はDSC作動時の各部の温度と時間の関係の一例を示す。図に示すとおり炉体6の温度を時間に対して一定の勾配で上昇させると、基準物質の温度Trは炉体6の温度に追随して単調に上昇する。試料の温度Tsも炉体6の温度に追随して上昇するが、試料に相転移などによる熱変化(吸熱変化や発熱変化)が生じるとその温度で温度勾配に変化が生じる。図11は吸熱変化の例として融解の場合を示し、この変化を含めて上記のTsおよび△Tの関係を解析することにより、試料のエンタルピ変化が測定される。   FIG. 11 shows an example of the relationship between the temperature of each part and time during DSC operation. As shown in the figure, when the temperature of the furnace body 6 is raised with a constant gradient with respect to time, the temperature Tr of the reference material rises monotonously following the temperature of the furnace body 6. The temperature Ts of the sample also rises following the temperature of the furnace body 6, but when a thermal change (endothermic change or exothermic change) due to phase transition or the like occurs in the sample, the temperature gradient changes at that temperature. FIG. 11 shows the case of melting as an example of the endothermic change. By analyzing the relationship between the above Ts and ΔT including this change, the enthalpy change of the sample is measured.

特開平11−201924号公報JP-A-11-201924

従来のDSCの構造は以上のとおりであるが、加熱炉温度が上昇するに従い輻射による熱伝達量が増加し、温度差検出感度が低下する。すなわち、炉体と検出器間の熱抵抗は熱伝導通路の形状と熱伝導率で定まるが、通常熱伝導率にあまり大きな温度依存性はないため熱抵抗は温度とともにゆるやかに変動し、温度差検出感度は図9に示すとおり温度に大きく依存しない。   The structure of the conventional DSC is as described above. However, as the heating furnace temperature rises, the amount of heat transfer due to radiation increases and the temperature difference detection sensitivity decreases. In other words, the thermal resistance between the furnace body and the detector is determined by the shape and thermal conductivity of the heat conduction path, but usually the thermal conductivity does not have a very large temperature dependence, so the thermal resistance fluctuates gradually with temperature, and the temperature difference As shown in FIG. 9, the detection sensitivity does not greatly depend on the temperature.

しかし実際には、前記のとおり昇温に伴って輻射による熱伝達量が増加してくる領域においては、見かけ上の熱抵抗が減少し、温度差検出感度は図10のS曲線に示すように温度とともに大きく低下する。   However, in practice, in the region where the heat transfer amount due to radiation increases as the temperature rises as described above, the apparent thermal resistance decreases, and the temperature difference detection sensitivity is as shown by the S curve in FIG. It decreases greatly with temperature.

また、炉体6と検出器4との熱膨張差により、昇降温に際して大きな熱応力が発生し、検出器4が変形する。すなわち、炉体6および検出器固定板5の材質には前記のとおり通常熱伝導率の大きい銀などが使用され、検出器4の材質、たとえばコンスタンタンとは熱膨張率が異なる。コンスタンタンの線膨張率は銀の線膨張率よりも小さく、この組合せの場合は昇温時に検出器4には面に沿う方向に引張応力が、降温時には圧縮応力が発生する。   In addition, due to the difference in thermal expansion between the furnace body 6 and the detector 4, a large thermal stress is generated when the temperature is raised and lowered, and the detector 4 is deformed. That is, as described above, silver having a high thermal conductivity is usually used as the material of the furnace body 6 and the detector fixing plate 5, and the coefficient of thermal expansion is different from that of the detector 4 such as constantan. The linear expansion coefficient of constantan is smaller than that of silver, and in this combination, tensile stress is generated in the detector 4 in the direction along the surface when the temperature is raised, and compressive stress is generated when the temperature is lowered.

一般にDSCは700℃以上の温度まで繰り返し加熱されるので、この熱膨張の差による検出器4の変形が発生し、これが必ずしも均一とは限らないので試料側と基準物質側の対称性が崩れて同一の熱的環境を維持できなくなり、DSCベースラインのドリフト等が発生する。   In general, since DSC is repeatedly heated to a temperature of 700 ° C. or higher, deformation of the detector 4 occurs due to this difference in thermal expansion, and this is not always uniform, so the symmetry between the sample side and the reference material side is lost. The same thermal environment cannot be maintained, and DSC baseline drift occurs.

上記問題を回避するため従来では、(1)炉体の材料を検出器と同系の材料である銅にする方法あるいは(2)検出器と炉体との間にグラファイトシートを挟んで摺動性を持たせているが、ともに上限温度が限定され、または炉体の作動雰囲気が制限される。特に(1)の場合は酸化の問題から上限温度は600℃程度に限定され、また、(2)の場合は空気中でグラファイトシートが燃焼し高温では不活性ガス雰囲気以外での使用ができない。本考案はこの問題点を解決するものである。   Conventionally, in order to avoid the above problem, (1) a method of making the furnace body material copper, which is a material similar to the detector, or (2) a slidability with a graphite sheet sandwiched between the detector and the furnace body However, the upper limit temperature is limited or the working atmosphere of the furnace body is limited. In particular, in the case of (1), the upper limit temperature is limited to about 600 ° C. due to oxidation problems, and in the case of (2), the graphite sheet burns in the air and cannot be used in an atmosphere other than an inert gas atmosphere at a high temperature. The present invention solves this problem.

本考案が提供する示差走査熱量測定装置は上記課題を解決するために、加熱炉の内方空間を横断する形で掛け渡されかつ両端部が前記加熱炉内方周辺部に摺接可能に接触する検出器を備えるとともに、前記検出器の熱膨張係数を前記加熱炉より小さい材料で構成し、加熱炉が加熱にて膨張大径化したとき、検出器と加熱炉の相対距離を変化させる。   In order to solve the above problems, the differential scanning calorimeter provided by the present invention is spanned across the inner space of the heating furnace, and both ends thereof are in slidable contact with the inner periphery of the heating furnace. And a thermal expansion coefficient of the detector is made of a material smaller than that of the heating furnace, and when the heating furnace expands and enlarges in diameter by heating, the relative distance between the detector and the heating furnace is changed.

本考案によれば、熱伝導通路長が温度に依存して変化するため、これを介して加熱炉から検出器に供給される熱量も温度に応じて変動し、高温時には熱伝導により検出器に供給される熱量が減少し、輻射による熱伝達の増加をうち消す方向に作動し検出感度の低下が改善される。また熱応力の発生が熱伝導通路の摺動で吸収され、ヒートサイクルによる検出器の変形や破損が防止され、他の検出器耐久性確保の方途を適用した場合の加熱温度範囲や測定雰囲気への制限なく、使用条件の広範さと機器性能維持との両立が可能となる。   According to the present invention, since the heat conduction path length changes depending on the temperature, the amount of heat supplied from the heating furnace to the detector also fluctuates according to the temperature. The amount of heat supplied decreases, and the decrease in detection sensitivity is improved by operating in a direction to eliminate the increase in heat transfer due to radiation. In addition, the generation of thermal stress is absorbed by the sliding of the heat conduction path, preventing deformation and breakage of the detector due to heat cycle, and to the heating temperature range and measurement atmosphere when other methods of ensuring the durability of the detector are applied Therefore, it is possible to achieve both a wide range of usage conditions and maintenance of device performance.

以下図示例にしたがって説明する。なお以下の図示例において図6と同一番号の部品の構造および機能は図6と同一であり、詳細説明は省略する。図1は加熱炉の断面図、図2は炉蓋1を除いた状態の加熱炉の平面図である。   This will be described with reference to the illustrated example. In the following illustrated example, the structure and function of the parts having the same numbers as those in FIG. 6 are the same as those in FIG. FIG. 1 is a cross-sectional view of the heating furnace, and FIG. 2 is a plan view of the heating furnace with the furnace lid 1 removed.

図1、図2において、検出器固定板5Nは4本の固定ネジ7Nにて炉体6Nの内方に固定されている。検出器21は中央の検出器固定ネジ22により、カラー23を介して炉体6Nの底内面に固定されている。検出器固定ネジ22およびカラー23を経由して炉体6Nから検出器21に流入する熱量を可及的に少なくするために、検出器固定ネジ22およびカラー23はセラミック等の熱伝導率の小さい材料を選択しかつ細長形状にする。検出器21の中央左右の2個の円盤状の部分には基準物質容器2および試料容器3が載置される。また橋状の左右端部は炉体6Nと接して摺動可能な熱伝導通路を構成する。   1 and 2, the detector fixing plate 5N is fixed inside the furnace body 6N by four fixing screws 7N. The detector 21 is fixed to the bottom inner surface of the furnace body 6N through a collar 23 by a central detector fixing screw 22. In order to minimize the amount of heat flowing from the furnace body 6N to the detector 21 via the detector fixing screw 22 and the collar 23, the detector fixing screw 22 and the collar 23 have a low thermal conductivity such as ceramic. Select material and make it elongated. The reference material container 2 and the sample container 3 are placed on two disc-shaped portions on the left and right sides of the center of the detector 21. Also, the left and right ends of the bridge form a heat conduction path that can slide in contact with the furnace body 6N.

炉体6Nの内壁は、上方の上部側壁Sと、上部側壁Sより直径の小さな下方の下部側壁Tから構成されており、下部側壁Tは炉体底面Bに接している。図3は図1の検出器固定板5Nから下部の主要構造を示す斜視図である。検出器固定板5Nを載置する下部側壁Tの上縁部分には、左右に検出器21の板厚に適合する溝加工が施され、検出器21が前記上縁部分と摺動可能に配設される。   The inner wall of the furnace body 6N includes an upper upper side wall S and a lower lower side wall T having a diameter smaller than that of the upper side wall S, and the lower side wall T is in contact with the bottom surface B of the furnace body. FIG. 3 is a perspective view showing a main structure below the detector fixing plate 5N of FIG. The upper edge portion of the lower side wall T on which the detector fixing plate 5N is placed is provided with a groove processing on the left and right to match the plate thickness of the detector 21, and the detector 21 is slidably disposed on the upper edge portion. Established.

図4は高温時における炉体6Nと検出器21の相互位置関係を常温時と比較して示している。上下方向の破線で示すとおり、高温時は炉体6Nの内径は熱膨張により常温時よりも外方に伸張する。   FIG. 4 shows the mutual positional relationship between the furnace body 6N and the detector 21 at a high temperature compared with that at a normal temperature. As indicated by the broken lines in the vertical direction, the inner diameter of the furnace body 6N expands more outward than at normal temperature due to thermal expansion at high temperatures.

検出器21も熱膨張により中央を中心として外方に伸張するが、検出器21の材質の熱膨張係数を炉体6Nの材質の熱膨張係数より小さく選択した場合は、炉体6Nの内径の伸張の方が大きいので、図5に示した熱伝導通路長Dは常温時と比較して高温において相対的に長くなり、高温時に熱伝導により炉体6Nから検出器21に伝わる単位時間当たりの熱量は常温時に比較して減少する。また本考案の摺動構造により、検出器21は炉体6Nに拘束されないので摺動に伴う摩擦力を除けば熱応力が発生せず検出器変形のリスクは大幅に低減される。なお、図4、図5において図1と同一番号の部品は図1と同一であり、詳細説明は省略する。   The detector 21 also extends outward from the center due to thermal expansion. However, when the thermal expansion coefficient of the material of the detector 21 is selected to be smaller than the thermal expansion coefficient of the material of the furnace body 6N, the inner diameter of the furnace body 6N is increased. Since the extension is larger, the heat conduction path length D shown in FIG. 5 is relatively longer at a higher temperature than at room temperature, and per unit time transmitted from the furnace body 6N to the detector 21 by heat conduction at a higher temperature. The amount of heat decreases compared to normal temperature. Further, the detector 21 is not restrained by the furnace body 6N due to the sliding structure of the present invention. Therefore, if the frictional force accompanying the sliding is removed, no thermal stress is generated and the risk of detector deformation is greatly reduced. 4 and 5 are the same as those in FIG. 1, and the detailed description thereof is omitted.

図9は従来技術ならびに本考案の検出器に、単位時間当たりに供給される熱量の温度依存性を模式的に示したものである。すなわち従来では温度が変化してもカーブCに示すように一定に近い熱量が熱伝導によって検出器に供給されるが、本考案では熱伝導通路の相対的伸張によって、熱伝導によって検出器21に単位時間当たりに供給される熱量はカーブC´に示すように高温になるほど減少する。   FIG. 9 schematically shows the temperature dependence of the amount of heat supplied per unit time to the conventional technology and the detector of the present invention. That is, conventionally, even if the temperature changes, a constant amount of heat is supplied to the detector by heat conduction as shown by curve C. However, in the present invention, due to the relative extension of the heat conduction path, the detector 21 is heated by heat conduction. The amount of heat supplied per unit time decreases as the temperature increases, as shown by curve C ′.

一方、輻射によって単位時間当たりに検出器21に供給される熱量はカーブRで示されるとおり高温になるほど増加するが、本考案では熱伝導により供給される熱量がカーブC´に示すとおり温度上昇とともに減少するので、上記熱伝達の増加を緩和し、結果的にDSCの検出感度を改善できる。なお、検出器への熱伝達には上記の他に対流による伝達もあるが、これは従来法と本考案とでは差異がないので図9には記載していない。   On the other hand, the amount of heat supplied to the detector 21 per unit time due to radiation increases as the temperature rises as shown by the curve R. In the present invention, the amount of heat supplied by heat conduction increases with increasing temperature as shown by the curve C ′. Therefore, the increase in heat transfer can be mitigated, and as a result, the detection sensitivity of DSC can be improved. In addition to the above, heat transfer to the detector includes convection transfer, which is not shown in FIG. 9 because there is no difference between the conventional method and the present invention.

図10は温度とDSCの検出感度との関係を模式的に示している。従来の構造においては検出感度は温度の上昇に伴ってカーブSに示すように大きく低下して行くが、本考案の構造においてはカーブS´のように低下を改善することができる。   FIG. 10 schematically shows the relationship between temperature and DSC detection sensitivity. In the conventional structure, the detection sensitivity greatly decreases as indicated by the curve S as the temperature increases, but in the structure of the present invention, the decrease can be improved as indicated by the curve S ′.

本考案は上記の実施例に限定されず、さらに種々の変形実施例を挙げることができる。たとえば図1の実施例は中空構造のカラー23を検出器固定ネジ22にて検出器21とともに炉体6Nに螺設しているが、あらかじめ円筒形状のカラーを螺設または溶接にて炉体6Nに固設し、カラー上部に設けた雌ネジにて検出器固定ネジ22を検出器21とともに螺設する構造としてもよい。炉体6Nの形状も、検出器21の熱伝導通路と面接触できる構造であれば良く、その周辺部の平面を接触面とした図1の形状には限定されない。   The present invention is not limited to the above-described embodiments, and various modifications can be given. For example, in the embodiment of FIG. 1, the hollow collar 23 is screwed to the furnace body 6N together with the detector 21 with the detector fixing screw 22, but the cylindrical body is previously screwed or welded to the furnace body 6N. The detector fixing screw 22 may be screwed together with the detector 21 with a female screw provided on the upper portion of the collar. The shape of the furnace body 6N is not limited to the shape shown in FIG. 1 as long as the surface can be in surface contact with the heat conduction path of the detector 21 and the plane of the peripheral portion is a contact surface.

また熱伝導通路の端部の形状は図2の形状に限定されず、たとえば先端に向けて幅が減少する台形または三角形などでも良い。また図1の構造において、摺動をより円滑に行わせるために炉体6Nと検出器21の接触面にあらかじめ適切な潤滑剤を塗布したり溶射等によって潤滑層を形成することもできる。図3においては炉体6Nの下部側壁Tの上縁に検出器21の板厚に適合した溝加工を行っているが、溝加工は検出器固定板5Nの下面に行っても良い。また検出器21を載置するための溝加工を施した薄板の円環を設けて下部側壁Tの上部に配設し、その上に検出器固定板5Nを固定しても良い。また図3では検出器固定板5Nに8の字形の切り抜き加工を行っているが、これはたとえば円形の切り抜き加工でも良く、本考案は検出器固定板5Nの切り抜き形状や下部側壁Tの加工形状には限定されない。本考案はこれらをすべて包含する。   The shape of the end portion of the heat conduction path is not limited to the shape shown in FIG. 2, and may be a trapezoid or a triangle whose width decreases toward the tip, for example. In addition, in the structure of FIG. 1, in order to make the sliding more smoothly, an appropriate lubricant can be applied in advance to the contact surface between the furnace body 6N and the detector 21, or a lubricating layer can be formed by thermal spraying or the like. In FIG. 3, grooving is performed on the upper edge of the lower side wall T of the furnace body 6N according to the plate thickness of the detector 21, but the grooving may be performed on the lower surface of the detector fixing plate 5N. Further, a thin ring with a groove for mounting the detector 21 may be provided on the upper portion of the lower side wall T, and the detector fixing plate 5N may be fixed thereon. Further, in FIG. 3, the detector fixing plate 5N is cut out in the shape of figure 8, but this may be, for example, a circular cutting, and the present invention provides a cutting shape of the detector fixing plate 5N and a processing shape of the lower side wall T. It is not limited to. The present invention encompasses all of these.

本考案は基準物質および試料を加熱し、両者の温度差から試料のエンタルピの温度昇降に伴う変化を測定する示差走査熱量測定装置に適用することができる。   The present invention can be applied to a differential scanning calorimeter that heats a reference material and a sample, and measures a change accompanying a temperature increase and decrease in the enthalpy of the sample from the temperature difference between the two.

本考案の実施例を示す断面図である。It is sectional drawing which shows the Example of this invention. 本考案の実施例を示す平面図である。It is a top view which shows the Example of this invention. 本考案の検出器部を示す斜視図である。It is a perspective view which shows the detector part of this invention. 本考案の検出器部の高温時の熱膨張を示す図である。It is a figure which shows the thermal expansion at the time of the high temperature of the detector part of this invention. 本考案の熱伝達通路長を示す図である。It is a figure which shows the heat transfer channel | path length of this invention. 従来の示差走査熱量測定装置の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional differential scanning calorimetry apparatus. 従来の示差走査熱量測定装置の検出器を示す平面図である。It is a top view which shows the detector of the conventional differential scanning calorimetry apparatus. 従来の示差走査熱量測定装置の構造を示す平面図である。It is a top view which shows the structure of the conventional differential scanning calorimetry apparatus. 検出器への単位時間当たりの熱伝達量と温度の関係を示す図である。It is a figure which shows the relationship between the amount of heat transfer per unit time to a detector, and temperature. DSC検出感度と温度との関係を示す図である。It is a figure which shows the relationship between DSC detection sensitivity and temperature. 試料が融解を起こす場合の炉体、基準物質および試料の温度の関係の一例を示した図である。It is the figure which showed an example of the relationship of the furnace body in case a sample raise | generates melting | fusing, a reference material, and a sample.

符号の説明Explanation of symbols

1 炉蓋
2 基準物質容器
3 試料容器
4 検出器
5 検出器固定板
5N 検出器固定板
6 炉体
6N 炉体
7 固定ネジ
7N 固定ネジ
8 ヒータ
9 炉体熱電対
10 基準物質熱電対
11 試料熱電対
12 熱伝導通路
21 検出器
22 検出器固定ネジ
23 カラー
B 炉体底面
D 熱伝導通路長
S 上部側壁
T 下部側壁
DESCRIPTION OF SYMBOLS 1 Furnace 2 Reference material container 3 Sample container 4 Detector 5 Detector fixing plate 5N Detector fixing plate 6 Furnace 6N Furnace 7 Fixing screw 7N Fixing screw 8 Heater 9 Furnace thermocouple 10 Reference material thermocouple 11 Sample thermocouple Pair 12 Heat conduction path 21 Detector 22 Detector fixing screw 23 Color B Furnace bottom D Heat conduction path length S Upper side wall T Lower side wall

Claims (1)

円筒状の加熱炉中に試料と基準物質とを置き、所定のプログラムに従って加熱炉の温度を上昇・下降させ上昇・下降途上の試料と基準物質の時々刻々の温度および両者の温度差を検出し試料のエンタルピ変化を測定する示差走査熱量測定装置において、前記加熱炉の内方空間を横断する形で掛け渡されかつ両端部が前記加熱炉内方周辺部に摺接可能に接触する検出器を備えるとともに、前記検出器の熱膨張係数を前記加熱炉より小さい材料で構成し、加熱炉が加熱にて膨張大径化したとき、検出器と加熱炉の相対距離を変化させることを特徴とする示差走査熱量測定装置。   Place a sample and a reference material in a cylindrical heating furnace, and raise or lower the temperature of the heating furnace according to a predetermined program to detect the temperature of the sample and reference material that are going up and down and the temperature difference between them. In a differential scanning calorimetry apparatus for measuring a change in enthalpy of a sample, a detector that is spanned across the inner space of the heating furnace and whose both ends are in sliding contact with the inner periphery of the heating furnace is provided. The thermal expansion coefficient of the detector is made of a material smaller than that of the heating furnace, and the relative distance between the detector and the heating furnace is changed when the heating furnace expands in diameter by heating. Differential scanning calorimeter.
JP2008006819U 2008-09-29 2008-09-29 Differential scanning calorimeter Expired - Fee Related JP3147015U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006819U JP3147015U (en) 2008-09-29 2008-09-29 Differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006819U JP3147015U (en) 2008-09-29 2008-09-29 Differential scanning calorimeter

Publications (1)

Publication Number Publication Date
JP3147015U true JP3147015U (en) 2008-12-11

Family

ID=43296693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006819U Expired - Fee Related JP3147015U (en) 2008-09-29 2008-09-29 Differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JP3147015U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221941A (en) * 2015-06-03 2016-12-28 順治 曽根 Structure for reducing thermal strain in composite material structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221941A (en) * 2015-06-03 2016-12-28 順治 曽根 Structure for reducing thermal strain in composite material structure

Similar Documents

Publication Publication Date Title
JP6146851B2 (en) High temperature friction wear measuring device
JP5943085B2 (en) Gas chromatograph
JP2008309729A (en) Device and method for measuring thermal conductivity
WO2010103784A1 (en) Heat conduction measuring device and heat conduction measuring method
US2999121A (en) Fast acting totally expendable immersion thermocouple
JP6043441B2 (en) Method and apparatus for material analysis
US10247685B2 (en) High-temperature structure for measuring properties of curved thermoelectric device, and system and method for measuring properties of curved thermoelectric device using the same
JP2008243990A (en) Substrate heating device
JP4181776B2 (en) Thermal analysis assembly with distributed thermal resistors and integrated flange for mounting various cooling devices
JP3147015U (en) Differential scanning calorimeter
JP5379760B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
US20170336188A1 (en) Surface measurement probe
JP3153034U (en) Differential scanning calorimeter
JP2007064882A (en) Heat flux type differential scanning calorimeter
JP6841425B2 (en) Thermal analyzer
JP2009031026A (en) Thermocouple and its mounting structure
CN109416269B (en) Sensor, heat flow measuring device and method for producing a sensor
JP3134992U (en) Differential thermal analyzer
CN207964129U (en) A kind of device of temperature correction
JPS60209158A (en) Sample cell for heat flux differential scanning calorimeter
JP2007057430A (en) Contact-type thermometer
JP2018500536A (en) Gas chromatography (GC) column heater control using multiple temperature sensors
US10184843B2 (en) Thermal protection systems material degradation monitoring system
JPS62231148A (en) Thermal analysis instrument
JP3149619U (en) Differential scanning calorimeter

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees