JPS62231148A - Thermal analysis instrument - Google Patents
Thermal analysis instrumentInfo
- Publication number
- JPS62231148A JPS62231148A JP7492886A JP7492886A JPS62231148A JP S62231148 A JPS62231148 A JP S62231148A JP 7492886 A JP7492886 A JP 7492886A JP 7492886 A JP7492886 A JP 7492886A JP S62231148 A JPS62231148 A JP S62231148A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- sample holder
- bottom plate
- temperature
- heating furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002076 thermal analysis method Methods 0.000 title claims description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 55
- 239000010445 mica Substances 0.000 claims abstract description 25
- 229910052618 mica group Inorganic materials 0.000 claims abstract description 25
- 238000005259 measurement Methods 0.000 claims abstract description 9
- 238000005524 ceramic coating Methods 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 10
- 239000013558 reference substance Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 4
- 230000004043 responsiveness Effects 0.000 abstract 1
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229910000809 Alumel Inorganic materials 0.000 description 2
- 229910001179 chromel Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910000566 Platinum-iridium alloy Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- HWLDNSXPUQTBOD-UHFFFAOYSA-N platinum-iridium alloy Chemical class [Ir].[Pt] HWLDNSXPUQTBOD-UHFFFAOYSA-N 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、例えば融点測定装置のように、比較的機ff
1(例えば0.1−100mg程度)の試料を加熱しな
がら試料温度を精密に測定する熱分析装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is applicable to relatively simple applications such as melting point measuring devices, for example.
The present invention relates to a thermal analysis device that precisely measures the sample temperature while heating a sample of 1 (for example, about 0.1 to 100 mg).
本発明はまた、熱補償形示差走査熱量計に関するもので
ある。The invention also relates to a thermally compensated differential scanning calorimeter.
(従来の技術)
微量試料を加熱しながらその温度を測定する熱分析装置
の例として第6図や第7図に示されるものがある。(Prior Art) Examples of thermal analysis devices that measure the temperature of a trace sample while heating it are shown in FIGS. 6 and 7.
第6図の構造の熱分析装置では、ヒータ2からの熱が伝
熱板4を伝わって試料6に伝えられる。In the thermal analysis apparatus having the structure shown in FIG. 6, heat from the heater 2 is transmitted through the heat transfer plate 4 to the sample 6.
温度検出器としての熱電対8は試料6の位置の伝熱板8
に設けられている。伝熱板4は全屈であることが多いが
、伝熱板4がなく、空気層を介してヒータ2により試料
6が加熱される構造のものもある。また、試料6中に熱
電対8を直接浸漬することもある。A thermocouple 8 as a temperature detector is attached to a heat exchanger plate 8 at the position of the sample 6.
It is set in. Although the heat transfer plate 4 is often fully bent, there is also a structure in which the heat transfer plate 4 is not provided and the sample 6 is heated by the heater 2 via an air layer. Alternatively, the thermocouple 8 may be directly immersed in the sample 6.
第7図の構造の熱分析装置では、試料ホルダ10の底面
の下部に加熱炉12が一体的に設けられている。加熱炉
12では絶縁材14中にヒータ16と温度検出器として
の白金抵抗体18が埋め込まれている。試料ホルダ10
の上部には容器に入れられた試料20が置かれる。In the thermal analysis apparatus having the structure shown in FIG. 7, a heating furnace 12 is integrally provided at the bottom of the sample holder 10. In the heating furnace 12, a heater 16 and a platinum resistor 18 as a temperature detector are embedded in an insulating material 14. Sample holder 10
A sample 20 contained in a container is placed on top of the container.
(発明が解決しようとする問題点)
第6図に示される熱分析装置では、ヒータ2と熱電対8
の間の熱抵抗が大きく、応答が悪い。(Problems to be Solved by the Invention) In the thermal analyzer shown in FIG.
The thermal resistance between them is large and the response is poor.
第7図に示される熱分析装置では、白金抵抗体18など
の温度検出器がヒータ16の近くに設けられるか、ヒー
タ16と一体化されて設けられる。In the thermal analysis apparatus shown in FIG. 7, a temperature detector such as a platinum resistor 18 is provided near the heater 16 or is provided integrally with the heater 16.
そのため、ヒータ温度が検出されたのか、試料温度が検
出されたのか不明であり、いちいち熱分析装置を較正す
る必要がある。Therefore, it is unclear whether the heater temperature or the sample temperature is detected, and it is necessary to calibrate the thermal analyzer each time.
また、例えば第7図の熱分析装置で10℃/分で加熱し
たとき、インジウム(I n)の融点(156,5℃)
が約3〜4℃高めに現れることがある。この誤差は加熱
速度により異なり、加熱速度が大きくなる程、大きくな
る。For example, when heated at 10°C/min using the thermal analyzer shown in Figure 7, the melting point of indium (In) (156.5°C)
may appear about 3 to 4°C higher. This error varies depending on the heating rate, and increases as the heating rate increases.
本発明は、ヒータで発生した熱が温度検出器に直接伝わ
らないようにしつつ、試料温度を急速に昇温することが
でき、しかも、試料温度を精密に測定することのできる
熱分析装置を提供することを目的とするものである。The present invention provides a thermal analysis device that can rapidly raise the temperature of a sample while preventing the heat generated by the heater from directly transmitting to the temperature detector, and can also accurately measure the sample temperature. The purpose is to
(問題点を解決するための手段)
本発明の熱分析装置では、試料ホルダの下部に試料加熱
炉を一体的に設けるとともに、前記試料ホルダの底面に
温度検出器を接合し、前記試料加熱炉と前記試料ホルダ
底面の間には熱抵抗の大きい絶縁材を介在させ、熱が試
料ホルダの側面から流入して前記温度検出器に至る経路
に試料を置いて試料を加熱しつつ前記温度検出器により
温度を測定する。(Means for Solving the Problems) In the thermal analysis apparatus of the present invention, a sample heating furnace is integrally provided at the lower part of the sample holder, a temperature sensor is bonded to the bottom surface of the sample holder, and the sample heating furnace An insulating material with high thermal resistance is interposed between the bottom surface of the sample holder and the sample holder, and the sample is placed in a path where heat flows from the side surface of the sample holder to the temperature sensor, and the sample is heated while the temperature sensor is heated. Measure the temperature.
また、本発明の熱分析装置は、示差走査熱量計であって
、その参照物質用の試料ホルダ及び測定試料用の試料ホ
ルダのそれぞれの試料ホルダの下部に試料加熱炉を一体
的に設けるとともに、前記各試料加熱炉と前記各試料ホ
ルダ底面の間には熱抵抗の大きい絶縁材を介在させ、熱
が試料ホルダの側面から流入して前記温度検出器に至る
経路に参照物質及び測定試料をそれぞれ置いて参照物質
及び測定試料を加熱しつつ前記各温度検出器により温度
を測定するように構成されている。Further, the thermal analysis device of the present invention is a differential scanning calorimeter, and a sample heating furnace is integrally provided at the lower part of each of the sample holder for a reference substance and the sample holder for a measurement sample, and An insulating material with high thermal resistance is interposed between each sample heating furnace and the bottom surface of each sample holder, and a reference substance and a measurement sample are placed in the path through which heat flows from the side surface of the sample holder and reaches the temperature detector. The temperature sensor is configured to measure the temperature of the reference substance and the measurement sample while heating the reference substance and the measurement sample.
(実施例) 第1図は本発明の一実施例を表わす。(Example) FIG. 1 represents one embodiment of the invention.
22は円筒形の試料ホルダであり、側Ji24と加熱部
材26が一体的に設けられている。加熱部材26の上部
にはマイカ28を介して試料ホルダ底面となる底板30
が挿入され、底板30の端面と試料ホルダ側壁24の内
側が密着させられている。22 is a cylindrical sample holder, and a side Ji 24 and a heating member 26 are integrally provided. A bottom plate 30 that becomes the bottom surface of the sample holder is attached to the top of the heating member 26 with mica 28 interposed therebetween.
is inserted, and the end surface of the bottom plate 30 and the inside of the sample holder side wall 24 are brought into close contact.
試料ホルダ側壁24及び底板30としてはステンレスや
白金イリジウム合金などの耐熱全屈を用いる。The sample holder side wall 24 and the bottom plate 30 are made of heat-resistant, fully bendable material such as stainless steel or platinum-iridium alloy.
マイカ28の厚さは約200〜300μmであり、熱抵
抗が十分に大きい。The thickness of the mica 28 is approximately 200 to 300 μm, and the thermal resistance is sufficiently large.
底板30上にはアルミニウムなどの容器に入れられた試
料20が置かれる。A sample 20 placed in a container made of aluminum or the like is placed on the bottom plate 30 .
底板30の中央部には温度検出器としての熱電対32が
接合されて取りつけられている。A thermocouple 32 as a temperature detector is bonded and attached to the center of the bottom plate 30.
加熱部材26の下部にはマイカ34.ヒータ36及びマ
イカ38がこの順序で挿入され、さらにその下には筒の
先端が円板状に拡いた支持部材40の円板状部が挿入さ
れている。これらの部材34.36,38.40は試料
ホルダ側壁24の下部が内側へ折り曲げられることによ
り固定されている。Mica 34. The heater 36 and the mica 38 are inserted in this order, and the disc-shaped part of the support member 40, which has a cylinder whose tip is expanded into a disc-shape, is further inserted below. These members 34, 36, 38, 40 are fixed by bending the lower part of the sample holder side wall 24 inward.
マイカ28.加熱部材26.マイカ34.ヒータコ6.
マイカ38及び支持部材40は中央に孔がおいており、
それらの孔を通って碍子33で保護された熱電対32が
外部へ導かれている。Mica28. Heating member 26. Mica 34. Heater 6.
The mica 38 and the support member 40 have a hole in the center,
A thermocouple 32 protected by an insulator 33 is guided to the outside through these holes.
ヒータ36と加熱部材26の間に設けられているマイカ
34の厚さは約20〜30μmであり、この厚さはヒー
タ36と支持部材40の間に設けられているマイカ38
の厚さく約200μm)に比べて十分に薄く、ヒータ3
6で発生した熱を効率よく試料加熱に利用できるように
なっている。The thickness of the mica 34 provided between the heater 36 and the heating member 26 is about 20 to 30 μm, and this thickness is the same as that of the mica 38 provided between the heater 36 and the support member 40.
The heater 3 is sufficiently thinner than the
The heat generated in step 6 can be efficiently used for sample heating.
ヒータ36としては厚さ約15μmの薄膜ヒータを利用
し、マイカ34,38により絶縁している。As the heater 36, a thin film heater with a thickness of approximately 15 μm is used, and is insulated by mica 34 and 38.
この加熱炉を兼ねる試料ホルダは、外形の直径りを約7
m m 、高さHを約4mmに制作することが可能で
ある。そのように小型に構成した場合には、100℃/
分程度での試料加熱も可能である。The sample holder, which also serves as a heating furnace, has an external diameter of approximately 7
It is possible to produce a material with a height H of approximately 4 mm. When configured in such a small size, the temperature is 100℃/
It is also possible to heat the sample for about a minute.
本実施例において、ヒータ36で発生した熱は殆んど加
熱部材26へ流れる。そして、加熱部材26と底板30
の間に厚いマイカ28が介在しているので、加熱部材2
6からの熱は大部分が試料ホルダ22の金属部分を通っ
て、矢印で表わされるように試料ホルダ側壁24から底
板30の中心方向に流れて熱電対32に至る。このとき
、底板30上には試料20があるので、底板30と試料
20の間で熱交換が行なわれ、熱電対32の所では試料
20の温度と底板30の温度はほぼ同一温度に平衡する
。In this embodiment, most of the heat generated by the heater 36 flows to the heating member 26. Then, the heating member 26 and the bottom plate 30
Since the thick mica 28 is interposed between the heating member 2
Most of the heat from the sample holder 22 passes through the metal portion of the sample holder 22 and flows from the sample holder side wall 24 toward the center of the bottom plate 30, as indicated by the arrow, to the thermocouple 32. At this time, since the sample 20 is on the bottom plate 30, heat exchange occurs between the bottom plate 30 and the sample 20, and at the thermocouple 32, the temperature of the sample 20 and the temperature of the bottom plate 30 are equilibrated to almost the same temperature. .
本実施例によれば1〜20°C/分の昇温速度範囲でイ
ンジウムの融点の温度誤差は約0.3°C以内であった
。According to this example, the temperature error in the melting point of indium was within about 0.3°C within a heating rate range of 1 to 20°C/min.
温度範囲が400℃以下の場合にはマイカ28゜34.
38に代えてポリイミドのような耐熱性樹脂を使用する
ことができる。しかし、500〜600℃まで加熱する
場合はマイカが好ましい。If the temperature range is below 400°C, mica 28°34.
In place of 38, a heat-resistant resin such as polyimide can be used. However, mica is preferred when heating to 500-600°C.
第2図に第1図の実施例の分解斜視図を示し、その製造
方法を説明する。FIG. 2 shows an exploded perspective view of the embodiment shown in FIG. 1, and the manufacturing method thereof will be explained.
試料ホルダ本体22をその側壁24の下部が図のように
切り込まれた形状に形成しておく。The sample holder main body 22 is formed into a shape in which the lower part of the side wall 24 is notched as shown in the figure.
試料ホルダ本体22の上方からは側壁24の内側にマイ
カ28を挿入し、熱雷対32が接合された底板30をマ
イカ28の上に圧入する。試料ホルダ22の下方からは
マイカ34.ヒータ36゜マイカ38及び支持部材40
をこの順序で挿入し、側壁24の下部を内側へ折り曲げ
る。ヒータ36のリード線37a、37bは側壁24の
切れ目部分から外部へ取り出す。Mica 28 is inserted into the side wall 24 from above the sample holder main body 22, and the bottom plate 30 to which the thermal lightning pair 32 is joined is press-fitted onto the mica 28. From below the sample holder 22, mica 34. Heater 36° mica 38 and support member 40
are inserted in this order, and the lower part of the side wall 24 is bent inward. Lead wires 37a and 37b of the heater 36 are taken out from the cut portion of the side wall 24.
第3図は本発明の第2の実施例を表わす。FIG. 3 represents a second embodiment of the invention.
第1図の実施例を比較すると、加熱炉中でヒータ36と
加熱部材26の間に介在している絶縁材としてのマイカ
34が、本実施例ではアルミナを主成分としたセラミッ
クコーティング42に置き換わっている点で相違してい
る。他の構造は第1図の実施例と同じである。ただし、
熱電対32の碍子の図示は省略しである。Comparing the embodiment shown in FIG. 1, the mica 34 as an insulating material interposed between the heater 36 and the heating member 26 in the heating furnace is replaced with a ceramic coating 42 mainly composed of alumina in this embodiment. They are different in that they are The other structure is the same as the embodiment shown in FIG. however,
The illustration of the insulator of the thermocouple 32 is omitted.
セラミックコーティング42の厚さは、熱的には薄い程
よいが、薄くなると電気絶縁性が悪くなるので、30〜
50μm程度が適当である。The thinner the ceramic coating 42 is, the better from a thermal standpoint, but the thinner it becomes, the worse the electrical insulation, so it should be 30~30.
Approximately 50 μm is appropriate.
セラミックコーティング42は500〜600℃まで電
気絶縁性があり、マイカより熱伝導率が大きい。また、
厚さを均一にすることができ、マイカのように空気層が
入り込むこともないので、特性の揃ったものを作ること
が容易である。Ceramic coating 42 is electrically insulating up to 500-600°C and has higher thermal conductivity than mica. Also,
Since the thickness can be made uniform and there are no air spaces like mica, it is easy to make products with uniform properties.
このようなセラミックコーティング42を加熱部材26
の裏面に形成するには、第2図に示されるように、試料
ホルダ22の側壁24の下部がまっすぐの状態で加熱部
材26の裏面にセラミックコーティングをし、ラッピン
グを施せばよい。Such a ceramic coating 42 is applied to the heating member 26.
In order to form this on the back surface of the heating member 26, as shown in FIG. 2, a ceramic coating may be applied to the back surface of the heating member 26 with the lower part of the side wall 24 of the sample holder 22 being straight, and the heating member 26 may be wrapped.
第3図の実施例では加熱部材26と底板30の間、及び
ヒータ36と支持部材40の間には第1図の実施例と同
様にそれぞれマイカ28,38を使用している。これは
熱の損失を小さくすることの他、温度サイクルによる各
部材間の熱膨張差やセラミックコーティングのわずかな
面のうねりを吸収し、ヒータ36を加熱部材26に均一
に押しつけるクッション材の役目もしている。In the embodiment shown in FIG. 3, mica 28 and 38 are used between the heating member 26 and the bottom plate 30 and between the heater 36 and the support member 40, respectively, as in the embodiment shown in FIG. In addition to reducing heat loss, this also serves as a cushioning material that absorbs differences in thermal expansion between each member due to temperature cycles and slight waviness of the ceramic coating surface, and evenly presses the heater 36 against the heating member 26. ing.
第3図の実施例を使用すると、ベースライン、ノイズレ
ベルともに第1図の実施例の2〜3倍向上した。When the embodiment shown in FIG. 3 was used, both the baseline and noise level were improved by 2 to 3 times compared to the embodiment shown in FIG.
第4図は本発明の第3の実施例を表わす。FIG. 4 represents a third embodiment of the invention.
第3図の実施例と比較すると、底板30の底面にもセラ
ミックコーティング44を施し、セラミックコーティン
グ44とマイカ28の間にも熱電対46.48を設け、
熱電対32.46及び48を電気的に接続してサーモパ
イルとし、測温の感度を上げるようにしている点で相違
している。他の構造は第3図のものと同じである。第4
図でも熱電対32,46.48の碍子の図示は省略しで
ある。Compared to the embodiment shown in FIG. 3, a ceramic coating 44 is also applied to the bottom surface of the bottom plate 30, and thermocouples 46 and 48 are also provided between the ceramic coating 44 and the mica 28.
The difference is that thermocouples 32, 46 and 48 are electrically connected to form a thermopile to increase the sensitivity of temperature measurement. Other structures are the same as those in FIG. Fourth
In the figure, the insulators of the thermocouples 32, 46, and 48 are not shown.
第5図は本発明の熱補償形示差走査熱量形の一実施例を
表わす。FIG. 5 shows an embodiment of the thermally compensated differential scanning calorimeter of the present invention.
50a、50bは加熱炉と一体化された試料ホルダであ
り、ともに第3図に示されたものが使用されている。Reference numerals 50a and 50b are sample holders integrated with the heating furnace, both of which are shown in FIG. 3.
試料ホルダ50aには参照物質52が置かれ、試料ホル
ダ50bには測定試料54が置かれる。A reference substance 52 is placed on the sample holder 50a, and a measurement sample 54 is placed on the sample holder 50b.
試料ホルダ50aと50bはそれぞれの支持部材40a
、40bにより支持部材56に一体化されて固定されて
いる。The sample holders 50a and 50b each have a support member 40a.
, 40b are integrally fixed to the support member 56.
熱電対32a、32bとしてはクロメル・アルメルを使
用する。面熱電対32a、32bのクロメル線(C)を
共通に接続し、各熱電対32a。Chromel alumel is used as the thermocouples 32a and 32b. The chromel wires (C) of the surface thermocouples 32a and 32b are commonly connected to each thermocouple 32a.
32bのアルメル線(A)はそれぞれ増幅器58の各入
力に接続されている。これにより、増幅器58には両試
料ホルダ50a、50bの温度差ΔTが入力される。The Alumel wires (A) of 32b are connected to each input of the amplifier 58, respectively. As a result, the temperature difference ΔT between both sample holders 50a and 50b is input to the amplifier 58.
各試料ホルダ50a、50bの温度はそれぞれの熱電対
32a、32bにより測定することができる。The temperature of each sample holder 50a, 50b can be measured by a respective thermocouple 32a, 32b.
60はパワーアンプ・スイッチング回路であり、両試料
ホルダ50a、50bの加熱炉のヒータ36a、36b
の電流値を個別に制御するものであるが、増幅器58の
出力信号を入力し、その増幅器58の入力信号が0、す
なわち温度差ΔT=0となるようにヒータ36a、36
bへの通電量を制御する。60 is a power amplifier/switching circuit, and heaters 36a, 36b of the heating furnaces of both sample holders 50a, 50b.
The output signal of the amplifier 58 is inputted, and the heaters 36a, 36 are controlled so that the input signal of the amplifier 58 becomes 0, that is, the temperature difference ΔT=0.
Controls the amount of current applied to b.
第5図の示差走査熱量形において、試料ホルダ50a、
50bとして第1図に示されたもの、又は第4図に示さ
れたものを使用してもよい。In the differential scanning calorimeter shown in FIG. 5, the sample holder 50a,
50b shown in FIG. 1 or shown in FIG. 4 may be used.
(発明の効果)
本発明では試料ホルダと加熱炉と一体化するとともに、
試料ホルダ底面の中央に温度検出器を接続し、加熱炉か
らの熱が試料ホルダの側壁から底面へと伝わるようにし
たので、測温精度が向上し、試料温度を一定のプログラ
ムに従って精密に制御できるようになる。(Effect of the invention) In the present invention, the sample holder and the heating furnace are integrated, and
A temperature sensor is connected to the center of the bottom of the sample holder so that the heat from the heating furnace is transmitted from the side wall of the sample holder to the bottom, improving temperature measurement accuracy and precisely controlling sample temperature according to a fixed program. become able to.
また1本発明では測温精度は昇温温度に大きく依存しな
い。そのため単に融点を測定するような場合、加熱速度
の精密制御が不要になる。Furthermore, in the present invention, the temperature measurement accuracy does not depend greatly on the temperature increase. Therefore, when simply measuring the melting point, precise control of the heating rate is not required.
また1本発明によれば試料ホルダと加熱炉を一体化して
小型に制作することができ、例えば、100℃/分程度
の加熱速度で約500°Cまで加熱できるなど、高速で
加熱することができる。In addition, according to the present invention, the sample holder and the heating furnace can be integrated and made compact, and can be heated at high speeds, such as heating up to about 500°C at a heating rate of about 100°C/minute. can.
第1図は本発明の一実施例を示す断面図、第2図は同実
施例の分解斜視図、第3図及び第4図はそれぞれ他の実
施例を示す断面図、第5図は本発明の示差走査熱量計の
一実施例を示す概略断面図、第6図及び第7図は従来の
熱分析装置の例をそれぞれ示す断面図である。
22・・・・・・試料ホルダ。
24・・・・・・試料ホルダ側壁、
26・・・・・・加熱部材。
28.34.38・・・・・・マイカ、36・・・・・
・ヒータ、
42.44・・・・・・セラミックコーティング。
50a、50b・・・・・・試料ホルダ。FIG. 1 is a sectional view showing one embodiment of the present invention, FIG. 2 is an exploded perspective view of the same embodiment, FIGS. 3 and 4 are sectional views showing other embodiments, and FIG. A schematic cross-sectional view showing one embodiment of the differential scanning calorimeter of the invention, and FIGS. 6 and 7 are cross-sectional views showing an example of a conventional thermal analysis device, respectively. 22... Sample holder. 24...Sample holder side wall, 26...Heating member. 28.34.38... Mica, 36...
・Heater, 42.44...Ceramic coating. 50a, 50b... Sample holder.
Claims (4)
とともに、 前記試料ホルダの底面に温度検出器を接合し、前記試料
加熱炉と前記試料ホルダ底面の間には熱抵抗の大きい絶
縁材を介在させ、熱が試料ホルダの側面から流入して前
記温度検出器に至る経路に試料を置いて、試料を加熱し
つつ前記温度検出器により温度を測定する熱分析装置。(1) A sample heating furnace is integrally provided at the bottom of the sample holder, a temperature sensor is bonded to the bottom of the sample holder, and an insulating material with high thermal resistance is provided between the sample heating furnace and the bottom of the sample holder. A thermal analysis device that heats the sample and measures the temperature with the temperature detector by placing the sample in a path where heat flows in from the side of the sample holder and reaches the temperature detector.
絶縁材、及び前記試料加熱炉内の絶縁材としてマイカを
使用する特許請求の範囲第1項に記載の熱分析装置。(2) The thermal analysis apparatus according to claim 1, wherein mica is used as the insulating material between the sample heating furnace and the bottom surface of the sample holder, and as the insulating material inside the sample heating furnace.
絶縁材、及び前記試料加熱炉内の絶縁材のうちの一部の
絶縁材としてセラミックコーティングを使用する特許請
求の範囲第1項に記載の熱分析装置。(3) According to claim 1, wherein a ceramic coating is used as the insulating material between the sample heating furnace and the bottom surface of the sample holder and a part of the insulating material in the sample heating furnace. The thermal analysis device described.
ダ及び測定試料用の試料ホルダのそれぞれの下部に試料
加熱炉を一体的に設けるとともに、前記各試料ホルダの
底面に温度検出器を接合し、前記各試料加熱炉と前記各
試料ホルダ底面の間には熱抵抗の大きい絶縁材を介在さ
せ、熱が試料ホルダの側面から流入して前記温度検出器
に至る経路に参照物質及び測定試料をそれぞれ置いて参
照物質及び測定試料を加熱しつつ前記各温度検出器によ
り温度を測定する熱分析装置。(4) A differential scanning calorimeter, in which a sample heating furnace is integrally provided at the bottom of each of a sample holder for a reference substance and a sample holder for a measurement sample, and a temperature detector is provided at the bottom of each sample holder. An insulating material with high thermal resistance is interposed between each sample heating furnace and the bottom surface of each sample holder, and a reference substance and a measurement material are provided in a path through which heat flows from the side surface of the sample holder and reaches the temperature sensor. A thermal analysis device that measures the temperature using each of the temperature detectors while heating a reference substance and a measurement sample by placing each sample thereon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61074928A JPH0616015B2 (en) | 1986-03-31 | 1986-03-31 | Thermal analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61074928A JPH0616015B2 (en) | 1986-03-31 | 1986-03-31 | Thermal analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62231148A true JPS62231148A (en) | 1987-10-09 |
JPH0616015B2 JPH0616015B2 (en) | 1994-03-02 |
Family
ID=13561505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61074928A Expired - Lifetime JPH0616015B2 (en) | 1986-03-31 | 1986-03-31 | Thermal analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0616015B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08247977A (en) * | 1995-03-08 | 1996-09-27 | Rigaku Corp | Differential thermal analyzer |
US6390669B1 (en) | 1998-07-14 | 2002-05-21 | Seiko Instruments Inc. | Heat flux type differential scanning calorimeter |
EP1215484A2 (en) * | 2000-12-13 | 2002-06-19 | Seiko Instruments Inc. | Differential scanning calorimeter |
JP2007500848A (en) * | 2003-07-28 | 2007-01-18 | パーキンエルマー・エルエーエス・インコーポレーテッド | Instrument material holder and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS444400Y1 (en) * | 1965-04-02 | 1969-02-18 |
-
1986
- 1986-03-31 JP JP61074928A patent/JPH0616015B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS444400Y1 (en) * | 1965-04-02 | 1969-02-18 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08247977A (en) * | 1995-03-08 | 1996-09-27 | Rigaku Corp | Differential thermal analyzer |
US6390669B1 (en) | 1998-07-14 | 2002-05-21 | Seiko Instruments Inc. | Heat flux type differential scanning calorimeter |
EP1215484A2 (en) * | 2000-12-13 | 2002-06-19 | Seiko Instruments Inc. | Differential scanning calorimeter |
EP1215484A3 (en) * | 2000-12-13 | 2003-10-15 | Seiko Instruments Inc. | Differential scanning calorimeter |
JP2007500848A (en) * | 2003-07-28 | 2007-01-18 | パーキンエルマー・エルエーエス・インコーポレーテッド | Instrument material holder and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0616015B2 (en) | 1994-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3321974A (en) | Surface temperature measuring device | |
US6508585B2 (en) | Differential scanning calorimeter | |
US3038951A (en) | Fast acting totally expendable immersion thermocouple | |
US4185982A (en) | Method of measuring temperature of a sheet with a noncontacting-type pyrometer | |
US4095453A (en) | Differential thermal analysis cell | |
JP2001527644A (en) | Thermopile sensor and radiation thermometer equipped with thermopile sensor | |
WO2014153438A1 (en) | Thermopile differential scanning calorimeter sensor | |
US3232113A (en) | Thermal parameter indicator | |
JP2003042985A (en) | Differential scanning calorimeter | |
US3354720A (en) | Temperature sensing probe | |
KR101252909B1 (en) | Heatable infrared sensor and infrared thermometer comprising such an infrared sensor | |
JPS62231148A (en) | Thermal analysis instrument | |
JP6355600B2 (en) | Sensor unit for thermal analyzer and thermal analyzer | |
JP7356486B2 (en) | High speed humidity sensor and method for calibrating a high speed humidity sensor | |
JPH05223764A (en) | Furnace unit of differential scanning calorimeter | |
KR100413646B1 (en) | Temperature-detecting element | |
EP1215484A2 (en) | Differential scanning calorimeter | |
JPH03237345A (en) | Method for measuring thermal conductivity | |
JPH0514202Y2 (en) | ||
JPS6113178B2 (en) | ||
JPH0217329Y2 (en) | ||
JPS6385364A (en) | Flow velocity detector | |
JPS59184829A (en) | Thermometer | |
JPH088433Y2 (en) | Temperature detector | |
JPH0241569Y2 (en) |