JP6841425B2 - Thermal analyzer - Google Patents

Thermal analyzer Download PDF

Info

Publication number
JP6841425B2
JP6841425B2 JP2017104370A JP2017104370A JP6841425B2 JP 6841425 B2 JP6841425 B2 JP 6841425B2 JP 2017104370 A JP2017104370 A JP 2017104370A JP 2017104370 A JP2017104370 A JP 2017104370A JP 6841425 B2 JP6841425 B2 JP 6841425B2
Authority
JP
Japan
Prior art keywords
sample
cooling
heat
heating unit
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017104370A
Other languages
Japanese (ja)
Other versions
JP2018200207A (en
Inventor
弘一郎 則武
弘一郎 則武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2017104370A priority Critical patent/JP6841425B2/en
Priority to KR1020180046501A priority patent/KR102328943B1/en
Priority to CN201810428807.3A priority patent/CN108931552B/en
Publication of JP2018200207A publication Critical patent/JP2018200207A/en
Application granted granted Critical
Publication of JP6841425B2 publication Critical patent/JP6841425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4806Details not adapted to a particular type of sample
    • G01N25/4826Details not adapted to a particular type of sample concerning the heating or cooling arrangements

Description

この発明は、標準試料と被測定試料とを加熱または冷却して、これら標準試料と被測定試料との温度差を測定し、被測定試料の状態変化による吸熱反応や発熱反応を分析するための示差走査熱量計(DSC)などの熱分析装置に関する。 The present invention is for heating or cooling a standard sample and a sample to be measured, measuring the temperature difference between the standard sample and the sample to be measured, and analyzing a heat absorption reaction or an exothermic reaction due to a change in the state of the sample to be measured. It relates to a thermal analyzer such as a differential scanning calorimeter (DSC).

特許文献1は、この種の熱分析装置(示差走査熱量計)を開示している。同文献1に開示された示差走査熱量計は、被測定対象物(被測定試料)と基準物質(標準試料)とを収容する収容室をヒータで加熱する構成と、冷却ブロックで冷却する構成とを備えている。収容室の熱は、熱抵抗体を経由して冷却ブロックに伝わり、放熱される。
また、加熱と冷却を繰り返した際に、収容室と熱抵抗体の相互間および熱抵抗体と冷却ブロックの相互間に、熱膨張率の違いによって歪みや位置ずれが生じる。その場合でも、冷却ブロックに対して、熱抵抗体を一定の弾性力で付勢しながら押し付けて固定するとともに、熱抵抗体に対して、収容室を一定の弾性力で付勢しながら押し付けて固定することで、各構成要素間の歪みや位置ずれに起因する応力を、弾性力によって緩和できる構成を採用している。
Patent Document 1 discloses this type of thermal analyzer (differential scanning calorimetry). The differential scanning calorimetry disclosed in Document 1 includes a configuration in which a storage chamber containing a measurement target (measurement sample) and a reference substance (standard sample) is heated by a heater and a configuration in which a cooling block is used to cool the storage chamber. It has. The heat in the containment chamber is transferred to the cooling block via the thermal resistor and dissipated.
Further, when heating and cooling are repeated, distortion and misalignment occur due to the difference in the coefficient of thermal expansion between the accommodation chamber and the thermal resistor and between the thermal resistor and the cooling block. Even in that case, the thermal resistor is pressed against the cooling block while being urged with a constant elastic force to be fixed, and the accommodation chamber is pressed against the thermal resistor while being urged with a constant elastic force. By fixing, a configuration is adopted in which the stress caused by distortion and misalignment between each component can be relieved by elastic force.

特開2007−198959号公報JP-A-2007-1989959

しかし、特許文献1に開示された構成の示差走査熱量計では、収容室の熱を熱抵抗体を経由して冷却ブロックに伝えて放熱するだけの冷却構造のため、冷却効率が悪く迅速に冷却できない課題を有していた。 However, the differential scanning calorimetry having the configuration disclosed in Patent Document 1 has a cooling structure in which the heat of the accommodating chamber is simply transferred to the cooling block via the thermal resistor to dissipate heat, so that the cooling efficiency is poor and the cooling is performed quickly. I had a problem that I couldn't do.

本発明は、このような事情に鑑みてなされたもので、試料の周囲温度を効率的に下げることのできる熱分析装置の提供を目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a thermal analyzer capable of efficiently lowering the ambient temperature of a sample.

上記目的を達成するために、本発明は、内部に試料を配置する測定室を備え当該試料を周囲から加熱する試料加熱ユニットと、試料加熱ユニットを冷却する冷却手段と、を含む熱分析装置において、冷却手段が、試料加熱ユニットの周囲に配置され、内部に冷却媒体を循環し、試料加熱ユニットから周囲に放散される熱を冷却媒体により吸熱する冷却ジャケットと、試料加熱ユニットおよび冷却ジャケットの双方に接触して、当該試料加熱ユニットからの熱を冷却ジャケットに伝える熱伝導部材と、を備えたことを特徴とする。
ここで、冷却ジャケットの内部を循環させる冷却媒体としては、例えば、液体窒素を気化させた窒素ガスを用いることができる。
In order to achieve the above object, the present invention is in a thermal analyzer including a measurement chamber for arranging a sample inside, a sample heating unit for heating the sample from the surroundings, and a cooling means for cooling the sample heating unit. , The cooling means is arranged around the sample heating unit, circulates the cooling medium inside, and absorbs the heat dissipated from the sample heating unit to the surroundings by the cooling medium, and both the sample heating unit and the cooling jacket. It is characterized in that it is provided with a heat conductive member that transfers heat from the sample heating unit to the cooling jacket in contact with the sample heating unit.
Here, as the cooling medium that circulates inside the cooling jacket, for example, nitrogen gas obtained by vaporizing liquid nitrogen can be used.

上記構成の本発明は、試料加熱ユニットの熱を熱伝導部材を経由して冷却ジャケットに伝えて吸熱する冷却経路に加え、試料加熱ユニットの周囲からも冷却ジャケットが吸熱するので、これら2つの冷却経路をもって試料の周囲温度を効率的に下げることができる。 In the present invention having the above configuration, in addition to the cooling path in which the heat of the sample heating unit is transferred to the cooling jacket via the heat conductive member to absorb heat, the cooling jacket also absorbs heat from the periphery of the sample heating unit. The ambient temperature of the sample can be efficiently lowered by the route.

ここで、熱伝導部材は、冷却ジャケットを搭載する冷却ブロックと、この冷却ブロックおよび試料加熱ユニットの双方に接触する熱抵抗体とを含む構成とし、かつアルミナにより熱抵抗体を製作することが好ましい。 Here, it is preferable that the heat conductive member has a configuration including a cooling block on which the cooling jacket is mounted and a thermal resistor in contact with both the cooling block and the sample heating unit, and the thermal resistor is manufactured from alumina. ..

アルミナ(AL)は、低温領域で熱伝導率が高く、高温領域では熱伝導率が低いという特性を有している。アルミナで熱抵抗体を製作することで、試料を冷却する過程では熱抵抗体の温度が下がって熱伝導率が高くなり、いっそう効率的に試料加熱ユニットからの熱を冷却ジャケットへと伝えて冷却することができる。一方、試料を加熱している間は、熱抵抗体の温度が上がって熱伝導率が低くなり、試料加熱ユニットの冷却を抑制することができる。 Alumina (AL 2 O 3 ) has the characteristics of high thermal conductivity in the low temperature region and low thermal conductivity in the high temperature region. By manufacturing a thermal resistor from alumina, the temperature of the thermal resistor drops and the thermal conductivity increases in the process of cooling the sample, and the heat from the sample heating unit is more efficiently transferred to the cooling jacket for cooling. can do. On the other hand, while the sample is being heated, the temperature of the thermal resistor rises and the thermal conductivity decreases, so that the cooling of the sample heating unit can be suppressed.

さて、特許文献1に開示された示差走査熱量計は、内部に収容室を形成するヒートシンク(2)の底部中央部とベース(31)との間にコイルバネ(43)を設け、このコイルバネ(43)の弾性力で熱抵抗体(6)に対してヒートシンク(2)を押し付ける構造となっている(同文献1の図1を参照)。そのため、ヒートシンク(2)の底部中央部が下方へ引っ張られる結果、ヒートシンク(2)の底部外周縁部に対し反り上げるようなトルクが作用して、ヒートシンク(2)の歪みを却って増大させてしまうおそれがあった。 In the differential scanning calorimetry disclosed in Patent Document 1, a coil spring (43) is provided between the central portion of the bottom of the heat sink (2) forming the accommodation chamber and the base (31), and the coil spring (43) is provided. ), The heat sink (2) is pressed against the thermal resistor (6) (see FIG. 1 of the same document 1). Therefore, as a result of the central portion of the bottom of the heat sink (2) being pulled downward, a torque that warps the outer peripheral edge of the bottom of the heat sink (2) acts on the heat sink (2), and the distortion of the heat sink (2) is rather increased. There was a risk.

そこで、本発明は、試料加熱ユニットが、試料室を形成する試料チャンバと、この試料チャンバの周囲に設けた加熱ヒータと、これらの外周を覆う外部カバーと、を含み、試料チャンバと冷却ブロックとの間に熱抵抗体を配置し、作用線が熱抵抗体および冷却ブロックの外側を通る引張力を、外部カバーにおける周方向の複数箇所に設けた作用点に作用させ、当該引張力をもって試料チャンバを熱抵抗体に押し付けるとともに、熱抵抗体を冷却ブロックに押し付ける構成とすることが好ましい。 Therefore, in the present invention, the sample heating unit includes a sample chamber forming a sample chamber, a heating heater provided around the sample chamber, and an outer cover covering the outer periphery thereof, and includes a sample chamber and a cooling block. A thermal resistor is placed between the two, and the tensile force that the line of action passes through the outside of the thermal resistor and the cooling block is applied to the points of action provided at multiple points in the circumferential direction on the outer cover, and the tensile force is used in the sample chamber. Is preferably pressed against the thermal resistor and the thermal resistor is pressed against the cooling block.

このように構成することで、作用線が外側を通る複数の引張力によって、試料チャンバ、熱抵抗体および冷却ブロックにおける各外周縁部の反り上がりが防止され、良好な熱伝導効率を維持することができる。 With this configuration, multiple tensile forces with the line of action passing through the outside prevent warping of each outer peripheral edge in the sample chamber, thermal resistor, and cooling block, and maintain good heat conduction efficiency. Can be done.

さらに本発明は、装置の土台となるベース部材と、複数本の筒状の断熱支持棒と、当該断熱支持棒と同じ本数の断熱引張棒とを備え、ベース部材と冷却ブロックとの間に各断熱支持棒がそれぞれ軸方向に延在するように配置して、これら各断熱支持棒により冷却ブロックの下面を支持し、冷却ブロックの上面に熱抵抗体を配置するとともに、この熱抵抗体の上面に試料チャンバを配置し、外部カバーの外周面に各断熱引張棒の先端部を固定するとともに、各断熱支持棒の中空部に当該各断熱引張棒を挿通して、当該各断熱引張棒の基端部をベース部材の下方まで延ばし、各断熱引張棒の基端部を付勢部材からの弾性力をもって引っ張る構成としてもよい。 Further, the present invention includes a base member serving as a base of the apparatus, a plurality of tubular heat insulating support rods, and the same number of heat insulating tension rods as the heat insulating support rods, and each is provided between the base member and the cooling block. The heat insulating support rods are arranged so as to extend in the axial direction, the lower surface of the cooling block is supported by each of the heat insulating support rods, the thermal resistor is arranged on the upper surface of the cooling block, and the upper surface of the thermal resistor is arranged. The sample chamber is arranged in the outer cover, the tip of each heat insulating tension rod is fixed to the outer peripheral surface of the outer cover, and the heat insulating tension rod is inserted into the hollow portion of each heat insulating support rod to form the base of each heat insulating tension rod. The end portion may be extended below the base member, and the base end portion of each heat insulating tension rod may be pulled by the elastic force from the urging member.

試料加熱ユニット、熱抵抗体および冷却ブロックは、それぞれ熱膨張率が異なるために、加熱と冷却を繰り返した際にそれぞれの変形量が相違する。そこで、上述した構成とすることにより、熱膨張率が異なる各構成要素の変形が生じたときにも、付勢部材からの弾性力をもって柔軟に対応して相互間の位置ずれを許容することで、内部応力の蓄積を抑制し、各構成要素の損傷を防止することができる。 Since the sample heating unit, the thermal resistor, and the cooling block have different coefficients of thermal expansion, the amount of deformation differs when heating and cooling are repeated. Therefore, by adopting the above-described configuration, even when deformation of each component having a different coefficient of thermal expansion occurs, the elastic force from the urging member flexibly responds and allows the mutual positional deviation. , Accumulation of internal stress can be suppressed and damage to each component can be prevented.

また、ベース部材と冷却ブロックとの間に各断熱支持棒がそれぞれ軸方向に延在するように配置することで、ベース部材を冷却ブロックから離間させて冷却ブロックの熱をベース部材に伝えにくくすることができる。 Further, by arranging the heat insulating support rods extending in the axial direction between the base member and the cooling block, the base member is separated from the cooling block to make it difficult to transfer the heat of the cooling block to the base member. be able to.

ここで、断熱支持棒と断熱引張棒はステンレスで製作することが好ましい。ステンレスは、金属材料のなかでも熱伝導率が小さい。よって、断熱支持棒と断熱引張棒をステンレスで製作することにより、大きな強度を保持しつつ、冷却ブロックや試料加熱ユニットの熱をベース部材へいっそう伝えにくくすることができる。 Here, it is preferable that the heat insulating support rod and the heat insulating tension rod are made of stainless steel. Stainless steel has the lowest thermal conductivity among metal materials. Therefore, by manufacturing the heat insulating support rod and the heat insulating tension rod from stainless steel, it is possible to make it more difficult to transfer the heat of the cooling block or the sample heating unit to the base member while maintaining a large strength.

以上説明したように、本発明によれば、試料加熱ユニットの熱を熱伝導部材を経由して冷却ジャケットに伝えて吸熱する冷却経路に加え、試料加熱ユニットの周囲からも冷却ジャケットが吸熱するので、これら2つの冷却経路をもって試料の周囲温度を効率的に下げることができる。 As described above, according to the present invention, in addition to the cooling path in which the heat of the sample heating unit is transferred to the cooling jacket via the heat conductive member to absorb heat, the cooling jacket also absorbs heat from the periphery of the sample heating unit. With these two cooling paths, the ambient temperature of the sample can be efficiently lowered.

本発明の実施形態に係る示差走査熱量計(熱分析装置)の構成を示す正面断面図である。It is a front sectional view which shows the structure of the differential scanning calorimeter (thermal analyzer) which concerns on embodiment of this invention. 本発明の実施形態に係る示差走査熱量計(熱分析装置)の構成を示す外観斜視図である。It is an external perspective view which shows the structure of the differential scanning calorimetry (thermal analyzer) which concerns on embodiment of this invention. 本発明の実施形態に係る示差走査熱量計(熱分析装置)の構成を示す分解斜視図である。It is an exploded perspective view which shows the structure of the differential scanning calorimetry (thermal analyzer) which concerns on embodiment of this invention. 金属材料の温度と熱伝導率の関係を示すグラフである。It is a graph which shows the relationship between the temperature of a metal material, and the thermal conductivity.

以下、この発明を示差走査熱量計に適用した実施の形態について図面を参照して詳細に説明する。なお、本発明は、示差走査熱量計に限定されるものではなく、試料を加熱および冷却して測定する各種熱分析装置に適用できることは勿論である。 Hereinafter, embodiments in which the present invention is applied to a differential scanning calorimeter will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the differential scanning calorimetry, and of course, it can be applied to various thermal analyzers that measure by heating and cooling a sample.

図1〜図3は、本実施形態に係る示差走査熱量計(熱分析装置)の構成を示している。
本実施形態に係る示差走査熱量計は、測定室11aの内部に配置した試料(示差走査熱量計においては被測定試料と標準試料)を加熱するための試料加熱ユニット10と、当該試料の周囲を冷却するための冷却手段とを備えている。
1 to 3 show the configuration of a differential scanning calorimeter (thermal analyzer) according to the present embodiment.
The differential scanning calorimeter according to the present embodiment has a sample heating unit 10 for heating a sample (a sample to be measured and a standard sample in the differential scanning calorimeter) arranged inside the measurement chamber 11a, and the periphery of the sample. It is equipped with a cooling means for cooling.

試料加熱ユニット10は、試料チャンバ11と、加熱ヒータ12と、外部カバー13とを含んでいる。
試料チャンバ11は、銀(Ag)等の熱伝導率の高い金属材料で構成した容器である。この試料チャンバ11の内部が測定室11aを形成している。試料チャンバ11は上面が開口しており、被測定試料を入れた試料ホルダS1と標準試料を入れたた試料ホルダS0が、その上面開口部から試料チャンバ11の内部へそれぞれ収容され、あらかじめ設定してある測定位置に配置される(図1参照)。
The sample heating unit 10 includes a sample chamber 11, a heating heater 12, and an outer cover 13.
The sample chamber 11 is a container made of a metal material having high thermal conductivity such as silver (Ag). The inside of the sample chamber 11 forms the measurement chamber 11a. The upper surface of the sample chamber 11 is open, and the sample holder S1 containing the sample to be measured and the sample holder S0 containing the standard sample are housed in the sample chamber 11 from the upper surface opening and set in advance. It is placed at a certain measurement position (see FIG. 1).

試料チャンバ11の上面開口部は、蓋14が着脱自在となっており、測定に際しては当該上面開口部を蓋14で閉塞して測定室11a内を密閉する。蓋14も、試料チャンバ11と同様に、銀(Ag)等の熱伝導率の高い金属材料で構成してある。 A lid 14 is detachable from the upper surface opening of the sample chamber 11, and the upper surface opening is closed with the lid 14 to seal the inside of the measurement chamber 11a during measurement. Like the sample chamber 11, the lid 14 is also made of a metal material having high thermal conductivity such as silver (Ag).

図には示されないが、試料チャンバ11の内底部には、被測定試料と標準試料の温度差を検出するための温度差検出手段が設けてある。この温度差検出手段としては、例えば、熱電対が用いられる。さらに、試料チャンバ11には、測定室11a内の温度を測定するための温度測定手段(例えば、熱電対)も設置されている。 Although not shown in the figure, the inner bottom of the sample chamber 11 is provided with a temperature difference detecting means for detecting the temperature difference between the sample to be measured and the standard sample. As the temperature difference detecting means, for example, a thermocouple is used. Further, the sample chamber 11 is also provided with a temperature measuring means (for example, a thermocouple) for measuring the temperature in the measuring chamber 11a.

加熱ヒータ12は、試料チャンバ11の外周に配設され、測定室11a内の被測定試料と標準試料を周囲から加熱する。
外部カバー13は、加熱ヒータ12の外周(すなわち、試料チャンバ11の外周でもある)を覆い、加熱ヒータ12から放出された熱の外部への放散を抑制する。本実施形態において、この外部カバー13は、ステンレス(SUS)で製作してある。ステンレスは、他の金属材料に比べて熱伝導率が小さく断熱性に優れているため、上述した用途の外部カバー13に適している。
The heating heater 12 is arranged on the outer periphery of the sample chamber 11 and heats the sample to be measured and the standard sample in the measurement chamber 11a from the surroundings.
The outer cover 13 covers the outer circumference of the heater 12 (that is, also the outer circumference of the sample chamber 11), and suppresses the heat released from the heater 12 from being dissipated to the outside. In this embodiment, the outer cover 13 is made of stainless steel (SUS). Stainless steel has a lower thermal conductivity and excellent heat insulating properties as compared with other metal materials, and is therefore suitable for the outer cover 13 for the above-mentioned applications.

次に、冷却手段は、冷却ジャケット20と、冷却ブロック21と、熱抵抗体22とを含んでいる。
冷却ジャケット20は、熱伝導率の高い金属材料(例えば、アルミニウム合金やニッケル合金)を用いて円環状に製作してあり、その内部には、冷却媒体を循環させるための冷媒流路20aが形成してある(図1参照)。本実施形態では、冷媒流路20aに循環させる冷却媒体として、液体窒素(LN)を気化させた窒素ガスを用いている。
Next, the cooling means includes a cooling jacket 20, a cooling block 21, and a thermal resistor 22.
The cooling jacket 20 is manufactured in an annular shape using a metal material having high thermal conductivity (for example, an aluminum alloy or a nickel alloy), and a refrigerant flow path 20a for circulating a cooling medium is formed inside the cooling jacket 20. (See Fig. 1). In this embodiment, nitrogen gas obtained by vaporizing liquid nitrogen (LN 2 ) is used as a cooling medium to be circulated in the refrigerant flow path 20a.

冷却媒体は、被測定試料および標準試料を冷却しながら熱分析するときに、冷媒流路20aへ供給される。一方、被測定試料および標準試料を加熱して熱分析するときには、冷媒流路20aへの冷却媒体の供給は停止する。 The cooling medium is supplied to the refrigerant flow path 20a during thermal analysis while cooling the sample to be measured and the standard sample. On the other hand, when the sample to be measured and the standard sample are heated for thermal analysis, the supply of the cooling medium to the refrigerant flow path 20a is stopped.

冷却ブロック21は、冷却ジャケット20と同様に、熱伝導率の高い金属材料(例えば、アルミニウム合金やニッケル合金)で円盤状に製作してある。
熱抵抗体22は、アルミナ(Al)により円筒形状に製作してある。なお、熱抵抗体22を、アルミナで製作したことによるメリットは後述する。
Like the cooling jacket 20, the cooling block 21 is made of a metal material having high thermal conductivity (for example, an aluminum alloy or a nickel alloy) in a disk shape.
The thermal resistor 22 is made of alumina (Al 2 O 3 ) into a cylindrical shape. The merit of manufacturing the thermal resistor 22 from alumina will be described later.

本実施形態では、図1に示すように、試料チャンバ11の底面に熱抵抗体22の上端面を面接触させるとともに、熱抵抗体22の下端面を冷却ブロック21の上面に面接触させてある。さらに、冷却ブロック21の上面周縁部に冷却ジャケット20の下面を面接触させた状態で、冷却ブロック21に冷却ジャケット20を搭載してある。
したがって、高温状態にある試料チャンバ11からの熱は、熱抵抗体22から冷却ブロック21を経由して冷却ジャケット20に伝わり、冷媒流路20aを循環する冷却媒体に吸収される。すなわち、熱抵抗体22と冷却ブロック21は、試料加熱ユニット10(具体的には、試料チャンバ11)と冷却ジャケット20の双方に接触して、試料加熱ユニット10からの熱を冷却ジャケット20に伝える熱伝導部材として機能する。
In the present embodiment, as shown in FIG. 1, the upper end surface of the thermal resistor 22 is brought into surface contact with the bottom surface of the sample chamber 11, and the lower end surface of the thermal resistor 22 is brought into surface contact with the upper surface of the cooling block 21. .. Further, the cooling jacket 20 is mounted on the cooling block 21 in a state where the lower surface of the cooling jacket 20 is in surface contact with the peripheral edge of the upper surface of the cooling block 21.
Therefore, the heat from the sample chamber 11 in the high temperature state is transferred from the thermal resistor 22 to the cooling jacket 20 via the cooling block 21 and absorbed by the cooling medium circulating in the refrigerant flow path 20a. That is, the thermal resistor 22 and the cooling block 21 come into contact with both the sample heating unit 10 (specifically, the sample chamber 11) and the cooling jacket 20, and transfer the heat from the sample heating unit 10 to the cooling jacket 20. Functions as a heat conductive member.

また、冷却ブロック21に搭載した冷却ジャケット20は、図1に示すように、試料加熱ユニット10の外周に配置される。この配置によって、試料加熱ユニット10から周囲に放散される熱は、冷却ジャケット20の内周面から冷媒流路20aを循環する冷却媒体へと伝えられ、冷却媒体に吸収される。 Further, as shown in FIG. 1, the cooling jacket 20 mounted on the cooling block 21 is arranged on the outer periphery of the sample heating unit 10. With this arrangement, the heat dissipated from the sample heating unit 10 to the surroundings is transferred from the inner peripheral surface of the cooling jacket 20 to the cooling medium circulating in the refrigerant flow path 20a, and is absorbed by the cooling medium.

このように、本実施形態に係る示差走査熱量計に組み込まれた冷却手段は、試料加熱ユニット10の熱を熱抵抗体22から冷却ブロック21を経由して冷却ジャケット20に伝えて吸熱する冷却経路に加え、試料加熱ユニット10の周囲からも冷却ジャケット20が吸熱するので、これら2つの冷却経路をもって試料の周囲温度を効率的に下げることができる。
さらに、試料加熱ユニット10の周囲に冷却ジャケット20を配置することで、試料の周囲にこもった熱も冷却ジャケット20で効率的に吸収することができるので、試料の周囲温度を均等に下げることが可能となる。
As described above, the cooling means incorporated in the differential scanning calorimeter according to the present embodiment transfers the heat of the sample heating unit 10 from the heat resistor 22 to the cooling jacket 20 via the cooling block 21 to absorb the heat. In addition, since the cooling jacket 20 absorbs heat from the periphery of the sample heating unit 10, the ambient temperature of the sample can be efficiently lowered by these two cooling paths.
Further, by arranging the cooling jacket 20 around the sample heating unit 10, the heat trapped around the sample can be efficiently absorbed by the cooling jacket 20, so that the ambient temperature of the sample can be lowered evenly. It will be possible.

上述したとおり、熱抵抗体22はアルミナで製作してある。アルミナ(AL)は、低温領域で熱伝導率が高く、高温領域では熱伝導率が低いという特性を有している。
図4は、金属材料の温度と熱伝導率の関係を示すグラフである。同図に示すように、鉄(Fe)やニッケル(Ni)と比較しても、アルミナ(Al)は、低温領域で熱伝導率が高く、高温領域では熱伝導率が低いという特性が顕著に現れている。
As described above, the thermal resistor 22 is made of alumina. Alumina (AL 2 O 3 ) has the characteristics of high thermal conductivity in the low temperature region and low thermal conductivity in the high temperature region.
FIG. 4 is a graph showing the relationship between the temperature of the metal material and the thermal conductivity. As shown in the figure, alumina (Al 2 O 3 ) has a higher thermal conductivity in the low temperature region and a lower thermal conductivity in the high temperature region than iron (Fe) and nickel (Ni). Is prominently appearing.

さて、被測定試料および標準試料を加熱しながら熱分析を行うときは、加熱ヒータ12によって試料チャンバ11が加熱されて高温になるため、熱抵抗体22は試料チャンバ11から伝わってきた熱により高温となる。したがって、アルミナで製作した熱抵抗体22は、熱伝導率は低くなって、断熱効果を奏するようになる。
試料を加熱しながら熱分析を行うときは、できる限り試料チャンバ11の熱を逃がさない方が、測定室11a内の温度環境が安定し、試料の温度制御が容易になって好ましい。高温領域で断熱効果を奏するアルミナで製作した熱抵抗体22は、この条件に適合する。
When performing thermal analysis while heating the sample to be measured and the standard sample, the sample chamber 11 is heated by the heating heater 12 and becomes hot, so that the thermal resistor 22 is heated by the heat transmitted from the sample chamber 11 to a high temperature. It becomes. Therefore, the thermal resistor 22 made of alumina has a low thermal conductivity and has a heat insulating effect.
When performing thermal analysis while heating the sample, it is preferable not to let the heat of the sample chamber 11 escape as much as possible because the temperature environment in the measurement chamber 11a is stable and the temperature control of the sample becomes easy. The thermal resistor 22 made of alumina, which has a heat insulating effect in a high temperature region, meets this condition.

一方、被測定試料および標準試料を冷却しながら熱分析を行うときは、試料加熱ユニット10が冷却ジャケット20により冷却されるため、試料チャンバ11は低温になり、これに伴い熱抵抗体22の温度も低下していく。したがって、アルミナで製作した熱抵抗体22は、熱伝導率が高くなって熱を伝えやすくなる。よって、試料チャンバ11からの熱を冷却ブロック21へ円滑に伝えて、効率的に試料加熱ユニット10を冷却できるようになる。 On the other hand, when performing thermal analysis while cooling the sample to be measured and the standard sample, the sample heating unit 10 is cooled by the cooling jacket 20, so that the sample chamber 11 becomes low in temperature, and the temperature of the thermal resistor 22 is increased accordingly. Will also decline. Therefore, the thermal resistor 22 made of alumina has a high thermal conductivity and easily transfers heat. Therefore, the heat from the sample chamber 11 is smoothly transferred to the cooling block 21, and the sample heating unit 10 can be efficiently cooled.

このように、アルミナで製作した熱抵抗体22は、被測定試料および標準試料を、加熱しながら熱分析を行うときと、冷却しながら熱分析を行うときのいずれにも好適に機能するというメリットがある。 As described above, the thermal resistor 22 made of alumina has an advantage that it functions suitably for both the thermal analysis while heating the sample to be measured and the standard sample and the thermal analysis while cooling. There is.

次に、上述した試料加熱ユニット10、冷却ジャケット20、熱抵抗体22および冷却ブロック21の支持構造と組立方法について説明する。
図1および図2に示すように、ベース部材30が装置の土台を形成しており、このベース部材30の上面に、複数本の断熱支持棒31が直立した状態に配設してある。試料加熱ユニット10、冷却ジャケット20、熱抵抗体22および冷却ブロック21の各構成要素は、これらの断熱支持棒31で下側から支持されている。
Next, the support structure and assembly method of the sample heating unit 10, the cooling jacket 20, the thermal resistor 22, and the cooling block 21 described above will be described.
As shown in FIGS. 1 and 2, the base member 30 forms the base of the device, and a plurality of heat insulating support rods 31 are arranged upright on the upper surface of the base member 30. Each component of the sample heating unit 10, the cooling jacket 20, the thermal resistor 22, and the cooling block 21 is supported from below by these heat insulating support rods 31.

組立に際しては、図3に示すように、ベース部材30の上面に複数本(図3では4本)の断熱支持棒31を直立した状態に配設し、これらの断熱支持棒31の上端に冷却ブロック21を配置する。次に、冷却ブロック21の上面中央部に熱抵抗体22を配置して、さらに熱抵抗体22の上端面に試料チャンバ11(加熱ヒータ12を含む)を配置する。 At the time of assembly, as shown in FIG. 3, a plurality of (four in FIG. 3) heat insulating support rods 31 are arranged upright on the upper surface of the base member 30, and the upper ends of these heat insulating support rods 31 are cooled. Place the block 21. Next, the thermal resistance body 22 is arranged at the center of the upper surface of the cooling block 21, and the sample chamber 11 (including the heating heater 12) is further arranged on the upper end surface of the thermal resistance body 22.

ここで、外部カバー13には、外周面における周方向の複数箇所(図3では4箇所)に、断熱引張棒32の上端部があらかじめ接合してある。各断熱引張棒32は、外部カバー13の外周面からそれぞれ下方へ直線上に延出している。 Here, the upper end portions of the heat insulating tension rods 32 are previously joined to the outer cover 13 at a plurality of locations (4 locations in FIG. 3) in the circumferential direction on the outer peripheral surface. Each heat insulating tension rod 32 extends downward in a straight line from the outer peripheral surface of the outer cover 13.

試料チャンバ11の外周に外部カバー13を被せる。外部カバー13の上端縁部は内側へ屈曲して引掛部13aを形成しており、この引掛部13aを試料チャンバ11の上部フランジ部11bに引っ掛けて係合する。加熱ヒータ12は、外部カバー13によって外周が被覆され、外側への熱の放散が抑制される。 The outer circumference of the sample chamber 11 is covered with the outer cover 13. The upper end edge of the outer cover 13 bends inward to form a hooking portion 13a, and the hooking portion 13a is hooked on and engaged with the upper flange portion 11b of the sample chamber 11. The outer circumference of the heating heater 12 is covered with the outer cover 13, and heat dissipation to the outside is suppressed.

冷却ブロック21とベース部材30には、断熱引張棒32を挿通するための透孔21a、30aが複数箇所に形成してある。また、複数本の断熱支持棒31は、円筒状(管状)に形成してあり、その中空部31aは断熱引張棒32が挿通できる内径となっている。断熱引張棒32を挿通するための透孔21a、30aは、断熱支持棒31の中空部と連通する位置にそれぞれ形成されている(図1参照)。
なお、外部カバー13における断熱引張棒32の接合箇所は、これら透孔21a、30aの形成箇所や断熱支持棒31の配設位置に対応して設定してある。
The cooling block 21 and the base member 30 are formed with through holes 21a and 30a for inserting the heat insulating tension rod 32 at a plurality of locations. Further, the plurality of heat insulating support rods 31 are formed in a cylindrical shape (tubular shape), and the hollow portion 31a has an inner diameter through which the heat insulating tension rod 32 can be inserted. The through holes 21a and 30a for inserting the heat insulating tension rod 32 are formed at positions communicating with the hollow portion of the heat insulating support rod 31, respectively (see FIG. 1).
The joint portion of the heat insulating tension rod 32 in the outer cover 13 is set corresponding to the formation location of the through holes 21a and 30a and the arrangement position of the heat insulating support rod 31.

次に、外部カバー13の外周面から下方へ延出する複数本の断熱引張棒32の基端部を、冷却ブロック21の透孔21aから挿入し、断熱支持棒31の中空部31aを通して、ベース部材30の透孔30aから同部材30の下面側へ抜き出す。 Next, the base end portions of the plurality of heat insulating tension rods 32 extending downward from the outer peripheral surface of the outer cover 13 are inserted through the through holes 21a of the cooling block 21, and the base is passed through the hollow portion 31a of the heat insulating support rod 31. It is extracted from the through hole 30a of the member 30 toward the lower surface side of the member 30.

ベース部材30の下面側に抜き出した断熱引張棒32の基端部には雄ねじ形成してある。各断熱引張棒32の基端部にコイルばね33(付勢部材)を嵌め、雄ねじにナット34を螺合して、ベース部材30とナット34との間で、コイルばね33を圧縮する。
これにより、コイルばね33の弾性力が断熱引張棒32を介して外部カバー13に引張力として作用し、外部カバー13がこの弾性力をもって、試料チャンバ11、熱抵抗体22および冷却ブロック21を、断熱支持棒31の上端に押し付ける。このようにして、断熱支持棒31の上端と外部カバー13の引掛部13aとの間に、これら試料チャンバ11、熱抵抗体22および冷却ブロック21の各構成要素が組み付けられる。
A male screw is formed at the base end of the heat insulating tension rod 32 extracted from the lower surface side of the base member 30. A coil spring 33 (a urging member) is fitted to the base end of each heat insulating tension rod 32, a nut 34 is screwed into a male screw, and the coil spring 33 is compressed between the base member 30 and the nut 34.
As a result, the elastic force of the coil spring 33 acts as a tensile force on the outer cover 13 via the heat insulating tension rod 32, and the outer cover 13 exerts this elastic force on the sample chamber 11, the thermal resistor 22 and the cooling block 21. It is pressed against the upper end of the heat insulating support rod 31. In this way, the components of the sample chamber 11, the thermal resistor 22, and the cooling block 21 are assembled between the upper end of the heat insulating support rod 31 and the hooking portion 13a of the outer cover 13.

上述した構成とすれば、作用線(断熱引張棒32の軸線に一致)が熱抵抗体22および冷却ブロック21の外側を通る引張力(コイルばね33の弾性力)を、外部カバー13における周方向の複数箇所に設けた作用点(断熱引張棒32の接合箇所)に作用させ、当該引張力をもって試料チャンバ11を熱抵抗体22に押し付けるとともに、熱抵抗体22を冷却ブロック21に押し付けるので、試料チャンバ11、熱抵抗体22および冷却ブロック21における各外周縁部の反り上がりが防止され、良好な熱伝導効率を維持することができる。 With the above-described configuration, the tensile force (elastic force of the coil spring 33) in which the line of action (corresponding to the axis of the heat insulating tension rod 32) passes outside the thermal resistance body 22 and the cooling block 21 is applied in the circumferential direction of the outer cover 13. The sample chamber 11 is pressed against the thermal resistance body 22 and the thermal resistance body 22 is pressed against the cooling block 21 with the tensile force by acting on the action points (joint points of the heat insulating tension rod 32) provided at the plurality of locations of the sample. Warping of each outer peripheral edge portion of the chamber 11, the thermal resistor 22 and the cooling block 21 is prevented, and good heat conduction efficiency can be maintained.

また、加熱と冷却を繰り返した際に、試料チャンバ11、熱抵抗体22および冷却ブロック21は熱膨張率の違いからそれぞれ違った変形量で膨張または収縮する。しかし、上述した構成とすることにより、コイルばね33の弾性力をもって柔軟に対応して相互間の位置ずれが許容される。そのため、試料チャンバ11、熱抵抗体22および冷却ブロック21に内部応力が蓄積せず、これらの構成要素の損傷を防止することができる。 Further, when heating and cooling are repeated, the sample chamber 11, the thermal resistor 22, and the cooling block 21 expand or contract by different amounts of deformation due to the difference in the coefficient of thermal expansion. However, with the above-described configuration, the elastic force of the coil spring 33 flexibly corresponds to the displacement between the two. Therefore, internal stress does not accumulate in the sample chamber 11, the thermal resistor 22, and the cooling block 21, and damage to these components can be prevented.

また、ベース部材30と冷却ブロック21との間に断熱支持棒31を軸方向に延在して配置することで、ベース部材30と冷却ブロック21とが離間し、冷却ブロック21の熱がベース部材30に伝わりにくくなる。すなわち、断熱支持棒31は、ベース部材30を断熱する機能を有している。 Further, by arranging the heat insulating support rod 31 extending in the axial direction between the base member 30 and the cooling block 21, the base member 30 and the cooling block 21 are separated from each other, and the heat of the cooling block 21 is transferred to the base member. It becomes difficult to convey to 30. That is, the heat insulating support rod 31 has a function of heat insulating the base member 30.

ここで、断熱支持棒31と断熱引張棒32は、ともにステンレス管で製作してある。既述したとおり、ステンレス(SUS)は、他の金属材料に比べて熱伝導率が小さく断熱性に優れている。しかも、内部が空洞をした管状部材とすることで、横断面積が小さくなり、軸方向への熱伝導がさらに抑制され、冷却ブロック21の熱がベース部材30に伝わりにくくなる。 Here, both the heat insulating support rod 31 and the heat insulating tension rod 32 are made of stainless steel pipes. As described above, stainless steel (SUS) has a lower thermal conductivity and excellent heat insulating properties as compared with other metal materials. Moreover, by using a tubular member having a hollow inside, the cross-sectional area becomes smaller, heat conduction in the axial direction is further suppressed, and the heat of the cooling block 21 is less likely to be transferred to the base member 30.

なお、本発明は上述した実施形態に限定されるものではない。
例えば、断熱引張棒32の基端部を弾性力をもって引っ張る付勢部材としては、コイルばね33に限定されず、ゴム部材など弾性力を付与する公知の各種部材を適用することができる。
また、外部カバー13は、試料チャンバ11と加熱ヒータ12の外周を覆うとともに、断熱引張棒32からの引張力を試料チャンバ11へ伝えることができれば、図に示した形状に限定されるものではない。
The present invention is not limited to the above-described embodiment.
For example, the urging member that pulls the base end portion of the heat insulating tension rod 32 with elastic force is not limited to the coil spring 33, and various known members that impart elastic force such as a rubber member can be applied.
Further, the outer cover 13 is not limited to the shape shown in the figure as long as it covers the outer periphery of the sample chamber 11 and the heating heater 12 and can transmit the tensile force from the heat insulating tension rod 32 to the sample chamber 11. ..

10:試料加熱ユニット、11:試料チャンバ、11a:測定室、11b:上部フランジ部、12:加熱ヒータ、13:外部カバー、13a:引掛部、14:蓋、
20:冷却ジャケット、20a:冷媒流路、21:冷却ブロック、22:熱抵抗体、
30:ベース部材、31:断熱支持棒、32:断熱引張棒、33:コイルばね(付勢部材)、34:ナット
10: Sample heating unit, 11: Sample chamber, 11a: Measuring chamber, 11b: Upper flange part, 12: Heating heater, 13: External cover, 13a: Hooking part, 14: Lid,
20: Cooling jacket, 20a: Refrigerant flow path, 21: Cooling block, 22: Thermal resistor,
30: Base member, 31: Insulation support rod, 32: Insulation tension rod, 33: Coil spring (urging member), 34: Nut

Claims (6)

内部に試料を配置する測定室を備え当該試料を周囲から加熱する試料加熱ユニットと、前記試料加熱ユニットを冷却する冷却手段と、を含む熱分析装置において、
前記冷却手段は、
前記試料加熱ユニットの周囲に配置され、内部に冷却媒体を循環し、前記試料加熱ユニットから周囲に放散される熱を前記冷却媒体により吸熱する冷却ジャケットと、
前記試料加熱ユニットおよび前記冷却ジャケットの双方に接触して、当該試料加熱ユニットからの熱を前記冷却ジャケットに伝える熱伝導部材と、を備え、
前記熱伝導部材は、前記冷却ジャケットを搭載する冷却ブロックと、この冷却ブロックおよび前記試料加熱ユニットの双方に接触する熱抵抗体と、を含み、
さらに、装置の土台となるベース部材と、複数本の筒状の断熱支持棒と、当該断熱支持棒と同じ本数の断熱引張棒とを備え、
前記ベース部材と前記冷却ブロックとの間に前記各断熱支持棒がそれぞれ軸方向に延在するように配置して、これら各断熱支持棒により前記冷却ブロックの下面を支持し、
前記冷却ブロックの上面に前記熱抵抗体を配置するとともに、この熱抵抗体の上面に前記試料加熱ユニットを配置し、
前記試料加熱ユニットに前記各断熱引張棒の先端部を固定するとともに、前記各断熱支持棒の中空部に当該各断熱引張棒を挿通して、当該各断熱引張棒の基端部を前記ベース部材の下方まで延ばし、
前記各断熱引張棒の基端部を付勢部材からの弾性力をもって引っ張る構成としたことを特徴とする熱分析装置。
In a thermal analyzer including a sample heating unit having a measurement chamber for arranging a sample inside and heating the sample from the surroundings, and a cooling means for cooling the sample heating unit.
The cooling means
A cooling jacket that is arranged around the sample heating unit, circulates a cooling medium inside, and absorbs heat dissipated from the sample heating unit to the surroundings by the cooling medium.
A heat conductive member that contacts both the sample heating unit and the cooling jacket and transfers heat from the sample heating unit to the cooling jacket is provided.
The heat conductive member includes a cooling block on which the cooling jacket is mounted, and a thermal resistor in contact with both the cooling block and the sample heating unit.
Further, a base member serving as a base of the device, a plurality of tubular heat insulating support rods, and the same number of heat insulating tension rods as the heat insulating support rods are provided.
Each of the heat insulating support rods is arranged so as to extend in the axial direction between the base member and the cooling block, and the lower surface of the cooling block is supported by each of the heat insulating support rods.
The thermal resistor is arranged on the upper surface of the cooling block, and the sample heating unit is arranged on the upper surface of the thermal resistor.
The tip of each heat-insulating tension rod is fixed to the sample heating unit, the heat-insulating tension rod is inserted into the hollow portion of each heat-insulating support rod, and the base end of each heat-insulating tension rod is used as the base member. Extend to the bottom of
A thermal analyzer characterized in that the base end portion of each of the heat insulating tension rods is pulled by an elastic force from an urging member.
前記試料加熱ユニットは、前記試料室を形成する試料チャンバと、この試料チャンバの周囲に設けた加熱ヒータと、これらの外周を覆う外部カバーと、を含み、The sample heating unit includes a sample chamber forming the sample chamber, a heater provided around the sample chamber, and an outer cover covering the outer periphery thereof.
前記熱抵抗体の上面に前記試料チャンバを配置し、 The sample chamber is placed on the upper surface of the thermal resistor, and the sample chamber is arranged.
前記外部カバーの外周面に前記各断熱引張棒の先端部を固定したことを特徴とする請求項1に記載の熱分析装置 The thermal analyzer according to claim 1, wherein the tip end portions of the heat insulating tension rods are fixed to the outer peripheral surface of the outer cover.
前記試料チャンバと前記冷却ブロックとの間に前記熱抵抗体を配置し、The thermal resistor is placed between the sample chamber and the cooling block.
作用線が前記熱抵抗体および前記冷却ブロックの外側を通る引張力を、前記外部カバーにおける周方向の複数箇所に設けた作用点に作用させ、当該引張力をもって前記試料チャンバを前記熱抵抗体に押し付けるとともに、前記熱抵抗体を前記冷却ブロックに押し付ける構成としたことを特徴とする請求項2に記載の熱分析装置。 A tensile force with a line of action passing through the outside of the thermal resistance body and the cooling block is applied to action points provided at a plurality of points in the circumferential direction of the outer cover, and the tensile force is used to apply the sample chamber to the thermal resistance body. The thermal analyzer according to claim 2, wherein the thermal resistor is pressed against the cooling block while being pressed.
前記断熱支持棒および前記断熱引張棒をステンレスで製作したことを特徴とする請求項1乃至3のいずれか一項に記載の熱分析装置。The thermal analyzer according to any one of claims 1 to 3, wherein the heat insulating support rod and the heat insulating tension rod are made of stainless steel. 前記熱伝導部材は、前記試料加熱ユニットからの熱を前記熱抵抗体から前記冷却ブロックを経由して前記冷却ジャケットに伝える構成であることを特徴とする請求項1乃至4のいずれか一項に記載の熱分析装置。The invention according to any one of claims 1 to 4, wherein the heat conductive member has a configuration in which heat from the sample heating unit is transferred from the thermal resistor to the cooling jacket via the cooling block. The thermal analyzer of the description. 前記熱抵抗体をアルミナで製作したことを特徴とする請求項1乃至5のいずれか一項に記載の熱分析装置。The thermal analyzer according to any one of claims 1 to 5, wherein the thermal resistor is made of alumina.
JP2017104370A 2017-05-26 2017-05-26 Thermal analyzer Active JP6841425B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017104370A JP6841425B2 (en) 2017-05-26 2017-05-26 Thermal analyzer
KR1020180046501A KR102328943B1 (en) 2017-05-26 2018-04-23 Thermal analysis equipment
CN201810428807.3A CN108931552B (en) 2017-05-26 2018-05-08 Thermal analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017104370A JP6841425B2 (en) 2017-05-26 2017-05-26 Thermal analyzer

Publications (2)

Publication Number Publication Date
JP2018200207A JP2018200207A (en) 2018-12-20
JP6841425B2 true JP6841425B2 (en) 2021-03-10

Family

ID=64448375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017104370A Active JP6841425B2 (en) 2017-05-26 2017-05-26 Thermal analyzer

Country Status (3)

Country Link
JP (1) JP6841425B2 (en)
KR (1) KR102328943B1 (en)
CN (1) CN108931552B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111194400B (en) * 2017-11-06 2022-02-11 卡尔巴科特公司 Calorimeter and sample container for calorimeter
AT524363B1 (en) * 2020-10-30 2022-06-15 Anton Paar Gmbh Measuring device with an electrothermal transducer for adjusting a thermal resistance, and method of operation
CN113579112B (en) * 2021-07-30 2023-05-09 淮南文峰光电科技股份有限公司 Heating and shaping device for spiral net wires

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910056U (en) * 1982-06-28 1984-01-21 株式会社島津製作所 Differential thermal analyzer
JPH0289352U (en) * 1988-12-27 1990-07-16
JP2931994B2 (en) * 1990-07-24 1999-08-09 塩野義製薬株式会社 Thermal analyzer
JP2762952B2 (en) * 1995-03-08 1998-06-11 理学電機株式会社 Differential thermal analyzer
JP2832334B2 (en) * 1995-05-23 1998-12-09 科学技術庁航空宇宙技術研究所長 Thermoelectric conversion performance evaluation method and apparatus
US6523998B1 (en) * 2001-01-26 2003-02-25 Ta Instruments, Inc. Thermal analysis assembly with distributed resistance and integral flange for mounting various cooling devices
JP2005274415A (en) * 2004-03-25 2005-10-06 Rigaku Corp Thermal analysis apparatus and its water vapor generating apparatus
JP4868305B2 (en) * 2006-01-27 2012-02-01 エスアイアイ・ナノテクノロジー株式会社 Differential scanning calorimeter
JP2009150661A (en) * 2007-12-18 2009-07-09 Shimadzu Corp Thermal analyzer
JP2009180507A (en) * 2008-01-29 2009-08-13 Shimadzu Corp Thermal analyzer
JP3153034U (en) * 2009-06-11 2009-08-20 株式会社島津製作所 Differential scanning calorimeter
JP2011053077A (en) * 2009-09-01 2011-03-17 Sii Nanotechnology Inc Thermal analysis apparatus
JP5709160B2 (en) * 2010-03-29 2015-04-30 株式会社日立ハイテクサイエンス Thermal analyzer
CN102798645B (en) * 2012-08-07 2014-04-02 南京理工大学 Heat conduction coefficient and contact thermal resistance testing device
US9857241B2 (en) * 2012-09-04 2018-01-02 Waters Technologies Corporation Quasiadiabetic differential scanning calorimeter
JP5975488B2 (en) * 2013-08-19 2016-08-23 株式会社リガク Thermomechanical analyzer
DE102015009960A1 (en) * 2015-08-05 2017-02-09 Ralf Moos Ceramic DSC chip with integrated device for sample mass determination
JP6355600B2 (en) * 2015-08-12 2018-07-11 株式会社リガク Sensor unit for thermal analyzer and thermal analyzer
JP6606710B2 (en) * 2015-08-26 2019-11-20 株式会社リガク Thermal analyzer

Also Published As

Publication number Publication date
JP2018200207A (en) 2018-12-20
CN108931552B (en) 2022-03-11
KR20180129626A (en) 2018-12-05
CN108931552A (en) 2018-12-04
KR102328943B1 (en) 2021-11-22

Similar Documents

Publication Publication Date Title
JP6841425B2 (en) Thermal analyzer
JP4868305B2 (en) Differential scanning calorimeter
JP4831487B2 (en) Differential scanning calorimeter
US10247685B2 (en) High-temperature structure for measuring properties of curved thermoelectric device, and system and method for measuring properties of curved thermoelectric device using the same
JP2007033460A (en) Polarimeter
US7517142B2 (en) Performance testing apparatus for heat pipes
JP4181776B2 (en) Thermal analysis assembly with distributed thermal resistors and integrated flange for mounting various cooling devices
US7530736B2 (en) Performance testing apparatus for heat pipes
US7686504B2 (en) Performance testing apparatus for heat pipes
JP3153034U (en) Differential scanning calorimeter
US7637655B2 (en) Performance testing apparatus for heat pipes
US7553074B2 (en) Performance testing apparatus for heat pipes
JP4011531B2 (en) Thermal analyzer with cooling mechanism
US7553072B2 (en) Performance testing apparatus for heat pipes
JP2012013496A (en) Soaking block for thermostatic devices
WO2019150625A1 (en) Vial holder for cooling temperature regulation and sample temperature regulation device using the vial holder for cooling temperature regulation
JP5942889B2 (en) Heat transfer mechanism and thermal analysis apparatus having the same
JP2011013151A (en) Sample heating device
WO2008153910A1 (en) Infrared heated differential scanning calorimeter
US20220057348A1 (en) A measurement mechanism
JP5283535B2 (en) Differential scanning calorimeter
JP3147015U (en) Differential scanning calorimeter
JP2009150661A (en) Thermal analyzer
JP2005066383A (en) Temperature-regulating device for object to be cooled and heated
JP5551811B2 (en) Differential scanning calorimeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6841425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250