JP3134992U - Differential thermal analyzer - Google Patents

Differential thermal analyzer Download PDF

Info

Publication number
JP3134992U
JP3134992U JP2007004628U JP2007004628U JP3134992U JP 3134992 U JP3134992 U JP 3134992U JP 2007004628 U JP2007004628 U JP 2007004628U JP 2007004628 U JP2007004628 U JP 2007004628U JP 3134992 U JP3134992 U JP 3134992U
Authority
JP
Japan
Prior art keywords
sensor plate
sample
sensor
reference material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007004628U
Other languages
Japanese (ja)
Inventor
弘道 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007004628U priority Critical patent/JP3134992U/en
Application granted granted Critical
Publication of JP3134992U publication Critical patent/JP3134992U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】
示差熱分析装置の加熱温度範囲または作動雰囲気に制限を生じることなく、センサ板とセンサ板を囲繞するヒートシンクやセンサ押え板との熱膨張率の差から、昇温時にセンサ板に発生する応力に起因するセンサ板の変形や破損を防止し、センサ板の寿命を改善する手段を提供する。
【解決手段】
センサ板6Nを囲繞するヒートシンク3から、試料2および基準物質1に熱を伝達するための経路として、切り欠き8Nと切り欠き8Nの中間に配設された8箇所のブリッジ9Nに、センサ板6Nの上方に突出した円弧状の曲折部を設け、加熱に伴い発生する横方向の応力を、上下方向の曲折部により吸収する。
【選択図】 図1
【Task】
Without limiting the heating temperature range or operating atmosphere of the differential thermal analyzer, the difference in thermal expansion coefficient between the sensor plate and the heat sink or sensor presser plate surrounding the sensor plate can cause Provided is a means for preventing the sensor plate from being deformed or damaged and improving the life of the sensor plate.
[Solution]
As a path for transferring heat from the heat sink 3 surrounding the sensor plate 6N to the sample 2 and the reference material 1, the sensor plate 6N is connected to eight bridges 9N disposed between the notch 8N and the notch 8N. An arc-shaped bent portion projecting upward is provided, and lateral stress generated by heating is absorbed by the bent portion in the vertical direction.
[Selection] Figure 1

Description

本考案は基準物質および試料を加熱し、両者の温度差から試料の熱物性を測定する示差熱分析装置に関する。   The present invention relates to a differential thermal analyzer for heating a reference material and a sample and measuring the thermal properties of the sample from the temperature difference between the two.

示差熱分析装置(Differential Scanning Calorimeter、以下、単にDSCと称す)は、加熱炉(以下、ヒートシンクと称す)中に試料と基準物質を置き、所定のプログラムに従ってヒートシンクの温度を上昇させ、上昇途上の試料と基準物質の時々刻々の温度差を検出し試料の熱反応を測定する装置である(たとえば特許文献1参照)。   A differential scanning analyzer (hereinafter referred to simply as a DSC) places a sample and a reference material in a heating furnace (hereinafter referred to as a heat sink), raises the temperature of the heat sink according to a predetermined program, and is on the rise This is an apparatus for detecting the temperature difference between the sample and the reference material and measuring the thermal reaction of the sample (see, for example, Patent Document 1).

基準物質としては、熱容量が一定で試料の熱容量に近く、昇温範囲内で相転移などがなくヒートシンクの温度上昇に追随してなめらかに温度が上昇する物質が選ばれる。試料に相転移などの熱的な変化がない場合には、基準物質および試料の温度は共に加熱炉温度に追随してなめらかに変化するが、試料に融解などの相転移があり、吸熱・発熱反応などが生じている場合は、試料の温度上昇と基準物質との間の温度差が時間的に変化する。   As the reference material, a material that has a constant heat capacity, is close to the heat capacity of the sample, has no phase transition within the temperature rising range, and rises smoothly as the heat sink temperature rises is selected. When there is no thermal change such as phase transition in the sample, both the reference material and the sample temperature change smoothly following the furnace temperature, but there is a phase transition such as melting in the sample, resulting in endotherm and heat generation. When a reaction occurs, the temperature difference between the sample temperature rise and the reference material changes with time.

したがって温度差の検出から試料の熱物性が測定される。この温度差を試料に出入りする熱流に換算し、これを時間あるいは温度に対してプロットしたものはDSC曲線と呼ばれる。温度差の検出には通常、基準物質および試料を載置するためのコンスタンタン板(以下センサ板と称す)、およびセンサ板に貼付したクロメル線、アルメル線で構成する熱電対を利用したDSCセンサ(以下、単にセンサと称す)が使用される。   Therefore, the thermophysical property of the sample is measured from the detection of the temperature difference. The temperature difference converted into heat flow in and out of the sample and plotted against time or temperature is called a DSC curve. In order to detect a temperature difference, a DSC sensor using a thermocouple composed of a constantan plate (hereinafter referred to as a sensor plate) on which a reference material and a sample are placed, and a chromel wire and an alumel wire attached to the sensor plate ( Hereinafter, simply referred to as a sensor) is used.

図3(A)はDSCの基本構造を示している。基準物質1および試料2は、基準物質1および試料2を囲繞するヒートシンク3の内下面からセンサ押え板4を介してネジ5によって螺設されたセンサ板6上に、脱着可能に載置されている。ヒートシンク3はヒータ7によって、規定のプログラムにより昇温される。   FIG. 3A shows the basic structure of DSC. The reference material 1 and the sample 2 are detachably mounted on the sensor plate 6 screwed by screws 5 from the inner and lower surfaces of the heat sink 3 surrounding the reference material 1 and the sample 2 through the sensor pressing plate 4. Yes. The heat sink 3 is heated by the heater 7 according to a prescribed program.

図3(B)はセンサ板6を下方から見た図である。センサ板6には基準物質1の下面に4か所、試料2の下面に4か所、計8箇所の切り欠き8が設けられている。切り欠き8を設けることにより、ヒートシンク3からセンサ板6を介して基準物質1または試料2に流入する熱量は、切り欠き8と、それに隣接する切り欠き8の中間に設けられた8箇所の橋状のブリッジ9を介して流入する。したがって、あらかじめブリッジ9の幅および長さを適切に定めることにより、ブリッジ9の熱抵抗を定め、基準物質1または試料2への熱流の流入速度を適量に制限することができる。図4はセンサ板6における熱流の流入箇所を示す図で、矢印のように熱流は切り欠き8の間に流入する。   FIG. 3B is a view of the sensor plate 6 as viewed from below. The sensor plate 6 is provided with eight notches 8 in total, four on the lower surface of the reference material 1 and four on the lower surface of the sample 2. By providing the notch 8, the amount of heat flowing from the heat sink 3 through the sensor plate 6 into the reference material 1 or the sample 2 is reduced to eight bridges provided between the notch 8 and the notch 8 adjacent thereto. Flows in through the bridge 9. Therefore, by appropriately determining the width and length of the bridge 9 in advance, the thermal resistance of the bridge 9 can be determined, and the inflow rate of the heat flow into the reference material 1 or the sample 2 can be limited to an appropriate amount. FIG. 4 is a diagram showing the inflow location of the heat flow in the sensor plate 6, and the heat flow flows between the notches 8 as indicated by arrows.

ヒートシンク3、およびセンサ押え板4の材質には通常、熱伝導率の大きい銀などが使用されている。またセンサ板6の材料にはコンスタンタン板が使用されている。センサ板6の基準物質1および試料2の下面には、図5(A)に示されるようにそれぞれクロメル線およびアルメル線が図示の向きに固着され、試料2側のクロメル−アルメル熱電対により試料2の温度Tsが、また基準物質1側のクロメル−アルメル熱電対により基準物質1の温度Trが、また基準物質1側のクロメル線−センサ板6−試料2側のクロメル線で構成される熱電対により試料2と基準物質1の温度差△T=Tr−Tsが測定される。なお図5(A)にはクロメル線を記号+で、アルメル線を記号−で示している。   As the material of the heat sink 3 and the sensor presser plate 4, silver having a high thermal conductivity is usually used. A constantan plate is used as the material of the sensor plate 6. As shown in FIG. 5A, a chromel wire and an alumel wire are respectively fixed to the lower surfaces of the reference material 1 and the sample 2 of the sensor plate 6 in the direction shown in the figure, and the sample is obtained by a chromel-alumel thermocouple on the sample 2 side. The temperature Ts of the reference material 1 is measured by a chromel-alumel thermocouple on the reference material 1 side, and the temperature Tr of the reference material 1 is formed by a chromel wire on the reference material 1 side-sensor plate 6-chromel wire on the sample 2 side. The temperature difference ΔT = Tr−Ts between the sample 2 and the reference material 1 is measured by the pair. In FIG. 5A, the chromel wire is indicated by a symbol + and the alumel wire is indicated by a symbol-.

図5(B)はDSC作動時の各部の温度と時間の関係の一例を示している。図のようにヒートシンクの温度を時間に対して一定の勾配で上昇させると、基準物質1の温度Trはヒートシンクの温度に追随して単調に上昇する。試料2の温度Tsもヒートシンクの温度に追随して上昇するが、試料2に相転移などによる熱特性の変化(吸熱反応、発熱反応など)があるとその温度で温度勾配に変化が生じる。図には吸熱反応がある場合を示している。この変化を解析することにより、試料2の熱物性が測定される。   FIG. 5B shows an example of the relationship between the temperature and time of each part during DSC operation. As shown in the figure, when the temperature of the heat sink is increased at a constant gradient with respect to time, the temperature Tr of the reference material 1 increases monotonously following the temperature of the heat sink. The temperature Ts of the sample 2 also increases following the temperature of the heat sink. However, if the sample 2 has a change in thermal characteristics (endothermic reaction, exothermic reaction, etc.) due to phase transition or the like, the temperature gradient changes at that temperature. The figure shows the case where there is an endothermic reaction. By analyzing this change, the thermophysical property of the sample 2 is measured.

特開平11−201924号公報JP-A-11-201924

従来のDSCの構造は以上のとおりであるが、この構造ではセンサが短寿命になるか、またはDSCの加熱温度範囲や作動雰囲気が制限されるなどの課題が発生する。すなわち、ヒートシンク3、およびセンサ押え板4の材質には通常、熱伝導率の大きい銀などが使用されるので、センサ板6の材質のコンスタンタンとは熱膨張率が異なっている。コンスタンタンの線膨張率は銀の線膨張率よりも小さく、この組合せの場合は昇温時にセンサ板6には引張応力が発生する。一般にDSCは700℃以上の温度まで繰り返し加熱されるので、この熱膨張の差が問題となる。   The structure of a conventional DSC is as described above. However, this structure has a problem that the sensor has a short life or the heating temperature range and the working atmosphere of the DSC are limited. That is, since the heat sink 3 and the sensor pressing plate 4 are usually made of silver having a high thermal conductivity, the thermal expansion coefficient is different from that of the constantan material of the sensor plate 6. The linear expansion coefficient of constantan is smaller than the linear expansion coefficient of silver. In this combination, tensile stress is generated in the sensor plate 6 when the temperature is raised. In general, DSC is repeatedly heated to a temperature of 700 ° C. or higher, and this difference in thermal expansion becomes a problem.

センサ板6には前記のように熱抵抗を設けるために切り欠き8とその中間のブリッジ9が設けられており、熱は限定された熱伝達路(以下、ヒートパスと称す)であるブリッジ9(図3の矢線部)を通って試料2または基準物質1に流れ込む構造になっているので、各部品の熱膨張差により発生した応力は強度的に弱いヒートパスに集中し、ヒートサイクルの繰り返しにより、ヒートパスが変形したり破損したりするため、センサ板6したがってセンサの寿命が短縮される。   As described above, the sensor plate 6 is provided with the notch 8 and the bridge 9 between the notch 8 and the bridge 9 (hereinafter referred to as a heat path), which is a limited heat transfer path. Since it is structured to flow into the sample 2 or the reference material 1 through the arrowed portion in FIG. 3, the stress generated by the difference in thermal expansion of each component is concentrated in a heat path that is weak in strength, and by repeated heat cycles Since the heat path is deformed or broken, the life of the sensor plate 6 and thus the sensor is shortened.

また上記のセンサ寿命の短縮を防止する構造として従来、(1)ヒートシンク3等の材料をセンサ板6と同系の材料である銅にする方法や、(2)センサ板6とヒートシンク3との間にグラファイトシートを挟んで摺動性を持たせる方法などがあるが、これらの方法では上限温度が限定されるか、ヒートシンク3の作動雰囲気が制限される。すなわち、(1)の場合は銅の強度および酸化の問題から上限温度は600℃程度に限定され、また、(2)の場合は空気中でグラファイトシートが燃焼するため不活性ガス雰囲気以外ではDSCを使用できない。本考案はこのような問題点を解決する手段を提供することを目的とする。   Conventionally, as a structure for preventing the above-described shortening of the sensor life, (1) a method in which a material such as the heat sink 3 is made of copper, which is a material similar to the sensor plate 6, or (2) a space between the sensor plate 6 and the heat sink 3 is used. However, these methods limit the upper limit temperature or the working atmosphere of the heat sink 3. That is, in the case of (1), the upper limit temperature is limited to about 600 ° C. due to the problems of copper strength and oxidation, and in the case of (2), the graphite sheet burns in the air, so that the DSC is not in an inert gas atmosphere. Cannot be used. An object of the present invention is to provide means for solving such problems.

本考案が提供する示差熱分析装置は上記課題を解決するために、センサ板に載置された試料および基準物質を加熱し両者の温度差から試料の熱物性を測定する示差熱分析装置において、前記センサ板の試料および基準物質への熱伝達路に曲折部を設けたものである。したがってこの曲折部が熱膨張差の吸収部位になる。また前記曲折部は、水平方向に配設されたセンサ板の上または下方向に突出した部分を備える。   In order to solve the above problems, a differential thermal analyzer provided by the present invention is a differential thermal analyzer that heats a sample placed on a sensor plate and a reference material and measures the thermal properties of the sample from the temperature difference between the two. A bent portion is provided in the heat transfer path to the sample of the sensor plate and the reference material. Therefore, this bent part becomes an absorption site for the difference in thermal expansion. Further, the bent portion includes a portion protruding upward or downward of the sensor plate disposed in the horizontal direction.

本考案によれば、センサ板とヒートシンクやセンサ板とセンサ押さえ板との熱膨張差が前記ヒートパスに設けた曲折部で吸収されるため、ヒートサイクルによるヒートパスの変形や破損が防止され、従来のセンサ寿命改善法を適用した場合の加熱温度範囲や作動雰囲気の制限なく、センサの寿命が改善される。   According to the present invention, since the thermal expansion difference between the sensor plate and the heat sink or the sensor plate and the sensor holding plate is absorbed by the bent portion provided in the heat path, the heat path is prevented from being deformed or damaged by the heat cycle. The sensor life can be improved without the limitation of the heating temperature range and the working atmosphere when the sensor life improvement method is applied.

以下図示例に従って説明する。図1(A)において、図3のセンサ板6に対応するセンサ板6Nには、図3の切り欠き8に対応する切り欠き8Nが設けられている。図3のブリッジ9に対応する8箇所のブリッジ9Nは、図1(B)に示されるようにセンサ板6Nの上方に曲折した形状で、曲折の形は上方へ突出した形状である。下方へ突出させることもできる。熱の流れは曲折した各ブリッジ9Nを通過して基準物質1または試料2に到達する。加熱に伴う横方向の応力は上下方向の曲折部により吸収される。   This will be described with reference to the illustrated example. 1A, a sensor plate 6N corresponding to the sensor plate 6 of FIG. 3 is provided with a notch 8N corresponding to the notch 8 of FIG. As shown in FIG. 1B, the eight bridges 9N corresponding to the bridge 9 in FIG. 3 are bent upward from the sensor plate 6N, and the bent shape is a shape protruding upward. It can also project downward. The heat flow passes through each bent bridge 9N and reaches the reference substance 1 or the sample 2. The lateral stress accompanying heating is absorbed by the bent portion in the vertical direction.

本考案は上記の実施例に限定されるものではなく、さらに種々の変形実施例を挙げることができる。たとえば図1ではブリッジ9Nの断面は上方へ突出した半円弧形状であるが、ブリッジ9Nの形状は、センサ板6Nの上面を越えて上面方向、または下面を越えて下面方向に突出した立体的な曲折部を備えていればよく、断面の形状は蛇腹形状、波状、三角形状など任意の形状が採用できる。またブリッジ9Nの数は図1の8個には限定されないことは自明である。また上記では水平方向のセンサ板6Nに対して設けた垂直方向の曲折部について説明しているが、本考案の曲折部は必ずしも垂直方向でなくても良い。たとえば図2のように、切り欠き8Pを設けたセンサ板6Pの面内に、水平方向の曲折による冗長熱伝達路を持ったブリッジ9Pを備えても良い。本考案はこれらをすべて包含する。   The present invention is not limited to the above-described embodiments, and various modifications can be given. For example, in FIG. 1, the cross section of the bridge 9N is a semicircular arc shape protruding upward, but the shape of the bridge 9N is a three-dimensional shape protruding beyond the upper surface of the sensor plate 6N toward the upper surface or beyond the lower surface toward the lower surface. It suffices to have a bent portion, and the cross-sectional shape may be any shape such as a bellows shape, a wave shape, or a triangular shape. It is obvious that the number of bridges 9N is not limited to eight in FIG. In the above description, the vertical bent portion provided for the sensor plate 6N in the horizontal direction has been described. However, the bent portion of the present invention does not necessarily have to be in the vertical direction. For example, as shown in FIG. 2, a bridge 9P having a redundant heat transfer path by bending in the horizontal direction may be provided in the surface of the sensor plate 6P provided with the notches 8P. The present invention encompasses all of these.

本考案は基準物質および試料を加熱し、両者の温度差から試料の熱物性を測定する示差熱分析装置に適用することができる。   The present invention can be applied to a differential thermal analyzer that heats a reference material and a sample and measures the thermal properties of the sample from the temperature difference between the two.

本考案の実施例を示す図である。It is a figure which shows the Example of this invention. 本考案の他の実施例を示す図である。It is a figure which shows the other Example of this invention. 従来の示差熱分析装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the conventional differential thermal analyzer. 従来の示差熱分析装置のセンサ板の熱の流れを示す図である。It is a figure which shows the heat flow of the sensor board of the conventional differential thermal analyzer. 従来の示差熱分析装置の温度測定手段および、基準物質と試料の温度と時間の関係を示す図である。It is a figure which shows the temperature measurement means of the conventional differential thermal analyzer, and the relationship between the temperature and time of a reference substance and a sample.

符号の説明Explanation of symbols

1 基準物質
2 試料
3 ヒートシンク
4 センサ押え板
5 ネジ
6 センサ板
6N センサ板
6P センサ板
7 ヒータ
8 切り欠き
8N 切り欠き
8P 切り欠き
9 ブリッジ
9N ブリッジ
9P ブリッジ
1 Reference Material 2 Sample 3 Heat Sink 4 Sensor Holding Plate 5 Screw 6 Sensor Plate 6N Sensor Plate 6P Sensor Plate 7 Heater 8 Notch 8N Notch 8P Notch 9 Bridge 9N Bridge 9P Bridge

Claims (2)

センサ板に載置された試料および基準物質を加熱し、両者の温度差から試料の熱物性を測定する示差熱分析装置において、前記センサ板の試料および基準物質への熱伝達路に曲折部を設けたことを特徴とする示差熱分析装置。   In a differential thermal analyzer that heats a sample placed on a sensor plate and a reference material and measures the thermal properties of the sample from the temperature difference between the two, a bent portion is provided in the heat transfer path to the sample and reference material on the sensor plate. A differential thermal analyzer characterized by being provided. 前記曲折部は、水平方向に配設されたセンサ板の上または下方向に突出した部分を備えたことを特徴とする請求項1記載の示差熱分析装置。   The differential thermal analyzer according to claim 1, wherein the bent portion includes a portion protruding upward or downward of the sensor plate disposed in the horizontal direction.
JP2007004628U 2007-06-19 2007-06-19 Differential thermal analyzer Expired - Fee Related JP3134992U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004628U JP3134992U (en) 2007-06-19 2007-06-19 Differential thermal analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004628U JP3134992U (en) 2007-06-19 2007-06-19 Differential thermal analyzer

Publications (1)

Publication Number Publication Date
JP3134992U true JP3134992U (en) 2007-08-30

Family

ID=43285532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004628U Expired - Fee Related JP3134992U (en) 2007-06-19 2007-06-19 Differential thermal analyzer

Country Status (1)

Country Link
JP (1) JP3134992U (en)

Similar Documents

Publication Publication Date Title
JP6146851B2 (en) High temperature friction wear measuring device
JP2008309729A (en) Device and method for measuring thermal conductivity
JP4976469B2 (en) Thermal humidity sensor
WO2010103784A1 (en) Heat conduction measuring device and heat conduction measuring method
US10247685B2 (en) High-temperature structure for measuring properties of curved thermoelectric device, and system and method for measuring properties of curved thermoelectric device using the same
CA2011659C (en) Measuring sensor for fluid state determination and method for measurement using such sensor
JP4611154B2 (en) Heat flux type differential scanning calorimeter
CN102818820A (en) System for measuring heat conductivity coefficient of nano materials based on vanadium dioxide nano wires
JP3134992U (en) Differential thermal analyzer
KR101889818B1 (en) Thermal conductivity mearsuring device and measuring method thereof
JP2009244084A (en) Apparatus and method for measuring thermal conductivity of thermally joined material
JP2003042985A (en) Differential scanning calorimeter
KR102164075B1 (en) Warm test apparatus
US7637655B2 (en) Performance testing apparatus for heat pipes
JP3153034U (en) Differential scanning calorimeter
JP2018040653A (en) Heat conductivity measuring method and apparatus therefor
KR101261627B1 (en) Apparutus and system for measuring heat flux
JP2009031026A (en) Thermocouple and its mounting structure
JP3147015U (en) Differential scanning calorimeter
JP2007057430A (en) Contact-type thermometer
JP2001021512A (en) Thermal conductivity measuring device
JP5366038B2 (en) Heat flow sensor using thin film thermistor for heat flow sensor
US8821013B2 (en) Thermocouples with two tabs spaced apart along a transverse axis and methods
KR101152839B1 (en) Layered type micro heat flux sensor
CN109416269B (en) Sensor, heat flow measuring device and method for producing a sensor

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees