JP2006145446A - Thermal conductivity measuring device and method - Google Patents

Thermal conductivity measuring device and method Download PDF

Info

Publication number
JP2006145446A
JP2006145446A JP2004338358A JP2004338358A JP2006145446A JP 2006145446 A JP2006145446 A JP 2006145446A JP 2004338358 A JP2004338358 A JP 2004338358A JP 2004338358 A JP2004338358 A JP 2004338358A JP 2006145446 A JP2006145446 A JP 2006145446A
Authority
JP
Japan
Prior art keywords
measured
rod
side rod
temperature
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004338358A
Other languages
Japanese (ja)
Inventor
Hiroshi Chiba
博 千葉
Tetsuro Ogushi
哲朗 大串
Yuko Sawada
祐子 澤田
Masayasu Ishimoto
聖又 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004338358A priority Critical patent/JP2006145446A/en
Publication of JP2006145446A publication Critical patent/JP2006145446A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal conductivity measuring device capable of measuring contact thermal resistance Rc and thermal conductivity k<SB>u</SB>with sufficient accuracy by realizing an ideal one-dimensional thermal conduction along the z direction alone through prevention for heat leakage from the peripheries of a rod and an object to be measured. <P>SOLUTION: In the thermal conductivity measuring device, after an object 23 to be measured is interleaved between a rod 21 on a heating side and a rod 22 on a cooling side, by flowing heat quantity inward or outward through the rod 21 on the heating side, the object 23 to be measured, and the rod 22 on the cooling side, thermal conductivity of the object 23 to be measured or contact thermal resistance between the rods 21 and 22 and the object 23 to be measured can be measured, a plurality of compensating heaters 32 are deployed on the periphery of the rod 21 on the heating side, the rod 22 on the cooling side, and the object 23 to be measured and the heating value of the compensating heaters 32 is controlled so as to equalize the temperature of each compensating heaters 32 and the temperatures of the rod 21 on the heating side, the rod 22 on the cooling side, and the object 23 to be measured at the same height as the temperature measuring point of the each aforementioned compensate heater 32. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、加熱側ロッド及び冷却側ロッドの間に被測定体を挟持し、加熱側ロッド、被測定体及び冷却側ロッドを通して熱量を伝達させ、被測定体の熱伝導率またはロッドと被測定体との間の接触熱抵抗を測定する熱伝導率測定装置及び熱伝導率の測定方法に関するものである。   In this invention, a measurement object is sandwiched between a heating side rod and a cooling side rod, and heat is transmitted through the heating side rod, the measurement object and the cooling side rod, and the thermal conductivity of the measurement object or the rod and the measurement object are measured. The present invention relates to a thermal conductivity measuring device for measuring contact thermal resistance between a body and a method for measuring thermal conductivity.

図8は、L.S.Flether等によって発表された論文Themal Conductance of Multilayered Metalic Sheets(AIAA26th Thermophysics Conference、June 24−26、1991/ Honolulu Hawaii)に開示された熱伝導率測定装置の構成図である。図8の測定装置において、被測定体23の上下に予め熱伝導率krotが既知な加熱側ロッド21及び冷却側ロッド22が設けられ、加熱側ロッド21の最上部は加熱ブロック11により加熱され、冷却側ロッド22の最下部は冷却ブロック12により冷却するようになっている。加熱側ロッド21及び冷却側ロッド22内には、温度分布測定用のために所定間隔毎に孔が設けられており、この孔内に熱電対から構成される温度測定センサ41,42が埋設されている。また、加熱ブロック11の上部には、ロッド21,22と被測定体23の間の接触面圧力を制御する付加力装置15が配設されており、接触面圧力の測定用にロードセル13が設置されている。 FIG. S. It is a block diagram of the thermal conductivity measuring device disclosed in the paper Themal Conductance of Multilayered Metalic Sheets (AIAA26th Thermophysics Conference, June 24-26, 1991 / Honolulu Hawaii) published by Frether et al. In the measuring apparatus of FIG. 8, a heating side rod 21 and a cooling side rod 22 having a known thermal conductivity k rot are previously provided above and below the measured object 23, and the uppermost portion of the heating side rod 21 is heated by the heating block 11. The lowermost part of the cooling side rod 22 is cooled by the cooling block 12. Holes are provided in the heating side rod 21 and the cooling side rod 22 at predetermined intervals for measuring the temperature distribution, and temperature measuring sensors 41 and 42 constituted by thermocouples are embedded in the holes. ing. In addition, an additional force device 15 for controlling the contact surface pressure between the rods 21 and 22 and the measured object 23 is disposed above the heating block 11, and a load cell 13 is installed for measuring the contact surface pressure. Has been.

図8の熱伝導率測定装置を使用した接触熱抵抗の測定原理は以下の通りである。ここでは、二つのロッド21、22および被測定体23の断面積は同じものとするが、断面形状に制約されない。   The measurement principle of contact thermal resistance using the thermal conductivity measuring device of FIG. 8 is as follows. Here, the cross-sectional areas of the two rods 21 and 22 and the measured object 23 are the same, but the cross-sectional shape is not limited.

加熱ブロック11から加熱側ロッド21に流入し、被測定体23を伝わって、冷却側ロッド22から流出し、冷却ブロック12内を通過する冷却水へ流れる熱流束qは、次の(式1)から求めることができる。   The heat flux q flowing from the heating block 11 into the heating side rod 21, passing through the measured object 23, flowing out from the cooling side rod 22, and flowing into the cooling water passing through the cooling block 12 is expressed by the following (Equation 1). Can be obtained from

Figure 2006145446
Figure 2006145446

ここで、q:加熱側ロッド21から被測定体23へ流入した熱流束(W/m)、
:被測定体23から冷却側ロッド22へ流入した熱流束(W/m)であり、次の(式2)、(式3)で与えられる。
Here, q 1 : heat flux (W / m 2 ) flowing from the heating side rod 21 into the measured object 23,
q 2 is the heat flux (W / m 2 ) flowing into the cooling side rod 22 from the measured object 23 and is given by the following (Expression 2) and (Expression 3).

Figure 2006145446
Figure 2006145446

したがって、二つのロッド21,22の間の接触熱抵抗Rは、測定した二つのロッド21,22の温度勾配から(式4)により求められる。 Therefore, the contact thermal resistance R c between the two rods 21 and 22 is obtained by (Equation 4) from the measured temperature gradient of the two rods 21 and 22.

Figure 2006145446
Figure 2006145446

また、接触熱抵抗Rは、二つのロッド21,22及び被測定体23間の接触圧力に依存する。したがって、付加力装置15及びロードセル13を使用して、二つのロッド21,22及び被測定体23間の接触圧力を可変しながら、所定の圧力値毎に上記温度勾配を測定して上記接触熱抵抗Rを求める。 Further, the contact thermal resistance R c depends on the contact pressure between the two rods 21 and 22 and the measured object 23. Therefore, using the additional force device 15 and the load cell 13, the temperature gradient is measured for each predetermined pressure value while varying the contact pressure between the two rods 21, 22 and the measured object 23, and the contact heat is measured. The resistance Rc is obtained.

次に、被測定体23の熱伝導率kを調べたい場合、z軸方向に厚みのある被測定体23に設けた孔に熱電対から構成された温度測定センサを埋設し、被測定体23のz軸方向の温度勾配を測定する。このとき、被測定体23を通過する熱流束qは(式5)で定義される。 Then, if you want to see the thermal conductivity k u of the object to be measured 23, buried temperature measurement sensor consists of a thermocouple into a hole provided in the object to be measured 23 with a thickness z-axis direction, the object to be measured A temperature gradient in the z-axis direction of 23 is measured. At this time, the heat flux q passing through the measurement object 23 is defined by (Equation 5).

Figure 2006145446
Figure 2006145446

したがって、被測定体23の熱伝導率kは、被測定体23の温度勾配を用いて(式6)で求められる。 Therefore, the thermal conductivity k u of the measured object 23 is obtained by (Equation 6) using the temperature gradient of the measured object 23.

Figure 2006145446
Figure 2006145446

なお、被測定体23の熱伝導率kを算出する際、被測定体23のz軸方向の厚みがほとんどなく孔に熱電対を埋設できない場合、被測定体23のz軸方向の温度勾配を(式4)のΔT(二つのロッド内のそれぞれの温度勾配の外挿線から求めた温度差)により求めて、(式6)に代入しても良い。 Incidentally, when calculating the thermal conductivity k u of the object to be measured 23, the temperature gradient in the case where the z-axis direction of the thickness of the object to be measured 23 can not embedded thermocouple little holes, z-axis direction of the object to be measured 23 May be obtained by ΔT in (Equation 4) (temperature difference obtained from the extrapolated line of each temperature gradient in the two rods) and substituted into (Equation 6).

以上のように、図8の熱伝動率測定装置を使用すれば、接触熱抵抗および熱伝導率を測定することが可能である。   As described above, if the thermal conductivity measuring device of FIG. 8 is used, it is possible to measure contact thermal resistance and thermal conductivity.

また、従来、コークリートの温度予測装置として、内部にコンクリートの打設空間を形成しかつ周囲4面を断熱状態に保持する周壁を備えた筒状の断熱槽と、この断熱槽内に打設されたコンクリートの履歴温度を検出する温度検出器と、前記断熱槽の両開口部を覆いかつ内部に温度の制御空間を形成するケーシングと、このケーシング内の温度を制御する制御手段とを具備したものがあった(例えば、特許文献1)。   Conventionally, as a temperature predicting device for cocrete, a cylindrical heat insulating tank provided with a peripheral wall that forms a concrete placement space inside and holds four surrounding surfaces in a heat-insulated state, and is placed in this heat insulating tank. A temperature detector for detecting the history temperature of the concrete, a casing for covering both openings of the heat insulation tank and forming a temperature control space therein, and a control means for controlling the temperature in the casing (For example, Patent Document 1).

L.S.Flether等著、「Themal Conductance of Multilayered Metalic Sheets」(AIAA26th Thermophysics Conference、 June 24−26、1991/ Honolulu Hawaii)L. S. "Themal Conductance of Multilayered Metalic Sheets" by Frether et al. (AIAA26th Thermophysics Conference, June 24-26, 1991 / Honolulu Hawaii) 特開昭63−117249号公報(請求項1、図1)JP 63-117249 A (Claim 1, FIG. 1)

ここで、上記非特許文献における(式4)と(式6)を見ると、接触熱抵抗Rおよび熱伝導率kの測定値の精度は、ロッド21,22または被測定体23の温度勾配の測定値の精度に大きく影響していることがわかる。したがって測定時には、ロッド21,22または被測定体23のz軸を法線とする断面での温度が均一でかつ上記温度勾配を理想的な一次直線として測定されるように、ロッド21から被測定体23、ロッド22へz軸方向のみの熱伝導を実現させるのが望ましい。そこで、図8の測定装置を真空状態の環境内に設置して、ロッド21,22と被測定体23からz軸以外の方向へ熱漏洩するのを防ぐ方法も考えられるが、測定環境を整えるのに多大な労力を要する。 Turning now in the non-patent document (Expression 4) and (6), the accuracy of the measured value of the thermal contact resistance R c and the thermal conductivity k u is the temperature of the rod 21, 22 or the object to be measured 23 It can be seen that this greatly affects the accuracy of the gradient measurement. Therefore, at the time of measurement, the rod 21 and 22 or the object to be measured 23 is measured from the rod 21 so that the temperature in the cross section with the z axis as the normal is uniform and the temperature gradient is measured as an ideal linear line. It is desirable to realize heat conduction only in the z-axis direction to the body 23 and the rod 22. 8 may be installed in a vacuum environment to prevent heat leakage from the rods 21 and 22 and the measured object 23 in directions other than the z-axis. It takes a lot of labor.

また、ロッド21,22と被測定体23の外周を断熱材で覆って測定する方法もあるが、実際にその方法を用いた場合のロッド21,22、被測定体23の温度分布を図9に示す。図9の横軸はロッドまたは被測定体の温度測定点、縦軸に温度を示している。なお、プロットは実測値で、直線はこの実測値をもとにした近似直線である。この時、z軸方向のみへの一次元熱伝導を実現させようとしても断熱材を通しての熱漏洩が存在するため、実際は図9に示すようにロッド21,22あるいは被測定体23の温度勾配は理想的な一次直線にならない。このことは(式4)で表される接触熱抵抗Rおよび(式6)で表される熱伝導率kの精度悪化の原因となる。 In addition, there is a method in which the outer circumferences of the rods 21 and 22 and the measured object 23 are covered with a heat insulating material, and the temperature distribution of the rods 21 and 22 and the measured object 23 when actually using the method is shown in FIG. Shown in In FIG. 9, the horizontal axis indicates the temperature measurement point of the rod or the object to be measured, and the vertical axis indicates the temperature. The plot is an actual measurement value, and the straight line is an approximate straight line based on the actual measurement value. At this time, even if one-dimensional heat conduction only in the z-axis direction is realized, heat leakage through the heat insulating material exists, so that the temperature gradient of the rods 21 and 22 or the measured object 23 is actually as shown in FIG. It is not an ideal linear straight line. This causes the accuracy deterioration of the thermal conductivity k u represented by the thermal contact resistance R c and is expressed by (Equation 4) (Equation 6).

なお、上記特許文献1では、コンクリートのz軸を法線とする断面での温度が均一でかつ温度勾配が理想的な一次直線となるように、すなわち同じ位置におけるコンクリート内の温度とケーシング内の温度が同じになるようにヒータを制御していることは開示されていない。   In Patent Document 1, the temperature in the cross section with the z-axis of the concrete as the normal is uniform and the temperature gradient is an ideal linear line, that is, the temperature in the concrete at the same position and the temperature in the casing. It is not disclosed that the heater is controlled so that the temperatures are the same.

この発明は上記のような従来の課題を解消するためになされたものであり、多大な労力を要せずに、ロッドと被測定体の外周からの熱漏洩を妨げ、z軸方向のみの理想的な一次元熱伝導を実現し、接触熱抵抗Rcおよび熱伝導率kを精度良く測定できる熱伝導率測定装置を提供することを目的とする。 The present invention has been made to solve the above-described conventional problems, and does not require much labor, prevents heat leakage from the outer periphery of the rod and the object to be measured, and is ideal only in the z-axis direction. achieve specific one-dimensional heat conduction, and an object thereof is to provide a thermal conductivity measuring device can be accurately measured thermal contact resistance Rc and thermal conductivity k u.

この発明に係る熱伝導率測定装置は、被測定体をその間に挟持する加熱側ロッド及び冷却側ロッドを備え、加熱側ロッドの被測定体と接触しない側から熱量を流入させ、加熱側ロッド、被測定体及び冷却側ロッドを通して、冷却側ロッドの被測定体と接触しない側から上記熱量を流出させ、両ロッド内の温度勾配を測定することにより被測定体に入力する熱量を算出し、算出した熱量と被測定体の温度勾配から被測定体の熱伝導率またはロッドと被測定体との間の接触熱抵抗を測定する熱伝導率測定装置であって、加熱側ロッド、冷却側ロッド及び被測定体の外周に補償ヒータを各々複数個配置し、各補償ヒータの温度と、各補償ヒータの温度計測点と同じ高さにある加熱側ロッド、冷却側ロッド及び被測定体の温度とが等しくなるように、補償ヒータの発熱量が制御されていることを特徴とする。   A thermal conductivity measuring apparatus according to the present invention includes a heating side rod and a cooling side rod that sandwich a measured object therebetween, and allows heat to flow from a side that does not contact the measured object of the heating side rod, Calculate the amount of heat input to the measured object by letting the heat flow out from the side not contacting the measured object of the cooling side rod through the measured object and the cooling side rod, and measuring the temperature gradient in both rods. A thermal conductivity measuring device for measuring a thermal conductivity of a measured object or a contact thermal resistance between the rod and the measured object from a measured amount of heat and a temperature gradient of the measured object, comprising a heating side rod, a cooling side rod, A plurality of compensation heaters are arranged on the outer circumference of the object to be measured, and the temperature of each compensation heater and the temperature of the heating side rod, the cooling side rod, and the object to be measured at the same height as the temperature measurement point of each compensation heater are To be equal, Wherein the heating value of amortization heater is controlled.

また、この発明に係る熱伝導率測定装置は、被測定体をその間に挟持する加熱側ロッド及び冷却側ロッドを備え、加熱側ロッドの被測定体と接触しない側から熱量を流入させ、加熱側ロッド、被測定体及び冷却側ロッドを通して、冷却側ロッドの被測定体と接触しない側から上記熱量を流出させ、両ロッド内の温度勾配を測定することにより被測定体に入力する熱量を算出し、算出した熱量と被測定体の温度勾配から被測定体の熱伝導率またはロッドと被測定体との間の接触熱抵抗を測定する熱伝導率測定装置であって、加熱側ロッド及び冷却側ロッドの外周に補償ヒータをそれぞれ複数個配置し、各補償ヒータの温度と、上記各補償ヒータの温度計測点と同じ高さにある加熱側ロッド及び冷却側ロッドの温度とが等しくなるように、補償ヒータの発熱量が制御されていることを特徴とする。   Further, the thermal conductivity measuring device according to the present invention includes a heating side rod and a cooling side rod for sandwiching a measured object therebetween, and allows the amount of heat to flow from the side not contacting the measured object of the heating side rod. The amount of heat input to the measured object is calculated by letting the heat flow out from the side not contacting the measured object of the cooling side rod through the rod, measured object and cooling side rod, and measuring the temperature gradient in both rods. , A thermal conductivity measuring device for measuring the thermal conductivity of the measured object or the contact thermal resistance between the rod and the measured object from the calculated heat quantity and the temperature gradient of the measured object, the heating side rod and the cooling side A plurality of compensation heaters are arranged on the outer periphery of the rod, so that the temperature of each compensation heater is equal to the temperature of the heating side rod and the cooling side rod at the same height as the temperature measurement point of each compensation heater. Compensation Wherein the heating value of the motor is controlled.

また、この発明に係る熱伝導率の測定方法は、加熱側ロッド及び冷却側ロッドの間に被測定体を挟持する工程と、加熱側ロッド、冷却側ロッド及び被測定体の外周の温度を、それと同じ高さに位置する加熱側ロッド、冷却側ロッド及び被測定体自体の温度と等しくなるように制御する工程と、加熱側ロッドの被測定体と接触しない側から熱量を流入させ、加熱側ロッド、被測定体及び冷却側ロッドを通して、冷却側ロッドの被測定体と接触しない側から上記熱量を流出させ、両ロッド内の温度勾配を測定することにより被測定体に入力する熱量を算出し、算出した熱量と被測定体の温度勾配から被測定体の熱伝導率またはロッドと被測定体との間の接触熱抵抗を測定する工程とを備えたことを特徴とする。   Further, the method for measuring the thermal conductivity according to the present invention includes a step of sandwiching the measurement object between the heating side rod and the cooling side rod, and the temperature of the outer circumference of the heating side rod, the cooling side rod and the measurement object. The heating side rod positioned at the same height, the cooling side rod and the step of controlling to be equal to the temperature of the measured object itself, and the amount of heat flowing from the side of the heated side rod not contacting the measured object, The amount of heat input to the measured object is calculated by letting the heat flow out from the side not contacting the measured object of the cooling side rod through the rod, measured object and cooling side rod, and measuring the temperature gradient in both rods. And measuring the thermal conductivity of the measured object or the contact thermal resistance between the rod and the measured object from the calculated heat quantity and the temperature gradient of the measured object.

また、この発明に係る熱伝導率の測定方法は、加熱側ロッド及び冷却側ロッドの間に被測定体を挟持する工程と、加熱側ロッド及び冷却側ロッドの外周の温度を、それと同じ高さに位置する加熱側ロッド及び冷却側ロッド自体の温度と等しくなるように制御する工程と、加熱側ロッドの被測定体と接触しない側から熱量を流入させ、加熱側ロッド、被測定体及び冷却側ロッドを通して、冷却側ロッドの被測定体と接触しない側から上記熱量を流出させ、両ロッド内の温度勾配を測定することにより被測定体に入力する熱量を算出し、算出した熱量と被測定体の温度勾配から被測定体の熱伝導率またはロッドと被測定体との間の接触熱抵抗を測定する工程とを備えたことを特徴とする。   In addition, the method for measuring thermal conductivity according to the present invention includes the step of sandwiching the object to be measured between the heating side rod and the cooling side rod, and the temperatures of the outer circumferences of the heating side rod and the cooling side rod at the same level. A step of controlling the heating side rod and the cooling side rod itself to be equal to the temperature of the heating side rod, and a heat amount from the side of the heating side rod that does not come into contact with the measured body, Calculate the amount of heat input to the measured object by measuring the temperature gradient in both rods by letting the heat flow out from the side of the cooling side rod that does not come into contact with the measured object through the rod. And measuring the thermal conductivity of the object to be measured or the contact thermal resistance between the rod and the object to be measured from the temperature gradient.

この発明の熱伝導率測定装置によれば、加熱側ロッド、冷却側ロッド及び被測定体の外周に補償ヒータを各々複数個配置し、各補償ヒータの温度と、各補償ヒータの温度計測点と同じ高さにある加熱側ロッド、冷却側ロッド及び被測定体の温度とが等しくなるように、補償ヒータの発熱量を制御しているので、加熱側ロッド、冷却側ロッド又は被測定体から周囲方向への熱漏洩量を減らすことができ、流入した熱量が加熱側ロッドから被測定体を通して冷却ロッドへ一次元的に伝わることができることから、被測定体の熱伝導率の測定値の精度が高まる。   According to the thermal conductivity measuring device of the present invention, a plurality of compensation heaters are arranged on the outer circumference of the heating side rod, the cooling side rod, and the measured object, respectively, the temperature of each compensation heater, the temperature measurement point of each compensation heater, Since the heating value of the compensation heater is controlled so that the temperature of the heating side rod, cooling side rod, and measured object at the same height is equal, the surroundings from the heating side rod, cooling side rod, or measured object The amount of heat leaked in the direction can be reduced, and the amount of heat that has flowed in can be transmitted in a one-dimensional manner from the heating rod to the cooling rod through the object to be measured. Rise.

また、この発明の熱伝導率測定装置によれば、加熱側ロッド及び冷却側ロッドの外周に補償ヒータをそれぞれ複数個配置し、各補償ヒータの温度と、上記各補償ヒータの温度計測点と同じ高さにある加熱側ロッド及び冷却側ロッドの温度とが等しくなるように、補償ヒータの発熱量が制御されているので、加熱側ロッド及び冷却側ロッドから周囲方向への熱漏洩量を減らすことができ、流入した熱量が加熱側ロッドから被測定体を通して冷却ロッドへ一次元的に伝わることができることから、被測定体の熱伝導率の測定値の精度が高まる。   According to the thermal conductivity measuring device of the present invention, a plurality of compensation heaters are arranged on the outer circumferences of the heating side rod and the cooling side rod, respectively, and the temperature of each compensation heater is the same as the temperature measurement point of each compensation heater. The amount of heat generated by the compensation heater is controlled so that the temperature of the heating side rod and cooling side rod at the same level is controlled, so the amount of heat leakage from the heating side rod and cooling side rod to the surrounding direction is reduced. Since the amount of heat that has flowed in can be transmitted one-dimensionally from the heating side rod to the cooling rod through the measured object, the accuracy of the measured value of the thermal conductivity of the measured object increases.

また、この発明の熱伝導率の測定方法によれば、加熱側ロッド、冷却側ロッド及び被測定体の外周の温度を、それと同じ高さに位置する加熱側ロッド、冷却側ロッド及び被測定体自体の温度と等しくなるように制御したので、加熱側ロッド、冷却側ロッド又は被測定体から周囲方向への熱漏洩量を減らすことができ、流入した熱量が加熱側ロッドから被測定体を通して冷却ロッドへ一次元的に伝わることができることから、被測定体の熱伝導率の測定値の精度が高まる。   Further, according to the method of measuring thermal conductivity of the present invention, the heating side rod, the cooling side rod, and the measured object are positioned at the same height as the temperature of the outer circumference of the heating side rod, the cooling side rod, and the measured object. Since the temperature is controlled to be equal to its own temperature, the amount of heat leakage from the heating side rod, cooling side rod or measured object to the surrounding direction can be reduced, and the amount of inflowed heat is cooled from the heated side rod through the measured object. Since it can be transmitted to the rod in one dimension, the accuracy of the measured value of the thermal conductivity of the object to be measured is increased.

また、この発明の熱伝導率の測定方法によれば、加熱側ロッド及び冷却側ロッドの外周の温度を、それと同じ高さに位置する加熱側ロッド及び冷却側ロッド自体の温度と等しくなるように制御したので、加熱側ロッド及び冷却側ロッドから周囲方向への熱漏洩量を減らすことができ、流入した熱量が加熱側ロッドから被測定体を通して冷却ロッドへ一次元的に伝わることができることから、被測定体の熱伝導率の測定値の精度が高まる。   Further, according to the method of measuring the thermal conductivity of the present invention, the temperature of the outer circumference of the heating side rod and the cooling side rod is made equal to the temperature of the heating side rod and the cooling side rod itself located at the same height. Since it is controlled, the amount of heat leakage from the heating side rod and the cooling side rod to the surrounding direction can be reduced, and the amount of heat that flows in can be transmitted in a one-dimensional manner from the heating side rod to the cooling rod through the object to be measured. The accuracy of the measured value of the thermal conductivity of the object to be measured is increased.

以下、本発明を実施するための最良の形態を図に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

実施の形態1.
図1はこの発明の実施の形態1による熱伝導率測定装置を示す全体構成図である。図において、被測定体23は二つのロッド21及び22に挟まれており、z軸方向に見て被測定体23の上側のロッドを加熱側ロッド21、下側のロッドを冷却側ロッド22とする。加熱側ロッド21及び冷却側ロッド22には、そのz軸方向に複数個の孔が設けられ、それぞれの孔内には、ロッド内のz軸方向温度分布を測定するための熱電対から構成されるロッド温度測定センサ41、42が挿入されている。また、被測定体23にも、そのz軸方向に複数個の孔が設けられ、その孔内には被測定体内部のz軸方向温度分布を測定するための熱電対から構成される被測定体温度測定センサ43が挿入されている。
Embodiment 1 FIG.
1 is an overall configuration diagram showing a thermal conductivity measuring apparatus according to Embodiment 1 of the present invention. In the figure, the object to be measured 23 is sandwiched between two rods 21 and 22, and when viewed in the z-axis direction, the upper rod of the object to be measured 23 is the heating side rod 21, and the lower rod is the cooling side rod 22. To do. The heating side rod 21 and the cooling side rod 22 are provided with a plurality of holes in the z-axis direction, and each hole is composed of a thermocouple for measuring the z-axis direction temperature distribution in the rod. Rod temperature measuring sensors 41 and 42 are inserted. The measured object 23 is also provided with a plurality of holes in the z-axis direction, and the measured object is composed of a thermocouple for measuring the z-axis direction temperature distribution inside the measured object. A body temperature measurement sensor 43 is inserted.

加熱側ロッド21の被測定体23と接触する面の反対側には、ヒータ10が挿入されている加熱ブロック11が配置されている。また、冷却側ロッド22の被測定体23と接触する面の反対側には、冷媒が内部を流れている冷却ブロック12が配置されている。なお、図1では加熱ブロック11にヒータ10を挿入しているものを示したが、ヒータ10はセラミックヒータ等どんな構成でも構わない。また、冷却ブロック12の内部に冷媒が通っていると説明したが、ヒートシンクやペルチェ素子等の冷却装置を使用しても構わない。   A heating block 11 in which the heater 10 is inserted is disposed on the opposite side of the surface of the heating side rod 21 that contacts the measured object 23. Further, on the opposite side of the surface of the cooling side rod 22 that contacts the object to be measured 23, the cooling block 12 in which the refrigerant flows is arranged. Although FIG. 1 shows the heater 10 inserted in the heating block 11, the heater 10 may have any configuration such as a ceramic heater. Moreover, although it demonstrated that the refrigerant | coolant was passing through the inside of the cooling block 12, you may use cooling devices, such as a heat sink and a Peltier device.

加熱ブロック11の上部には、ロッド21,22と被測定体23の間の接触面圧力を可変させるための付加力装置15を配設している。図1では、付加力装置15としてねじ機構で動作するスライド式の加圧装置を示したが、その他の構成の加圧装置であっても良い。なお、15aは付加力装置15のロッド、15bはバネである。また、付加力装置15により変化する接触面圧力の測定用としてロードセル13が設置されている。この場合、ロードセル13の温度が加熱ブロック11から熱が伝わって高温にならないように、加熱ブロック11とロードセル13の間に断熱性の支持部材14が配設されている。   An additional force device 15 for varying the contact surface pressure between the rods 21 and 22 and the measured object 23 is disposed on the heating block 11. In FIG. 1, a slide-type pressurization device that operates by a screw mechanism is shown as the additional force device 15, but a pressurization device having another configuration may be used. In addition, 15a is a rod of the additional force device 15, and 15b is a spring. A load cell 13 is installed for measuring the contact surface pressure that is changed by the applied force device 15. In this case, a heat insulating support member 14 is disposed between the heating block 11 and the load cell 13 so that the temperature of the load cell 13 does not reach the high temperature due to the heat transmitted from the heating block 11.

加熱側ロッド21、冷却側ロッド22及び被測定物23の外周には、補償ヒータ用フランジ31によって支持された補償ヒータ32が配置されている。図2は、加熱側ロッド21の構成を示す拡大図である。冷却側ロッド22及び被測定体23に関しても図2と同様に構成される。   A compensation heater 32 supported by a compensation heater flange 31 is disposed on the outer circumference of the heating side rod 21, the cooling side rod 22, and the object to be measured 23. FIG. 2 is an enlarged view showing the configuration of the heating side rod 21. The cooling side rod 22 and the measured object 23 are also configured in the same manner as in FIG.

図2において、補償ヒータ用フランジ31は加熱側ロッド21の外周全体を被覆するように配置され、断熱性部材で構成されている。本例では、補償ヒータ用フランジ31として、加熱側ロッド21の外周を被覆する円筒形状の断熱性樹脂成形品を使用している。補償ヒータ32(32a、32b、32c、32d、32e)は、補償ヒータ用フランジ31のz軸方向の所定間隔(均等間隔が好ましい)毎に複数個配設されている。この場合、補償ヒータ32と加熱側ロッド21との隙間34は、これらが接触しない程度にできるだけ少なくしている。   In FIG. 2, the compensation heater flange 31 is disposed so as to cover the entire outer periphery of the heating side rod 21 and is formed of a heat insulating member. In this example, a cylindrical heat insulating resin molded product covering the outer periphery of the heating side rod 21 is used as the compensation heater flange 31. A plurality of compensation heaters 32 (32a, 32b, 32c, 32d, 32e) are provided at predetermined intervals (preferably equal intervals) of the compensation heater flange 31 in the z-axis direction. In this case, the gap 34 between the compensation heater 32 and the heating side rod 21 is made as small as possible so that they do not contact each other.

また、補償ヒータ用フランジ31には孔が設けられ、この孔内には各補償ヒータ32(32a、32b、32c、32d、32e)の温度を計測するための熱電対からなる補償ヒータ温度測定センサ33(33a、33b、33c、33d、33e)が埋設されている。各補償ヒータ温度測定センサ33(33a、33b、33c、33d、33e)は、前述のロッド温度測定センサ41(41a、41b、41c、41d、41e)とz軸方向において同じ高さ位置になるように配設されている。   The compensation heater flange 31 is provided with a hole, and a compensation heater temperature measuring sensor comprising a thermocouple for measuring the temperature of each compensation heater 32 (32a, 32b, 32c, 32d, 32e) is provided in the hole. 33 (33a, 33b, 33c, 33d, 33e) is embedded. Each compensation heater temperature measurement sensor 33 (33a, 33b, 33c, 33d, 33e) is positioned at the same height in the z-axis direction as the rod temperature measurement sensor 41 (41a, 41b, 41c, 41d, 41e) described above. It is arranged.

補償ヒータ温度検出部101は、補償ヒータ温度測定センサ33(33a、33b、33c、33d、33e)からの信号を入力し、各補償ヒータ32(32a、32b、32c、32d、32e)の温度を算出する役割を果たす。ロッド(被測定体)温度検出部102は、ロッド温度測定センサ41(41a、41b、41c、41d、41e)、42又は被測定体温度測定センサ43からの信号を入力し、ロッド21,22又は被測定体23のz軸方向の温度を算出する役割を果たす。補償ヒータ温度制御部103は、補償ヒータ温度検出部101において算出された各補償ヒータの温度と、ロッド(被測定体)温度検出部102において算出されたロッド又は被測定体のz軸方向の温度とが一致するように各補償ヒータ32(32a、32b、32c、32d、32e)の発熱量を制御する役割を果たす。   The compensation heater temperature detection unit 101 receives a signal from the compensation heater temperature measurement sensor 33 (33a, 33b, 33c, 33d, 33e), and determines the temperature of each compensation heater 32 (32a, 32b, 32c, 32d, 32e). Plays the role of calculating. The rod (measurement object) temperature detection unit 102 inputs signals from the rod temperature measurement sensors 41 (41a, 41b, 41c, 41d, 41e), 42 or the measurement object temperature measurement sensor 43, and the rods 21, 22 or It plays the role of calculating the temperature in the z-axis direction of the measured object 23. The compensation heater temperature control unit 103 includes the temperature of each compensation heater calculated by the compensation heater temperature detection unit 101 and the temperature in the z-axis direction of the rod or the measurement target calculated by the rod (measurement target) temperature detection unit 102. And the heating value of each compensation heater 32 (32a, 32b, 32c, 32d, 32e) is controlled so as to match.

また、図1に示すように、被測定体23の厚みが計測できるように、被測定体23を挟み込むように2枚の変位測定板61a、61bを設け、この2枚の変位測定板61a、61b間を測定する接触式変位測定計62を配設している。なお、接触式変位測定計62は変位測定板61a、61bの間に位置するように変位測定計用フランジ63によって支持されている。   Further, as shown in FIG. 1, two displacement measurement plates 61a and 61b are provided so as to sandwich the measurement target 23 so that the thickness of the measurement target 23 can be measured, and the two displacement measurement plates 61a, A contact-type displacement meter 62 for measuring the distance between 61b is provided. The contact displacement meter 62 is supported by a displacement meter flange 63 so as to be positioned between the displacement measuring plates 61a and 61b.

次に、この発明の実施の形態1による熱伝導率測定装置の動作を説明する。ヒータ10により加熱された加熱ブロック11の熱量は、より温度の低い方向へ、つまり加熱側ロッド21、被測定体23、冷却側ロッド22、そして冷却ブロック12とz軸の負の方向へ順に伝わっていく。被測定体23を挟む2つのロッド21、22のそれぞれの温度勾配(∂T/∂z)および(∂T/∂z)を計測することにより、(式1)で表される被測定体23へ流入及び流出する熱流束qを計測することができる。そして、接触熱抵抗Rまたは被測定体の熱伝導率kは、前記において説明したとおり、下記の(式4)又は(式6)により求められる。 Next, the operation of the thermal conductivity measuring apparatus according to Embodiment 1 of the present invention will be described. The amount of heat of the heating block 11 heated by the heater 10 is transmitted in the direction of lower temperature, that is, in the negative direction of the heating side rod 21, the measured object 23, the cooling side rod 22, and the cooling block 12 and the z axis. To go. By measuring the temperature gradients (∂T 1 / ∂z) and (∂T 2 / ∂z) of the two rods 21 and 22 sandwiching the measurement target 23, the measurement target represented by (Expression 1) The heat flux q flowing into and out of the body 23 can be measured. Then, the contact thermal resistance R c or the thermal conductivity k u of the measured object is obtained by the following (Formula 4) or (Formula 6) as described above.

Figure 2006145446
Figure 2006145446

Figure 2006145446
Figure 2006145446

次に、本実施の形態の特徴である補償ヒータ32の温度制御について、図2の加熱側ロッド21の構成図に基づいて説明する。補償ヒータ32(32a、32b、32c、32d、32e)の温度は、補償ヒータ温度測定センサ33(33a、33b、33c、33d、33e)によって逐次計測され、補償ヒータ温度検出部101により算出される。一方、補償ヒータ温度測定センサ33(33a、33b、33c、33d、33e)とz軸方向の同位置にあるロッド21の温度は、ロッド温度測定センサ41(41a、41b、41c、41d、41e)によって逐次計測され、ロッド(被測定体)温度検出部102により算出される。そして、補償ヒータ温度制御部103は、補償ヒータ温度検出部101において算出された各補償ヒータの温度と、ロッド(被測定体)温度検出部102において算出されたロッドのz軸方向の温度とが一致するように、補償ヒータ入力線36に通電制御して、補償ヒータ32(32a、32b、32c、32d、32e)の温度を制御する。   Next, temperature control of the compensation heater 32, which is a feature of the present embodiment, will be described based on the configuration diagram of the heating side rod 21 in FIG. The temperature of the compensation heater 32 (32a, 32b, 32c, 32d, 32e) is sequentially measured by the compensation heater temperature measurement sensor 33 (33a, 33b, 33c, 33d, 33e) and calculated by the compensation heater temperature detection unit 101. . On the other hand, the temperature of the rod 21 at the same position in the z-axis direction as the compensation heater temperature measurement sensor 33 (33a, 33b, 33c, 33d, 33e) is the rod temperature measurement sensor 41 (41a, 41b, 41c, 41d, 41e). Are sequentially measured and calculated by the rod (measurement object) temperature detection unit 102. The compensation heater temperature control unit 103 calculates the temperature of each compensation heater calculated by the compensation heater temperature detection unit 101 and the temperature in the z-axis direction of the rod calculated by the rod (measurement object) temperature detection unit 102. Energization control is performed on the compensation heater input line 36 so as to match, and the temperature of the compensation heater 32 (32a, 32b, 32c, 32d, 32e) is controlled.

図2に示すように、加熱側ロッド21内の温度を計測するためのロッド温度測定センサ41は例えば5つ設けられており、このセンサ41に対応するようにz軸方向の同じ高さに補償ヒータ32の温度を測定するための補償ヒータ温度測定センサ33も補償ヒータ用フランジ31上に例えば5つ設けられている。これら全ての補償ヒータ32の各温度が同じ高さにある加熱側ロッド21内の各温度と等しくなるように制御できれば、加熱側ロッド21内のz軸を法線とするロッド断面内での熱移動が無くなり、z軸方向へのみ熱が移動することになり、ロッドの温度勾配(∂T/∂z)も理想的な一次直線になる。 As shown in FIG. 2, for example, five rod temperature measuring sensors 41 for measuring the temperature in the heating side rod 21 are provided, and the same height in the z-axis direction is compensated so as to correspond to the sensors 41. For example, five compensation heater temperature measurement sensors 33 for measuring the temperature of the heater 32 are also provided on the compensation heater flange 31. If the temperature of all of these compensation heaters 32 can be controlled to be equal to the temperature in the heating side rod 21 at the same height, the heat in the rod cross section with the z axis in the heating side rod 21 as the normal line. The movement is lost, the heat moves only in the z-axis direction, and the temperature gradient (∂T 1 / ∂z) of the rod is also an ideal linear line.

また、補償ヒータ32の数を加熱側ロッド21の温度測定センサ41の総数と同じ、あるいはそれ以上になるように配設すれば、補償ヒータ32を細かく制御することができるため、ロッドの温度勾配(∂T/∂z)もより精度の良い一次直線になる。 Further, if the number of the compensation heaters 32 is arranged so as to be equal to or more than the total number of the temperature measuring sensors 41 of the heating side rod 21, the compensation heater 32 can be finely controlled. (∂T 1 / ∂z) is also a more accurate primary line.

しかしながら、補償ヒータ32とロッド21との間に自然対流による熱伝達が存在すると、ロッド21内部でz軸を法線とするロッド断面内での熱移動が生じることになる。そのため、ロッド21の内部を熱伝導で伝わる熱がz軸方向のみでなくなるので、z軸を法線とする同一ロッド断面内の温度が均一でなくなり、温度勾配(∂T/∂z)も理想的な一次直線でなくなる。そこで、自然対流による熱伝達を防ぐために、ロッド21と補償ヒータ32の隙間34はできるだけ少なくした方がいい。一方、ロッド21と補償ヒータ32とを接触させると、ロッド21と補償ヒータ32との間で熱伝導による熱移動が発生する場合があるため、接触させてはならない。したがって、前記隙間34はロッド21と補償ヒータ32とを接触させない程度にできるだけ隙間を少なくした方が望ましい。 However, if heat transfer by natural convection exists between the compensation heater 32 and the rod 21, heat transfer occurs within the rod 21 within the rod cross section with the z axis as the normal. For this reason, the heat transmitted through the inside of the rod 21 by heat conduction is not only in the z-axis direction, the temperature in the same rod cross section with the z-axis as the normal is not uniform, and the temperature gradient (∂T 1 / ∂z) is also It is no longer an ideal linear line. Therefore, in order to prevent heat transfer due to natural convection, the gap 34 between the rod 21 and the compensation heater 32 should be as small as possible. On the other hand, when the rod 21 and the compensation heater 32 are brought into contact with each other, heat transfer due to heat conduction may occur between the rod 21 and the compensation heater 32, and thus the contact should not be made. Therefore, it is desirable that the gap 34 be as small as possible so that the rod 21 and the compensation heater 32 are not brought into contact with each other.

また、補償ヒータ32(32a、32b、32c、32d、32e)の配置において、隣合う補償ヒータ間の温度差による熱移動を避けるために、隣合う補償ヒータ32は密着させず隙間35を設けた方が望ましい。また、補償ヒータ用フランジ31を介して熱伝導で伝わる熱移動を避けるために、補償ヒータ用フランジ31は断熱性部材で構成された方が望ましい。   Further, in the arrangement of the compensation heaters 32 (32a, 32b, 32c, 32d, 32e), in order to avoid heat transfer due to a temperature difference between adjacent compensation heaters, the adjacent compensation heaters 32 are not in close contact with each other and a gap 35 is provided. Is preferable. Moreover, in order to avoid the heat transfer transmitted by heat conduction through the compensation heater flange 31, it is desirable that the compensation heater flange 31 is formed of a heat insulating member.

上記の説明は、加熱側ロッド21に関しての説明であったが、これは冷却側ロッド22及び被測定体23についても同様に適用できる。このようにして、加熱側ロッド21、冷却側ロッド22及び被測定体23のZ軸方向の温度勾配を理想的な一次直線にすることができるので、(式4)、(式6)で表される接触熱抵抗R、被測定体の熱伝導率kを精度良く測定できるようになる。 Although the above description is about the heating side rod 21, this can be similarly applied to the cooling side rod 22 and the measured object 23. In this way, since the temperature gradient in the Z-axis direction of the heating side rod 21, the cooling side rod 22, and the measured object 23 can be an ideal linear line, it is expressed by (Expression 4) and (Expression 6). It is possible to accurately measure the contact thermal resistance R c and the thermal conductivity ku of the object to be measured.

また、被測定体23が高温になるとそれ自体の厚みが変化する場合も考えられる。被測定体23の厚みの変化は、被測定体23の温度勾配(∂T/∂z)に影響を与えてしまう。そこで、変化する被測定体23の厚みを逐次測定できれば、被測定体23の温度勾配(∂T/∂z)も逐次補正できる利点がある。そのため、被測定体23の厚みが計測できるように、被測定体23を挟み込むように2枚の変位測定板61a及び61bを配置し、この変位測定板61a及び61bの間に接触式変位測定計62を設置している。すなわち、接触式変位測定計62により上下に位置する2枚の変位測定板61a及び61bの変位を計測することで、被測定体23の厚みを測定し、被測定体23の温度勾配(∂T/∂z)を逐次補正する。 Moreover, when the to-be-measured body 23 becomes high temperature, the case where the thickness of itself changes may be considered. The change in the thickness of the measurement target 23 affects the temperature gradient (∂T 3 / ∂z) of the measurement target 23. Therefore, if the thickness of the measured object 23 can be measured sequentially, there is an advantage that the temperature gradient (∂T 3 / ∂z) of the measured object 23 can be corrected sequentially. Therefore, two displacement measurement plates 61a and 61b are arranged so as to sandwich the measurement target 23 so that the thickness of the measurement target 23 can be measured, and a contact-type displacement measurement meter is disposed between the displacement measurement plates 61a and 61b. 62 is installed. That is, by measuring the displacement of the two displacement measuring plates 61a and 61b positioned up and down by the contact-type displacement measuring instrument 62, the thickness of the measured object 23 is measured, and the temperature gradient (∂T 3 / ∂z) is sequentially corrected.

以上のように本実施の形態によれば、加熱側ロッド21、冷却側ロッド22及び被測定体23の外周に補償ヒータ32をそれぞれ複数個配置し、各補償ヒータ32の温度と、各補償ヒータ32の温度計測点と同じ高さにある加熱側ロッド21、冷却側ロッド22及び被測定体23の温度とが等しくなるように、補償ヒータ32の発熱量を制御しているので、加熱側ロッド21、冷却側ロッド22及び被測定体23から周囲方向への熱漏洩量を減らすことができ、流入した熱量が加熱側ロッド21から被測定体23を通して冷却ロッド22へ一次元的に伝わることができる。その結果、ロッドと被測定体の接触熱抵抗R又は熱伝導率kの測定値の精度を高めることができる。 As described above, according to the present embodiment, a plurality of compensation heaters 32 are arranged on the outer circumferences of the heating side rod 21, the cooling side rod 22, and the measured object 23, and the temperature of each compensation heater 32 and each compensation heater 32 are arranged. Since the heating value of the compensation heater 32 is controlled so that the temperature of the heating side rod 21, the cooling side rod 22 and the measured object 23 at the same height as the temperature measurement point 32 is equal, the heating side rod 21, the amount of heat leakage from the cooling side rod 22 and the measured object 23 in the peripheral direction can be reduced, and the amount of heat that flows in can be transmitted in a one-dimensional manner from the heating side rod 21 to the cooling rod 22 through the measured object 23. it can. As a result, it is possible to improve the accuracy of measurement of the thermal contact resistance R c or thermal conductivity k u of rod and object to be measured.

また、補償ヒータ32の設置個数を、ロッド又は被測定体の温度測定点の合計又はそれ以上になるように配置し、それぞれの補償ヒータ32を独立して制御しているので、ロッド又は被測定体から周囲方向への熱漏洩量を抑えることができ、熱がロッドから被測定体へ一次元的に伝わることができることから、被測定体の熱伝導率の測定値の精度を高めることができる。   Further, the number of the compensation heaters 32 is arranged so as to be equal to or more than the total temperature measurement points of the rod or the object to be measured, and each compensation heater 32 is independently controlled. The amount of heat leakage from the body to the surrounding direction can be suppressed, and heat can be transferred from the rod to the object to be measured in one dimension, so that the accuracy of the measured value of the thermal conductivity of the object to be measured can be increased. .

また、補償ヒータ32はロッド又は被測定体の外周を覆っているフランジ31上に固定されており、隣り合う補償ヒータ32は接触していないので、隣り合う補償ヒータ32間での熱移動量が少なくなり、フランジ31がロッドまたは被測定体外周からの自然対流による熱漏洩を防いでくれるため、補償ヒータ32へ入力する熱量を少なくすることができる。   Further, since the compensation heater 32 is fixed on the flange 31 that covers the outer periphery of the rod or the object to be measured and the adjacent compensation heaters 32 are not in contact with each other, the amount of heat transfer between the adjacent compensation heaters 32 is small. Since the flange 31 prevents heat leakage due to natural convection from the rod or the outer periphery of the measured object, the amount of heat input to the compensation heater 32 can be reduced.

さらに、フランジ31として、ロッド又は被測定体の外周を隙間を残して被覆する断熱部材により構成し、補償ヒータはこの断熱部材上のロッド側又は被測定体側に配設されているので、フランジ内部での熱移動量が少なくなるため、補償ヒータから発熱する熱量を少なくできる。また、断熱部材がロッド又は被測定体の外周からの自然対流による熱漏洩を防いでくれるため、ロッド又は被測定体から周囲方向への熱漏洩量を抑えることができ、熱がロッドから被測定体へ一次元的に伝わることができることから被測定体の熱伝導率の測定値の精度が高まる。   Further, the flange 31 is constituted by a heat insulating member that covers the outer periphery of the rod or the measured object leaving a gap, and the compensation heater is disposed on the rod side or measured object side on the heat insulating member. Therefore, the amount of heat generated from the compensation heater can be reduced. In addition, since the heat insulating member prevents heat leakage due to natural convection from the outer circumference of the rod or measured object, the amount of heat leakage from the rod or measured object to the surrounding direction can be suppressed, and heat is measured from the rod. Since it can be transmitted to the body in one dimension, the accuracy of the measured value of the thermal conductivity of the object to be measured is increased.

実施の形態2.
図3はこの発明の実施の形態2による熱伝導率測定装置を示す全体構成図である。
Embodiment 2. FIG.
FIG. 3 is an overall configuration diagram showing a thermal conductivity measuring apparatus according to Embodiment 2 of the present invention.

上記実施の形態1では、z軸の下方から正方向に向かって冷却ブロック12、冷却側ロッド22、被測定体23、加熱側ロッド21、加熱ブロック11と積層されて構成されている。このため、加熱側ブロック11からの熱がz軸の負の方向へ流れるように、かつロードセル13の温度が上がらないように、加熱ブロック11の加熱側ロッド21と接触する面の反対側に断熱性の支持部材14を介在する必要があった。   In the first embodiment, the cooling block 12, the cooling side rod 22, the measured object 23, the heating side rod 21, and the heating block 11 are laminated in the positive direction from below the z axis. For this reason, heat insulation from the side of the heating block 11 that is in contact with the heating side rod 21 is insulated so that heat from the heating side block 11 flows in the negative direction of the z-axis and the temperature of the load cell 13 does not rise. It was necessary to interpose a support member 14 having a positive characteristic.

実施の形態2では、図3に示すように、z軸の下方から正の方向に向かって加熱ブロック11、加熱側ロッド21、被測定体23、冷却側ロッド22、冷却ブロック12と積層させており、冷却ブロック12の上側にロードセル13を配置している。この構成によれば、ロードセル13と加熱ブロック11との間の距離が増え、熱抵抗も増加することから、熱がロードセル13の方へ流れずロードセル13の温度が上がらない。従って、実施の形態1で述べた断熱性の支持部材14が不要となり、熱伝導率測定装置1の構成がシンプルになる。   In the second embodiment, as shown in FIG. 3, the heating block 11, the heating side rod 21, the measured object 23, the cooling side rod 22, and the cooling block 12 are stacked in the positive direction from below the z axis. The load cell 13 is arranged above the cooling block 12. According to this configuration, the distance between the load cell 13 and the heating block 11 increases and the thermal resistance also increases, so that heat does not flow toward the load cell 13 and the temperature of the load cell 13 does not rise. Therefore, the heat insulating support member 14 described in the first embodiment is not necessary, and the configuration of the thermal conductivity measuring device 1 is simplified.

なお、本実施の形態において、加熱側ロッド21、冷却側ロッド22並びに被測定体23の外周に、実施の形態1と同様の補償ヒータが配置しているのは言うまでもない。   In the present embodiment, it goes without saying that the same compensation heater as that of the first embodiment is arranged on the outer periphery of the heating side rod 21, the cooling side rod 22 and the measured object 23.

実施の形態3.
図4及び図5はこの発明の実施の形態3による熱伝導率測定装置のロッドを示す構成図である。図4及び図5は代表例として加熱側ロッドの拡大図を示しているが、冷却側ロッド及び被測定体についても同様であり、以下の説明でも同様に適用できる。
Embodiment 3 FIG.
4 and 5 are configuration diagrams showing a rod of a thermal conductivity measuring device according to Embodiment 3 of the present invention. 4 and 5 show enlarged views of the heating side rod as a representative example, but the same applies to the cooling side rod and the object to be measured, and the same applies to the following description.

上記実施の形態1では、加熱側ロッド21と補償ヒータ32との隙間34を接触させない程度に、できるだけ縮めた方がいいと述べた。これは、この隙間34が大きいと加熱側ロッド21の側面上のz軸方向の温度差によって加熱側ロッド21と補償ヒータ32とで形成される空間38に自然対流が発生し、この自然対流熱伝達によって加熱側ロッド21のz軸を法線とするロッド断面内の温度が均一にならず、熱移動が生じることになる。すなわち、加熱側ロッド21の内部を熱伝導で伝わる熱がz軸方向のみでなくなることから、温度勾配(∂T/∂z)も理想的な一次直線でなくなる。 In the first embodiment, it has been stated that it is better to shrink as much as possible so that the gap 34 between the heating side rod 21 and the compensation heater 32 is not brought into contact. This is because if this gap 34 is large, natural convection occurs in the space 38 formed by the heating side rod 21 and the compensation heater 32 due to the temperature difference in the z-axis direction on the side surface of the heating side rod 21, and this natural convection heat. Due to the transmission, the temperature in the rod cross section with the z axis of the heating side rod 21 as the normal is not uniform, and heat transfer occurs. That is, since the heat transmitted through the heat conduction rod 21 by heat conduction is not only in the z-axis direction, the temperature gradient (∂T 1 / ∂z) is not an ideal linear line.

しかし、実際には前記隙間34を接触させない程度に、できるだけ縮めるという作業は難しい。そこで、本実施の形態では、図4に示すように、最適な隙間34が得られるように隙間支持部材37を設けている。この隙間支持部材37は補償ヒータ32と同様、補償ヒータ用フランジ31で支持されている。そして、この隙間支持部材37の先端が加熱側ロッド21と接触することにより、加熱側ロッド21を支持している。さらに、加熱側ロッド21からの熱が隙間支持部材37に伝わらないように、隙間支持部材37は断熱性部材により構成されている。また、補償ヒータ32と加熱側ロッド21とで形成される空間38が、隙間支持部材37によってz軸方向に小さく分断されるため、分断された各空間内の最大温度と最小温度との温度差も小さくなることから、温度差に依存する自然対流熱伝達の発生を抑えられるメリットもある。   However, in practice, it is difficult to reduce the gap 34 as much as possible so as not to contact the gap 34. Therefore, in the present embodiment, as shown in FIG. 4, a gap support member 37 is provided so as to obtain an optimum gap 34. Similar to the compensation heater 32, the gap support member 37 is supported by the compensation heater flange 31. The tip of the gap support member 37 is in contact with the heating side rod 21 to support the heating side rod 21. Further, the gap support member 37 is formed of a heat insulating member so that heat from the heating side rod 21 is not transmitted to the gap support member 37. Further, since the space 38 formed by the compensation heater 32 and the heating side rod 21 is divided into small portions in the z-axis direction by the gap support member 37, the temperature difference between the maximum temperature and the minimum temperature in each divided space. Therefore, there is an advantage that the occurrence of natural convection heat transfer depending on the temperature difference can be suppressed.

また、この隙間支持部材37を適当な長さにすることで、簡単に隙間34を最適な値にすることが可能になる。   In addition, by setting the gap support member 37 to an appropriate length, the gap 34 can be easily set to an optimum value.

したがって、加熱側ロッド21内のz軸を法線とするロッド断面内の温度が均一になり、この面内での熱移動が無くなり、z軸方向へのみ熱が移動することになる。そのため、ロッド内の温度勾配(∂T/∂z)も理想的な一次直線になる結果、式(4)、式(6)で表される接触熱抵抗R、被測定体の熱伝導率kを精度良く測定できるようになる。 Therefore, the temperature in the rod cross section with the z axis in the heating side rod 21 as the normal is uniform, there is no heat transfer in this plane, and the heat moves only in the z axis direction. Therefore, as a result of the temperature gradient (∂T 1 / ∂z) in the rod also becoming an ideal linear line, the contact thermal resistance R c represented by the equations (4) and (6), the heat conduction of the measured object The rate k u can be measured with high accuracy.

また、断熱性を有する隙間支持部材37を隣り合う補助ヒータ32間に配置することで、補助ヒータ32間の温度差による熱伝導を防ぐことができるため、補償ヒータ32への入力量も少なくて済み、補償ヒータ32の制御が簡易になる。   In addition, since the gap support member 37 having heat insulation is disposed between the adjacent auxiliary heaters 32, heat conduction due to a temperature difference between the auxiliary heaters 32 can be prevented, and therefore the input amount to the compensation heater 32 is also small. The control of the compensation heater 32 is simplified.

一方、図5は加熱側ロッド21と補償ヒータ32の隙間34にフィン状の自然対流防止板39を設置した構成である。この自然対流防止板39は補償ヒータ32側から加熱側ロッド21側へフィン51が突き出しており、フィン51の先端が加熱側ロッド21に接触することで、加熱側ロッド21を支持している。また、加熱側ロッド21からの熱が自然対流防止板39に伝わらないように、自然対流防止板39は断熱性を有している。   On the other hand, FIG. 5 shows a configuration in which a fin-like natural convection prevention plate 39 is installed in the gap 34 between the heating side rod 21 and the compensation heater 32. The natural convection prevention plate 39 has a fin 51 protruding from the compensation heater 32 side to the heating side rod 21 side, and the tip of the fin 51 contacts the heating side rod 21 to support the heating side rod 21. Further, the natural convection prevention plate 39 has a heat insulating property so that the heat from the heating side rod 21 is not transmitted to the natural convection prevention plate 39.

この自然対流防止板39のフィン51も、図4の隙間支持部材37と同様に、補償ヒータ32と加熱側ロッド21とで形成される空間38をz軸方向に小さく分断するため、分断された各空間内の最大温度と最小温度との温度差も小さくなることから、温度差に依存する自然対流熱伝達の発生も抑えられる。したがって、加熱側ロッド21内のz軸を法線とするロッド断面内での熱移動が無くなり、z軸方向へのみ熱が移動することになる。その結果、ロッド内の温度勾配(∂T/∂z)も理想的な一次直線になるため、式(4)、式(6)で表される接触熱抵抗R及び被測定体の熱伝導率kを精度良く測定できるようになる。 The fins 51 of the natural convection prevention plate 39 are also divided in order to divide the space 38 formed by the compensation heater 32 and the heating side rod 21 in the z-axis direction, similarly to the gap support member 37 in FIG. Since the temperature difference between the maximum temperature and the minimum temperature in each space is also reduced, the occurrence of natural convection heat transfer depending on the temperature difference can be suppressed. Therefore, there is no heat transfer in the rod cross section with the z axis in the heating side rod 21 as a normal line, and heat moves only in the z axis direction. As a result, since the temperature gradient (∂T 1 / ∂z) in the rod also becomes an ideal linear line, the contact thermal resistance R c represented by the equations (4) and (6) and the heat of the measured object The conductivity k u can be measured with high accuracy.

なお、本実施の形態において、加熱側ロッド21、冷却側ロッド22並びに被測定体23の外周に、実施の形態1と同様の補償ヒータが配置しているのは言うまでもない。   In the present embodiment, it goes without saying that the same compensation heater as that of the first embodiment is arranged on the outer periphery of the heating side rod 21, the cooling side rod 22 and the measured object 23.

実施の形態4.
図6はこの発明の実施の形態4による熱伝導率測定装置を示す全体構成図である。本実施の形態では、冷却側ロッド22と冷却ブロック12との間に補償加熱ブロック16を設けたことを特徴としている。
Embodiment 4 FIG.
FIG. 6 is an overall configuration diagram showing a thermal conductivity measuring apparatus according to Embodiment 4 of the present invention. In the present embodiment, a compensation heating block 16 is provided between the cooling side rod 22 and the cooling block 12.

被測定体23の熱伝導率に温度依存性がある場合、被測定体23を最適な温度条件にする必要がある。上記実施の形態1では、被測定体23は加熱側ロッド21と冷却側ロッド22に挟まれて積層された構成であり、被測定体23の温度を高温にしたい場合、加熱側ロッド21の温度も更に高温にする必要があり、作業性が悪化する。   When the thermal conductivity of the measured object 23 is temperature dependent, it is necessary to set the measured object 23 to an optimum temperature condition. In the first embodiment, the measured object 23 has a configuration in which it is sandwiched and stacked between the heating side rod 21 and the cooling side rod 22, and when the temperature of the measured object 23 is desired to be high, the temperature of the heating side rod 21. However, it is necessary to raise the temperature further, and workability deteriorates.

そこで、本実施の形態では、冷却側ロッド22と冷却ブロック12との間に補償加熱ブロック16を設け、補償加熱ブロック16を所定温度に上げることにより、冷却側ロッド22の温度も上げてやる。それにより、加熱ブロック11からの熱量をそれほど増加することなく、被測定体23の温度を高温にすることができるので、作業性が向上するメリットがある。   Therefore, in the present embodiment, the compensation heating block 16 is provided between the cooling side rod 22 and the cooling block 12, and the temperature of the cooling side rod 22 is raised by raising the compensation heating block 16 to a predetermined temperature. Thereby, the temperature of the measured object 23 can be increased without increasing the amount of heat from the heating block 11 so much, and there is an advantage that workability is improved.

以上のように本実施の形態によれば、加熱側ロッド21の被測定体23と接触しない側から発熱量Q1を負荷すると共に、冷却側ロッド22の被測定体23と接触しない側からも発熱量Q2(Q1>Q2)を負荷するようにしたので、温度依存性を有する熱伝導率を測定する場合であっても、ロッド21が高温になることを抑えられ、作業性が向上する。   As described above, according to the present embodiment, the heating amount Q1 is loaded from the side of the heating side rod 21 that does not contact the measured body 23, and the heating side Q2 generates heat from the side that does not contact the measured body 23 of the cooling side rod 22. Since the amount Q2 (Q1> Q2) is loaded, the rod 21 can be prevented from reaching a high temperature and the workability can be improved even when measuring the thermal conductivity having temperature dependency.

なお、本実施の形態において、加熱側ロッド21、冷却側ロッド22並びに被測定体23の外周に、実施の形態1と同様の補償ヒータが配置しているのは言うまでもない。   In the present embodiment, it goes without saying that the same compensation heater as that of the first embodiment is arranged on the outer periphery of the heating side rod 21, the cooling side rod 22 and the measured object 23.

実施の形態5.
図7はこの発明の実施の形態5による熱伝導率測定装置を示す全体構成図である。
Embodiment 5. FIG.
FIG. 7 is an overall configuration diagram showing a thermal conductivity measuring device according to Embodiment 5 of the present invention.

上記実施の形態1では、被測定体23の厚みを測定するために、被測定体23の上下に2枚の変位測定板61a、61bを配置し、その間に接触式変位測定計62を配置していた。しかし、接触式変位測定計62は前記2枚の変位測定板61a、61bと直接接触していることから、被測定体23の厚みに影響を与える可能性もある。   In the first embodiment, in order to measure the thickness of the measured object 23, the two displacement measuring plates 61a and 61b are arranged above and below the measured object 23, and the contact-type displacement measuring instrument 62 is arranged therebetween. It was. However, since the contact-type displacement meter 62 is in direct contact with the two displacement measuring plates 61a and 61b, there is a possibility that the thickness of the measured object 23 is affected.

そこで、本実施の形態では、接触式変位測定計62ではなくレーザ変位測定計64を用いたことを特徴としている。すなわち、レーザ変位測定計64から2枚の変位測定板61a、61bに向けてレーザ光65を発信し、2枚の変位測定板61a、61bで反射した前記レーザ光65をレーザ変位測定計64で受信する。そして、受信したレーザ光65の時間差を計測することで、2枚の変位測定板61a、61bの変位、つまり被測定体23の厚みを測定する。   Therefore, the present embodiment is characterized in that the laser displacement meter 64 is used instead of the contact displacement meter 62. That is, the laser displacement meter 64 emits laser light 65 toward the two displacement measurement plates 61a and 61b, and the laser displacement meter 64 reflects the laser light 65 reflected by the two displacement measurement plates 61a and 61b. Receive. Then, by measuring the time difference of the received laser beam 65, the displacement of the two displacement measuring plates 61a and 61b, that is, the thickness of the measured object 23 is measured.

以上のように実施の形態5によれば、2枚の変位測定板61a、61bの間の距離を非接触で測定することができるので、被測定体23の厚みに影響を与えることなく、被測定体23の厚みを測定できる。   As described above, according to the fifth embodiment, the distance between the two displacement measurement plates 61a and 61b can be measured in a non-contact manner, so that the thickness of the measured object 23 is not affected. The thickness of the measuring body 23 can be measured.

なお、本実施の形態において、加熱側ロッド21、冷却側ロッド22並びに被測定体23の外周に、実施の形態1と同様の補償ヒータが配置しているのは言うまでもない。   In the present embodiment, it goes without saying that the same compensation heater as that of the first embodiment is arranged on the outer periphery of the heating side rod 21, the cooling side rod 22 and the measured object 23.

実施の形態6.
上記実施の形態では、被測定体23にz軸方向に複数個の孔が設けられ、その孔内に被測定体内部のz軸方向温度分布を測定するための熱電対から構成される被測定体温度測定センサ43が挿入されているものを示した。しかしながら、被測定体23のz軸方向の厚みがほとんどない場合や、被測定体23に熱電対等の温度センサを取り付けることができない場合などには、加熱側ロッド21及び冷却側ロッド22内のz軸方向温度分布を測定するためのロッド温度測定センサ41、42を取り付けると共に、加熱側ロッド21及び冷却側ロッド22の外周に補償ヒータ32を複数個配置し、補償ヒータ32の温度と、補償ヒータ32の温度計測点と同じ高さにある加熱側ロッド21及び冷却側ロッド22の温度とが等しくなるように、補償ヒータ32の発熱量を制御しても良い。この場合、被測定体23の熱伝導率kを算出する際には、被測定体23のz軸方向の温度勾配を(式4)に示したΔT(二つのロッド内のそれぞれの温度勾配の外挿線から求めた温度差)により求めて、(式6)に代入することにより算出する。
Embodiment 6 FIG.
In the above embodiment, the measurement object 23 is provided with a plurality of holes in the z-axis direction, and the measurement object is constituted by a thermocouple for measuring the temperature distribution in the z-axis direction inside the measurement object in the hole. The body temperature measuring sensor 43 is inserted. However, when there is almost no thickness in the z-axis direction of the measured object 23, or when a temperature sensor such as a thermocouple cannot be attached to the measured object 23, the z in the heating side rod 21 and the cooling side rod 22 is increased. Rod temperature measurement sensors 41 and 42 for measuring the axial temperature distribution are attached, and a plurality of compensation heaters 32 are arranged on the outer circumferences of the heating side rod 21 and the cooling side rod 22 to determine the temperature of the compensation heater 32 and the compensation heater. The amount of heat generated by the compensation heater 32 may be controlled so that the temperatures of the heating side rod 21 and the cooling side rod 22 at the same height as the temperature measurement point 32 are equal. In this case, when calculating the thermal conductivity k u of the object to be measured 23, each of the temperature gradient [Delta] T (the two rods shown in the temperature gradient of the z-axis direction of the object to be measured 23 (Equation 4) (Temperature difference obtained from the extrapolation line) and substituting it into (Equation 6).

以上のように本実施の形態によれば、加熱側ロッド21及び冷却側ロッド22の外周に補償ヒータ32を各々複数個配置し、各補償ヒータ32の温度と、各補償ヒータ32の温度計測点と同じ高さにある加熱側ロッド21及び冷却側ロッド22の温度とが等しくなるように、補償ヒータ32の発熱量を制御しているので、加熱側ロッド21及び冷却側ロッド22から周囲方向への熱漏洩量を減らすことができ、流入した熱量が加熱側ロッド21から被測定体23を通して冷却ロッド22へ一次元的に伝わることができることから、被測定体23の熱伝導率の測定値の精度が高まる。   As described above, according to the present embodiment, a plurality of compensation heaters 32 are arranged on the outer periphery of the heating side rod 21 and the cooling side rod 22, and the temperature of each compensation heater 32 and the temperature measurement point of each compensation heater 32. Since the amount of heat generated by the compensation heater 32 is controlled so that the temperatures of the heating side rod 21 and the cooling side rod 22 at the same height are equal to each other, from the heating side rod 21 and the cooling side rod 22 to the peripheral direction. The amount of heat flowing in can be transmitted in a one-dimensional manner from the heating side rod 21 to the cooling rod 22 through the measured object 23, so that the measured value of the thermal conductivity of the measured object 23 can be reduced. Increases accuracy.

この発明の実施の形態1による熱伝導率測定装置を示す全体構成図である。It is a whole block diagram which shows the thermal conductivity measuring apparatus by Embodiment 1 of this invention. この発明の実施の形態1の熱伝導率測定装置の加熱側ロッドの構成を示す拡大図である。It is an enlarged view which shows the structure of the heating side rod of the thermal conductivity measuring apparatus of Embodiment 1 of this invention. この発明の実施の形態2による熱伝導率測定装置を示す全体構成図である。It is a whole block diagram which shows the heat conductivity measuring apparatus by Embodiment 2 of this invention. この発明の実施の形態3による熱伝導率測定装置のロッドを示す構成図である。It is a block diagram which shows the rod of the thermal conductivity measuring apparatus by Embodiment 3 of this invention. この発明の実施の形態3による熱伝導率測定装置のロッドを示す構成図である。It is a block diagram which shows the rod of the thermal conductivity measuring apparatus by Embodiment 3 of this invention. この発明の実施の形態4による熱伝導率測定装置を示す全体構成図である。It is a whole block diagram which shows the heat conductivity measuring apparatus by Embodiment 4 of this invention. この発明の実施の形態5による熱伝導率測定装置を示す全体構成図である。It is a whole block diagram which shows the heat conductivity measuring apparatus by Embodiment 5 of this invention. 論文Themal Conductance of Multilayered Metalic Sheetsに開示された熱伝導率測定装置の構成図である。It is a block diagram of the thermal conductivity measuring apparatus disclosed by the paper Themal Conductance of Multilayered Metalic Sheets. 図8の熱伝導率測定装置のロッド及び被測定体の温度分布を示す図である。It is a figure which shows the temperature distribution of the rod and to-be-measured body of the thermal conductivity measuring apparatus of FIG.

符号の説明Explanation of symbols

1 熱伝導率測定装置、10 ヒータ、11 加熱ブロック、12 冷却ブロック、
13 ロードセル、14 支持部材、15 付加力装置、21 加熱側ロッド、
22 冷却側ロッド、23 被測定体、31 補償ヒータ用フランジ、
32 補償ヒータ、33 補償ヒータ温度測定センサ、
41,42 ロッド温度測定センサ、43 被測定体温度測定センサ、
61a,61b 変位測定板、62 接触式変位測定板、
101 補償ヒータ温度検出部、102 ロッド(被測定体)温度検出部、
103 補償ヒータ温度制御部。
1 thermal conductivity measuring device, 10 heater, 11 heating block, 12 cooling block,
13 load cell, 14 support member, 15 additional force device, 21 heating side rod,
22 Cooling side rod, 23 DUT, 31 Compensation heater flange,
32 Compensation heater, 33 Compensation heater temperature measurement sensor,
41, 42 Rod temperature measuring sensor, 43 Measuring object temperature measuring sensor,
61a, 61b displacement measurement plate, 62 contact displacement measurement plate,
101 Compensation heater temperature detection unit, 102 Rod (measurement object) temperature detection unit,
103 Compensation heater temperature control part.

Claims (14)

被測定体をその間に挟持する加熱側ロッド及び冷却側ロッドを備え、上記加熱側ロッドの上記被測定体と接触しない側から熱量を流入させ、上記加熱側ロッド、上記被測定体及び上記冷却側ロッドを通して、上記冷却側ロッドの上記被測定体と接触しない側から上記熱量を流出させ、上記両ロッド内の温度勾配を測定することにより上記被測定体に入力する熱量を算出し、算出した熱量と上記被測定体の温度勾配から上記被測定体の熱伝導率または上記ロッドと上記被測定体との間の接触熱抵抗を測定する熱伝導率測定装置であって、
上記加熱側ロッド、上記冷却側ロッド及び上記被測定体の外周に補償ヒータをそれぞれ複数個配置し、上記各補償ヒータの温度と、上記各補償ヒータの温度計測点と同じ高さにある上記加熱側ロッド、上記冷却側ロッド及び上記被測定体の温度とが等しくなるように、上記補償ヒータの発熱量が制御されていることを特徴とする熱伝導率測定装置。
A heating side rod and a cooling side rod sandwiching the measurement object are provided, and heat is supplied from a side of the heating side rod that does not contact the measurement object, and the heating side rod, the measurement object, and the cooling side Calculate the amount of heat input to the measured object by flowing the heat amount from the side of the cooling side rod that does not come into contact with the measured object through the rod, and measuring the temperature gradient in the rods. And a thermal conductivity measuring device for measuring a thermal conductivity of the measured object or a contact thermal resistance between the rod and the measured object from a temperature gradient of the measured object,
A plurality of compensation heaters are arranged on the outer circumference of the heating side rod, the cooling side rod, and the measured object, respectively, and the heating at the same height as the temperature of each compensation heater and the temperature measurement point of each compensation heater. The heat conductivity measuring device, wherein the heat generation amount of the compensation heater is controlled so that the temperature of the side rod, the cooling side rod, and the measured object is equal.
被測定体をその間に挟持する加熱側ロッド及び冷却側ロッドを備え、上記加熱側ロッドの上記被測定体と接触しない側から熱量を流入させ、上記加熱側ロッド、上記被測定体及び上記冷却側ロッドを通して、上記冷却側ロッドの上記被測定体と接触しない側から上記熱量を流出させ、上記両ロッド内の温度勾配を測定することにより上記被測定体に入力する熱量を算出し、算出した熱量と上記被測定体の温度勾配から上記被測定体の熱伝導率または上記ロッドと上記被測定体との間の接触熱抵抗を測定する熱伝導率測定装置であって、上記加熱側ロッド及び上記冷却側ロッドの外周に補償ヒータをそれぞれ複数個配置し、
上記各補償ヒータの温度と、上記各補償ヒータの温度計測点と同じ高さにある上記加熱側ロッド及び上記冷却側ロッドの温度とが等しくなるように、上記補償ヒータの発熱量が制御されていることを特徴とする熱伝導率測定装置。
A heating side rod and a cooling side rod sandwiching the measurement object are provided, and heat is supplied from a side of the heating side rod that does not contact the measurement object, and the heating side rod, the measurement object, and the cooling side Calculate the amount of heat input to the measured object by flowing the heat amount from the side of the cooling side rod that does not come into contact with the measured object through the rod, and measuring the temperature gradient in the rods. And a thermal conductivity measuring device for measuring the thermal conductivity of the measured object or the contact thermal resistance between the rod and the measured object from the temperature gradient of the measured object, the heating side rod and the A plurality of compensation heaters are arranged on the outer periphery of the cooling side rod,
The amount of heat generated by the compensation heater is controlled so that the temperature of each compensation heater is equal to the temperature of the heating side rod and the cooling side rod at the same height as the temperature measurement point of each compensation heater. A thermal conductivity measuring device characterized by comprising:
上記補償ヒータの設置個数は、上記ロッド又は上記被測定体の温度測定点の合計又はそれ以上になるように配置され、それぞれの上記補償ヒータは独立して制御されていることを特徴とする請求項1又は請求項2に記載の熱伝導率測定装置。 The number of installed compensation heaters is arranged so as to be equal to or more than the total temperature measurement points of the rod or the object to be measured, and each of the compensation heaters is independently controlled. The thermal conductivity measuring device according to claim 1 or 2. 上記補償ヒータは、上記ロッド又は上記被測定体の外周を隙間を残して被覆しているフランジ上に固定されており、隣り合う上記補償ヒータは接触していないことを特徴とする請求項1又は請求項2に記載の熱伝導率測定装置。 The compensation heater is fixed on a flange that covers the outer periphery of the rod or the measured object leaving a gap, and the adjacent compensation heaters are not in contact with each other. The thermal conductivity measuring device according to claim 2. 上記フランジは、上記ロッド又は上記被測定体の外周を隙間を残して被覆している断熱部材により構成され、上記補償ヒータはこの断熱部材上の上記ロッド側又は上記被測定体側に配設されていることを特徴とする請求項4に記載の熱伝導率測定装置。 The flange is constituted by a heat insulating member that covers the outer periphery of the rod or the measured object leaving a gap, and the compensation heater is disposed on the rod side or the measured object side on the heat insulating member. The thermal conductivity measuring device according to claim 4, wherein 上記フランジに、上記ロッド又は上記被測定体の外周表面に接触する隙間支持部材が配設されていることを特徴とする請求項4又は請求項5に記載の熱伝導率測定装置。 The thermal conductivity measuring device according to claim 4 or 5, wherein a clearance supporting member that contacts the outer peripheral surface of the rod or the object to be measured is disposed on the flange. 上記フランジと上記ロッド又は上記被測定体の外周の間の隙間に、上記ロッド又は上記被測定体の外周表面に接触するフィンを有する自然対流防止板を配設したことを特徴とする請求項4又は請求項5に記載の熱伝導率測定装置。 5. A natural convection prevention plate having fins in contact with the outer peripheral surface of the rod or the measured object is disposed in a gap between the flange and the outer periphery of the rod or the measured object. Or the thermal conductivity measuring apparatus of Claim 5. 上記ロッド及び上記被測定体の間の接触面圧力を可変させるための付加力装置と、上記接触面圧力を測定するための圧力センサを配設していることを特徴とする請求項1又は請求項2に記載の熱伝導率測定装置。 2. An additional force device for varying a contact surface pressure between the rod and the object to be measured and a pressure sensor for measuring the contact surface pressure are provided. Item 3. The thermal conductivity measuring device according to Item 2. 上記圧力センサは、上記冷却側ロッド側に配設されていることを特徴とする請求項8に記載の熱伝導率測定装置。 The thermal conductivity measuring device according to claim 8, wherein the pressure sensor is disposed on the cooling side rod side. 上記被測定体の上記冷却ロッドとの接触しない側から補償加熱ブロックにより熱量を負荷して、上記被測定体の温度を制御していることを特徴とする請求項1又は請求項2に記載の熱伝導率測定装置。 3. The temperature of the measurement object is controlled by applying a heat amount from a side of the measurement object that does not contact the cooling rod by a compensation heating block. Thermal conductivity measuring device. 上記被測定体の厚みを測定する変位測定計を備えたことを特徴とする請求項1又は請求項2に記載の熱伝導率測定装置。 The thermal conductivity measuring device according to claim 1, further comprising a displacement measuring instrument for measuring the thickness of the object to be measured. 上記変位測定計は、非接触型変位測定計であることを特徴とする請求項9に記載の熱伝導率測定装置。 The thermal conductivity measuring apparatus according to claim 9, wherein the displacement measuring instrument is a non-contact type displacement measuring instrument. 加熱側ロッド及び冷却側ロッドの間に被測定体を挟持する工程と、
上記加熱側ロッド、上記冷却側ロッド及び上記被測定体の外周の温度を、それと同じ高さに位置する上記加熱側ロッド、上記冷却側ロッド及び上記被測定体自体の温度と等しくなるように制御する工程と、上記加熱側ロッドの上記被測定体と接触しない側から熱量を流入させ、上記加熱側ロッド、上記被測定体及び上記冷却側ロッドを通して、上記冷却側ロッドの上記被測定体と接触しない側から上記熱量を流出させ、上記両ロッド内の温度勾配を測定することにより上記被測定体に入力する熱量を算出し、算出した熱量と上記被測定体の温度勾配から上記被測定体の熱伝導率または上記ロッドと上記被測定体との間の接触熱抵抗を測定する工程とを備えたことを特徴とする熱伝導率の測定方法。
Sandwiching the object to be measured between the heating side rod and the cooling side rod;
Control the temperature of the outer circumference of the heating side rod, the cooling side rod and the object to be measured to be equal to the temperature of the heating side rod, the cooling side rod and the object to be measured located at the same height. And a step of allowing heat to flow in from the side of the heating side rod that does not contact the object to be measured, and contacting the object to be measured of the cooling side rod through the heating side rod, the object to be measured, and the cooling side rod. The amount of heat is allowed to flow out from the non-conducting side, and the amount of heat input to the measured body is calculated by measuring the temperature gradient in the rods, and the measured amount of the measured body is calculated from the calculated amount of heat and the temperature gradient of the measured body. A method for measuring thermal conductivity, comprising a step of measuring thermal conductivity or contact thermal resistance between the rod and the object to be measured.
加熱側ロッド及び冷却側ロッドの間に被測定体を挟持する工程と、
上記加熱側ロッド及び上記冷却側ロッドの外周の温度を、それと同じ高さに位置する上記加熱側ロッド及び上記冷却側ロッド自体の温度と等しくなるように制御する工程と、
上記加熱側ロッドの上記被測定体と接触しない側から熱量を流入させ、上記加熱側ロッド、上記被測定体及び上記冷却側ロッドを通して、上記冷却側ロッドの上記被測定体と接触しない側から上記熱量を流出させ、上記両ロッド内の温度勾配を測定することにより上記被測定体に入力する熱量を算出し、算出した熱量と上記被測定体の温度勾配から上記被測定体の熱伝導率または上記ロッドと上記被測定体との間の接触熱抵抗を測定する工程とを備えたことを特徴とする熱伝導率の測定方法。
Sandwiching the object to be measured between the heating side rod and the cooling side rod;
Controlling the temperature of the outer circumference of the heating side rod and the cooling side rod to be equal to the temperature of the heating side rod and the cooling side rod itself located at the same height;
The amount of heat is introduced from the side of the heating side rod that does not come into contact with the object to be measured, and passes through the heating side rod, the object to be measured, and the cooling side rod, and from the side of the cooling side rod that does not contact the object to be measured. The amount of heat is flowed out and the amount of heat input to the object to be measured is calculated by measuring the temperature gradient in both the rods. From the calculated amount of heat and the temperature gradient of the object to be measured, the thermal conductivity of the object to be measured or And a step of measuring a contact thermal resistance between the rod and the object to be measured.
JP2004338358A 2004-11-24 2004-11-24 Thermal conductivity measuring device and method Pending JP2006145446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338358A JP2006145446A (en) 2004-11-24 2004-11-24 Thermal conductivity measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338358A JP2006145446A (en) 2004-11-24 2004-11-24 Thermal conductivity measuring device and method

Publications (1)

Publication Number Publication Date
JP2006145446A true JP2006145446A (en) 2006-06-08

Family

ID=36625304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338358A Pending JP2006145446A (en) 2004-11-24 2004-11-24 Thermal conductivity measuring device and method

Country Status (1)

Country Link
JP (1) JP2006145446A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134111A (en) * 2006-11-28 2008-06-12 Hitachi Ltd Thermal resistance measuring device
JP2008309729A (en) * 2007-06-18 2008-12-25 Mitsubishi Electric Corp Device and method for measuring thermal conductivity
WO2010103784A1 (en) * 2009-03-11 2010-09-16 学校法人常翔学園 Heat conduction measuring device and heat conduction measuring method
KR101092894B1 (en) * 2009-07-31 2011-12-12 한국과학기술원 Apparatus for measuring coefficient of heat transfer
JP2012032196A (en) * 2010-07-29 2012-02-16 Espec Corp Thermal conduction measuring apparatus and thermal conduction measuring method
JP2012117939A (en) * 2010-12-01 2012-06-21 Espec Corp Heat conductivity measuring device, heat conductivity calculation device, heat conductivity calculation program, and heat conductivity measuring method
KR101163070B1 (en) * 2010-12-01 2012-07-05 한국기계연구원 A measuring device for thermal conductivity and thermal expansion coefficient at cryogenic temperature and method for simultaneous measurment of thermal conductivity and thermal expansion coefficient
CN102621181A (en) * 2012-04-09 2012-08-01 北京科技大学 Measuring device of heat transfer coefficient of solid interface in hot working process
DE102011003862A1 (en) * 2011-02-09 2012-08-09 Robert Bosch Gmbh Method and measuring arrangement for characterizing a thermal interface material
KR20130125599A (en) * 2012-05-09 2013-11-19 재단법인 포항산업과학연구원 Method and apparatus of measuring thermal conductivity of carbon containing refractories for iron and steel making
CN104132964A (en) * 2014-07-04 2014-11-05 中国石油化工股份有限公司 System for stimulating gas station flowing fire accidents
CN105572162A (en) * 2015-12-17 2016-05-11 北京航空航天大学 Thermal contact resistance testing equipment with compensation heating system and thermal insulation system
CN105628730A (en) * 2015-12-17 2016-06-01 北京航空航天大学 Contact thermal resistance type test equipment with stable heating system
CN106198615A (en) * 2016-06-28 2016-12-07 中国电子科技集团公司第十三研究所 Gallium nitride power device package thermal contact resistance measuring method
WO2017073479A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 Thermal conductivity measurement apparatus and thermal conductivity measurement method
CN107688039A (en) * 2017-07-14 2018-02-13 昆明理工大学 The test system and its method of testing of light sheet material thermal conductivity factor and interface resistance
CN108931551A (en) * 2018-05-31 2018-12-04 重庆大学 A kind of surface of solids engaging portion contact conductane measuring device
CN109283217A (en) * 2018-10-12 2019-01-29 广州特种承压设备检测研究院 A kind of measurement method and device of grapheme material thermal conductivity
CN109283216A (en) * 2018-10-12 2019-01-29 广州特种承压设备检测研究院 A kind of measurement method and device of grapheme material interface resistance
KR20190010705A (en) * 2019-01-23 2019-01-30 한서대학교 산학협력단 Equipment and Method for Mesuring the Conductivity of Ultrathin Thermal Sheet
CN109959676A (en) * 2017-12-14 2019-07-02 核工业西南物理研究院 A kind of graphite and graphite film material thermal contact resistance test method
CN111982963A (en) * 2020-09-02 2020-11-24 郑州大学 Thermal conductivity measurement method, system and device for accurately controlling and metering medium surface temperature gradient

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134111A (en) * 2006-11-28 2008-06-12 Hitachi Ltd Thermal resistance measuring device
JP2008309729A (en) * 2007-06-18 2008-12-25 Mitsubishi Electric Corp Device and method for measuring thermal conductivity
JP5509195B2 (en) * 2009-03-11 2014-06-04 学校法人常翔学園 Thermal conductivity measuring device and thermal conductivity measuring method
WO2010103784A1 (en) * 2009-03-11 2010-09-16 学校法人常翔学園 Heat conduction measuring device and heat conduction measuring method
KR101092894B1 (en) * 2009-07-31 2011-12-12 한국과학기술원 Apparatus for measuring coefficient of heat transfer
JP2012032196A (en) * 2010-07-29 2012-02-16 Espec Corp Thermal conduction measuring apparatus and thermal conduction measuring method
JP2012117939A (en) * 2010-12-01 2012-06-21 Espec Corp Heat conductivity measuring device, heat conductivity calculation device, heat conductivity calculation program, and heat conductivity measuring method
KR101163070B1 (en) * 2010-12-01 2012-07-05 한국기계연구원 A measuring device for thermal conductivity and thermal expansion coefficient at cryogenic temperature and method for simultaneous measurment of thermal conductivity and thermal expansion coefficient
DE102011003862A1 (en) * 2011-02-09 2012-08-09 Robert Bosch Gmbh Method and measuring arrangement for characterizing a thermal interface material
CN102621181A (en) * 2012-04-09 2012-08-01 北京科技大学 Measuring device of heat transfer coefficient of solid interface in hot working process
KR20130125599A (en) * 2012-05-09 2013-11-19 재단법인 포항산업과학연구원 Method and apparatus of measuring thermal conductivity of carbon containing refractories for iron and steel making
CN104132964A (en) * 2014-07-04 2014-11-05 中国石油化工股份有限公司 System for stimulating gas station flowing fire accidents
WO2017073479A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 Thermal conductivity measurement apparatus and thermal conductivity measurement method
US10768127B2 (en) 2015-10-30 2020-09-08 Mitsubishi Electric Corporation Thermal conductivity measurement apparatus and thermal conductivity measurement method
JPWO2017073479A1 (en) * 2015-10-30 2018-07-12 三菱電機株式会社 Thermal conductivity measuring device and thermal conductivity measuring method
CN105628730B (en) * 2015-12-17 2019-01-18 北京航空航天大学 With the thermal contact resistance test equipment for stablizing heating system
CN105572162A (en) * 2015-12-17 2016-05-11 北京航空航天大学 Thermal contact resistance testing equipment with compensation heating system and thermal insulation system
CN105628730A (en) * 2015-12-17 2016-06-01 北京航空航天大学 Contact thermal resistance type test equipment with stable heating system
CN106198615A (en) * 2016-06-28 2016-12-07 中国电子科技集团公司第十三研究所 Gallium nitride power device package thermal contact resistance measuring method
CN106198615B (en) * 2016-06-28 2019-01-04 中国电子科技集团公司第十三研究所 Gallium nitride power device package thermal contact resistance measurement method
CN107688039B (en) * 2017-07-14 2020-01-10 昆明理工大学 System and method for testing heat conductivity coefficient and interface thermal resistance of sheet material
CN107688039A (en) * 2017-07-14 2018-02-13 昆明理工大学 The test system and its method of testing of light sheet material thermal conductivity factor and interface resistance
CN109959676A (en) * 2017-12-14 2019-07-02 核工业西南物理研究院 A kind of graphite and graphite film material thermal contact resistance test method
CN109959676B (en) * 2017-12-14 2021-11-16 核工业西南物理研究院 Method for testing thermal contact resistance of graphite and graphite film material
CN108931551A (en) * 2018-05-31 2018-12-04 重庆大学 A kind of surface of solids engaging portion contact conductane measuring device
CN109283217A (en) * 2018-10-12 2019-01-29 广州特种承压设备检测研究院 A kind of measurement method and device of grapheme material thermal conductivity
CN109283216A (en) * 2018-10-12 2019-01-29 广州特种承压设备检测研究院 A kind of measurement method and device of grapheme material interface resistance
KR20190010705A (en) * 2019-01-23 2019-01-30 한서대학교 산학협력단 Equipment and Method for Mesuring the Conductivity of Ultrathin Thermal Sheet
KR102031616B1 (en) * 2019-01-23 2019-10-14 한서대학교 산학협력단 Equipment and Method for Mesuring the Conductivity of Ultrathin Thermal Sheet
CN111982963A (en) * 2020-09-02 2020-11-24 郑州大学 Thermal conductivity measurement method, system and device for accurately controlling and metering medium surface temperature gradient
CN111982963B (en) * 2020-09-02 2023-04-28 郑州大学 Thermal conductivity measurement method, system and device for precisely controlling and measuring medium surface temperature gradient

Similar Documents

Publication Publication Date Title
JP2006145446A (en) Thermal conductivity measuring device and method
EP1859258B1 (en) Differential scanning calorimeter (dsc) with temperature controlled furnace
JP4831487B2 (en) Differential scanning calorimeter
JP4945581B2 (en) Flowmeter
UA96297C2 (en) Device for measurement of filling level
JP5642525B2 (en) Differential scanning calorimeter
US20060256834A1 (en) Method and apparatus for conducting performance test to heat pipe
JP2008309729A (en) Device and method for measuring thermal conductivity
CN109238513B (en) Checking sleeve for dry body type checker and dry body type checker
US11169102B2 (en) Method and measurement device for ascertaining the thermal conductivity of a fluid
CN102252718A (en) Thermal mass flowmeter with a metal-encapsulated sensor system
Scoarnec et al. A new guarded hot plate designed for thermal-conductivity measurements at high temperature
US20100202488A1 (en) Apparatus And A Method For Measuring The Body Core Temperature For Elevated Ambient Temperatures
EP3404373B1 (en) Flow sensor with thermocouples
KR101261627B1 (en) Apparutus and system for measuring heat flux
KR102257190B1 (en) Thermal conductivity measurement system and thermal conductivity measurement method thereof
EP3070444A1 (en) A surface temperature measuring device
KR101831682B1 (en) Apparatus and method for measuring gas temperature
US20190195697A1 (en) Thermometer
JPS5923369B2 (en) Zero-level heat flow meter
CN110376244B (en) Heat conductivity coefficient measuring device
EP1223411A1 (en) Universal sensor for measuring shear stress, mass flow or velocity of a fluid or gas, for determining a number of drops, or detecting drip or leakage
JP2008026179A (en) Radiant heat sensor and method of measuring radiant heat
KR20240013172A (en) Large differential scanning calorimetry analysis method and apparatus
WO2022076195A1 (en) Thermopile laser sensor with response time acceleration and methods of use and manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701