JP2008134111A - Thermal resistance measuring device - Google Patents

Thermal resistance measuring device Download PDF

Info

Publication number
JP2008134111A
JP2008134111A JP2006319451A JP2006319451A JP2008134111A JP 2008134111 A JP2008134111 A JP 2008134111A JP 2006319451 A JP2006319451 A JP 2006319451A JP 2006319451 A JP2006319451 A JP 2006319451A JP 2008134111 A JP2008134111 A JP 2008134111A
Authority
JP
Japan
Prior art keywords
shaft
cooling
heating
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006319451A
Other languages
Japanese (ja)
Other versions
JP2008134111A5 (en
Inventor
Masaki Asagai
正樹 浅貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006319451A priority Critical patent/JP2008134111A/en
Publication of JP2008134111A publication Critical patent/JP2008134111A/en
Publication of JP2008134111A5 publication Critical patent/JP2008134111A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten an exchange time from a measurement completion time point until the next sample exchange, and to improve measurement efficiency and accuracy of a thermal resistance measuring device. <P>SOLUTION: This thermal resistance measuring device for determining a thermal resistance from a temperature difference between the surface and the back of a measuring sample 3, and the heat quantity by sandwiching the measuring sample 3 between a heating shaft 1 and a cooling shaft 2, is equipped with: cooling jackets 4, 8 installed respectively on the heating shaft 1 and the cooling shaft 2, wherein a coolant flows; a cooling fan 56 provided on the back of the heating shaft 1 and the cooling shaft 2, for blowing cooling air to the heating shaft 1 and the cooling shaft 2; a divided heat insulating material 6 placeable to enclose the heating shaft 1 and the cooling shaft 2; and a heat insulating material moving mechanism for moving the heat insulating material 6. After sandwiching the measuring sample 3 between the heating shaft 1 and the cooling shaft 2, the heat insulating material 6 is moved to enclose the heating shaft 1 and the cooling shaft 2 by the heat insulating material moving mechanism. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、測定サンプルを加熱軸と冷却軸との間に挟み、そのサンプルに所望の熱量を流し、その表裏面の温度差から熱抵抗値などを求める熱抵抗測定装置に関するものである。   The present invention relates to a thermal resistance measuring apparatus that sandwiches a measurement sample between a heating shaft and a cooling shaft, allows a desired amount of heat to flow through the sample, and obtains a thermal resistance value or the like from a temperature difference between the front and back surfaces.

例えば、コンピュータ用CPUや小型電子部品の冷却性能向上のために、熱伝導グリースや熱伝導シートなどの高分子材料が多用され、また、その開発も盛んに行われている。そのため、熱伝導グリースや熱伝導シートの熱抵抗や熱伝導率などの熱物性を高精度で評価できる評価装置が用いられ、例えば特許文献1に記載されている。   For example, in order to improve the cooling performance of CPUs for computers and small electronic components, polymer materials such as heat conductive grease and heat conductive sheets are frequently used, and their development is actively performed. For this reason, an evaluation apparatus that can accurately evaluate thermal physical properties such as thermal resistance and thermal conductivity of the thermal conductive grease or the thermal conductive sheet is used.

特開2003−121397号公報JP 2003-121397 A

上記従来技術のような熱伝導グリースや熱伝導シートなどの熱抵抗や熱伝導率を高精度で測定する熱抵抗測定装置において、多数のサンプルを連続測定する場合、サンプル交換時に測定部の温度を所望の温度まで低下させるための時間が長く、測定効率が低い。   In the thermal resistance measurement device that measures the thermal resistance and thermal conductivity with high accuracy, such as the thermal grease and thermal conductive sheet as in the above prior art, when measuring many samples continuously, the temperature of the measuring part must be The time for lowering to the desired temperature is long and the measurement efficiency is low.

本発明の目的は、上記従来技術の課題を解決し、測定終了時点から次のサンプル交換までの交換時間を短縮し、熱抵抗測定装置の測定効率及び精度を向上することにある。   An object of the present invention is to solve the above-described problems of the prior art, shorten the exchange time from the end of measurement to the next sample exchange, and improve the measurement efficiency and accuracy of the thermal resistance measurement device.

上記目的を達成するため、本発明は、測定サンプルを加熱軸と冷却軸との間に挟み、前記加熱軸から前記冷却軸方向に所望の熱量を流し、測定サンプルの表裏面の温度差と熱量から前記測定サンプルの熱抵抗を求める熱抵抗測定装置において、前記加熱軸及び前記冷却軸の反前記測定サンプル側にそれぞれ取り付けられ冷媒が流れる冷却ジャケットと、前記加熱軸と冷却軸の後方に設けられ、前記加熱軸と冷却軸とに冷却空気を吹き付ける冷却ファンと、前記加熱軸と前記冷却軸を取り囲む様に設置可能とされ、かつ分割された断熱材と、前記断熱材を移動させる断熱材移動機構と、を備え、前記測定サンプルを前記加熱軸と前記冷却軸との間に挟み込んだ後、前記断熱材は、前記断熱材移動機構によって前記加熱軸と前記冷却軸とを取り囲むように移動されるものである。   In order to achieve the above object, the present invention sandwiches a measurement sample between a heating axis and a cooling axis, flows a desired amount of heat from the heating axis in the direction of the cooling axis, and detects the temperature difference and the amount of heat between the front and back surfaces of the measurement sample. In the thermal resistance measurement device for obtaining the thermal resistance of the measurement sample from the cooling jacket, which is attached to the opposite side of the measurement sample to the measurement sample side of the heating shaft and the cooling shaft, and is provided behind the heating shaft and the cooling shaft. A cooling fan that blows cooling air to the heating shaft and the cooling shaft; a heat insulating material that can be installed so as to surround the heating shaft and the cooling shaft; and a heat insulating material movement that moves the heat insulating material. And after the measurement sample is sandwiched between the heating shaft and the cooling shaft, the heat insulating material surrounds the heating shaft and the cooling shaft by the heat insulating material moving mechanism. It is intended to be moved into.

本発明によれば、測定終了後の加熱軸と冷却軸を高速で冷却できるため、測定サンプル交換の時間が大幅に短縮でき、測定効率が向上できる。また、連続して同一サンプルを測定する場合、初回測定終了後から次回測定開始までの時間が短くなるため、測定誤差を少なくすることができる。   According to the present invention, since the heating shaft and the cooling shaft after the measurement can be cooled at high speed, the time for exchanging the measurement sample can be greatly shortened, and the measurement efficiency can be improved. Moreover, when measuring the same sample continuously, since the time from the end of the first measurement to the start of the next measurement is shortened, the measurement error can be reduced.

本発明による一実施形態の熱抵抗測定装置の全体構成を説明する。
図1は、ベース板22に4本の支柱21とZ軸ステージ13が固定設置され、支柱21には、デジタル隙間検出器発光部11,デジタル隙間検出器12,上部プレート15が固定され、上部プレートには、ロードセル10が取り付けてある。
中間プレート17は、支柱21に沿って上下方向に移動できる様な構造であり、中間プレート17には、加熱軸1,加熱軸側ヒータブロック5,加熱軸側冷却ジャケット4(例えば、細い金属製の管の中に冷媒を流し、循環させる構造)および加熱軸側断熱材6より成る加熱ユニットが固定設置されている。また、Z軸ステージ13には、冷却軸2,冷却軸側ヒータブロック7,冷却軸側冷却ジャケット8および冷却軸側断熱材9からなる冷却ユニットが固定設置されている。更に、加熱軸1と冷却軸2には、各軸の温度勾配を測るための熱電対が複数本取り付けてある。
An overall configuration of a thermal resistance measuring apparatus according to an embodiment of the present invention will be described.
In FIG. 1, four support columns 21 and a Z-axis stage 13 are fixedly installed on a base plate 22, and a digital gap detector light emitting unit 11, a digital gap detector 12, and an upper plate 15 are fixed to the support column 21. A load cell 10 is attached to the plate.
The intermediate plate 17 has a structure that can move in the vertical direction along the support column 21. The intermediate plate 17 includes a heating shaft 1, a heating shaft side heater block 5, and a heating shaft side cooling jacket 4 (for example, made of thin metal And a heating unit comprising a heating shaft side heat insulating material 6 is fixedly installed. In addition, a cooling unit comprising a cooling shaft 2, a cooling shaft side heater block 7, a cooling shaft side cooling jacket 8 and a cooling shaft side heat insulating material 9 is fixedly installed on the Z-axis stage 13. Further, the heating shaft 1 and the cooling shaft 2 are provided with a plurality of thermocouples for measuring the temperature gradient of each shaft.

また、加熱軸1および冷却軸2の測定サンプル3を挟む面の形状は同じで、同一面積であることが望ましく(例えば測定サンプルを挟む面積としては、10mm2 )また、測定上、ゆがみ,ひずみが生じている状態では測定値に影響を及ぼすため、両方の面が均一に接触する様に製作する必要がある。
安全カバー14は測定部分の前方および左右部分を覆ったL字型のものであり、測定中のけがや高温測定時の火傷を防ぐために装着する。材質は特定しないが、測定サンプル3の設定温度に耐えられる耐熱性のあるものであればよい。アルミ製あるいはアクリル製を使用することが良く、測定には全く影響がみられない。
Z軸ステージ13の移動中、および測定作業中、また、測定終了後でも測定サンプル温度が50℃以上の場合は、ロックがかかり、安全カバーが外れないようにしている。
Moreover, it is desirable that the surfaces of the heating shaft 1 and the cooling shaft 2 that sandwich the measurement sample 3 are the same and have the same area (for example, the area that sandwiches the measurement sample is 10 mm 2 ). Since the measurement value is affected in a state where the occurrence of the phenomenon occurs, it is necessary to fabricate so that both surfaces are in uniform contact.
The safety cover 14 is L-shaped so as to cover the front and left and right portions of the measurement portion, and is attached to prevent injury during measurement and burns during high temperature measurement. Although the material is not specified, any material having heat resistance that can withstand the set temperature of the measurement sample 3 may be used. It is preferable to use aluminum or acrylic, and the measurement is not affected at all.
When the measurement sample temperature is 50 ° C. or higher during the movement of the Z-axis stage 13 and during the measurement operation and even after the measurement is completed, the safety cover is prevented from being removed.

軸周辺断熱材は、加熱ユニットと冷却ユニットを取り囲む様に設置してある。なお、使用する断熱材は例えばグラスファイバーをベースにした硬度の高いものを材質としている。   The shaft periphery heat insulating material is installed so as to surround the heating unit and the cooling unit. The heat insulating material to be used is made of, for example, a material having high hardness based on glass fiber.

図2は熱抵抗測定装置本体34と周辺機器との接続図を示している。
制御ユニット36には主として加熱軸1,冷却軸2の温度データを取り込み、パソコン
35に送信するデータロガーと、加熱軸1,冷却軸2に取り付けた熱電対用の温度基準を設定する基準零接点装置と、測定動作の制御を行うシーケンサと、設定した電力を元に制御する直流安定化電源等の制御装置を備えている。熱抵抗測定装置本体34と制御ユニット36とは25から31までの7本のケーブルで接続してある。その内、30と31は熱電対から送られてくる測定温度のデータ管理用である。また、恒温槽38は入力用と出力用の2本の配水チューブ(32,33)により、熱抵抗測定装置本体34に冷媒を供給している。途中、出力用の配水チューブ32には流量調整バルブ37を通して、水量を調整している。
FIG. 2 is a connection diagram of the thermal resistance measuring device main body 34 and peripheral devices.
The control unit 36 mainly takes in the temperature data of the heating shaft 1 and the cooling shaft 2 and transmits it to the personal computer 35, and the reference zero contact for setting the temperature reference for the thermocouple attached to the heating shaft 1 and the cooling shaft 2. It includes a control device such as a device, a sequencer that controls the measurement operation, and a DC stabilized power source that controls based on the set power. The thermal resistance measuring device main body 34 and the control unit 36 are connected by seven cables 25 to 31. Of these, 30 and 31 are used for data management of measured temperatures sent from the thermocouple. In addition, the thermostatic chamber 38 supplies the refrigerant to the thermal resistance measuring device main body 34 by two water distribution tubes (32, 33) for input and output. On the way, the amount of water is adjusted through the flow rate adjusting valve 37 to the output water distribution tube 32.

図3は冷却ユニットと加熱ユニットの構造であり、加熱ユニットの加熱軸1の測定部と反対側の面に、熱抵抗が小さくなる様に、まず、加熱軸側ヒータブロック5が接続され、さらに加熱軸側冷却ジャケット4が接続されている。加熱軸側冷却ジャケット4には、冷媒を加熱軸側冷却ジャケット4内に流すための出入口が設けてある。同様に、冷却ユニットの冷却軸1の測定部と反対側の面に、熱抵抗が小さくなる様に、冷却軸側ヒータブロック7が接続され、冷却軸側冷却ジャケット8が接続されている。冷却軸側冷却ジャケット8には、冷媒を冷却軸側冷却ジャケット8内に流すための出入口が設けてある。   FIG. 3 shows the structure of a cooling unit and a heating unit. First, a heating shaft side heater block 5 is connected to the surface of the heating unit on the side opposite to the measurement part of the heating shaft 1 so that the thermal resistance is reduced. The heating shaft side cooling jacket 4 is connected. The heating shaft side cooling jacket 4 is provided with an inlet / outlet for allowing the refrigerant to flow into the heating shaft side cooling jacket 4. Similarly, a cooling shaft side heater block 7 and a cooling shaft side cooling jacket 8 are connected to the surface of the cooling unit opposite to the measurement portion of the cooling shaft 1 so that the thermal resistance is reduced. The cooling shaft side cooling jacket 8 is provided with an inlet / outlet for allowing the refrigerant to flow into the cooling shaft side cooling jacket 8.

次に、冷却ジャケット内への冷媒の流し方を説明する。恒温槽38からの温調された冷媒を、流量調整バルブ39,40を用いて、加熱軸側冷却ジャケット4と冷却軸側冷却ジャケット8に流れる流量を調整し、所望の量になる様に分流する。この分流された冷媒は、各冷却ジャケット内を流れることで、加熱ユニットおよび冷却ユニットに蓄積された熱を受熱,温度上昇し、各冷却ジャケットから流出し、恒温槽38に戻る。   Next, how the refrigerant flows into the cooling jacket will be described. The temperature-controlled refrigerant from the thermostatic chamber 38 is divided by using the flow rate adjusting valves 39 and 40 to adjust the flow rate flowing through the heating shaft side cooling jacket 4 and the cooling shaft side cooling jacket 8 so as to obtain a desired amount. To do. The diverted refrigerant flows through each cooling jacket, thereby receiving heat accumulated in the heating unit and the cooling unit, increasing the temperature, flowing out from each cooling jacket, and returning to the thermostatic chamber 38.

図4から図6を用いて、断熱材の構造と冷却ファンの取り付け位置を説明する。図5は、図4のA−A矢視図である。
断熱材は、4分割された形状で、加熱軸1と冷却軸2を取り囲む様に設置してある。但し、図5では冷却軸2が加熱軸1に隠れるため図示していない。それぞれの軸周辺断熱材49,50,53,54には、断熱材を移動させるための移動用取手47,48,51,52が取り付けてある。この移動用取手はねじ込み式構造のため、軸周辺断熱材への取り付け,取り外しが容易に可能である。
The structure of the heat insulating material and the mounting position of the cooling fan will be described with reference to FIGS. FIG. 5 is an AA arrow view of FIG.
The heat insulating material is divided into four parts and is installed so as to surround the heating shaft 1 and the cooling shaft 2. However, in FIG. 5, the cooling shaft 2 is not shown because it is hidden by the heating shaft 1. Each of the shaft peripheral heat insulating materials 49, 50, 53, 54 is provided with a moving handle 47, 48, 51, 52 for moving the heat insulating material. This moving handle has a screw-in structure, so it can be easily attached to and detached from the heat insulating material around the shaft.

加熱軸1,冷却軸2および測定サンプル3は4本の軸周辺断熱材49,50,53,
54に覆われ、隙間からしか目視できない。前方左側断熱材49と前方右側断熱材50の隙間が生じているが、極僅かであり、他の断熱材の間も同様である。更には安全カバー
14によって外気とほぼ遮断されているため、測定終了後に測定サンプル3の温度降下に多くの時間が必要となる。
The heating shaft 1, the cooling shaft 2 and the measurement sample 3 are composed of four shaft peripheral heat insulating materials 49, 50, 53,
54 and is visible only from the gap. There is a gap between the front left heat insulating material 49 and the front right heat insulating material 50, but there is very little, and the same is true between other heat insulating materials. Furthermore, since it is almost shielded from the outside air by the safety cover 14, it takes a lot of time for the temperature of the measurement sample 3 to drop after the measurement is completed.

冷却ファン56(例えば、縦横40mm,厚さ10mm程度が望ましい)は軸周辺断熱材の外側で、加熱軸1と冷却軸2の後方に設置してある。冷却ファン56は最も温度が高くなる加熱軸1を集中的に冷やすため、加熱軸1の後方に1個だけ示したが、加熱軸1および冷却軸2に沿って複数個設置してもよい。また、図6に示す様に、冷却ファン56は、背面カバー55に取り付けてあり、背面カバー55はベース22に固定してある。   The cooling fan 56 (for example, about 40 mm in length and width and desirably about 10 mm in thickness) is installed outside the heat insulating material around the shaft and behind the heating shaft 1 and the cooling shaft 2. Although only one cooling fan 56 is shown behind the heating shaft 1 in order to cool the heating shaft 1 with the highest temperature, a plurality of cooling fans 56 may be installed along the heating shaft 1 and the cooling shaft 2. As shown in FIG. 6, the cooling fan 56 is attached to the back cover 55, and the back cover 55 is fixed to the base 22.

次に図7および図8を用いて、測定終了後の軸周辺断熱材の移動方法について説明する。図7は測定終了後に移動用取手47,48,51,52を横方向に引いた状態を示したものである。図8は、図7のA−A矢視図である。
移動用取手47,48,51,52を左右に引く事により、軸周辺断熱材49,50,53,54が横方向に移動し、加熱軸1および冷却軸2の周辺に空気流路が形成される。この空気流路を設けることにより、冷却ファン56からの冷却空気が、加熱軸1と冷却軸2の周りを滑らかに流れる様になり、加熱軸1と冷却軸2の温度を迅速に冷やすことが可能となる。但し図8では冷却軸2が加熱軸1に隠れるため図示していない。なお、移動用取手を横に引く動作を手動で行う場合の説明をしたが、もちろん、モータなどで、動かすことで良い。
Next, the movement method of the shaft periphery heat insulating material after the measurement is completed will be described with reference to FIGS. FIG. 7 shows a state in which the moving handles 47, 48, 51, 52 are pulled in the horizontal direction after the measurement is completed. FIG. 8 is an AA arrow view of FIG.
By pulling the moving handles 47, 48, 51, 52 to the left and right, the shaft peripheral heat insulating materials 49, 50, 53, 54 move in the lateral direction, and an air flow path is formed around the heating shaft 1 and the cooling shaft 2. Is done. By providing this air flow path, the cooling air from the cooling fan 56 flows smoothly around the heating shaft 1 and the cooling shaft 2, and the temperature of the heating shaft 1 and the cooling shaft 2 can be quickly cooled. It becomes possible. However, in FIG. 8, the cooling shaft 2 is not shown because it is hidden by the heating shaft 1. In addition, although the case where the operation | movement which pulls a handle for a side is performed manually was demonstrated, of course, it is sufficient to move with a motor etc.

次に熱抵抗測定装置の測定原理について図9で説明する。
加熱軸1と冷却軸2の間に測定サンプル3を挟んだ状態で、一定の熱量Qを加熱軸1から冷却軸2方向に流すと、加熱軸1と冷却軸2に温度分布(勾配)が発生する。この温度分布を、例えば、各軸の測定サンプルを挟む側の先端からいずれも一定の距離を置き、等間隔に取り付けた熱電対41〜46で検出する。熱電対の本数は、図9では加熱軸1と冷却軸2に各3個ずつ記載しているが、温度分布が把握できる本数であればよい。
Next, the measurement principle of the thermal resistance measuring device will be described with reference to FIG.
When a constant amount of heat Q is passed from the heating shaft 1 to the cooling shaft 2 with the measurement sample 3 sandwiched between the heating shaft 1 and the cooling shaft 2, a temperature distribution (gradient) is generated between the heating shaft 1 and the cooling shaft 2. appear. This temperature distribution is detected by, for example, thermocouples 41 to 46 that are placed at a constant distance from the tip on the side sandwiching the measurement sample of each axis and are attached at equal intervals. The number of thermocouples is three for each of the heating shaft 1 and the cooling shaft 2 in FIG.

測定した温度分布から、加熱軸1と測定サンプル3の接触部分の温度Thと、冷却軸2と測定サンプル3の接触部分の温度Tcを推定し、その差分を分子とし、流した熱量Qで除することにより、界面の接触熱抵抗を含む測定サンプルの熱抵抗Rを求めることができる。式で表わすと以下の通りである。
R=(Th−Tc)/Q
測定方法を図1から図8を用いて、以下説明する。
Z軸ステージ13を上昇させることにより、冷却軸2の測定面を加熱軸1のそれと接触させるまで近づける。
一定の荷重がかかって、両軸の測定面が接触した状態をデジタル隙間検出器12で検出し、そこをゼロ基準と位置付け、以降、測定中はゼロの状態からどれだけ変化しているかをデジタル表示させる。
From the measured temperature distribution, the temperature Th of the contact portion between the heating shaft 1 and the measurement sample 3 and the temperature Tc of the contact portion between the cooling shaft 2 and the measurement sample 3 are estimated. By doing so, the thermal resistance R of the measurement sample including the contact thermal resistance of the interface can be obtained. This is expressed as follows.
R = (Th−Tc) / Q
The measurement method will be described below with reference to FIGS.
By raising the Z-axis stage 13, the measurement surface of the cooling shaft 2 is brought close to contact with that of the heating shaft 1.
The digital gap detector 12 detects a state where a certain load is applied and the measurement surfaces of both axes are in contact with each other and positions it as the zero reference. After that, how much has changed from the zero state during measurement. Display.

次に測定サンプルを両軸の間に挟むため、Z軸ステージ13を降下させる。降下させる位置は任意に設定可能だが、作業性を考慮した位置まで下げることが望ましい。測定サンプル3は、与えた熱量が確実に測定サンプルに伝わる様に、予め両軸の測定面と同一の寸法に揃えておく。また、測定サンプルの材質,表面形状等により、例えば表面の凹凸が顕著な場合、直接両軸の測定面と接触すると隙間に空気が入り、測定サンプル自体の測定値が正確に算出できないと判断した場合は、測定サンプルと両軸の測定面に、緩衝材として熱抵抗の極めて小さいグリース等を塗布した状態で測定する。その際は、予め使用するグリース等の熱抵抗値を本装置で測定し、測定サンプルの測定結果として算出された熱抵抗値からその数値を引くことにより、測定サンプル自体の熱抵抗値を求める。   Next, the Z-axis stage 13 is lowered to sandwich the measurement sample between both axes. The position to be lowered can be set arbitrarily, but it is desirable to lower it to a position that takes into consideration workability. The measurement sample 3 is aligned in advance with the same dimensions as the measurement surfaces of both axes so that the applied heat quantity is reliably transmitted to the measurement sample. Also, due to the material of the measurement sample, the surface shape, etc., for example, if the surface irregularities are noticeable, it was determined that air would enter the gap when directly contacting the measurement surface of both axes, and the measurement value of the measurement sample itself could not be calculated accurately In this case, the measurement is performed in a state where grease having a very low thermal resistance is applied as a buffer material to the measurement sample and the measurement surfaces of both axes. In that case, the thermal resistance value of grease or the like used in advance is measured with this apparatus, and the thermal resistance value of the measurement sample itself is obtained by subtracting the value from the thermal resistance value calculated as the measurement result of the measurement sample.

測定サンプル3を冷却軸2の測定面に乗せた後に、Z軸ステージ13を上昇させ、加熱軸1の測定面と接触させる。この状態で測定サンプル3が両軸の間から、はみだしたり,位置がずれたり、している場合は、再度Z軸ステージ13を下降させ、再設定する。測定サンプル3が正常に挟まれていることを確認した後に、軸周辺断熱材は各軸を取り囲むように据え付ける。所定の測定条件を充たした時点から測定を始める。測定終了後、加熱ユニットのヒータブロックと冷却ユニットのヒータブロックによる加熱を停止する。
軸周辺断熱材49,50,53,54を移動用取手47,48,51,52を用いて、手動で外方向に移動させ、冷却ファン56を作動させる。
加熱ユニットの加熱軸側冷却ジャケット4と冷却ユニットの加熱軸側冷却ジャケット8に冷媒を流す。これにより、測定終了後の加熱軸1,冷却軸2および測定サンプル3を高速に冷却することができる。
After placing the measurement sample 3 on the measurement surface of the cooling shaft 2, the Z-axis stage 13 is raised and brought into contact with the measurement surface of the heating shaft 1. In this state, when the measurement sample 3 protrudes or is displaced from the position between the two axes, the Z-axis stage 13 is lowered again and reset. After confirming that the measurement sample 3 is normally sandwiched, the heat insulating material around the shaft is installed so as to surround each shaft. The measurement is started from a point in time when predetermined measurement conditions are satisfied. After the measurement, heating by the heater block of the heating unit and the heater block of the cooling unit is stopped.
The shaft peripheral heat insulating materials 49, 50, 53, 54 are manually moved outward using the moving handles 47, 48, 51, 52, and the cooling fan 56 is operated.
A refrigerant is passed through the heating shaft side cooling jacket 4 of the heating unit and the heating shaft side cooling jacket 8 of the cooling unit. Thereby, the heating axis | shaft 1, the cooling axis | shaft 2, and the measurement sample 3 after completion | finish of a measurement can be cooled at high speed.

測定サンプルが50℃以下になった時点で、Z軸ステージ13を降下させ、安全カバー14を外し、測定サンプル3を取り出し、測定データをファイル形式でパソコン35に自動格納する。
以上の動作を繰り返して、多数の測定サンプルの測定を行う。
本測定方法によれば、測定終了後の加熱軸1,冷却軸2および測定サンプル3を高速に冷却することができるため、測定サンプル交換時間が大幅に短縮でき、測定効率を向上できる。また、連続して同一サンプルを測定する場合、初回測定終了後から次回測定開始までの時間が短くなるため、測定誤差が少なくなる。
When the measurement sample becomes 50 ° C. or lower, the Z-axis stage 13 is lowered, the safety cover 14 is removed, the measurement sample 3 is taken out, and the measurement data is automatically stored in the personal computer 35 in a file format.
By repeating the above operation, a large number of measurement samples are measured.
According to this measurement method, the heating shaft 1, the cooling shaft 2, and the measurement sample 3 after the measurement can be cooled at high speed, so that the measurement sample replacement time can be greatly shortened and the measurement efficiency can be improved. Further, when measuring the same sample continuously, the time from the end of the first measurement to the start of the next measurement is shortened, so that the measurement error is reduced.

本発明による一実施の形態である熱抵抗測定装置本体を示す側面図。The side view which shows the thermal resistance measuring device main body which is one embodiment by this invention. 一実施の形態である熱抵抗測定装置のブロック図。The block diagram of the thermal resistance measuring apparatus which is one embodiment. 一実施の形態である冷却ユニットと加熱ユニットを示すブロック図。The block diagram which shows the cooling unit and heating unit which are one Embodiment. 測定時の軸周辺断熱材位置を示す側面図。The side view which shows the shaft periphery heat insulating material position at the time of a measurement. 図4のA−A矢視断面図。AA arrow sectional drawing of FIG. 一実施の形態である冷却ファン取り付け位置を示す側面図。The side view which shows the cooling fan attachment position which is one Embodiment. 冷却時の軸周辺断熱材位置を示す側面図。The side view which shows the shaft periphery heat insulating material position at the time of cooling. 図7のA−A矢視断面図。AA arrow sectional drawing of FIG. 熱抵抗測定装置の測定原理を示す説明図。Explanatory drawing which shows the measurement principle of a thermal resistance measuring apparatus.

符号の説明Explanation of symbols

1 加熱軸
2 冷却軸
3 測定サンプル
4 加熱軸側冷却ジャケット
5 加熱軸側ヒータブロック
6 加熱軸側断熱材
7 冷却軸側ヒータブロック
8 冷却軸側冷却ジャケット
9 冷却軸側断熱材
10 ロードセル
11 デジタル隙間検出器発光部
12 デジタル隙間検出器
13 Z軸ステージ
14 安全カバー
15 上部プレート
16 リニアブッシュ
17 中間プレート
18 測長計マウント
19 測長計ステージ
20 中間固定ベース
21 本体支柱
22 ベース板
23〜31 接続ケーブル
32,33 配水チューブ
34 熱抵抗測定装置本体
35 パソコン
36 制御ユニット
37 流量調整バルブ
38 恒温槽
39,40 流量調整弁
41〜43 加熱軸側熱電対
44〜46 冷却軸側熱電対
47 移動用取手(左前方側)
48 移動用取手(右前方側)
49 軸周辺断熱材(左前方側)
50 軸周辺断熱材(右前方側)
51 移動用取手(左後方側)
52 移動用取手(右後方側)
53 軸周辺断熱材(左後方側)
54 軸周辺断熱材(右後方側)
55 背面カバー
56 冷却ファン
1 Heating shaft 2 Cooling shaft 3 Measurement sample 4 Heating shaft side cooling jacket 5 Heating shaft side heater block 6 Heating shaft side heat insulating material 7 Cooling shaft side heater block 8 Cooling shaft side cooling jacket 9 Cooling shaft side heat insulating material 10 Load cell 11 Digital gap Detector light emitting unit 12 Digital gap detector 13 Z-axis stage 14 Safety cover 15 Upper plate 16 Linear bush 17 Intermediate plate 18 Length meter mount 19 Length meter stage 20 Intermediate fixed base 21 Body support 22 Base plate 23 to 31 Connection cable 32, 33 Water distribution tube 34 Thermal resistance measuring device body 35 Personal computer 36 Control unit 37 Flow rate adjusting valve 38 Constant temperature bath 39, 40 Flow rate adjusting valves 41 to 43 Heating shaft side thermocouples 44 to 46 Cooling shaft side thermocouple 47 Handle for moving (front left) side)
48 Moving handle (front right)
49 Axial insulation (left front side)
50 Axis insulation (right front side)
51 Moving handle (left rear side)
52 Moving handle (right rear side)
53 Axial insulation (left rear side)
54 Thermal insulation around the shaft (right rear side)
55 Back cover 56 Cooling fan

Claims (5)

測定サンプルを加熱軸と冷却軸との間に挟み、前記加熱軸から前記冷却軸方向に所望の熱量を流し、測定サンプルの表裏面の温度差と熱量から前記測定サンプルの熱抵抗を求める熱抵抗測定装置において、
前記加熱軸及び前記冷却軸の反前記測定サンプル側にそれぞれ取り付けられ冷媒が流れる冷却ジャケットと、
前記加熱軸と冷却軸の後方に設けられ、前記加熱軸と冷却軸とに冷却空気を吹き付ける冷却ファンと、
前記加熱軸と前記冷却軸を取り囲む様に設置可能とされ、かつ分割された断熱材と、
前記断熱材を移動させる断熱材移動機構と、
を備え、前記測定サンプルを前記加熱軸と前記冷却軸との間に挟み込んだ後、前記断熱材は、前記断熱材移動機構によって前記加熱軸と前記冷却軸とを取り囲むように移動されることを特徴とする熱抵抗測定装置。
A thermal resistance for obtaining a thermal resistance of the measurement sample from the temperature difference and the heat quantity between the front and back surfaces of the measurement sample by sandwiching the measurement sample between the heating axis and the cooling axis, flowing a desired amount of heat from the heating axis in the direction of the cooling axis In the measuring device,
A cooling jacket that is attached to each side of the measurement sample opposite to the heating shaft and the cooling shaft;
A cooling fan that is provided behind the heating shaft and the cooling shaft and blows cooling air to the heating shaft and the cooling shaft;
A heat insulating material that can be installed so as to surround the heating shaft and the cooling shaft;
A heat insulating material moving mechanism for moving the heat insulating material;
After the measurement sample is sandwiched between the heating shaft and the cooling shaft, the heat insulating material is moved so as to surround the heating shaft and the cooling shaft by the heat insulating material moving mechanism. A thermal resistance measuring device.
請求項1に記載のものにおいて、前記断熱材は前記測定サンプルの熱抵抗測定終了後、前記断熱材移動機構により移動され、前記加熱軸と前記冷却軸との取り囲みを開放し、前記加熱軸と前記冷却軸の周辺に前記冷却ファンからの冷却空気の流路を形成することを特徴とする熱抵抗測定装置。   2. The heat insulating material according to claim 1, wherein the heat insulating material is moved by the heat insulating material moving mechanism after the measurement of the thermal resistance of the measurement sample, opens an enclosure between the heating shaft and the cooling shaft, and A thermal resistance measuring apparatus, wherein a cooling air flow path from the cooling fan is formed around the cooling shaft. 請求項1に記載のものにおいて、前記断熱材は前記測定サンプルの熱抵抗測定終了後、前記断熱材移動機構により移動され、前記加熱軸と前記冷却軸との取り囲みを開放し、前記加熱軸と前記冷却軸とを前記冷却ファンからの冷却空気で冷却すると共に、前記冷却ジャケット冷媒を流し、前記加熱軸,前記冷却軸,前記測定サンプルを冷却することを特徴とする熱抵抗測定装置。   2. The heat insulating material according to claim 1, wherein the heat insulating material is moved by the heat insulating material moving mechanism after the measurement of the thermal resistance of the measurement sample, opens an enclosure between the heating shaft and the cooling shaft, and The thermal resistance measuring device, wherein the cooling shaft is cooled with cooling air from the cooling fan, and the cooling jacket refrigerant is flowed to cool the heating shaft, the cooling shaft, and the measurement sample. 請求項1に記載のものにおいて、前記断熱材は4分割されたことを特徴とする熱抵抗測定装置。   The thermal resistance measuring device according to claim 1, wherein the heat insulating material is divided into four parts. 請求項1に記載のものにおいて、前記冷却ファンは前記加熱軸及び前記冷却軸に沿って複数設置されたことを特徴とする熱抵抗測定装置。   2. The thermal resistance measuring apparatus according to claim 1, wherein a plurality of the cooling fans are installed along the heating axis and the cooling axis.
JP2006319451A 2006-11-28 2006-11-28 Thermal resistance measuring device Pending JP2008134111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319451A JP2008134111A (en) 2006-11-28 2006-11-28 Thermal resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319451A JP2008134111A (en) 2006-11-28 2006-11-28 Thermal resistance measuring device

Publications (2)

Publication Number Publication Date
JP2008134111A true JP2008134111A (en) 2008-06-12
JP2008134111A5 JP2008134111A5 (en) 2009-07-30

Family

ID=39559063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319451A Pending JP2008134111A (en) 2006-11-28 2006-11-28 Thermal resistance measuring device

Country Status (1)

Country Link
JP (1) JP2008134111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322183B1 (en) 2013-06-13 2013-10-28 한국지질자원연구원 Vertical type device for measuring thermal conductivity of rocks and using method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261963A (en) * 1995-03-27 1996-10-11 Rigaku Corp Sample heating device for thermal analyzer
JP2003121397A (en) * 2001-10-10 2003-04-23 Hitachi Ltd Method for measuring thermal resistance of resin and measuring apparatus using the same
JP2006145446A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Thermal conductivity measuring device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261963A (en) * 1995-03-27 1996-10-11 Rigaku Corp Sample heating device for thermal analyzer
JP2003121397A (en) * 2001-10-10 2003-04-23 Hitachi Ltd Method for measuring thermal resistance of resin and measuring apparatus using the same
JP2006145446A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Thermal conductivity measuring device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322183B1 (en) 2013-06-13 2013-10-28 한국지질자원연구원 Vertical type device for measuring thermal conductivity of rocks and using method of the same

Similar Documents

Publication Publication Date Title
Herrlin Rack Cooling Effectiveness in Data Centers and Telecom Central Offices: The Rack Cooling Index (RCI).
Brakmann et al. Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin fins
Manca et al. Experimental investigation of mixed convection in a channel with an open cavity
Lin et al. Experiment investigation of a two-stage thermoelectric cooler under current pulse operation
CN104833695A (en) Infrared thermal imaging technology-based method for measuring heat conductivity of sheet metal based on
Chiang Modeling and optimization of designing parameters for a parallel-plain fin heat sink with confined impinging jet using the response surface methodology
Kumar Hotta et al. Optimal distribution of discrete heat sources under mixed convection—a heuristic approach
JP2011102768A (en) Measuring method of heat characteristic
Chen et al. Analytical analysis and experimental verification of trapezoidal fin for assessment of heat sink performance and material saving
CN113092523A (en) Device and method for testing heat-conducting property of thin-film material
Wang et al. Airflow management on the efficiency index of a container data center having overhead air supply
EP3051278B1 (en) 3d thermal diffusivity
Maystrenko et al. Structure of the thermal boundary layer for turbulent Rayleigh-Bénard convection of air in a long rectangular enclosure
JP2008134111A (en) Thermal resistance measuring device
Michał et al. Evaluating the influence of radiative heat flux on convective heat transfer from a vertical plate in air using an improved heating plate
CN105717157A (en) Device and method for rapidly testing effective thermal conductivity of porous metal material on basis of guarded hot plate method
Lu et al. Experimental and numerical study of the effect of conjugate heat transfer on film cooling
CN105658029A (en) Modeling calculation method for radiator
Ahamad et al. A simple thermal model for mixed convection from protruding heat sources
Das et al. Estimation of convective heat transfer coefficient from transient liquid crystal data using an inverse technique
Mukerji et al. Discrete Green’s function measurements in a single passage turbine model
Choueiri et al. An experimental study of natural convection in vertical, open-ended, concentric, and eccentric annular channels
Noh et al. Critical heat flux in various inclined rectangular straight surface channels
KR101813952B1 (en) A Method for Measuring a Heating Value and an Apparatus for the Same
Wong et al. Experimental evaluation of air-cooling electronics at high altitudes

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Effective date: 20110428

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Effective date: 20110927

Free format text: JAPANESE INTERMEDIATE CODE: A02