JP2008026179A - Radiant heat sensor and method of measuring radiant heat - Google Patents

Radiant heat sensor and method of measuring radiant heat Download PDF

Info

Publication number
JP2008026179A
JP2008026179A JP2006199741A JP2006199741A JP2008026179A JP 2008026179 A JP2008026179 A JP 2008026179A JP 2006199741 A JP2006199741 A JP 2006199741A JP 2006199741 A JP2006199741 A JP 2006199741A JP 2008026179 A JP2008026179 A JP 2008026179A
Authority
JP
Japan
Prior art keywords
heat
radiant heat
temperature
thermoelectric element
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006199741A
Other languages
Japanese (ja)
Inventor
Kenichi Touzaki
健一 東崎
Kalyan Sou
カリヤン スー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2006199741A priority Critical patent/JP2008026179A/en
Publication of JP2008026179A publication Critical patent/JP2008026179A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a highly useful high precision radiant heat sensor even with an extremely simple configuration. <P>SOLUTION: (1) Because measurement is performed while exhausting heat from a light reception surface so that a temperature of the light reception surface for the radiant heat is kept equal to the temperature of a measurement environment, outflow of heat from the light reception surface to the surroundings of the incident side does not occur, thereby performing precise measurement. (2) A thermoelectric element is used for the measurement of a heat flow value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、輻射熱センサーと輻射熱測定方法に関する。 The present invention relates to a radiant heat sensor and a radiant heat measurement method.

ある物体からどれだけの光放射や輻射エネルギーが放出されているか、あるいはある場所にどれだけの光放射や輻射エネルギーが到達しているかを正確に知る事は、熱・エネルギー管理上重要である。その事によってエネルギーの無駄な流出を防ぐ対策を立てることができ、また過剰なエネルギーの集積によって高温になる危険性を予知する事ができる。また現在広く使用されている赤外線放射温度計の較正にも使用できる。 It is important for heat and energy management to know exactly how much light radiation and radiant energy is emitted from a certain object or how much light radiation and radiant energy reaches a certain place. By doing so, it is possible to take measures to prevent the wasteful flow of energy, and it is possible to predict the danger of high temperatures due to excessive energy accumulation. It can also be used to calibrate infrared radiation thermometers that are widely used today.

そこで、従来より、サーミスタや熱伝対を用いた輻射熱センサーが提案されている。
例えば、前面を開口させた逆おわん状の凹面鏡と、この凹面鏡の焦点付近に設けたサーミスタを設け、上記凹面鏡によって外部からの輻射熱を、該サーミスタに集める輻射熱センサーが開示されている。(特許文献1)
また、輻射熱受熱物体を、ガラスおよび密閉栓で作った真空密閉室の中に支持ピンで固定し、熱電対測温部を、輻射熱受熱物体に接合し、熱電対導線を密閉栓を通して真空密閉室の外へ導き、輻射熱受熱物体には輻射加熱による入熱のみとして、輻射熱受熱物体に接合した熱電対の測温部により輻射伝熱量のみを測定する輻射熱センサーが開示されている。(特許文献2)
あるいは、特性の等しい2個の感熱素子と2個の抵抗でブリッジ回路を組み、切替え手段を設けて、該2個の感熱素子を輻射熱の検出素子か雰囲気温度の補償素子に切り替え、切り替えたときの2個の感熱素子と2個の抵抗のそれぞれの中点の電位差を差動増幅器で増幅してその出力電圧を、それぞれ記憶回路部に記憶し、その差を演算回路で演算して検出値とすることにより、感度が2倍でかつ周囲温度の変動による検出値の変動が極めて小さくなり測定精度が向上させた輻射熱センサーが開示されている。(特許文献3)
Thus, conventionally, a radiant heat sensor using a thermistor or a thermocouple has been proposed.
For example, there is disclosed a radiant heat sensor in which an inverted bowl-shaped concave mirror having an open front surface and a thermistor provided near the focal point of the concave mirror are provided, and radiant heat from the outside is collected by the concave mirror. (Patent Document 1)
In addition, a radiant heat receiving object is fixed with a support pin in a vacuum sealed chamber made of glass and a sealing plug, a thermocouple temperature measuring unit is joined to the radiant heat receiving object, and a thermocouple conductor is connected to the vacuum sealed chamber through the sealing plug. A radiant heat sensor is disclosed in which only a heat input by radiant heating is introduced into a radiant heat receiving object, and only a radiant heat transfer amount is measured by a temperature measuring part of a thermocouple joined to the radiant heat receiving object. (Patent Document 2)
Alternatively, when a bridge circuit is assembled with two thermosensitive elements having the same characteristics and two resistors, a switching means is provided, and the two thermosensitive elements are switched to a radiant heat detection element or an ambient temperature compensation element and switched. A differential amplifier amplifies the potential difference at the midpoint between each of the two thermosensitive elements and the two resistors, and stores the output voltage in the memory circuit unit. Thus, there is disclosed a radiant heat sensor in which the sensitivity is doubled, and the fluctuation of the detection value due to the fluctuation of the ambient temperature is extremely small and the measurement accuracy is improved. (Patent Document 3)

特開平5−079676号公報JP-A-5-079676 特開平7−128149号公報JP-A-7-128149 特開平9−005169号公報Japanese Patent Laid-Open No. 9-005169

しかし、従来の輻射熱センサーでは、以下のような課題があり、正確な輻射熱の測定には不十分であった。
特許文献1は、輻射熱流測定法・装置は輻射熱によって受光面温度が上昇する現象を用い、その上昇温度より入射エネルギー量を算出するものである。この方法では受光面温度の上昇によって高温の受光面から入射側周囲への熱流出が起こり、正確な入射エネルギー量を測定することが難しい。
However, the conventional radiant heat sensor has the following problems and is insufficient for accurate radiant heat measurement.
In Patent Document 1, the radiation heat flow measurement method / apparatus uses a phenomenon in which the temperature of the light receiving surface increases due to radiant heat, and calculates the amount of incident energy from the increased temperature. In this method, heat flows out from the high temperature light receiving surface to the incident side due to the rise in the light receiving surface temperature, and it is difficult to accurately measure the amount of incident energy.

このため、特許文献2は、受光面温度の上昇の影響を防ぐため、少なくとも輻射熱受熱面に黒色メッキや黒色塗料等輻射熱を吸収しやすい皮膜を施した物体を、少なくとも一部分を、ガラス等輻射熱を透過する材料で作った真空又は減圧した密閉容器内に固定することにより輻射加熱のみを吸収する構造とし、外部から赤外線放射温度計等でこの物体の温度上昇を計測することを特徴とする。しかしながら、輻射熱を吸収しやすい皮膜を施した物体を、真空又は減圧した密閉容器内に固定するため、製造することが難しい。また、この方法では検出器周辺の空気等による熱伝導や対流による熱流出はなくせるが、輻射による熱放出は減らすことができない。 Therefore, in Patent Document 2, in order to prevent the influence of the rise in the temperature of the light receiving surface, at least a part of an object having a coating that easily absorbs radiant heat such as black plating or black paint is applied to at least a part of the radiant heat receiving surface, and radiant heat such as glass is applied. It is characterized in that it is structured to absorb only radiant heating by being fixed in a vacuum or reduced pressure sealed container made of a transmitting material, and the temperature rise of this object is measured from the outside with an infrared radiation thermometer or the like. However, it is difficult to manufacture an object provided with a film that easily absorbs radiant heat in a sealed container that is vacuumed or decompressed. Also, this method can eliminate heat conduction due to air around the detector and heat outflow due to convection, but it cannot reduce heat release due to radiation.

特許文献3は、サーミスタボロメータタイプの輻射熱センサーである。2つのセンサーを切り替えるための切替え手段、例えば、回転する反射鏡の角度を変えて輻射熱をどちらか一方の感熱素子に交互に切り替え、または、感熱素子を薄膜状に形成して断熱シートを挟んで貼り合わせモータで回転して、どちらか一方の感熱素子が輻射熱を検知するようにモータの回転角度を制御して交互に切り替える装置が必要になる。ここでも昇温部からの熱リークをなくすことはできない。また、サーミスタの経年劣化により、更正が必要になる。そこで、本発明はかかる事情に鑑みてなされたものであり、極めて簡単な構成で、高精度な輻射熱センサーの提供を目的とする。 Patent Document 3 is a thermistor bolometer type radiant heat sensor. Switching means for switching between the two sensors, for example, changing the angle of the rotating reflector to alternately switch the radiant heat to one of the heat sensitive elements, or forming the heat sensitive element into a thin film and sandwiching the heat insulating sheet A device that controls the rotation angle of the motor and switches it alternately so that either one of the heat-sensitive elements detects radiant heat by rotating with the bonding motor is required. Again, heat leaks from the temperature riser cannot be eliminated. Also, thermistors need to be corrected due to aging. Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a highly accurate radiant heat sensor with an extremely simple configuration.

本発明者らは、先に「熱電素子の特性評価法」などを特許出願し、熱電素子を熱流センサーとして用いた高感度・高信頼度の熱測定法・装置を開発し、使用している。また「組立式机上実験システム」に関する特許出願し、机上スペースで使用可能な小型の実験装置開発を継続している。この組立式机上実験システムで、輻射熱エネルギーの実験に使用される輻射熱センサーを、鋭意、開発した。 The present inventors previously filed a patent application for a method for evaluating the characteristics of thermoelectric elements, and developed and used a highly sensitive and reliable thermal measurement method and apparatus using the thermoelectric element as a heat flow sensor. . In addition, we have applied for a patent related to the “assembled desktop experiment system” and are continuing to develop a small experimental device that can be used in a desktop space. With this assembly-type desktop experiment system, we have intensively developed a radiant heat sensor used for radiant heat energy experiments.

そこで、上記課題を解決するために、輻射熱の受光面温度が測定環境の温度と等しく保たれるように受光面から排熱しながら、該排熱量の測定を行えば、受光面から入射側周囲への熱流出が起こらず、精確な測定ができること。また、熱流値の測定に熱電素子を用いれば、構造がシンプルであることに着目した。そこで、本発明を以下のように構成する。 Therefore, in order to solve the above-mentioned problem, if the amount of exhaust heat is measured while exhausting heat from the light receiving surface so that the temperature of the light receiving surface of radiant heat is kept equal to the temperature of the measurement environment, Accurate measurement is possible without any heat outflow. In addition, attention is paid to the fact that the structure is simple if a thermoelectric element is used to measure the heat flow value. Therefore, the present invention is configured as follows.

請求項1の発明は、熱電素子対(2)を基板(3A、B)で挟んだ熱電素子(1)と、該基板(3A)の一方に配設された排熱部(4)と、該基板(3A)と該排熱部(4)の接合部に配設した温度センサー(5)と、他方の基板(3B)に配設した温度センサー(6)を有することを特徴とする輻射熱センサーである。 The invention of claim 1 includes a thermoelectric element (1) in which a thermoelectric element pair (2) is sandwiched between substrates (3A, B), an exhaust heat section (4) disposed on one of the substrates (3A), Radiant heat characterized by having a temperature sensor (5) disposed at the junction between the substrate (3A) and the exhaust heat section (4) and a temperature sensor (6) disposed on the other substrate (3B). It is a sensor.

請求項2の発明は、上記基板(3A)と排熱部(4)の接合部に配設した温度センサー(5)が、周辺温度と一致するように制御する温度制御部を有することを特徴とする請求項1記載の輻射熱センサーである。 The invention according to claim 2 is characterized in that the temperature sensor (5) disposed at the junction between the substrate (3A) and the exhaust heat section (4) has a temperature control section for controlling the temperature sensor to match the ambient temperature. The radiant heat sensor according to claim 1.

請求項3の発明は、上記他方の基板(3A)の温度センサー(5)により検出した温度と周辺温度が同じになるように、熱電素子(1)に電流を供給する電流供給部を有することを特徴とする請求項1または2記載の輻射熱センサーである。 The invention of claim 3 has a current supply part for supplying current to the thermoelectric element (1) so that the temperature detected by the temperature sensor (5) of the other substrate (3A) and the ambient temperature are the same. The radiant heat sensor according to claim 1 or 2.

請求項4の発明は、熱電素子(1)の端子間電圧を測定する電圧測定部を有することを特徴とする請求項1から3いずれか1項に記載の輻射熱センサーである。 Invention of Claim 4 has a voltage measurement part which measures the voltage between terminals of thermoelectric element (1), It is a radiant heat sensor of any one of Claim 1 to 3 characterized by the above-mentioned.

請求項5の発明は、上記基板(3B)の表面は黒体であることを特徴とする請求項1から4いずれか1項に記載の輻射熱センサーである。 The invention according to claim 5 is the radiant heat sensor according to any one of claims 1 to 4, wherein the surface of the substrate (3B) is a black body.

請求項6の発明は、上記熱電素子(1)は、複数の熱電素子対(2)を組み合わせたサーモモジュールであることを特徴とする請求項1から5いずれか1項に記載の輻射熱センサーである。 The invention according to claim 6 is the radiant heat sensor according to any one of claims 1 to 5, wherein the thermoelectric element (1) is a thermo module in which a plurality of thermoelectric element pairs (2) are combined. is there.

請求項7の発明は、外部からの輻射熱を受光面に集め、受光面温度が測定環境の温度と等しく保たれるように受光面から排熱して、該排熱量を測定し、該排熱量を受光輻射熱量とすることを特徴とする輻射熱の測定方法である。
請求項8の発明は、外部からの輻射熱を、受光面を有する熱電素子に集め、該輻射熱の受光面温度が測定環境の温度と等しく保たれるように該熱電素子の受光面から排熱し、該熱電素子の端子間電位差を測定し、該測定値により、排熱量を決定することを特徴とする請求項7記載の輻射熱の測定方法である。
The invention of claim 7 collects radiant heat from the outside on the light receiving surface, exhausts heat from the light receiving surface so that the temperature of the light receiving surface is kept equal to the temperature of the measurement environment, measures the amount of exhaust heat, and determines the amount of exhaust heat. A method for measuring radiant heat, characterized in that the amount of received radiant heat is used.
The invention of claim 8 collects radiant heat from the outside in a thermoelectric element having a light receiving surface, and exhausts heat from the light receiving surface of the thermoelectric element so that the light receiving surface temperature of the radiant heat is kept equal to the temperature of the measurement environment. 8. The method of measuring radiant heat according to claim 7, wherein a potential difference between terminals of the thermoelectric element is measured, and an amount of exhaust heat is determined based on the measured value.

請求項8の発明は、外部からの輻射熱を、受光面を有する熱電素子に集め、該輻射熱の受光面温度が測定環境の温度と等しく保たれるように該熱電素子の受光面から排熱し、該熱電素子の端子間電位差を測定し、該測定値により、排熱量を決定することを特徴とする請求項7記載の輻射熱の測定方法である。 The invention of claim 8 collects radiant heat from the outside in a thermoelectric element having a light receiving surface, and exhausts heat from the light receiving surface of the thermoelectric element so that the light receiving surface temperature of the radiant heat is kept equal to the temperature of the measurement environment. 8. The method of measuring radiant heat according to claim 7, wherein a potential difference between terminals of the thermoelectric element is measured, and an amount of exhaust heat is determined based on the measured value.

上記のように構成した本発明は、輻射熱の受光面温度が測定環境の温度と等しく保たれるように受光面から排熱しながら測定を行うので、光面温度の上昇によって高温の受光面から入射側周囲への熱流出が起らず、正確な入射エネルギー量を測定することができる。 The present invention configured as described above performs measurement while exhausting heat from the light receiving surface so that the temperature of the light receiving surface of the radiant heat is kept equal to the temperature of the measurement environment. It is possible to accurately measure the amount of incident energy without heat flowing out to the side periphery.

また、熱流値の測定に熱電素子を用いているので構造が比較的シンプルである。真空又は減圧した密閉容器内に固定する必要がないため製造が容易であり、小型化も可能である。従って, 机上スペースで、組み立て使用可能な小型の実験装置のモジュールとして、実施することができる。 Further, since a thermoelectric element is used for measuring the heat flow value, the structure is relatively simple. Since it is not necessary to fix it in a vacuum or reduced pressure sealed container, it is easy to manufacture and can be miniaturized. Therefore, it can be implemented as a small experimental device module that can be assembled and used in a desktop space.

以下に、この発明の実施形態(以下本発明という)を、図面により説明する。なお、本発明の技術的範囲は、実施例に限定されるものではない。 Embodiments of the present invention (hereinafter referred to as the present invention) will be described below with reference to the drawings. The technical scope of the present invention is not limited to the examples.

(基本構造)
熱電素子(サーモモジュール、TM)1を熱流センサーとして使用する。TMの配置を図1aに示す。TM1は、多数の熱電素子対(TE)2を、二つの絶縁基板(A,B)3ではさんだ構造になっている。片方の基板3Aを、排熱部(HS)4に取付け、その接合部に温度センサー(TS1)5を取付ける。排熱部は、スタックフィン、空冷ファン、ペルチェモジュール、ヒートパイプ、水冷ヒートシンク等の様々な放熱部品を用いることができる。
(温度制御)
(Basic structure)
A thermoelectric element (thermo module, TM) 1 is used as a heat flow sensor. The TM arrangement is shown in FIG. TM1 has a structure in which a large number of thermoelectric element pairs (TE) 2 are sandwiched between two insulating substrates (A, B) 3. One substrate 3A is attached to the heat exhausting portion (HS) 4, and the temperature sensor (TS1) 5 is attached to the joint. Various heat radiation components such as a stack fin, an air cooling fan, a Peltier module, a heat pipe, and a water-cooled heat sink can be used for the exhaust heat unit.
(Temperature control)

上記のように構成した本発明において、TS1での温度が、周辺温度Trと一致するように、制御する。TMの他方の基板3Bを、輻射熱の受光部とし、該基板3Bの受光表面に、温度センサー(TS2)6を取付ける。受光表面に一定の輻射熱JRを入射させるとTS2の温度は上昇し、やがて定常値Tsに達する。
(TN内部の熱流)
In the present invention configured as described above, control is performed so that the temperature at TS1 matches the ambient temperature Tr. The other substrate 3B of TM is used as a radiant heat receiving portion, and a temperature sensor (TS2) 6 is attached to the light receiving surface of the substrate 3B. When constant radiant heat JR is incident on the light receiving surface, the temperature of TS2 rises and eventually reaches a steady value Ts.
(The heat flow inside the TN)

TM1に、電流Iを流しペルティエ熱輸送を起こすと、Tsの値は変化する。例えば、スイッチング電源により、この電流の向きと大きさを適当な値に調節すると、Ts=Trとすることができる。このときの電流をI0とする。このとき、TM1内部の温度分布は図1bのようになっていて、TE2上下の接点間には温度差△Tができている。 When current I is passed through TM1 and Peltier heat transport occurs, the value of Ts changes. For example, Ts = Tr can be obtained by adjusting the direction and magnitude of this current to an appropriate value by a switching power supply. The current at this time is I 0 . At this time, the temperature distribution inside TM1 is as shown in FIG. 1b, and there is a temperature difference ΔT between the upper and lower contacts of TE2.

また、TM1内部の熱流は図1a中の矢印のようになっている。ここでJRは入射する輻射熱流、Jrは受光表面での反射熱流、JNBは基板3B中の伝導熱流、JNEはTE2中の伝導熱流、JPはペルティエ輸送熱、JNAは基板A中の伝導熱流、JNHSは、HS4中の伝導熱流である。TM中を流れる熱流JNは、以下のようになる。
(輻射熱の測定)
Also, the heat flow inside TM1 is as shown by the arrows in FIG. 1a. Where J R is the incident radiant heat flow, Jr is the reflected heat flow at the light receiving surface, J NB is the conduction heat flow in the substrate 3B, J NE is the conduction heat flow in TE2, J P is the Peltier transport heat, and J NA is the substrate A The conduction heat flow in, J NHS, is the conduction heat flow in HS4. The heat flow J N flowing through the TM is as follows.
(Measurement of radiant heat)

そこで、図2に示すブロック図の回路構成で、通電中のTM7の端子間電位差Vmを測定すれば、JNの値は次式で求まる(本発明者らによる参考文献1を参照)。なお、図中で、7は、TM)(サーモモジュール)、8は排熱部を示す。
ここでnは熱電素子の対数、Πはペルティエ係数、ηはゼーベック係数、ZはTEの熱抵抗、RはTEの電気抵抗である。Π、η、Z、Rの値は、本発明者らによる参考文献2で述べた方法で測定することができる。図3に、上記測定ステップの一例を示す。これらを、パーソナルコンピュータにより制御して、測定結果を表示する。
(高精度化)
Accordingly, (see by the inventors reference 1) in the circuit configuration of the block diagram shown in FIG. 2, by measuring the potential difference V m between TM7 terminals in conduction, the value of J N is the determined by the following equation. In the figure, 7 is TM) (thermo module), and 8 is a heat exhausting part.
Here, n is the logarithm of the thermoelectric element, Π is the Peltier coefficient, η is the Seebeck coefficient, Z is the thermal resistance of TE, and R is the electrical resistance of TE. The values of Π, η, Z, and R can be measured by the method described in Reference 2 by the present inventors. FIG. 3 shows an example of the measurement step. These are controlled by a personal computer to display the measurement results.
(High precision)

なお、受光表面での反射熱流Jrは、受光表面の状態に依存する。少なくとも、基板3B面
を黒体にすることで、これを減らす事ができる。
(本発明者らによる参考文献)
The reflected heat flow Jr on the light receiving surface depends on the state of the light receiving surface. This can be reduced at least by making the surface of the substrate 3B a black body.
(References by the inventors)

1) K.Tozaki, Y.Kido, Y.Koga and K.Nishikawa; Novel
Method of Measuring Heat Capacity of Supercritical Fluid Using Peltier
Elements, Jpn. J. Appl. Phys., 45 (2006) 269-273
2) K.Tozaki and K. Sou; Novel Determination of
Peltier Coefficient, Seebeck Coefficient and Thermal Resistance of
Thermoelectric Module, Jpn. J. Appl. Phys.45 (2006) 5272-5273
1) K. Tozaki, Y. Kido, Y. Koga and K. Nishikawa; Novel
Method of Measuring Heat Capacity of Supercritical Fluid Using Peltier
Elements, Jpn. J. Appl. Phys., 45 (2006) 269-273
2) K. Tozaki and K. Sou; Novel Determination of
Peltier Coefficient, Seebeck Coefficient and Thermal Resistance of
Thermoelectric Module, Jpn. J. Appl. Phys. 45 (2006) 5272-5273

上記のように、本発明は、極めて簡単な構成にも関わらず、極めて簡単な構成で、高精度な輻射熱センサーが実現できるので、極めて有用である。 As described above, the present invention is extremely useful because a highly accurate radiant heat sensor can be realized with an extremely simple configuration in spite of an extremely simple configuration.

本発明の輻射熱センサーの構成と内部の熱の流れ(a)、TM内部の温度分布(b)。Configuration of the radiant heat sensor of the present invention, internal heat flow (a), TM internal temperature distribution (b). 本発明の測定系のブロック図。The block diagram of the measurement system of this invention. 本発明の測定工程Measurement process of the present invention

符号の説明Explanation of symbols

1…熱電素子(サーモモジュール、TM)
2…熱電素子対(TE)
3…基板(A、B)
4…排熱部
5…温度センサー(TS1)5
6…温度センサー(TS2 )6
7…熱電素子(サーモモジュール、TM)
8…排熱部

1 ... Thermoelectric element (Thermo module, TM)
2 ... Thermoelectric element pair (TE)
3 ... Board (A, B)
4 ... Waste heat section 5 ... Temperature sensor (TS1) 5
6 ... Temperature sensor (TS2) 6
7 ... Thermoelectric element (Thermo module, TM)
8 ... Waste heat section

Claims (8)

熱電素子対(2)を基板(3A、B)で挟んだ熱電素子(1)と、
該基板(3A)の一方に配設された排熱部(4)と、
該基板(3A)と該排熱部(4)の接合部に配設した温度センサー(5)と、
他方の基板(3B)に配設した温度センサー(6)とを有することを特徴とする輻射熱センサー。
A thermoelectric element (1) having a thermoelectric element pair (2) sandwiched between substrates (3A, B);
An exhaust heat section (4) disposed on one side of the substrate (3A);
A temperature sensor (5) disposed at a joint between the substrate (3A) and the exhaust heat section (4);
A radiant heat sensor comprising a temperature sensor (6) disposed on the other substrate (3B).
上記基板(3A)と排熱部(4)の接合部に配設した温度センサー(5)が、周辺温度と一致するように制御する温度制御部を有することを特徴とする請求項1記載の輻射熱センサー。 The temperature sensor (5) disposed at the junction between the substrate (3A) and the exhaust heat section (4) has a temperature control section for controlling the temperature sensor to match the ambient temperature. Radiant heat sensor. 上記他方の基板(3A)の温度センサー(5)により検出した温度と周辺温度が同じになるように、熱電素子(1)に電流を供給する電流供給部を有することを特徴とする請求項1または2記載の輻射熱センサー。 2. A current supply unit for supplying current to the thermoelectric element (1) so that the temperature detected by the temperature sensor (5) of the other substrate (3A) and the ambient temperature are the same. Or the radiant heat sensor of 2. 熱電素子(1)の端子間電圧を測定する電圧測定部を有することを特徴とする請求項1から3いずれか1項に記載の輻射熱センサー。 The radiant heat sensor according to any one of claims 1 to 3, further comprising a voltage measuring unit that measures a voltage between terminals of the thermoelectric element (1). 上記基板(3)の表面は黒体であることを特徴とする請求項1から4いずれか1項に記載の輻射熱センサー。 The radiant heat sensor according to any one of claims 1 to 4, wherein the surface of the substrate (3) is a black body. 上記熱電素子(1)は、複数の熱電素子対(2)を組み合わせたサーモモジュールであることを特徴とする請求項1から5いずれか1項に記載の輻射熱センサー。 The radiant heat sensor according to any one of claims 1 to 5, wherein the thermoelectric element (1) is a thermo module in which a plurality of thermoelectric element pairs (2) are combined. 外部からの輻射熱を受光面に集め、受光面温度が測定環境の温度と等しく保たれるように受光面から排熱して、該排熱量を測定し、該排熱量を受光輻射熱量とすることを特徴とする輻射熱の測定方法。 Collecting radiant heat from the outside to the light receiving surface, exhausting heat from the light receiving surface so that the temperature of the light receiving surface is kept equal to the temperature of the measurement environment, measuring the amount of exhausted heat, and making the amount of exhausted heat the amount of received radiant heat A characteristic method of measuring radiant heat. 外部からの輻射熱を、受光面を有する熱電素子に集め、該輻射熱の受光面温度が測定環境の温度と等しく保たれるように該熱電素子の受光面から排熱し、該熱電素子の端子間電位差を測定し、該測定値により、排熱量を決定することを特徴とする請求項7記載の輻射熱の測定方法。
Radiation heat from the outside is collected in a thermoelectric element having a light receiving surface, and the temperature of the light receiving surface of the radiant heat is exhausted from the light receiving surface of the thermoelectric element so as to be kept equal to the temperature of the measurement environment. The method of measuring radiant heat according to claim 7, wherein the amount of exhaust heat is determined from the measured value.
JP2006199741A 2006-07-21 2006-07-21 Radiant heat sensor and method of measuring radiant heat Withdrawn JP2008026179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199741A JP2008026179A (en) 2006-07-21 2006-07-21 Radiant heat sensor and method of measuring radiant heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199741A JP2008026179A (en) 2006-07-21 2006-07-21 Radiant heat sensor and method of measuring radiant heat

Publications (1)

Publication Number Publication Date
JP2008026179A true JP2008026179A (en) 2008-02-07

Family

ID=39116951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199741A Withdrawn JP2008026179A (en) 2006-07-21 2006-07-21 Radiant heat sensor and method of measuring radiant heat

Country Status (1)

Country Link
JP (1) JP2008026179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120215A (en) * 2015-12-28 2017-07-06 日置電機株式会社 Radiation heat detection device and radiation heat measurement device
JP2020030220A (en) * 2019-11-21 2020-02-27 日置電機株式会社 Radiation heat detection device and radiation heat measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120215A (en) * 2015-12-28 2017-07-06 日置電機株式会社 Radiation heat detection device and radiation heat measurement device
JP2020030220A (en) * 2019-11-21 2020-02-27 日置電機株式会社 Radiation heat detection device and radiation heat measurement device

Similar Documents

Publication Publication Date Title
US6129673A (en) Infrared thermometer
US7371006B2 (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
JP4502256B2 (en) Flow sensor
KR100628283B1 (en) Infrared sensor stabilisable in temperature, and infrared thermometer with a sensor of this type
KR20000076051A (en) Thermopile sensor and radiation thermometer with a thermopile sensor
US8556501B2 (en) Mini-cell, on-orbit, temperature re-calibration apparatus and method
KR100539205B1 (en) Measuring tip for a radiation thermometer
JP2008145133A (en) Radiation thermometer
JP2013531248A (en) Infrared temperature measurement and stabilization
US20030016729A1 (en) Probe for use in an infrared thermometer
JPH0666639A (en) Infrared thermometer
JP2012504750A (en) System and method for a temperature sensor using temperature balance
JP2008026179A (en) Radiant heat sensor and method of measuring radiant heat
JPH09264792A (en) Non-contact temperature sensor
JP4580562B2 (en) Non-contact temperature sensor and infrared thermometer using the same
JPH0348127A (en) Noncontact temperature measuring method and temperature sensor
JPH075047A (en) Radiation heat sensor
JP2003156395A (en) Infrared temperature sensor
Ishii et al. Radiation thermometry standards at NMIJ from− 30° C to 2800° C
Rusby Introduction to temperature measurement.
JP4490580B2 (en) Infrared sensor
RU2797313C1 (en) Method for measuring thermal conductivity of solids under conditions of heat exchange with the environment and device for its implementation
JP4400156B2 (en) Laser output monitor
US20230375418A1 (en) Thermopile laser sensor with response time acceleration and methods of use and manufacture
JP3176798B2 (en) Radiant heat sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006