JP2006266964A - Strain control type super-high cycle fatigue testing method and fatigue testing apparatus - Google Patents

Strain control type super-high cycle fatigue testing method and fatigue testing apparatus Download PDF

Info

Publication number
JP2006266964A
JP2006266964A JP2005087548A JP2005087548A JP2006266964A JP 2006266964 A JP2006266964 A JP 2006266964A JP 2005087548 A JP2005087548 A JP 2005087548A JP 2005087548 A JP2005087548 A JP 2005087548A JP 2006266964 A JP2006266964 A JP 2006266964A
Authority
JP
Japan
Prior art keywords
strain
contact
test
test piece
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005087548A
Other languages
Japanese (ja)
Other versions
JP4061341B2 (en
Inventor
Hidekazu Yoshida
英一 吉田
Shoichi Kato
章一 加藤
Susumu Odaka
進 小高
Katsuo Ishigami
勝夫 石上
Noriaki Komine
徳晃 小嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Japan Atomic Energy Agency
Original Assignee
Shimadzu Corp
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Japan Nuclear Cycle Development Institute filed Critical Shimadzu Corp
Priority to JP2005087548A priority Critical patent/JP4061341B2/en
Publication of JP2006266964A publication Critical patent/JP2006266964A/en
Application granted granted Critical
Publication of JP4061341B2 publication Critical patent/JP4061341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a strain control type super-high cycle fatigue testing method and a fatigue testing apparatus therefor, which can carry out a super-high cycle fatigue test for a short period of time. <P>SOLUTION: The testing method comprises; a first step of setting at least a control velocity f and the total strain range Δεt across referring points of a test piece 1; a second step of obtaining a target control range ΔLt of a noncontact type displacement gauge 20 corresponding to the set value of the total strain range across the referring points of the test piece; and a third step of executing a fatigue test under a strain control of the noncontact type displacement gauge while repeatedly applying loads on the test piece at the control velocity f such that the amplitude of a measurement value of the noncontact type displacement gauge is kept constant within the target control range ΔLt. In the second step, a measurement value of the noncontact type displacement gauge and a measurement value of a contact type strain gauge 10 are acquired while repeatedly applying the loads on the test piece at a strain velocity at which the contact type strain gauge can follow motions, and a correlation between both gauges is obtained from those measurement values, and the target control range ΔLt is obtained based on the correlation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超高サイクル域の疲労損傷の評価に用いて好適なひずみ制御による疲労試験方法および疲労試験装置に関するものである。   The present invention relates to a fatigue test method and fatigue test apparatus by strain control suitable for use in evaluating fatigue damage in an ultra-high cycle region.

鉄鋼材料の高サイクル疲労試験では、S−N曲線に水平部が現れ、疲労限が認められるのが一般的である。このため、半永久的に供用される機器構造物などの設計では、上記疲労限を基準とした設計がなされている。しかし、近年における荷重制御による疲労試験の研究例によれば、高強度鋼などでは、107〜108サイクル以上の長寿命域でもS-N 曲線に水平部が現れず、疲労限が認められない現象、若しくはS-N 曲線の二段折れ曲がり現象が報告されている。これらの現象は、鉄鋼材料の高強度化(品質向上)に伴い、多く認められる傾向にある。 In a high cycle fatigue test of steel materials, a horizontal portion appears in the SN curve and a fatigue limit is generally recognized. For this reason, the design of equipment structures and the like used semipermanently is designed based on the fatigue limit. However, according to research examples of fatigue tests using load control in recent years, in high-strength steels and the like, a horizontal part does not appear in the SN curve even in a long life region of 10 7 to 10 8 cycles or more, and the fatigue limit is recognized. No phenomenon or two-stage bending phenomenon of SN curve has been reported. Many of these phenomena tend to be recognized as the strength of steel materials increases (improves quality).

一方、高速増殖炉(FBR)の機器や配管等においては、温度が異なる冷却材の合流部で、流体混合による不規則な温度ゆらぎ(サーマルストライピング)により、接液する構造物に繰返し熱応力が生じることが知られている。プラント供用中に繰返される熱応力は、109サイクル程度までの評価が必要とされており、かような超高サイクル域の疲労損傷を実験的に把握するためには、短時間で実施可能なひずみ制御による超高サイクル疲労試験が必要となってきている。 On the other hand, in fast breeder reactor (FBR) equipment, piping, etc., repeated thermal stress is applied to the wetted structure due to irregular temperature fluctuation (thermal striping) due to fluid mixing at the confluence of coolants with different temperatures. It is known to occur. Thermal stress repeated during plant operation requires evaluation up to about 10 9 cycles, and in order to experimentally grasp fatigue damage in such an ultra-high cycle range, it can be performed in a short time. Ultra high cycle fatigue tests with strain control are becoming necessary.

しかしながら、既存のひずみ制御による疲労試験技術では、109サイクル域の疲労損傷データを1点取得するのに、標準的なひずみ速度(0.1Hz〜1Hz)で30年以上の非常に長い時間を必要とする。
一般に、ひずみ制御方式では、図5(a)に示すように、試験片のひずみ速度を一定に保ちながら、試験片1に対して繰返し荷重(引張力、圧縮力)を作用させることによって疲労試験が行われる(図6参照)。このひずみ制御方式による疲労試験では、試験片1の標点間(試験片平行部)のひずみを計測するために、例えば図7に示すような押当て型のひずみ計10が用いられることから、疲労試験機の制御速度に限界があり、例えば図5(b)に示すように、ひずみ速度が概ね3Hz以上で、ひずみ計10にスベリが生じて、追従性や耐久性の問題が顕在化し、10Hz以上では、まったく使用できない。このため、図7に示すような従来の疲労試験機(低サイクル疲労試験装置)では、上記標準的なひずみ速度で疲労試験を行わざるを得ず、かような制御速度では、低サイクル域の疲労評価データを取得することはできても、107〜108サイクル以上の超高サイクル域の疲労評価データを取得することはできなかった。
However, with existing strain control fatigue test technology, it takes a very long time of 30 years or more at a standard strain rate (0.1 Hz to 1 Hz) to acquire one point of fatigue damage data in the 10 9 cycle region. I need.
In general, in the strain control method, as shown in FIG. 5A, a fatigue test is performed by applying a repeated load (tensile force, compressive force) to the test piece 1 while keeping the strain rate of the test piece constant. Is performed (see FIG. 6). In the fatigue test by this strain control method, for example, a pressing type strain gauge 10 as shown in FIG. 7 is used to measure the strain between the test marks of the test piece 1 (the parallel part of the test piece). There is a limit to the control speed of the fatigue testing machine, for example, as shown in FIG. 5 (b), the strain rate is approximately 3 Hz or more, slippage occurs in the strain gauge 10, and the problems of followability and durability become obvious. It cannot be used at all above 10 Hz. For this reason, in the conventional fatigue tester (low cycle fatigue test apparatus) as shown in FIG. 7, the fatigue test must be performed at the standard strain rate. Even though fatigue evaluation data could be acquired, fatigue evaluation data in an ultrahigh cycle region of 10 7 to 10 8 cycles or more could not be acquired.

なお、近年では、最大1kHzまでの疲労試験機が開発されているが、何れも荷重制御方式(すなわち、試験片に繰返し作用させる荷重が一定の制御方式)によるものであり、この荷重制御方式の場合、図8(a)および図8(b)に示すように、荷重が一定であっても繰返し数に応じてひずみ量が変動することから、上述したような繰返し熱応力による超高サイクル域の疲労損傷の評価に適用することはできなかった。   In recent years, fatigue testing machines up to 1 kHz have been developed, but all are based on a load control system (that is, a control system with a constant load applied to the test piece). In this case, as shown in FIGS. 8A and 8B, even if the load is constant, the amount of strain varies depending on the number of repetitions. It could not be applied to the evaluation of fatigue damage.

本発明は、かかる事情に鑑みてなされたもので、ひずみ制御による107〜109サイクル以上の超高サイクル疲労試験をより短時間で実施することができ、しかも従来型の低サイクル疲労試験の疲労寿命データと同等の評価を行うことができるひずみ制御型超高サイクル疲労試験方法および疲労試験装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and can perform an ultra-high cycle fatigue test of 10 7 to 10 9 cycles or more by strain control in a shorter time, and moreover, a conventional low cycle fatigue test. An object of the present invention is to provide a strain control type ultra-high cycle fatigue test method and a fatigue test apparatus capable of performing an evaluation equivalent to the fatigue life data.

本発明に係るひずみ制御型超高サイクル疲労試験方法は、試験片の標点間のひずみを計測可能な接触式ひずみ計と、試験片に荷重を作用させたときの計測点の変位を非接触で計測可能な非接触式変位計とを用いて、ひずみ制御により試験片の疲労試験を行う試験方法であって、試験条件として、少なくとも試験片の標点間の全ひずみ範囲(試験片標点間の全変形量を標点間距離で除した値に100をかけたもの)および制御速度を設定する第1工程と、上記試験片の標点間の全ひずみ範囲の設定値に相当する非接触式変位計の目標制御範囲を求める第2工程と、上記制御速度で且つ非接触式変位計の計測値の振幅が上記目標制御範囲で一定となるように試験片に繰返し荷重を作用させて、非接触式変位計によるひずみ制御下で疲労試験を行う第3工程とを有し、上記第2工程では、接触式ひずみ計が追従可能なひずみ速度で試験片に繰返し荷重を作用させたときの接触式ひずみ計の計測値と、非接触式変位計の計測値とを取得し、それら計測値から両者の相関関係を求めて、当該相関関係に基づいて、上記試験片の標点間の全ひずみ範囲の設定値に相当する非接触式変位計の目標制御範囲を求めるようにしたことを特徴とするものである。   The strain-controlled ultra-high cycle fatigue test method according to the present invention includes a contact-type strain gauge capable of measuring strain between test specimens and a non-contact displacement of a measurement point when a load is applied to the test specimen. Is a test method for performing a fatigue test on a test piece by strain control using a non-contact displacement meter that can be measured by the test method, and the test condition is at least the total strain range between the test specimens (test specimen standard) (The value obtained by dividing the total amount of deformation by the distance between the gauge points multiplied by 100) and the first step of setting the control speed, and the non-corresponding to the set value of the total strain range between the gauge points of the test specimen A second step of determining a target control range of the contact displacement meter, and a load repeatedly applied to the test piece so that the amplitude of the measured value of the non-contact displacement meter is constant within the target control range at the control speed. , Fatigue tests under strain control by non-contact displacement meter In the second step, the measured value of the contact strain gauge when a load is repeatedly applied to the specimen at a strain rate that can be followed by the contact strain gauge, and the non-contact displacement gauge The measurement value is obtained, the correlation between the two is obtained from the measurement value, and based on the correlation, the target of the non-contact displacement meter corresponding to the set value of the total strain range between the gauge points of the test piece is obtained. The control range is obtained.

上記ひずみ制御型超高サイクル疲労試験方法においては、上記第1工程〜上記第3工程を順に実行した後、応力変動率が所定値に達する都度、或いは繰返し数が所定回数に達する都度、上記第2工程および上記第3工程を繰り返し行うようにすることが好ましい。また、上記第2工程では、試験片の標点間のひずみを計測できるように、接触式ひずみ計を試験片に接触する位置に配置する一方、上記第3工程では、試験片から離間した位置に接触式ひずみ計を配置することが望ましい。   In the strain control type ultra-high cycle fatigue test method, the first step to the third step are sequentially performed, and then the stress fluctuation rate reaches a predetermined value or the number of repetitions reaches a predetermined number of times. It is preferable to repeat the two steps and the third step. In the second step, the contact-type strain gauge is arranged at a position in contact with the test piece so that the strain between the test points of the test piece can be measured. In the third step, the position is separated from the test piece. It is desirable to arrange a contact-type strain gauge in

また、本発明に係るひずみ制御型超高サイクル疲労試験装置は、上下のチャック間に装着された試験片に対して引張力と圧縮力を与えるための負荷部と、試験片のひずみを計測するための計測部と、この計測部の計測結果に基づいて各部の制御を行う制御部とを備え、ひずみ制御により試験片の疲労試験を行う試験装置であって、上記計測部は、試験片の標点間のひずみを計測可能な接触式ひずみ計と、試験片に荷重を作用させたときの計測点の変位を非接触で計測可能な非接触式変位計との組合せにより構成され、上記制御部は、試験開始前若しくは試験中に、接触式ひずみ計が追従可能なひずみ速度で試験片に繰返し荷重を作用させたときの接触式ひずみ計の計測値と、非接触式変位計の計測値とを取得し、それら計測値から両者の相関関係を求めて、当該相関関係に基づいて、上記試験片の標点間の全ひずみ範囲の設定値に相当する非接触式変位計の目標制御範囲を求め、その後、非接触式変位計の計測値の振幅が上記目標制御範囲で一定となるように試験片に繰返し荷重を作用させる制御を行うようになっていることを特徴とするものである。   In addition, the strain control type ultra-high cycle fatigue testing apparatus according to the present invention measures a load portion for applying a tensile force and a compressive force to a test piece mounted between upper and lower chucks, and a strain of the test piece. And a control unit that controls each unit based on the measurement result of the measurement unit, and performs a fatigue test of the test piece by strain control. Consists of a combination of a contact-type strain gauge that can measure strain between gauge points and a non-contact-type displacement meter that can measure the displacement of the measurement point when a load is applied to the test piece in a non-contact manner. The measured value of the contact-type strain gauge when a load is repeatedly applied to the specimen at a strain rate that can be followed by the contact-type strain gauge and the measured value of the non-contact-type displacement gauge before or during the test. And the correlation between the two from the measured values Based on the correlation, the target control range of the non-contact displacement meter corresponding to the set value of the total strain range between the test specimens of the test piece is determined, and then the measurement of the non-contact displacement meter is performed. The control is such that a load is repeatedly applied to the test piece so that the amplitude of the value is constant within the target control range.

本発明によれば、試験開始前若しくは試験中に、接触式ひずみ計が追従可能なひずみ速度で試験片に繰返し荷重を作用させたときの接触式ひずみ計の計測値と、非接触式変位計の計測値とを取得して、それら計測値から両者の相関関係を求め、当該相関関係に基づいて、試験片の標点間の全ひずみ範囲の設定値に相当する非接触式変位計の目標制御範囲を設定した後、非接触式変位計の計測値の振幅が上記目標制御範囲で一定となるように試験片に繰返し荷重を作用させて、非接触式変位計によるひずみ制御の下で疲労試験を行うようにしたので、接触式ひずみ計の追従性や耐久性に関する技術的問題を解決することができ、従来の低サイクル疲労試験装置(図7)と比較して、試験装置の制御速度(ひずみ速度の設定値)を高めることが可能となる。   According to the present invention, the measured value of the contact-type strain gauge when a load is repeatedly applied to the test piece at a strain rate that can be followed by the contact-type strain gauge before or during the test, and the non-contact displacement gauge And obtain the correlation between them, and based on the correlation, the target of the non-contact displacement meter corresponding to the set value of the total strain range between the test specimen points After setting the control range, repeatedly apply a load to the specimen so that the amplitude of the measured value of the non-contact displacement meter is constant within the target control range, and fatigue under strain control by the non-contact displacement meter. Since the test was performed, it was possible to solve technical problems related to the followability and durability of the contact-type strain gauge, and compared with the conventional low cycle fatigue test device (Fig. 7), the control speed of the test device. (Set value of strain rate) can be increased To become.

したがって、短時間で疲労試験を実施することが可能となり、107〜109サイクル以上の超高サイクル域の疲労評価データを取得できるようになる。その結果、より長寿命側の評価データを設計などに反映させることが可能となり、各種構造材料の信頼性を高めることが可能となる。また、試験時間の短縮により、維持管理にかかる労務費等の費用削減を図ることもできる。 Therefore, a fatigue test can be performed in a short time, and fatigue evaluation data in an ultrahigh cycle region of 10 7 to 10 9 cycles or more can be acquired. As a result, it is possible to reflect the evaluation data on the longer life side in the design and the like, and the reliability of various structural materials can be improved. In addition, labor costs for maintenance can be reduced by shortening the test time.

また、応力変動率が所定値に達する都度、或いは繰返し数が所定回数に達する都度、非接触式変位計の目標制御範囲を再設定するようにしたので、目標制御範囲の設定誤差を小さくすることができ、従来型の低サイクル疲労試験の疲労寿命データと同等の評価を行うことができる。   In addition, the target control range of the non-contact displacement meter is reset every time the stress fluctuation rate reaches a predetermined value or the number of repetitions reaches a predetermined number of times, so that the setting error of the target control range is reduced. It is possible to perform the same evaluation as the fatigue life data of the conventional low cycle fatigue test.

図1は、本発明に係るひずみ制御型超高サイクル疲労試験装置の一実施形態を示すもので、図中符号1が試験片である。
この試験装置は、上下のチャック2a、2b間に装着された試験片1に対して引張力と圧縮力を与えるための負荷部5(図6参照)と、試験片1のひずみを計測するための計測部6と、この計測部6の計測結果に基づいて各部の制御を行う制御部(図示省略)とを備えている。
FIG. 1 shows an embodiment of a strain-controlled ultra-high cycle fatigue testing apparatus according to the present invention, and reference numeral 1 in the drawing is a test piece.
This test apparatus measures the strain of the test piece 1 and a load portion 5 (see FIG. 6) for applying a tensile force and a compressive force to the test piece 1 mounted between the upper and lower chucks 2a and 2b. And a control unit (not shown) that controls each unit based on the measurement result of the measurement unit 6.

負荷部5としては、例えば電気油圧サーボ制御式、或いは電気サーボモータ制御式の負荷装置など、周知の負荷装置を用いることが可能である。計測部6は、試験片1の標点間(試験片平行部)のひずみを計測可能な接触式ひずみ計10と、試験片1に荷重を作用させたときの計測点の変位(或いは2点の計測点間の距離の変化)を非接触で計測可能な非接触式変位計20の組合せにより構成することが可能である。本実施形態では、接触式ひずみ計10として押当て型のひずみ計を用いている。この押当て型ひずみ計は、尖鋭な先端部を有する互いに平行な一対の石英棒(またはセラミックス棒)11a,11bを備え、それら石英棒11a,11bの先端部をそれぞれ標点に押当てて試験片1に固定した状態で、石英棒11a,11b間の距離の変化量をひずみゲージ13で計測することにより、試験片1の標点間のひずみ量を計測するものである。この押当て型ひずみ計は、スライド移動テーブル12上に載置されて、試験片1に近接・離間する方向に進退自在に構成されている。また、本実施形態では、非接触式変位計20として、レーザ光を利用して反射面までの距離を三角測距方式によって測定するレーザ変位計を用いている。このレーザ変位計は、上下チャック2a、2b間の距離の変化、すなわち試験片1全体の伸縮量を測定すべく、光源や受光素子を有する本体部21が一方のチャック2aに、反射面22aを有するターゲット22が他方のチャック2bにそれぞれ取り付けられている。本体部21とターゲット22間の距離は、レーザ変位計の測定範囲内であって、試験片1に荷重を作用させたときに両者が接触しない距離に設定されている。   As the load unit 5, for example, a well-known load device such as an electrohydraulic servo control type or an electric servo motor control type load device can be used. The measuring unit 6 includes a contact-type strain gauge 10 capable of measuring strain between test marks 1 (test piece parallel parts), and displacement (or two points) of the measurement point when a load is applied to the test piece 1. Change in the distance between the measurement points) can be configured by a combination of the non-contact displacement meter 20 capable of measuring in a non-contact manner. In the present embodiment, a pressing-type strain gauge is used as the contact-type strain gauge 10. This pressing strain gauge includes a pair of parallel quartz rods (or ceramic rods) 11a and 11b having sharp tip portions, and the tips of the quartz rods 11a and 11b are respectively pressed against a test point. The amount of strain between the gauge points of the test piece 1 is measured by measuring the amount of change in the distance between the quartz rods 11 a and 11 b with the strain gauge 13 while being fixed to the piece 1. This pressing-type strain gauge is mounted on the slide moving table 12 and is configured to be able to advance and retract in the direction of approaching and separating from the test piece 1. In the present embodiment, as the non-contact displacement meter 20, a laser displacement meter that uses a laser beam to measure the distance to the reflecting surface by a triangulation method is used. In this laser displacement meter, in order to measure the change in the distance between the upper and lower chucks 2a, 2b, that is, the amount of expansion / contraction of the entire test piece 1, the main body 21 having a light source and a light receiving element is provided on one chuck 2a and the reflecting surface 22a is provided. Each target 22 is attached to the other chuck 2b. The distance between the main body 21 and the target 22 is set within a measurement range of the laser displacement meter so that they do not come into contact with each other when a load is applied to the test piece 1.

制御部としては、CPU(Central Processing Unit)、RAM(Random Access Memory)、表示部、入力部、記憶部および通信部等を有する周知のコンピュータを用いることが可能である。この制御部の記憶部には、CPUにより実行される各種処理プログラム(後述するひずみ制御型超高サイクル疲労試験を実施するための処理プログラム等を含む。)や制御データ等を記憶する記憶領域の他、押当て型ひずみ計やレーザ変位計から取り込んだ計測データを格納する記憶領域や、入力部から入力した試験条件の設定データを格納する記憶領域などが設けられている。   As the control unit, a known computer having a CPU (Central Processing Unit), a RAM (Random Access Memory), a display unit, an input unit, a storage unit, a communication unit, and the like can be used. The storage unit of this control unit is a storage area for storing various processing programs executed by the CPU (including a processing program for performing a strain control type ultra-high cycle fatigue test described later), control data, and the like. In addition, there are provided a storage area for storing measurement data fetched from a pressing-type strain gauge and a laser displacement gauge, a storage area for storing test condition setting data input from the input unit, and the like.

次に、上記疲労試験装置を用いたひずみ制御型超高サイクル疲労試験方法の一実施形態について説明する。この疲労試験方法は、試験条件を設定する第1工程と、後述するキャリブレーション処理を実行する第2工程と、非接触式変位計20によるひずみ制御の下で疲労試験を行う第3工程とを有している。本実施形態では、第1工程〜第3工程を順に実行した後、キャリブレーション処理の実行条件(後述)が成立する都度、第2工程および第3工程を繰り返し行うようになっている。この一連の処理は、試験片1が破損するまで続けられる。   Next, an embodiment of a strain control type ultra-high cycle fatigue test method using the fatigue test apparatus will be described. This fatigue test method includes a first step of setting test conditions, a second step of executing a calibration process described later, and a third step of performing a fatigue test under strain control by the non-contact displacement meter 20. Have. In the present embodiment, after the first process to the third process are executed in order, the second process and the third process are repeatedly performed each time a calibration process execution condition (described later) is satisfied. This series of processing is continued until the test piece 1 is broken.

先ず、第1工程では、試験条件として、試験片1の標点間の全ひずみ範囲の設定値(以下、目標ひずみ範囲Δεtと称する。)、ひずみ速度の設定値(以下、制御速度fと称する。)、キャリブレーション処理の実行条件をそれぞれ制御部の入力部に入力して、記憶部に記憶する処理が行われる。キャリブレーション処理の実行条件としては、応力変動率や繰返し数に基づく条件(例えば応力変動率が所定値に達したとき、或いは繰返し数が所定回数に達したときに、キャリブレーション処理を実行するという条件)を設定することが可能である。   First, in the first step, as test conditions, a set value of the total strain range between the test points of the test piece 1 (hereinafter referred to as a target strain range Δεt) and a set value of a strain rate (hereinafter referred to as a control speed f). .), The calibration process execution condition is input to the input unit of the control unit and stored in the storage unit. As a condition for executing the calibration process, a condition based on the stress fluctuation rate or the number of repetitions (for example, the calibration process is executed when the stress fluctuation rate reaches a predetermined value or the number of repetitions reaches a predetermined number of times). Condition) can be set.

次いで、第2工程では、キャリブレーション処理が行われる。このキャリブレーション処理は、試験開始前若しくは試験中(キャリブレーション処理の実行条件が成立したとき)に、接触式ひずみ計10の目標ひずみ範囲Δεtに相当する非接触式変位計20の振幅値(以下、目標制御範囲ΔLtと称する。)を設定・補正するための処理である。   Next, in the second step, calibration processing is performed. This calibration process is performed before the test is started or during the test (when the execution condition of the calibration process is satisfied). The amplitude value of the non-contact displacement meter 20 corresponding to the target strain range Δεt of the contact strain gauge 10 (hereinafter referred to as the calibration process) , Referred to as a target control range ΔLt).

この第2工程では、先ず、制御部が接触式ひずみ計10の駆動部を制御して、接触式ひずみ計10の両石英棒11a,11bの先端を試験片1の標点に押当てる動作を行わせた後、制御部が負荷部5を制御して、接触式ひずみ計10が追従可能なひずみ速度(例えば、0.1Hz)で、接触式ひずみ計10の計測値が目標ひずみ範囲Δεt(例えば、0.3%)に到達若しくはほぼ到達するまで、荷重の振幅を徐々に大きくしながら試験片1に繰返し荷重を作用させる処理を実行する。制御部は、この処理の間、接触式ひずみ計10の計測値と非接触式変位計20の計測値を取り込んで、順次記憶部に格納する処理を行い、接触式ひずみ計10の計測値が目標ひずみ範囲Δεtに到達若しくはほぼ到達したら、負荷部5の作動を停止させるとともに、接触式ひずみ計10を試験片1から離脱させる処理を実行する。   In this second step, first, the control unit controls the drive unit of the contact strain gauge 10 to press the tips of the quartz rods 11 a and 11 b of the contact strain gauge 10 against the test point 1. Then, the control unit controls the load unit 5 so that the measured value of the contact strain gauge 10 is a target strain range Δεt (at a strain rate (for example, 0.1 Hz) that the contact strain gauge 10 can follow. For example, the process of repeatedly applying a load to the test piece 1 is executed while gradually increasing the amplitude of the load until it reaches or almost reaches 0.3%). During this process, the control unit takes in the measurement value of the contact strain gauge 10 and the measurement value of the non-contact displacement meter 20 and sequentially stores them in the storage unit. When the target strain range Δεt is reached or almost reached, the operation of the load section 5 is stopped and the contact strain gauge 10 is detached from the test piece 1.

その後、制御部は、記憶部に取り込んだ接触式ひずみ計10と非接触式変位計20の計測値から両者の相関関係を求めて、当該相関関係に基づいて、接触式ひずみ計10の目標ひずみ範囲Δεtに相当する非接触式変位計20の目標制御範囲ΔLtを求め、これを記憶部に記憶する処理を行う。図2は、制御部に取り込んだ接触式ひずみ計10の計測値と非接触式変位計20の計測値の推移をグラフに表したもので、このグラフによれば、接触式ひずみ計10と非接触式変位計20の計測値が相関的な関係にあることが分かる。両者の相関関係は、係数aを用いて、次式のように表すことができる。   Thereafter, the control unit obtains a correlation between the measured values of the contact strain gauge 10 and the non-contact displacement meter 20 taken into the storage unit, and based on the correlation, the target strain of the contact strain gauge 10 is obtained. The target control range ΔLt of the non-contact displacement meter 20 corresponding to the range Δεt is obtained, and processing for storing this in the storage unit is performed. FIG. 2 is a graph showing the transition of the measured value of the contact strain gauge 10 and the measured value of the non-contact displacement meter 20 incorporated in the control unit. It can be seen that the measured values of the contact displacement meter 20 are in a correlated relationship. The correlation between the two can be expressed by the following equation using the coefficient a.

係数a = 接触式ひずみ計の計測値(%) / 非接触式変位計の計測値(μm)   Coefficient a = Contact strain gauge measurement (%) / Non-contact displacement gauge measurement (μm)

また、非接触式変位計20の目標制御範囲ΔLtは、上記係数aと、接触式ひずみ計10の目標ひずみ範囲Δεtとを次式に代入することにより求めることができる。   The target control range ΔLt of the non-contact displacement meter 20 can be obtained by substituting the coefficient a and the target strain range Δεt of the contact strain meter 10 into the following equation.

非接触式変位計の目標制御範囲ΔLt (μm)
= 接触式ひずみ計の目標ひずみ範囲Δεt (%) / 係数a
Target control range ΔLt (μm) of non-contact displacement meter
= Target strain range of contact strain gauge Δεt (%) / Coefficient a

続いて、第3工程では、非接触式変位計20によるひずみ制御の下で疲労試験が行われる。具体的には、図2に示すように、制御部が負荷部5を制御して、第1工程で設定した制御速度f(例えば、100Hz)で、試験片1にかかる荷重の振幅を徐々に大きくして行き、最終的に非接触式変位計20の計測値の振幅が上記目標制御範囲ΔLt(例えば、40μm)で一定となるように試験片1に繰返し荷重を作用させて定常の疲労試験を行う。   Subsequently, in the third step, a fatigue test is performed under strain control by the non-contact displacement meter 20. Specifically, as shown in FIG. 2, the control unit controls the load unit 5 and gradually increases the amplitude of the load applied to the test piece 1 at the control speed f (for example, 100 Hz) set in the first step. A steady fatigue test is performed by applying a repeated load to the test piece 1 so that the amplitude of the measured value of the non-contact displacement meter 20 becomes constant in the target control range ΔLt (for example, 40 μm). I do.

その後、制御部は、第1工程で設定したキャリブレーション処理の実行条件が成立するか否かを監視し、実行条件の成立(例えば、繰返し数が所定回数に達したこと)を検知した際には、図2に示すように、試験片1にかかる荷重の振幅を徐々に小さくして行き、最終的に荷重の振幅が0になるように負荷部5を制御する。その後、前述した第2工程に移行して前述したキャリブレーション処理を実行することにより、目標制御範囲ΔLtの補正(再設定)を行った後、第3工程に移行して定常の疲労試験を再開する。すなわち、繰返し数が増加するに連れて係数a(接触式ひずみ計10と非接触式変位計20の計測値の相関関係)が変化することとなるので、本実施形態では、適宜に疲労試験を中断してキャリブレーション処理を行うことで目標制御範囲ΔLtを随時補正するようにしている。なお、キャリブレーション処理の実行条件は、その処理の前後で生じる目標制御範囲ΔLtの変動が十分に小さくなるように設定することが好ましく、そうすることで、目標制御範囲ΔLtの設定誤差を少なくすることができる。
こうして、目標制御範囲ΔLtを随時補正しながら疲労試験を続け、試験片1が破損したら試験を終了する。
Thereafter, the control unit monitors whether or not the execution condition of the calibration process set in the first step is satisfied, and detects that the execution condition is satisfied (for example, the number of repetitions reaches a predetermined number). As shown in FIG. 2, the load amplitude applied to the test piece 1 is gradually decreased, and the load portion 5 is controlled so that the amplitude of the load eventually becomes zero. After that, the process proceeds to the second process described above and executes the calibration process described above to correct (reset) the target control range ΔLt, and then proceeds to the third process to resume the steady fatigue test. To do. That is, as the number of repetitions increases, the coefficient a (correlation between the measured values of the contact strain gauge 10 and the non-contact displacement gauge 20) changes. Therefore, in this embodiment, a fatigue test is appropriately performed. The target control range ΔLt is corrected as needed by interrupting and performing calibration processing. The execution condition of the calibration process is preferably set so that the fluctuation of the target control range ΔLt that occurs before and after the process is sufficiently small, thereby reducing the setting error of the target control range ΔLt. be able to.
In this way, the fatigue test is continued while correcting the target control range ΔLt as needed. When the test piece 1 is damaged, the test is terminated.

以上のように、本実施形態によれば、試験開始前若しくは試験中に、接触式ひずみ計10が追従可能なひずみ速度で試験片1に繰返し荷重を作用させたときの接触式ひずみ計10の計測値と、非接触式変位計20の計測値とを取得して、それら計測値から両者の相関関係(係数a)を求め、当該相関関係に基づいて、試験片1の標点間の全ひずみ範囲の設定値(目標ひずみ範囲Δεt)に相当する非接触式変位計20の目標制御範囲ΔLtを設定した後、非接触式変位計20の計測値の振幅が上記目標制御範囲ΔLtで一定となるように試験片1に繰返し荷重を作用させて、非接触式変位計20によるひずみ制御の下で疲労試験を行うようにしたので、接触式ひずみ計の追従性や耐久性に関する技術的問題を解決することができ、これにより、試験装置の制御速度fを100Hz程度にまで高めることが可能となる。   As described above, according to the present embodiment, the contact-type strain gauge 10 when the load is repeatedly applied to the test piece 1 at a strain rate that the contact-type strain gauge 10 can follow before or during the test starts. The measurement value and the measurement value of the non-contact displacement meter 20 are acquired, and a correlation (coefficient a) between them is obtained from the measurement value. Based on the correlation, all the points between the test points 1 are obtained. After setting the target control range ΔLt of the non-contact displacement meter 20 corresponding to the set value of the strain range (target strain range Δεt), the amplitude of the measurement value of the non-contact displacement meter 20 is constant within the target control range ΔLt. Since the fatigue test is performed under the strain control by the non-contact displacement gauge 20 by applying a repeated load to the test piece 1, there are technical problems regarding the followability and durability of the contact strain gauge. Which can be resolved The control speed f of the apparatus can be increased to about 100 Hz.

したがって、試験時間を従来の1/50〜1/100に短縮でき、従来は不可能とされてきた107〜109サイクル以上の超高サイクル域の疲労評価データを取得できるようになる。その結果、より長寿命側の評価データを設計などに反映させることが可能となり、各種構造物の材料の信頼性を高めることが可能となる。また、試験時間の短縮により、維持管理にかかる労務費等の費用削減を図ることもできる。 Therefore, the test time can be shortened to 1/50 to 1/100 of the conventional value, and fatigue evaluation data in an ultrahigh cycle region of 10 7 to 10 9 cycles or more, which has been considered impossible in the past, can be acquired. As a result, it is possible to reflect the evaluation data on the longer life side in the design and the like, and it is possible to improve the reliability of materials of various structures. In addition, labor costs for maintenance can be reduced by shortening the test time.

なお、本実施形態では、試験開始前にキャリブレーション処理を実行して、非接触式変位計20によるひずみ制御を試験開始から行うようにしたが、本発明はこれに限られるものではなく、例えば、係数aの値が不安定な初期の段階(例えば、繰返し数が2000回に達するまで)は、比較的低い制御速度(例えば、0.1〜1Hz)で、接触式ひずみ計10によるひずみ制御を行い、係数aの値が安定した後は、キャリブレーション処理を実行して、高い制御速度(例えば、100Hz)で、非接触式変位計20によるひずみ制御を行うようにしてもよい。
また、本実施形態では、接触式ひずみ計10として、ひずみゲージ13をセンサ部に用いた押当て型ひずみ計を、非接触式変位計20としてレーザ変位計をそれぞれ例示したが、これ以外にも、接触式ひずみ計10として、例えば差動トランス型、静電容量式、光学的変位計をセンサ部に採用した押当て型ひずみ計を、非接触式変位計20として、渦電流式変位計などをそれぞれ用いることも可能である。
In the present embodiment, the calibration process is executed before the start of the test, and the strain control by the non-contact displacement meter 20 is performed from the start of the test. However, the present invention is not limited to this, for example, In the initial stage where the value of the coefficient a is unstable (for example, until the number of repetitions reaches 2000), strain control by the contact strain gauge 10 is performed at a relatively low control speed (for example, 0.1 to 1 Hz). Then, after the value of the coefficient a is stabilized, calibration processing may be executed to perform strain control by the non-contact displacement meter 20 at a high control speed (for example, 100 Hz).
In the present embodiment, the contact-type strain gauge 10 is exemplified as a contact-type strain gauge using the strain gauge 13 as a sensor portion, and the non-contact displacement gauge 20 is exemplified as a laser displacement gauge. As the contact strain gauge 10, for example, a pressing-type strain gauge that employs a differential transformer type, a capacitance type, an optical displacement gauge as a sensor unit, and a non-contact displacement gauge 20 as an eddy current displacement gauge, etc. Can also be used.

次に、本発明の効果を実施例により明らかにする。
本発明に係るひずみ制御型超高サイクル疲労試験方法により、疲労試験を実施したところ、図3および図4のグラフに示すような結果が得られた。図3には、目標ひずみ範囲Δεtを0.3%以下、温度条件を600℃として、本発明に係る超高サイクル疲労試験方法(10〜60Hz)と従来のJISで定められた低サイクル疲労試験方法(0.1Hz)により、316FR鋼の疲労試験を行ったときの応力挙動が示されている。図中、「HMH3D4(B7)」や「HB8A01(B8)」は試験片番号(ヒート番号)である。また、図4には、550℃または600℃の温度条件で、本発明に係る超高サイクル疲労試験方法と従来のJISで定められた低サイクル疲労試験方法とにより得られたSUS304鋼および316FR鋼の疲労特性が示されている。
Next, the effect of the present invention will be clarified by examples.
When the fatigue test was carried out by the strain controlled ultra high cycle fatigue test method according to the present invention, the results shown in the graphs of FIGS. 3 and 4 were obtained. FIG. 3 shows that the target strain range Δεt is 0.3% or less, the temperature condition is 600 ° C., the ultra-high cycle fatigue test method (10 to 60 Hz) according to the present invention, and the low cycle fatigue test defined by the conventional JIS. The method (0.1 Hz) shows the stress behavior when a 316FR steel fatigue test is performed. In the figure, “HMH3D4 (B7)” and “HB8A01 (B8)” are test piece numbers (heat numbers). FIG. 4 also shows SUS304 steel and 316FR steel obtained by the ultra-high cycle fatigue test method according to the present invention and the low cycle fatigue test method defined by the conventional JIS under the temperature condition of 550 ° C. or 600 ° C. The fatigue properties of are shown.

これらグラフによれば、各サイクル域において、本発明に係る超高サイクル疲労試験方法と、従来のJISで定められた低サイクル疲労試験方法とでほぼ同じ評価データが得られ、両者の間に有意な差が無いことが分かる。つまり、本発明に係る超高サイクル疲労試験方法によれば、従来のJISで定められた低サイクル疲労試験方法では対応できなかった高サイクル領域において、当該低サイクル疲労試験方法の疲労寿命データと同等の疲労評価データを取得可能であることが分かる。   According to these graphs, in each cycle region, almost the same evaluation data was obtained between the ultra-high cycle fatigue test method according to the present invention and the low cycle fatigue test method defined in the conventional JIS, and there was significant difference between the two. It can be seen that there is no significant difference. In other words, according to the ultra-high cycle fatigue test method according to the present invention, in the high cycle region that cannot be dealt with by the conventional low cycle fatigue test method defined in JIS, it is equivalent to the fatigue life data of the low cycle fatigue test method. It can be seen that the fatigue evaluation data can be obtained.

本発明に係るひずみ制御型超高サイクル疲労試験装置の一実施形態を示す要部構成図である。It is a principal part block diagram which shows one Embodiment of the strain control type | mold super high cycle fatigue test apparatus which concerns on this invention. 接触式ひずみ計の計測値と非接触式変位計の計測値の推移を示すグラフである。It is a graph which shows transition of the measured value of a contact type strain gauge, and the measured value of a non-contact type displacement meter. 本発明による引張・圧縮応力変動の実験的検証結果を示すグラフである。It is a graph which shows the experimental verification result of the tension | pulling / compression stress fluctuation | variation by this invention. 本発明による疲労特性の実験的検証結果を示すグラフである。It is a graph which shows the experimental verification result of the fatigue characteristic by this invention. 従来のひずみ制御法を説明するための図である。It is a figure for demonstrating the conventional distortion control method. 従来の疲労試験装置(低サイクル疲労試験装置)の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional fatigue test apparatus (low cycle fatigue test apparatus). 図6の疲労試験装置の要部拡大図である。It is a principal part enlarged view of the fatigue test apparatus of FIG. 荷重制御法でのひずみ挙動(ステンレス鋼の例)を説明するための図である。It is a figure for demonstrating the strain behavior (example of stainless steel) in a load control method.

符号の説明Explanation of symbols

1 試験片
10 接触式ひずみ計
20 非接触式変位計
1 Test piece 10 Contact strain gauge 20 Non-contact displacement gauge

Claims (4)

試験片の標点間のひずみを計測可能な接触式ひずみ計と、試験片に荷重を作用させたときの計測点の変位を非接触で計測可能な非接触式変位計とを用いて、ひずみ制御により試験片の疲労試験を行う試験方法であって、
試験条件として、少なくとも試験片の標点間の全ひずみ範囲および制御速度を設定する第1工程と、上記試験片の標点間の全ひずみ範囲の設定値に相当する非接触式変位計の目標制御範囲を求める第2工程と、上記制御速度で且つ非接触式変位計の計測値の振幅が上記目標制御範囲で一定となるように試験片に繰返し荷重を作用させて、非接触式変位計によるひずみ制御下で疲労試験を行う第3工程とを有し、
上記第2工程では、接触式ひずみ計が追従可能なひずみ速度で試験片に繰返し荷重を作用させたときの接触式ひずみ計の計測値と、非接触式変位計の計測値とを取得し、それら計測値から両者の相関関係を求めて、当該相関関係に基づいて、上記試験片の標点間の全ひずみ範囲の設定値に相当する非接触式変位計の目標制御範囲を求めるようにしたことを特徴とするひずみ制御型超高サイクル疲労試験方法。
Using a contact-type strain gauge that can measure the strain between the test specimen points and a non-contact-type displacement gauge that can measure the displacement of the measurement point when a load is applied to the test piece in a non-contact manner. A test method for performing a fatigue test on a test piece under control,
As a test condition, the first step of setting at least the total strain range and the control speed between the test point of the test piece, and the target of the non-contact displacement meter corresponding to the set value of the total strain range between the test point of the test piece A second step of obtaining a control range; and a non-contact displacement meter by applying a load repeatedly to the test piece so that the amplitude of the measured value of the non-contact displacement meter is constant within the target control range at the control speed. A third step of performing a fatigue test under strain control by
In the second step, the measurement value of the contact strain gauge when a load is repeatedly applied to the test piece at a strain rate that can be followed by the contact strain gauge, and the measurement value of the non-contact displacement gauge are obtained, The correlation between the two is obtained from the measured values, and based on the correlation, the target control range of the non-contact displacement meter corresponding to the set value of the total strain range between the test specimen points is obtained. A strain-controlled ultra-high cycle fatigue test method characterized by the above.
上記第1工程〜上記第3工程を順に実行した後、応力変動率が所定値に達する都度、或いは繰返し数が所定回数に達する都度、上記第2工程および上記第3工程を繰り返し行うことを特徴とする請求項1に記載のひずみ制御型超高サイクル疲労試験方法。   After the first step to the third step are sequentially executed, the second step and the third step are repeatedly performed every time the stress fluctuation rate reaches a predetermined value or the repetition number reaches a predetermined number of times. The strain controlled ultra high cycle fatigue test method according to claim 1. 上記第2工程では、試験片の標点間のひずみを計測できるように、接触式ひずみ計を試験片に接触する位置に配置する一方、上記第3工程では、試験片から離間した位置に接触式ひずみ計を配置するようにしたことを特徴とする請求項1に記載のひずみ制御型超高サイクル疲労試験方法。   In the second step, the contact-type strain gauge is arranged at a position in contact with the test piece so that the strain between the test points of the test piece can be measured, while in the third process, the contact is made at a position separated from the test piece. 2. The strain control type ultra high cycle fatigue test method according to claim 1, wherein a strain gauge is arranged. 上下のチャック間に装着された試験片に対して引張力と圧縮力を与えるための負荷部と、試験片のひずみを計測するための計測部と、この計測部の計測結果に基づいて各部の制御を行う制御部とを備え、ひずみ制御により試験片の疲労試験を行う試験装置であって、
上記計測部は、試験片の標点間のひずみを計測可能な接触式ひずみ計と、試験片に荷重を作用させたときの計測点の変位を非接触で計測可能な非接触式変位計との組合せにより構成され、
上記制御部は、試験開始前若しくは試験中に、接触式ひずみ計が追従可能なひずみ速度で試験片に繰返し荷重を作用させたときの接触式ひずみ計の計測値と、非接触式変位計の計測値とを取得し、それら計測値から両者の相関関係を求めて、当該相関関係に基づいて、上記試験片の標点間の全ひずみ範囲の設定値に相当する非接触式変位計の目標制御範囲を求め、その後、非接触式変位計の計測値の振幅が上記目標制御範囲で一定となるように試験片に繰返し荷重を作用させる制御を行うようになっていることを特徴とするひずみ制御型超高サイクル疲労試験装置。
A load part for applying tensile force and compressive force to the test piece mounted between the upper and lower chucks, a measurement part for measuring the strain of the test piece, and the measurement result of each part based on the measurement result of this measurement part And a control device that performs control, and performs a fatigue test of the test piece by strain control,
The measurement unit includes a contact strain meter capable of measuring the strain between the gauge points of the test piece, a non-contact displacement meter capable of measuring the displacement of the measurement point when a load is applied to the test piece in a non-contact manner, and Composed of
The above control unit measures the measured value of the contact-type strain gauge when a load is repeatedly applied to the test piece at a strain rate that can be followed by the contact-type strain gauge before or during the test. The measurement value is obtained, the correlation between the two is obtained from the measurement value, and based on the correlation, the target of the non-contact displacement meter corresponding to the set value of the total strain range between the gauge points of the test piece is obtained. A strain characterized in that a control range is obtained, and then control is performed so that a load is repeatedly applied to the specimen so that the amplitude of the measured value of the non-contact displacement meter is constant within the target control range. Controlled ultra-high cycle fatigue testing equipment.
JP2005087548A 2005-03-25 2005-03-25 Strain-controlled ultra high cycle fatigue test method and fatigue test apparatus Active JP4061341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087548A JP4061341B2 (en) 2005-03-25 2005-03-25 Strain-controlled ultra high cycle fatigue test method and fatigue test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087548A JP4061341B2 (en) 2005-03-25 2005-03-25 Strain-controlled ultra high cycle fatigue test method and fatigue test apparatus

Publications (2)

Publication Number Publication Date
JP2006266964A true JP2006266964A (en) 2006-10-05
JP4061341B2 JP4061341B2 (en) 2008-03-19

Family

ID=37203092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087548A Active JP4061341B2 (en) 2005-03-25 2005-03-25 Strain-controlled ultra high cycle fatigue test method and fatigue test apparatus

Country Status (1)

Country Link
JP (1) JP4061341B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943199B1 (en) 2009-11-17 2010-02-19 선문대학교 산학협력단 Ultra-high cycle fatigue testing apparatus
CN102928303A (en) * 2012-11-26 2013-02-13 核工业理化工程研究院 Fatigue test device of metal materials
JP2014102132A (en) * 2012-11-19 2014-06-05 Institute Of Nuclear Safety System Inc Low cycle fatigue crack growth evaluation method
CN111060408A (en) * 2019-12-24 2020-04-24 合肥通用机械研究院有限公司 Strain-controlled thermo-mechanical fatigue performance testing method
CN112942450A (en) * 2021-02-01 2021-06-11 湘电风能有限公司 Method and system for monitoring fatigue damage of foundation ring type fan
KR20230034718A (en) * 2021-09-03 2023-03-10 한국생산기술연구원 Tensile Testing Equipment for Metal Plates

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943199B1 (en) 2009-11-17 2010-02-19 선문대학교 산학협력단 Ultra-high cycle fatigue testing apparatus
WO2011062322A1 (en) * 2009-11-17 2011-05-26 선문대학교 산학협력단 Ultra-high frequency fatigue-testing apparatus
JP2014102132A (en) * 2012-11-19 2014-06-05 Institute Of Nuclear Safety System Inc Low cycle fatigue crack growth evaluation method
CN102928303A (en) * 2012-11-26 2013-02-13 核工业理化工程研究院 Fatigue test device of metal materials
CN111060408A (en) * 2019-12-24 2020-04-24 合肥通用机械研究院有限公司 Strain-controlled thermo-mechanical fatigue performance testing method
CN111060408B (en) * 2019-12-24 2022-04-22 合肥通用机械研究院有限公司 Strain-controlled thermo-mechanical fatigue performance testing method
CN112942450A (en) * 2021-02-01 2021-06-11 湘电风能有限公司 Method and system for monitoring fatigue damage of foundation ring type fan
KR20230034718A (en) * 2021-09-03 2023-03-10 한국생산기술연구원 Tensile Testing Equipment for Metal Plates
KR102510698B1 (en) * 2021-09-03 2023-03-17 한국생산기술연구원 Tensile Testing Equipment for Metal Plates

Also Published As

Publication number Publication date
JP4061341B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4061341B2 (en) Strain-controlled ultra high cycle fatigue test method and fatigue test apparatus
CN110308059A (en) A kind of welding process material circulation Temperature measurement test method
JP6314787B2 (en) Material testing machine
CN110595908A (en) High-temperature ductility crack quasi-in-situ test method for nickel-based alloy welding material
JP4895302B2 (en) Elastic modulus measuring method, elastic modulus measuring apparatus, and program
Hyde et al. Some considerations on specimen types for small sample creep tests
JP5760244B2 (en) Low cycle fatigue crack growth evaluation method
Jalali et al. High throughput determination of creep parameters using cantilever bending: part II-primary and steady-state through uniaxial equivalency
Okrajni et al. Modelling of the deformation process under thermo-mechanical fatigue conditions
Matvienko et al. Evolution of fracture mechanics parameters relevant to narrow notch increment as a measure of fatigue damage accumulation
JPH03267736A (en) Method and device for dynamic brakage fatigue test of brittle material
JP6226112B1 (en) Creep fatigue test method and control device for creep test apparatus
JP2007057325A (en) Remaining lifetime prediction method
Dzugan et al. Low cycle fatigue tests with the use of miniaturized test specimens
JP4859224B2 (en) Compression test method, compression tester, and program
JP6209489B2 (en) Thermal fatigue test method and specimen
RU2619046C1 (en) Method of mechanical properties determination of materials with shape memory
JPH11183349A (en) Crack generation limit test method for coating
US3397572A (en) Device for measuring stressstrain curve
CN107748026A (en) A kind of synchronous across yardstick residual stress detection method
RU2670217C1 (en) Method of measuring stress-strain state of metal constructions without static unloading
Jiao et al. Wrinkling of tubes by axial cycling
CN113466040A (en) Method for acquiring local uniaxial stress-strain relation of joint
JP5562726B2 (en) Curing detection method and curing detection system
JP6237526B2 (en) Material testing machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4061341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250