JPH0718826B2 - Thermal conductivity measurement method - Google Patents

Thermal conductivity measurement method

Info

Publication number
JPH0718826B2
JPH0718826B2 JP2032678A JP3267890A JPH0718826B2 JP H0718826 B2 JPH0718826 B2 JP H0718826B2 JP 2032678 A JP2032678 A JP 2032678A JP 3267890 A JP3267890 A JP 3267890A JP H0718826 B2 JPH0718826 B2 JP H0718826B2
Authority
JP
Japan
Prior art keywords
measured
sample
temperature
heat
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2032678A
Other languages
Japanese (ja)
Other versions
JPH03237345A (en
Inventor
毅 松本
晃 小野
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2032678A priority Critical patent/JPH0718826B2/en
Publication of JPH03237345A publication Critical patent/JPH03237345A/en
Publication of JPH0718826B2 publication Critical patent/JPH0718826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱伝導率測定方法の中でも定常法と呼ばれる被
測定物(以下試料と呼ぶ)に定常的な熱流を与えて熱伝
導率を直接に求めるものの一つで、比較的熱伝導率の低
い高分子材料やセラミックなどの熱伝導率を従来のもの
よりも小さい試料と短い測定時間で測定しようとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention directly determines the thermal conductivity by applying a steady heat flow to an object to be measured (hereinafter referred to as a sample), which is called a stationary method among the thermal conductivity measuring methods. One of the requirements is to measure the thermal conductivity of polymer materials and ceramics, which have a relatively low thermal conductivity, with a sample smaller than the conventional one and in a shorter measurement time.

[従来の技術] 比較的熱伝導率が低い高分子材料、セラミックなどの熱
伝導率の測定にはこれまで主に平板法及びレーザーフラ
ッシュ法が用いられてきた(例えば、マグリッチ、セザ
ーリヤン、ペレッキー編、「熱物性計測法概論、第1
巻、測定技術のレビュー」、1984年、プレナムプレス、
ニューヨーク;Maglic,Cezairliyan,Peletsky,「Compend
ium of Thermophysical Property Measurement Method
s,Volume 1,Survey of Measurement Techniques」,198
4,Prenum Press)。
[Prior Art] The flat plate method and the laser flash method have been mainly used for the measurement of the thermal conductivity of polymer materials, ceramics, etc. having relatively low thermal conductivity (eg, Magrich, Cesaryan, Perekky edition). , "Introduction to Thermophysical Properties Measurement Method, 1st
Volume, Review of Measuring Techniques ", 1984, Plenum Press,
New York; Maglic, Cezairliyan, Peletsky, `` Compend
ium of Thermophysical Property Measurement Method
s, Volume 1, Survey of Measurement Techniques '', 198
4, Prenum Press).

平板法では直径20〜50cm、厚さ1〜5cm程度の円盤状試
料の片面に電気ヒーターを、もう片面に水冷されたヒー
トシンクを取り付けて試料の厚さ方向に熱を流し、そこ
に生じる温度勾配とヒーターの発熱量から熱伝導率を求
める(例えば、日本規格協会発行,保温材の熱伝導率測
定方法(平板直接法),JIS A 1413,1977年)。しかしこ
の方法ではヒーターが発生する熱を全て試料の厚み方向
に流すために試料の周囲に保護ヒーターを取付け、その
温度が試料と等しくなるように制御する必要がある。ま
た試料が大きいために温度が一定になるまでに時間がか
かり、1回の測定を行うのに30分から数時間程度の長い
時間を必要とする。
In the flat plate method, an electric heater is attached to one side of a disk-shaped sample with a diameter of 20 to 50 cm and a thickness of 1 to 5 cm, and a water-cooled heat sink is attached to the other side to allow heat to flow in the thickness direction of the sample, and the temperature gradient generated there. Determine the thermal conductivity from the heat generation value of the heater (for example, issued by the Japanese Standards Association, thermal conductivity measurement method for heat insulation materials (flat plate direct method), JIS A 1413, 1977). However, in this method, it is necessary to attach a protective heater around the sample in order to allow all the heat generated by the heater to flow in the thickness direction of the sample, and to control the temperature to be equal to that of the sample. Further, since the sample is large, it takes time until the temperature becomes constant, and it takes a long time of about 30 minutes to several hours to perform one measurement.

レーザーフラッシュ法は、直径10mm厚さ2mm程度の円盤
状試料の表面にパルスレーザーを照射した時の裏面の温
度上昇の時間変化から試料の熱拡散率を測定し、(1)
式を用いて熱伝導率を求めるものである。
The laser flash method measures the thermal diffusivity of the sample from the time change of the temperature rise of the back side when the surface of a disk-shaped sample with a diameter of 10 mm and a thickness of 2 mm is irradiated with a pulse laser, (1)
The thermal conductivity is calculated using an equation.

λ=αCρ (1) ここでαは熱拡散率、λは熱伝導率、Cは比熱、ρは密
度である。この方法では必要とされる試料は小さく測定
時間も短いが、試料の熱拡散率から熱伝導率を間接的に
求めているので、熱伝導率を測定するには前もって試料
の比熱と密度を求める必要がある。また空隙部分の多い
断熱材などのように(1)式の関係が正確に成り立たな
い材料に対してこの方法を用いることは困難である。さ
らにレーザーフラッシュ法では試料表面に瞬間的に大き
な温度上昇を与えて熱拡散率を測定するので、熱可塑性
プラスチックなどのような融解し易い材料や、熱伝導率
の温度依存性が大きい材料の測定には適していない。
λ = αCρ (1) where α is thermal diffusivity, λ is thermal conductivity, C is specific heat, and ρ is density. In this method, the sample required is small and the measurement time is short, but since the thermal conductivity is indirectly determined from the thermal diffusivity of the sample, the specific heat and density of the sample are determined in advance to measure the thermal conductivity. There is a need. Further, it is difficult to use this method for a material such as a heat insulating material having a lot of voids, for which the relation of the formula (1) is not accurately established. In addition, the laser flash method measures the thermal diffusivity by instantaneously giving a large temperature rise to the sample surface, so it is possible to measure materials that easily melt such as thermoplastics and materials that have a large temperature dependence of thermal conductivity. Not suitable for.

[発明の目的] 本発明の目的は定常法を用いて微小な低熱伝導性試料の
熱伝導率を、短時間かつ比熱などの他の物性値に頼るこ
となく直接に測定することにある。
[Object of the Invention] An object of the present invention is to directly measure the thermal conductivity of a small sample having a low thermal conductivity by using a stationary method in a short time without depending on other physical properties such as specific heat.

[発明の構成及び作用] 試料の熱伝導率を正確に測定するためには、試料のある
方向に一様な熱流密度を与えるとともにその熱流密度の
大きさ及び熱流方向の温度勾配を正確に測定することが
必要である。微小な試料に対して一様な熱流密度を与え
るために、本発明では真空中で加熱または冷却されてい
る試料の表面と周囲との放射熱交換を利用する。すなわ
ち、本願の第1の発明による熱伝導率測定方法では、試
料の厚み方向の熱流密度を、試料表面と周囲との放射熱
交換により失われる熱の熱流密度と等しくなるように構
成する。熱流密度は試料表面の半球全放射率及び試料と
周囲の温度からステファン・ボルツマンの法則を用いて
(2)式によって表される。ここでqは試料表面と周囲
の放射熱交換によって生じる熱流密度、εhtは試料表面
の半球全放射率、σはステファン・ボルツマン定数、Ts
は試料の表面温度、Teは周囲の温度である。
[Structure and Action of the Invention] In order to accurately measure the thermal conductivity of a sample, a uniform heat flow density is applied in a certain direction of the sample, and the magnitude of the heat flow density and the temperature gradient in the heat flow direction are accurately measured. It is necessary to. In order to provide a uniform heat flow density for a small sample, the present invention utilizes radiative heat exchange between the surface of the sample being heated or cooled in a vacuum and the surroundings. That is, in the thermal conductivity measuring method according to the first invention of the present application, the heat flow density in the thickness direction of the sample is configured to be equal to the heat flow density of heat lost by radiative heat exchange between the sample surface and the surroundings. The heat flow density is expressed by the equation (2) using the hemispherical total emissivity of the surface of the sample and the temperature of the sample and the ambient, using the Stefan-Boltzmann law. Where q is the heat flow density generated by radiative heat exchange between the sample surface and the surroundings, ε ht is the total hemispherical emissivity of the sample surface, σ is the Stefan-Boltzmann constant, T s
Is the surface temperature of the sample, and T e is the ambient temperature.

q=εhtσ(Ts 4−Te 4) (2) 熱流方向の温度勾配を測定するには平板状の試料を銅製
のブロックの表面に埋め込み、銅ブロックの温度が均一
であると仮定して、銅ブロックと試料表面の温度差から
試料の厚み方向の温度勾配を求める。また試料が微小で
あることから温度測定は熱画像装置を用いた非接触測定
とする。これまでに述べた方法を本発明の中では受動法
と呼び、この方法を用いることにより、微小な低熱伝導
性試料の熱伝導率を短時間かつ簡単に測定することが可
能となる。
q = ε ht σ (T s 4 −T e 4 ) (2) To measure the temperature gradient in the heat flow direction, a flat sample is embedded on the surface of a copper block and it is assumed that the temperature of the copper block is uniform. Then, the temperature gradient in the thickness direction of the sample is obtained from the temperature difference between the copper block and the sample surface. Since the sample is minute, temperature measurement is non-contact measurement using a thermal imager. The method described so far is called a passive method in the present invention, and by using this method, the thermal conductivity of a minute low thermal conductivity sample can be easily measured in a short time.

一方受動法では試料の熱伝導率が比較的高い場合や試料
と周囲の温度差が小さい場合には試料厚み方向の温度差
が小さく、測定が困難である。このような場合には試料
の表面に金属箔を張ってそれを通電加熱、または試料表
面に光を照射するなどして試料表面を一様に加熱し、試
料に強制的に大きな温度勾配を付ける。この方法を本発
明の中では能動法と呼ぶ。能動法では銅ブロックと試料
表面の温度が等しくなるように加熱量を調節し、このと
きの試料表面での単位面積あたりの発熱量から試料表面
の黒色塗料の半球全放射率の同時測定も可能である。
On the other hand, in the passive method, when the thermal conductivity of the sample is relatively high or the temperature difference between the sample and the surroundings is small, the temperature difference in the sample thickness direction is small and measurement is difficult. In such a case, apply a metal foil to the surface of the sample and heat it electrically, or irradiate the sample surface with light to uniformly heat the sample surface and forcibly apply a large temperature gradient to the sample. . This method is called an active method in the present invention. In the active method, the heating amount is adjusted so that the temperature of the copper block and the sample surface become equal, and the hemispherical total emissivity of the black paint on the sample surface can be measured simultaneously from the heat generation amount per unit area on the sample surface at this time. Is.

さらに能動法では測定精度は低下するものの大気または
不活性ガス中で熱伝導率を測定することも可能である。
この場合試料表面からの対流による熱損失の見積りが問
題となるが、前述の半球全放射率の測定方法を応用し
て、銅ブロックと試料表面の温度が等しいときの単位試
料表面積あたりの発熱量から対流熱伝達係数を測定し、
対流による熱損失を見積もることができる。
Further, the active method can measure the thermal conductivity in the atmosphere or an inert gas although the measurement accuracy is lowered.
In this case, the estimation of heat loss due to convection from the sample surface becomes a problem, but the amount of heat generated per unit sample surface area when the temperature of the copper block and the sample surface are equal is applied by applying the above-mentioned method of measuring the total hemispherical emissivity. Measure the convection heat transfer coefficient from
The heat loss due to convection can be estimated.

[実施例] 第1図(a)及び(b)に受動法における試料及び銅ブ
ロックの構造を示す。まず10×35×60mm程度の大きさの
直方体の銅ブロック2を用意し、その表面の中央部に3
×25×25mmの大きさのくぼみを設ける。この銅ブロック
の裏面にはブロックを一様に加熱するための厚さ0.1mm
のステンレス製のヒーター5をエポキシ樹脂の絶縁層4
を介して張り付ける。このヒーターの両端にはヒーター
へ電流を供給するための一対の電極7を取り付ける。さ
らに銅ブロックの中央には温度測定用の熱電対6をねじ
止めする。
[Example] FIGS. 1A and 1B show structures of a sample and a copper block in the passive method. First, prepare a rectangular parallelepiped copper block 2 with a size of 10 × 35 × 60 mm, and insert 3 in the center of the surface.
Make a dimple of size 25 x 25 mm. The back side of this copper block has a thickness of 0.1 mm to heat the block uniformly.
The stainless steel heater 5 of the epoxy resin insulation layer 4
Stick through. A pair of electrodes 7 for supplying an electric current to the heater is attached to both ends of the heater. Further, a thermocouple 6 for temperature measurement is screwed to the center of the copper block.

次に銅ブロック表面のくぼみに丁度入る大きさの試料1
を用意し、この部分に埋め込む。試料と銅ブロックの接
合面は熱伝導を良くするため、エポキシ系接着剤などを
用いて隙間や気泡が生じないようになるべく薄い層で接
着する。試料が熱可塑性の樹脂である場合には真空中で
銅ブロックを加熱し、試料を融解、脱泡してくぼみに流
し込んでも良い。試料の厚さはできるだけ均一にすると
ともに試料と銅ブロックの表面は同一平面になるように
注意する。さらに正確かつ一様な放射熱交換を実現する
とともに熱画像装置による温度測定を行うため、試料と
銅ブロックの表面には放射率が一定の耐熱性の黒色塗料
3を塗布する。
Next, sample 1 of a size that fits exactly into the depression on the surface of the copper block.
Prepare and embed in this part. In order to improve heat conduction, the bonding surface between the sample and the copper block is bonded with an epoxy adhesive in a thin layer as much as possible so that gaps and bubbles are not generated. When the sample is a thermoplastic resin, the copper block may be heated in a vacuum to melt and degas the sample, and then the sample may be poured into the recess. Make sure that the thickness of the sample is as uniform as possible and that the surface of the sample and the copper block are on the same plane. In order to realize more accurate and uniform radiant heat exchange and temperature measurement by a thermal imager, heat-resistant black paint 3 having a constant emissivity is applied to the surface of the sample and the copper block.

第2図に本熱伝導率測定方法における装置の構成図を示
す。まず試料1と銅ブロック2を水冷された真空容器12
の中央に試料表面を垂直にして保持し、真空容器の内部
を1×10-4Torr以下の真空度まで排気する。次にこの銅
ブロック裏面のヒーターに直流安定化電源により一定の
電流を流して加熱し、銅ブロックを50℃程度の一定温度
に保ち、試料1をその裏面側から加熱する。このとき試
料表面が周囲との放射熱交換によって冷却されることに
よって銅ブロックから試料表面に向かって熱が流れ、銅
に比べて試料の熱伝導率が小さいために試料の表面温度
は銅ブロックの表面温度よりも低くなる。この場合、試
料の厚み方向の熱流密度は、試料表面と周囲との放射熱
交換により失われる熱の熱流密度と等しくなる。
FIG. 2 shows a block diagram of an apparatus in the present thermal conductivity measuring method. First, sample 1 and copper block 2 are water-cooled vacuum container 12
The sample surface is held vertically in the center of, and the inside of the vacuum vessel is evacuated to a vacuum degree of 1 × 10 −4 Torr or less. Next, a constant current is applied to the heater on the back surface of this copper block by a direct-current stabilizing power source to heat it, the copper block is kept at a constant temperature of about 50 ° C., and sample 1 is heated from the back surface side. At this time, the sample surface is cooled by radiative heat exchange with the surroundings, so heat flows from the copper block toward the sample surface, and the sample surface temperature is lower than that of copper because the thermal conductivity of the sample is smaller than that of copper. It will be lower than the surface temperature. In this case, the heat flow density in the thickness direction of the sample becomes equal to the heat flow density of heat lost by radiative heat exchange between the sample surface and the surroundings.

第3図に試料と銅ブロック表面の温度分布の一つの例を
示す。熱伝導率の測定にあたっては試料1と銅ブロック
2の表面の温度差ΔTを、第2図に示すように真空容器
の外部から光学窓13を通して熱画像装置14によって測定
する。ここで銅の熱伝導率が試料に比較して十分大きく
銅ブロック全体の温度が均一で、試料裏面と銅ブロック
の境界面の温度が銅ブロック表面の温度に等しいと仮定
すると、銅ブロック表面と試料表面の温度差ΔTは試料
表面と裏面の温度差すなわち熱流方向の温度差に等しく
なる。そこで試料の幅方向の熱伝導が無視できると仮定
すると試料の熱伝導率λは(3)式によって表される。
ここでεhtは黒色塗料の半球全放射率、dは試料の厚
さ、ΔTは試料表面と裏面の温度差である。
FIG. 3 shows one example of the temperature distribution on the sample and the copper block surface. In measuring the thermal conductivity, the temperature difference ΔT between the surfaces of the sample 1 and the copper block 2 is measured from the outside of the vacuum container through the optical window 13 by the thermal imager 14 as shown in FIG. Assuming that the thermal conductivity of copper is sufficiently larger than that of the sample and the temperature of the entire copper block is uniform, and the temperature of the boundary surface between the sample back surface and the copper block is equal to the temperature of the copper block surface, The temperature difference ΔT on the sample surface becomes equal to the temperature difference between the sample front surface and the back surface, that is, the temperature difference in the heat flow direction. Therefore, assuming that the heat conduction in the width direction of the sample can be ignored, the heat conductivity λ of the sample is expressed by the equation (3).
Here, ε ht is the hemispherical total emissivity of the black paint, d is the thickness of the sample, and ΔT is the temperature difference between the front surface and the back surface of the sample.

λ=εhtσd(Ts 4−Te 4)/ΔT (3) 実際にこの方法で測定を行う場合には試料幅方向の熱伝
導や、銅ブロックの温度が均一でないことによる熱伝導
率の測定誤差が生ずる。そこで有限要素法を用いた試料
周辺の熱伝導の数値解析を行った結果、現在の測定条件
では試料の幅方向の熱伝導による測定誤差は1%以内で
あり、また銅ブロックの温度の非一様性も最大で数mK程
度でほとんど問題にならないことが確認された。
λ = ε ht σd (T s 4 −T e 4 ) / ΔT (3) When actually measuring by this method, heat conductivity in the sample width direction and thermal conductivity due to uneven temperature of the copper block Measurement error occurs. Therefore, as a result of numerical analysis of heat conduction around the sample using the finite element method, the measurement error due to the heat conduction in the width direction of the sample is within 1% under the present measurement conditions, and the temperature of the copper block is non-uniform. It was also confirmed that the modality is at most a few mK and does not pose a problem.

以上に述べた方法が受動法と呼ばれるものである。しか
しこの方法では試料と周囲の温度差が小さい場合や試料
の熱伝導率が大きい場合にはΔTが小さくなって測定が
困難になる。また黒色塗料の半球全放射率を別の方法で
測定する必要がある。そこでこのような場合には以下に
述べる能動法を用いる。この方法では受動法とは反対に
試料表面の温度は銅ブロックよりも高くなり、熱は試料
表面から銅ブロックに向かって流れる。
The method described above is called the passive method. However, in this method, when the temperature difference between the sample and the surroundings is small or the thermal conductivity of the sample is large, ΔT becomes small and measurement becomes difficult. It is also necessary to measure the hemispherical total emissivity of black paint by another method. Therefore, in such a case, the active method described below is used. In this method, contrary to the passive method, the temperature of the sample surface becomes higher than that of the copper block, and heat flows from the sample surface toward the copper block.

第4図(a)及び(b)に能動法における試料、銅ブロ
ック、試料表面のステンレス箔及びステンレス箔への通
電加熱電極の構造を示す。これらの図に示すように試料
1の表面に厚さ10〜30μmのステンレス箔8接着し、そ
の上に黒色塗料3を塗布する。このステンレス箔が銅ブ
ロック2と接触する部分には絶縁材11を取り付ける。そ
してこのステンレス箔に一対の銅製の通電加熱電極9を
両側から押しつけて試料幅方向に一様な直流電流を流
す。受動法の場合と同様に銅ブロック裏面にもヒーター
5を取り付けるが、このヒーターは銅ブロックの温度を
一定に保つために補助的に使用する。
FIGS. 4 (a) and 4 (b) show the structure of the sample, the copper block, the stainless steel foil on the surface of the sample and the current heating electrode for the stainless steel foil in the active method. As shown in these figures, a stainless foil 8 having a thickness of 10 to 30 μm is adhered to the surface of the sample 1, and the black paint 3 is applied thereon. An insulating material 11 is attached to a portion where the stainless foil contacts the copper block 2. Then, a pair of copper current-carrying electrodes 9 are pressed against the stainless foil from both sides, and a uniform DC current is passed in the sample width direction. A heater 5 is attached to the back surface of the copper block as in the case of the passive method, but this heater is used as an auxiliary to keep the temperature of the copper block constant.

能動法による測定では熱伝導率は(4)式で表される。
ここでHは通電加熱による単位試料表面積あたりの発熱
量で、通電電流Iとステンレス箔表面での電圧降下Vと
ステンレス箔の表面積Aから(5)式によって求められ
る。これらのうち通電電流は回路に直列に挿入された標
準抵抗に生ずる電位差により、電圧降下は通電加熱電極
とともにステンレス箔に押しつけられている一対の電圧
プローブ10によって測定される。
In the measurement by the active method, the thermal conductivity is expressed by equation (4).
Here, H is the amount of heat generated per unit surface area of the sample due to energization heating, and is obtained from the energization current I, the voltage drop V on the surface of the stainless steel foil, and the surface area A of the stainless steel foil by the equation (5). Among these, the energizing current is measured by the potential difference generated in the standard resistance inserted in series in the circuit, and the voltage drop is measured by the pair of voltage probes 10 pressed against the stainless steel foil together with the energizing heating electrode.

λ=d{H−εhtσ(Ts 4−Te 4)}/ΔT (4) H=VI/A (5) 能動法において通電加熱量を調節して試料表面と銅ブロ
ックの温度が等しくなるように、すなわち試料表面と試
料裏面の温度が等しくなるように保つ時、試料厚み方向
の熱伝導は0となる。従ってこの時通電加熱によって試
料表面で発生する熱量は全て周囲との放射熱交換によっ
て失われることになるので、この時の通電加熱量を
H′、試料の表面温度をTs′、周囲の温度をTe′とする
と(6)式を用いて試料表面の黒色塗料の半球全放射率
をその場で測定することができる。
λ = d {H−ε ht σ (T s 4 −T e 4 )} / ΔT (4) H = VI / A (5) In the active method, the temperature of the sample surface and the copper block can be When they are kept equal, that is, when the temperatures of the sample front surface and the sample back surface are kept equal, the heat conduction in the sample thickness direction becomes zero. Therefore since be lost by radiation heat exchange with all heat ambient occurring at the sample surface by electrical heating at this time, the electrical heating amount at the H ', the surface temperature T s of the sample', the ambient temperature Let T e ′ be the in-situ measurement of the total hemispherical emissivity of the black paint on the sample surface using equation (6).

εht=H′/σ(Ts−Te) (6) このように能動法を用いることにより室温での測定や比
較的熱伝導率の大きい試料の測定が可能となるばかりで
なく、黒色塗料の半球全放射率をその場で測定できるの
で、黒色塗料による半球全放射率のばらつきによって生
ずる誤差を小さくできる。また(4)式から解るよう
に、半球全放射率の測定値に誤差が生じてもそれが100
%熱伝導率の測定値に影響しないという利点もある。
ε ht = H ′ / σ (T s4 −T e4 ) (6) By using the active method in this way, it becomes possible to measure at room temperature and samples with relatively high thermal conductivity. Instead, since the total hemispherical emissivity of the black paint can be measured on the spot, the error caused by the variation in the total hemispherical emissivity of the black paint can be reduced. Also, as can be seen from equation (4), even if there is an error in the measurement value of the hemispherical total emissivity, it is 100
It also has the advantage that it does not affect the measured% thermal conductivity.

能動法を用いて大気または不活性ガス中で熱伝導率を測
定するときの試料の熱伝導率は(7)式で表される。こ
こでhは対流熱伝達係数である。
The thermal conductivity of the sample when the thermal conductivity is measured in the atmosphere or the inert gas using the active method is expressed by the equation (7). Where h is the convection heat transfer coefficient.

λ=d{H−εhtσ(Ts 4−Te 4) −h(Ts−Te)}/ΔT (7) 対流熱伝達係数は、前述の半球全放射率測定方法と同様
に、大気中で試料表面と銅ブロックの温度、すなわち試
料表面と試料裏面の温度が等しくなり、試料厚み方向の
熱伝導が0となるようにの単位試料表面積あたりの通電
加熱量H″と、試料の表面温度をTs″と、周囲の温度を
Te″、および放射熱交換による熱損失は熱対流伝達によ
る熱損失に比べて無視できることから(8)式を用いて
その場で測定することができる。
λ = d {H−ε ht σ (T s 4 −T e 4 ) −h (T s −T e )} / ΔT (7) The convection heat transfer coefficient is the same as the hemispherical total emissivity measurement method described above. , The temperature of the sample surface and that of the copper block in the atmosphere, that is, the temperature of the sample surface and the sample back surface are equal, and the heat conduction amount H ″ per unit sample surface area so that the heat conduction in the sample thickness direction is 0, The surface temperature of T s ″ and the ambient temperature
Since T e ″ and the heat loss due to radiative heat exchange can be ignored as compared with the heat loss due to heat convection transfer, they can be measured in-situ using Equation (8).

h=H″/(Ts″−Te″) (8) 対流熱伝達係数が求まれば受動法を用いた大気中での熱
伝導率測定も可能で、この場合の試料の熱伝導率は
(9)式で表される。
h = H ″ / (T s ″ −T e ″) (8) If the convection heat transfer coefficient is obtained, it is possible to measure the thermal conductivity in the atmosphere using the passive method. In this case, the thermal conductivity of the sample Is expressed by equation (9).

λ=d{εhtσ(Ts 4−Te 4) +h(Ts−Te)}/ΔT (9) 室温において能動法を用いて熱伝導率を測定する場合に
は、表面のステンレス箔ヒーターによって発生する熱に
よって銅ブロックの温度が上昇し、銅ブロックの温度を
室温に保つことが困難になるという問題が生ずる。この
ような場合には銅ブロックまたはそれを支持する支持部
分を水冷することによって銅ブロックの温度を室温に保
つ。
λ = d {ε ht σ (T s 4 −T e 4 ) + h (T s −T e )} / ΔT (9) When the thermal conductivity is measured using the active method at room temperature, stainless steel on the surface is used. The heat generated by the foil heater raises the temperature of the copper block, making it difficult to maintain the temperature of the copper block at room temperature. In such a case, the temperature of the copper block is kept at room temperature by water cooling the copper block or the supporting portion supporting it.

本熱伝導率測定方法を用いて低温において測定を行うた
めには銅ブロックを電子冷却または液体窒素冷却する。
この場合能動法では試料表面で発生する熱量に比較して
周囲との放射熱交換量が小さくなるので測定精度が向上
する。また受動法では周囲からの室温の熱放射によって
試料表面を加熱して熱流を発生させ、熱伝導率を測定す
る。
In order to perform the measurement at a low temperature using this thermal conductivity measuring method, the copper block is electronically cooled or liquid nitrogen cooled.
In this case, in the active method, the amount of radiant heat exchange with the surroundings is smaller than the amount of heat generated on the surface of the sample, so the measurement accuracy is improved. In the passive method, the surface of the sample is heated by heat radiation from the surroundings to generate a heat flow, and the thermal conductivity is measured.

本熱伝導率測定方法における測定温度範囲は原理的には
極低温から試料の融点までである。しかし実際には低温
では銅ブロックと試料の間の接着剤がもろくなるため、
測定温度の下限は液体窒素温度程度である。高温におい
ても上限温度は主に接着剤の耐熱性によって制限され、
高分子系の接着剤では150℃程度、セラミック系の接着
剤や銀ペーストなどでは700℃程度である。また800℃を
越える温度で測定を行おうとする場合には銅ブロックの
代わりにモリブデンなどの高融点金属でブロックを製作
する必要がある。
In principle, the measurement temperature range in the present thermal conductivity measurement method is from extremely low temperature to the melting point of the sample. However, in practice, the adhesive between the copper block and the sample becomes brittle at low temperatures, so
The lower limit of the measurement temperature is about the liquid nitrogen temperature. Even at high temperatures, the maximum temperature is limited mainly by the heat resistance of the adhesive,
The temperature is about 150 ℃ for polymer adhesives and about 700 ℃ for ceramic adhesives and silver paste. If you want to make measurements at temperatures above 800 ° C, it is necessary to make blocks of refractory metal such as molybdenum instead of copper blocks.

第5図に能動法によって測定された試料表面の黒色塗料
の半球全放射率を示す。この結果から半球全放射率の測
定値のばらつきは2〜3%である。熱伝導率を測定する
にあたってはこの半球全放射率の温度依存性を図中の曲
線によって近似した値を用いた。
Fig. 5 shows the hemispherical total emissivity of the black paint on the sample surface measured by the active method. From this result, the variation in the measured value of the hemispherical total emissivity is 2-3%. In measuring the thermal conductivity, the value obtained by approximating the temperature dependence of the total emissivity of the hemisphere by the curve in the figure was used.

第6図には能動法及び受動法によってシリコンゴム標準
試料の熱伝導率を測定した例を示す。図中の実線はシリ
コンゴム標準試料の熱伝導率の標準値で、測定値と標準
値の差は最大で±8%程度である。図中のエラーバーは
熱画像装置の温度分解能(0.1℃)に相当する熱伝導率
のばらつきで、測定値と標準値の差はほぼこの範囲に入
っている。また測定時間も短く、今回の測定条件では1
点の測定に要する時間は5分程度であった。
FIG. 6 shows an example of measuring the thermal conductivity of a silicon rubber standard sample by the active method and the passive method. The solid line in the figure is the standard value of the thermal conductivity of the silicone rubber standard sample, and the maximum difference between the measured value and the standard value is about ± 8%. The error bar in the figure is the variation in thermal conductivity corresponding to the temperature resolution (0.1 ° C) of the thermal imager, and the difference between the measured value and the standard value is within this range. Also, the measurement time is short, which is 1 under the current measurement conditions.
The time required to measure the points was about 5 minutes.

[発明の効果] 以上にも述べたように本熱伝導率測定方法を使用するこ
とによって、高分子材料などの比較的熱伝導率が低い材
料の熱伝導率を3×25×25mm程度の従来よりもかなり小
さい試料を用いて、比熱などの他の物性値に依存するこ
となく短時間に測定することが可能となる。また試料表
面の通電加熱を併用する能動法を用いれば室温での測
定、試料厚み方向の温度差の増加や半球全放射率の同時
測定による測定精度の向上、そして対流熱伝達係数の同
時測定による大気中での熱伝導率測定も可能である。大
気中での測定が可能となれば真空装置が不要となるばか
りでなく、多孔質の断熱材や小さな容器に封入した液体
の熱伝導率を測定することも可能となるなど、本熱伝導
率測定方法の適用範囲が飛躍的に拡大する。さらに測定
温度も液体窒素による銅ブロックの冷却や接着剤の耐熱
性を向上させることによって、液体窒素温度から700℃
程度の温度領域に適用することができる。
[Advantages of the Invention] As described above, by using the present thermal conductivity measuring method, the thermal conductivity of a material having a relatively low thermal conductivity such as a polymer material is about 3 × 25 × 25 mm. It becomes possible to measure in a short time by using a sample much smaller than the above, without depending on other physical properties such as specific heat. In addition, by using the active method that also uses current heating of the sample surface, it is possible to measure at room temperature, increase the temperature difference in the sample thickness direction and improve the measurement accuracy by simultaneous measurement of the hemispherical total emissivity, and simultaneously measure the convection heat transfer coefficient. It is also possible to measure thermal conductivity in the atmosphere. If it is possible to measure in the atmosphere, not only will a vacuum device be unnecessary, but it will also be possible to measure the thermal conductivity of a porous heat insulating material or a liquid enclosed in a small container. The range of application of the measurement method is dramatically expanded. Furthermore, the measurement temperature can be increased from liquid nitrogen temperature to 700 ℃ by cooling the copper block with liquid nitrogen and improving the heat resistance of the adhesive.
It can be applied to a temperature range of a certain degree.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明のうち受動法を用いた実施例にお
ける測定装置の構造を説明する図である。 第1図(b)は第1図(a)の中心線A−A′における
断面図である。 第2図は本発明の実施例における装置の構成図である。 第3図は本発明のうち受動法における試料表面の温度分
布の例を示す図である。 第4図(a)は本発明のうち能動法を用いた実施例にお
ける測定装置の構造を説明する図である。 第4図(b)は第4図(a)の中心線B−B′における
断面図である。 第5図は本発明を用いて測定された半球全放射率の例を
示すグラフである。 第6図は本発明を用いて測定された熱伝導率の例を示す
グラフである。 1……試料 2……銅ブロック 3……黒色塗料 4……絶縁層 5……ヒーター 6……熱電対 7……電極 8……ステンレス箔 9……通電加熱電極 10……電圧プローブ 11……絶縁材 12……真空容器 13……光学窓 14……熱画像装置
FIG. 1 (a) is a diagram for explaining the structure of a measuring apparatus in an embodiment using the passive method of the present invention. FIG. 1 (b) is a sectional view taken along the center line AA ′ of FIG. 1 (a). FIG. 2 is a block diagram of the apparatus in the embodiment of the present invention. FIG. 3 is a diagram showing an example of the temperature distribution on the sample surface in the passive method of the present invention. FIG. 4 (a) is a view for explaining the structure of the measuring apparatus in the embodiment using the active method of the present invention. FIG. 4 (b) is a sectional view taken along the center line BB 'in FIG. 4 (a). FIG. 5 is a graph showing an example of hemispherical total emissivity measured using the present invention. FIG. 6 is a graph showing an example of thermal conductivity measured using the present invention. 1 …… Sample 2 …… Copper block 3 …… Black paint 4 …… Insulating layer 5 …… Heater 6 …… Thermocouple 7 …… Electrode 8 …… Stainless steel foil 9 …… Electric heating electrode 10 …… Voltage probe 11 …… Insulation material 12 Vacuum container 13 Optical window 14 Thermal imager

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空中において前記被測定物の裏面を加熱
するとともに前記被測定物の表面と周囲との間で放射熱
交換を行わせることにより前記被測定物表面と周囲との
放射熱交換により失われる熱の熱流密度が前記被測定物
の厚み方向の熱流密度と等しくなるようにして前記被測
定物の厚み方向に一様な熱流密度を発生させ、このとき
の前記被測定物の表面温度をTsとし、周囲の温度をTe
し、前記被測定物表面と裏面の温度差をΔTとし、前記
被測定物表面の半球全放射率をεhtとし、ステファン・
ボルツマン定数をσとし、前記被測定物の厚さをdとし
たとき、前記被測定物の熱伝導率λを下式 λ=εhtσd(Ts 4−Te 4)/ΔT により求めることを特徴とする熱伝導率測定方法。
1. Radiant heat exchange between the surface of the object to be measured and the surroundings by heating the back surface of the object to be measured in a vacuum and causing radiant heat exchange between the surface of the object to be measured and the surroundings. To generate a uniform heat flow density in the thickness direction of the measured object so that the heat flow density of the heat lost becomes equal to the heat flow density in the thickness direction of the measured object, and the surface of the measured object at this time Let T s be the temperature, T e be the ambient temperature, ΔT be the temperature difference between the front and back surfaces of the object to be measured, and ε ht be the total hemispherical emissivity of the surface of the object to be measured.
When the Boltzmann constant is σ and the thickness of the measured object is d, the thermal conductivity λ of the measured object is calculated by the following formula λ = ε ht σd (T s 4 −T e 4 ) / ΔT. And a method for measuring thermal conductivity.
【請求項2】被測定物の表面に金属箔を張るとともに当
該金属箔表面に黒色塗料を塗布し、真空中において前記
金属箔に通電することにより前記被測定物の表面に単位
面積あたり一定の熱量H′を発生させるとともに前記被
測定物表面と周囲との間で放射熱交換を行わせることに
よって前記被測定物の表面と裏面の温度を等しくさせ、
このときの前記被測定物の表面温度をTs′とし、周囲の
温度をTe′とし、ステファン・ボルツマン定数をσとし
たとき、前記被測定物表面の黒色塗料の半球全放射率ε
htを下式 εht=H′/σ(Ts−Te) により求め、 真空中において前記金属箔に通電することにより前記被
測定物表面に単位面積あたり一定の熱量Hを発生させる
とともに前記被測定物表面と周囲との間で放射熱交換を
行わせることによって前記被測定物の厚み方向に一様な
熱流密度を発生させ、このときの前記被測定物の表面温
度をTsとし、周囲の温度をTeとし、前記被測定物表面と
裏面の温度差をΔTとし、前記被測定物の厚さをdと
し、前記被測定物表面の黒色塗料の半球全放射率εht
上式の値としたとき、前記被測定物の熱伝導率λを下式 λ=d{H−εhtσ(Ts 4−Te 4)}/ΔT により求めることを特徴とする熱伝導率測定方法。
2. A surface of an object to be measured is covered with a metal foil, a black paint is applied to the surface of the metal foil, and the metal foil is energized in a vacuum so that the surface of the object to be measured has a constant area per unit area. By generating a heat quantity H'and performing radiative heat exchange between the surface of the object to be measured and the surroundings, the temperatures of the front surface and the back surface of the object to be measured are equalized,
When the surface temperature of the object to be measured at this time is T s ′, the ambient temperature is T e ′, and the Stefan-Boltzmann constant is σ, the hemispherical total emissivity ε of the black paint on the surface of the object to be measured is ε.
ht is obtained by the following equation: ε ht = H ′ / σ (T s4 −T e4 ), and a constant amount of heat H per unit area is applied to the surface of the object to be measured by energizing the metal foil in vacuum. Generate a uniform heat flow density in the thickness direction of the measured object by causing radiant heat exchange between the surface of the measured object and the surroundings, and the surface temperature of the measured object at this time. T s , the ambient temperature is T e , the temperature difference between the front and back surfaces of the object to be measured is ΔT, the thickness of the object to be measured is d, and the hemispherical total emissivity of the black paint on the surface of the object to be measured is When ε ht is the value of the above equation, the thermal conductivity λ of the measured object is obtained by the following equation λ = d {H−ε ht σ (T s 4 −T e 4 )} / ΔT. Method for measuring thermal conductivity.
【請求項3】被測定物の表面に金属箔を張り、大気また
は不活性ガス中において前記金属箔に通電することによ
り前記被測定物表面に単位面積あたり一定の熱量H″を
発生させるとともに前記被測定物表面と周囲との間で放
射熱交換を行わせかつ前記被測定物表面と周囲との間で
対流による熱交換を行わせることによって前記被測定物
の表面と裏面の温度を等しくさせ、このときの前記被測
定物の表面温度をTs″とし、周囲の温度をTe″としたと
き、前記大気または不活性ガス中の対流熱伝達係数hを
下式 h=H″/(Ts″−Te″) により求め、 前記大気または不活性ガス中において前記金属箔に通電
することにより前記被測定物表面に単位面積あたり一定
の熱量Hを発生させるとともに前記被測定物表面と周囲
との間で放射熱交換を行わせかつ前記被測定物表面と周
囲との間で対流による熱交換を行わせることによって前
記被測定物の厚み方向に一様な熱流密度を与え、このと
きの前記被測定物の表面温度をTsとし、周囲の温度をTe
とし、前記被測定物表面と裏面の温度差をΔTとし、前
記被測物表面の半球全放射率をεhtとし、ステファン・
ボルツマン定数をσとし、前記被測定物の厚さをdと
し、対流熱伝達係数hを上式の値としたとき、前記被測
定物の熱伝導率λを下式 λ=d{H−εhtσ(Ts 4−Te 4) −h(Ts−Te)}/ΔT により求めることを特徴とする熱伝導率測定方法。
3. A surface of an object to be measured is covered with a metal foil, and the metal foil is energized in the atmosphere or an inert gas to generate a constant amount of heat H ″ per unit area on the surface of the object to be measured. By causing radiative heat exchange between the surface of the object to be measured and the environment and heat exchange by convection between the surface of the object to be measured and the environment, the temperatures of the surface and the back surface of the object to be measured are made equal. When the surface temperature of the object to be measured at this time is T s ″ and the ambient temperature is T e ″, the convection heat transfer coefficient h in the atmosphere or the inert gas is expressed by the following equation: h = H ″ / ( T s ″ −T e ″), and a constant amount of heat H per unit area is generated on the surface of the object to be measured by energizing the metal foil in the atmosphere or an inert gas. Radiative heat exchange with the surroundings And a uniform heat flow density in the thickness direction of the measured object is given by causing heat exchange by convection between the surface of the measured object and the surroundings, and the surface temperature of the measured object at this time is T s and the ambient temperature is T e
And the temperature difference between the front surface and the back surface of the measured object is ΔT, and the total hemispherical emissivity of the surface of the measured object is ε ht.
When the Boltzmann constant is σ, the thickness of the object to be measured is d, and the convection heat transfer coefficient h is the value of the above equation, the thermal conductivity λ of the object to be measured is the following equation: λ = d {H−ε A method for measuring thermal conductivity, characterized by: ht σ (T s 4 −T e 4 ) −h (T s −T e )} / ΔT.
JP2032678A 1990-02-14 1990-02-14 Thermal conductivity measurement method Expired - Lifetime JPH0718826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032678A JPH0718826B2 (en) 1990-02-14 1990-02-14 Thermal conductivity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032678A JPH0718826B2 (en) 1990-02-14 1990-02-14 Thermal conductivity measurement method

Publications (2)

Publication Number Publication Date
JPH03237345A JPH03237345A (en) 1991-10-23
JPH0718826B2 true JPH0718826B2 (en) 1995-03-06

Family

ID=12365533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032678A Expired - Lifetime JPH0718826B2 (en) 1990-02-14 1990-02-14 Thermal conductivity measurement method

Country Status (1)

Country Link
JP (1) JPH0718826B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454599B2 (en) 2018-09-06 2022-09-27 Showa Denko K.K. Thermal conductivity measuring device, heating device, thermal conductivity measuring method, and quality assurance method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528954B1 (en) * 2009-03-06 2010-08-25 独立行政法人産業技術総合研究所 Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples
CN114813200B (en) * 2022-07-01 2022-10-04 中国飞机强度研究所 Device and method for measuring high-temperature characteristics of airplane component
CN117250227B (en) * 2023-11-17 2024-01-23 西南交通大学 3D printed concrete surface heat exchange characteristic constant temperature test system, method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250240A (en) * 1984-05-25 1985-12-10 Fujitsu Ltd Heat constant measuring apparatus
JPS62207944A (en) * 1986-03-10 1987-09-12 Agency Of Ind Science & Technol Thermal conductivity measuring instrument
JPH0625742B2 (en) * 1988-01-18 1994-04-06 石川島播磨重工業株式会社 Thermal conductivity measuring device
JPH01142851U (en) * 1988-03-26 1989-09-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454599B2 (en) 2018-09-06 2022-09-27 Showa Denko K.K. Thermal conductivity measuring device, heating device, thermal conductivity measuring method, and quality assurance method

Also Published As

Publication number Publication date
JPH03237345A (en) 1991-10-23

Similar Documents

Publication Publication Date Title
Wallace et al. Specific heat of high purity iron by a pulse heating method
KR101718378B1 (en) Evaluation device and evaluation method for substrate mounting apparatus and evaluation substrate used for the same
EP0644418B1 (en) Measuring thermal conductivity and apparatus therefor
US4840495A (en) Method and apparatus for measuring the thermal resistance of an element such as large scale integrated circuit assemblies
Nath et al. Experimental determination of the thermal conductivity of thin films
CN113588137A (en) Heat flow sensor calibration device and calibration method
Nagai et al. Thermal conductivity measurement of molten silicon by a hot-disk method in short-duration microgravity environments
CN111771120B (en) Chip for evaluating substrate and substrate evaluating device
KR920007197B1 (en) Method and apparatus for measuring thermal diffusivity by ac joule-heating
Smith et al. A calorimeter for high-power CW lasers
JPH0718826B2 (en) Thermal conductivity measurement method
CN108918580B (en) Nondestructive steady-state thermal conductivity measurement method
JPH09222404A (en) Method and device for measuring specific heat capacity
JP3849295B2 (en) Thermal diffusion coefficient measuring device
RU148273U1 (en) DEVICE FOR CONTROL OF THERMAL CONDUCTIVITY OF PLATES FROM ALUMONITRIDE CERAMICS
Hisano et al. Simultaneous measurement of specific heat capacity, thermal conductivity, and thermal diffusivity by thermal radiation calorimetry
JP2001021512A (en) Thermal conductivity measuring device
EA037599B1 (en) Thick film element having coated substrate with high heat conductivity
JP4273265B2 (en) Sensor for measuring thermal conductivity of high-temperature liquid substances
Pichler et al. Thermal conductivity of liquid metals
JP2000097834A (en) Heat-resisting fatigue test method for ceramics sintered body and its device
CN112666208B (en) Transient method thermal insulation material thermal conductivity testing arrangement
Milošević et al. Measurements of thermophysical properties of solids at the Institute VINČA
JP2009002688A (en) Temperature calibration method for infrared detector and specific heat capacity measuring method
JP3404608B2 (en) Sample temperature adjusting device such as charged beam drawing device and sample holder used in this device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term