JP7301764B2 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
JP7301764B2
JP7301764B2 JP2020019377A JP2020019377A JP7301764B2 JP 7301764 B2 JP7301764 B2 JP 7301764B2 JP 2020019377 A JP2020019377 A JP 2020019377A JP 2020019377 A JP2020019377 A JP 2020019377A JP 7301764 B2 JP7301764 B2 JP 7301764B2
Authority
JP
Japan
Prior art keywords
height
calibration jig
sample
specimen
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020019377A
Other languages
English (en)
Other versions
JP2021124443A (ja
Inventor
吉秀 中村
陽介 堀江
学 越智
悟郎 吉田
諭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2020019377A priority Critical patent/JP7301764B2/ja
Publication of JP2021124443A publication Critical patent/JP2021124443A/ja
Application granted granted Critical
Publication of JP7301764B2 publication Critical patent/JP7301764B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、自動分析装置に関する。
自動分析装置では、血液や尿などの検体を分析するために、検体の入った採血管やサンプルカップなどの検体容器を装置に投入する。装置内では、各検体容器内の検体を分注し、試薬と混ぜ合わせて成分分析を行う。分注には細長いノズルが用いられ、高精度に分注するためには検体の液面位置を高精度に測定する必要がある。誤差の少ない液位測定を行う方法として、特許文献1に記載の技術がある。この特許文献1には、液面を非接触で検出する第1の検出器と、第1の検出器により検出された液面をこの液面と分注プローブとの接触により検出する第2の検出器と、分注プローブを作動させる分析制御部とを備え、分析制御部は、分注プローブを第1の検出器により検出される液面よりも上方の第1の位置まで第1の速度で下方向に移動させた後、第2の検出器により検出される位置まで第1の速度よりも低速の第2の速度で下方向に移動させる方法が開示されている。
特開2014-202588号公報
特許文献1のように、複数の液面検出器を組み合わせて利用することで、誤差の少ない液面測定が期待できる。しかし、実際には、自動分析装置を構成する部品の寸法誤差や組み立て誤差によって、それぞれの液面検出器の間にオフセットが生じている可能性がある。こうしたオフセットが生じていると、液面の位置を誤認識するため、正確な分注が行えなくなってしまう。
本発明の目的は、分注の精度を高めた自動分析装置を提供することにある。
上記課題を解決するため、本発明は、検体を収容した検体容器を搬送する搬送ラインと、前記搬送ライン上の異なる位置で前記検体容器内の液面を検出する第1及び第2の液面検出器と、前記検体容器に収容された液体を吸引して反応容器に吐出する検体分注ノズルと、前記搬送ライン、前記第1及び第2の液面検出器、前記検体分注ノズル、を制御する制御部と、を有する自動分析装置において、前記搬送ラインは、高さの基準となる校正治具を、前記第1及び第2の液面検出器の検出位置に搬送し、前記制御部は、前記第1及び第2の液面検出器を用いて、前記校正治具の高さをそれぞれ算出し、この算出値及び前記校正治具の実際の高さ寸法を用いて、高さのオフセットを校正することを特徴とする。
本発明によれば、分注の精度を高めた自動分析装置を提供できる。
自動分析装置の概略を示す上面図である。 校正治具の構成を示す図である。 校正治具の搬送から校正後の回収までの全体的なフローチャートである。 校正治具が液位測定位置にあるときの側面図である。 超音波式センサの校正動作の詳細を示すフローチャートである。 校正治具が検体吸引位置にあるときの側面図である。 検体分注機構の校正動作の詳細を示すフローチャートである。
以下、図1から図7を参照し、本発明の実施形態について、血液や尿などの検体を分析する自動分析装置を例に説明する。
図1は自動分析装置の構成を示す概略図である。自動分析装置10は、試薬容器11を複数搭載する試薬ディスク12と、試薬と検体を混ぜ合わせて反応させるための反応容器27と、反応容器27を複数備える反応ディスク13と、試薬の吸引や吐出を行う試薬分注機構14と、検体の吸引や吐出を行う検体分注機構15と、検体容器21を載せた検体ラック22を装置に投入する投入ライン16と、測定が終了した検体ラック22を回収する回収ライン17と、検体ラック22を搬送する搬送ライン19と、検体容器21内の液面を検出する超音波式センサ(第1の液面検出器)23と、各部の動作を制御する制御部20と、を備える。なお、自動分析装置10には、装置を操作するための操作部や、分析結果や装置の状態を表示するための表示部などもあるが、図1では省略している。
ここで、搬送ライン19上の異なる位置には、液位測定位置用センサ34と、検体吸引位置用センサ35と、が設けられている。そして、液位測定位置用センサ34が検体ラック22の位置を検出することで、搬送ライン19は、液位を測定するための液位測定位置31に検体容器21を位置決めする。また、検体吸引位置用センサ35が検体ラック22の位置を検出することで、搬送ライン19は、検体を吸引するための検体吸引位置32に検体容器21を位置決めする。なお、液位測定位置用センサ34や検体吸引位置用センサ35としては、例えばフォトインタラプター等を用いることができる。さらに、搬送中に、バーコードリーダ30が、検体容器21に貼り付けられた検体バーコード29や、検体ラック22に貼り付けられたラックバーコード28を読み取り、読み取った情報は検査項目の管理に利用される。
超音波式センサ23は、センサ位置から送信した超音波が液面に反射して戻るまでの時間を測定し、センサから液面までの距離を算出する。すると、センサの設置高さから、センサから液面までの距離を減算することで、液面の高さが算出できる。なお、第1の液面検出器は、液位測定位置31に位置決めされた検体容器21内の検体の液面のまでの距離を非接触で測定できるものであれば、超音波式のセンサに限られるものではなく、例えば光学式のセンサであっても良い。
試薬分注機構14は、試薬を分注するための試薬分注ノズル24を備え、検体分注機構15は、検体を分注するための検体分注ノズル25を備える。検体分注機構15は、回転動作によって、搬送ライン19上の検体吸引位置32と反応容器27上の検体吐出位置33に検体分注ノズル25を移動させる。回転中に検体分注ノズル25が周囲に接触しない検体分注ノズル25の高さを上停止位置とし、回転動作は、検体分注ノズル25が上停止位置にある状態で行われる。さらに、検体吸引位置32では、検体容器21内の液面の位置に合わせて検体分注ノズル25を下降させ、検体を検体分注ノズル25内に吸引し、再度、検体分注ノズル25上昇させ、上停止位置で停止させる。検体吐出位置33では、反応容器27の高さに合わせて検体分注ノズル25を下降させ、検体分注ノズル25内の検体を吐出し、再度上昇させ、上停止位置で停止させる。
検体分注ノズル25には、検体容器21内の液面を検出する静電容量式センサ(第2の液面検出器)26が内蔵されている。この静電容量式センサ26は、具体的には、検体分注ノズル25と搬送ライン19の間の静電容量を測定し、検体分注ノズル25の先端の検体液面への接触又は接近による静電容量の増加を検出する。なお、第2の液面検出器は、検体容器21内の液面と接触したことを検出できるものであれば、静電容量式のセンサに限られるものではなく、例えば圧力センサであっても良い。
次に、自動分析装置10における検体の分注動作について説明する。検体ラック22は、分析対象の検体を収容した複数本の検体容器21を積載し、投入ライン16から自動分析装置10に投入される。搬送ライン19は、検体容器21が液位測定位置31に位置決されるように、検体ラック22を搬送する。このとき、超音波式センサ23は、液位測定位置31に来た検体容器21内の液面までの距離を非接触で測定することで、液面の高さを算出する。検体ラック22内の検体の液面高さをすべて算出した後、搬送ライン19は、検体ラック22を搬送し、検体容器21を検体吸引位置32に位置決めする。検体分注機構15は、回転動作によって検体分注ノズル25を検体吸引位置32に移動させる。その後、検体分注機構15は、超音波式センサ23を用いて算出した液面高さの直前まで、検体分注ノズル25を高速で下降させ、次いで液面に向けて検体分注ノズル25を低速で下降させる。そして、検体分注機構15は、検体分注ノズル25に内蔵された静電容量式センサ26が液面を検出してから、さらに規定量下降した位置で、検体分注ノズル25を停止する。検体分注ノズル25は、検体を吸引し、上停止位置まで上昇後、検体吐出位置33に移動し、反応容器27内に下降し、規定量の検体を吐出する。
検体の分注量は、試薬の分注量と比べて微量であり、検体の分注量のばらつきは検査の結果に影響を与えやすい。そこで、検体分注機構15では、分注量のばらつきを抑えるために、検体分注ノズル25の検体への挿入量を精密に制御している。検体分注機構15は、超音波式センサ23を用いて算出した液面高さの情報に基づいて検体分注ノズル25の下降を制御するため、検体分注ノズル25の先端を、算出した液面位置高さで正確に停止させることが必要となる。しかし、一般的に自動分析装置は、装置全体として大型で構成部品数が多いため、部品寸法誤差や組立誤差が累積し、搬送ライン19、検体分注機構15、超音波式センサ23の相対位置に数ミリメートル程度のオフセットが生じる可能性がある。オフセット量は、自動分析装置の個体差や設置場所の条件によって異なり、部品の交換や修理によっても変化することが想定されるため、自動分析装置ごとに定期的な校正が必要である。
そこで、高さの基準となる校正治具100を用いて、超音波式センサ23の設置高さと、検体分注ノズル25先端の停止高さと、の相対的な位置関係を校正する方法について説明する。校正治具100は、超音波式センサ23及び静電容量式センサ26で検出可能な検出面102aを備え、検体容器21と同様に、検体用の搬送ライン19によって液位測定位置31や検体吸引位置32に搬送される。
図2を用いて校正治具100の構成を説明する。図2(a)は校正治具100の正面図であり、図2(b)は校正治具100の断面図である。校正治具100は、ケース101、検出用部材102、コンデンサ110、接地用部材111、弾性体112、などにより構成される。ケース101は、プラスチックなどの絶縁性の材質で構成される。検出用部材102は、導電性の材質で構成され、上面に平坦な検出面102aを有する。さらに、この検出用部材102は、下方向にのみ可動するようにケース101に拘束されており、ケース内部の弾性体112によって、上方向に押さえつけられている。検出面102aは校正治具100の上面に露出しており、負荷が無いときには検出面102aの高さがケース101の高さに一致する。このため、校正治具100の上面は、段差が無い平坦面である。校正治具100の底面又は側面には、導電性の材質で校正された接地用部材111を有する。検出用部材102と接地用部材111は、ケース101内部のコンデンサ110を介して電気的に接続される。
検出面102aは平坦であるため、超音波式センサ23は、検出面102aの位置を高精度に測定可能である。さらに、校正治具100が搬送ライン19上にあるとき、接地用部材111が搬送ライン19に接触するため、検出用部材102はコンデンサ110を介して搬送ライン19と電気的に接続された状態となる。このため、第2の液面検出器として静電容量式センサ26を用いれば、検体分注ノズル25の先端が検出面102aに接触したことを検出できる。
校正治具100の長さL1と幅L2と高さL3は、検体ラック22の長さ、幅、高さとそれぞれ同一である。校正治具100の寸法を検体ラック22の寸法と同一にすることで、検体ラック22の搬送用に設計された搬送ライン19を使用して校正治具100を搬送し、液位測定位置31と検体吸引位置32に位置決めをすることができる。但し、校正治具100の高さL3については、液位測定位置用センサ34や検体吸引位置用センサ35で検出できる位置であれば、同じ高さでなくても良い。
以上のように構成された校正治具100を用いて、超音波式センサ23と検体分注機構15(検体分注ノズル25)の原点位置のオフセットを校正する。校正を行うタイミングはいつでも良いが、例えば、自動分析装置10の電源を投入した際のチェック動作の中で行う。その他にも、操作部から校正を指示したタイミングや、一定時間ごとに行っても良い。
図3を用いて、校正治具100の搬送から校正後の回収までの全体の流れについて説明する。まず、投入ライン16から校正治具100が自動分析装置10に投入される。校正治具100の側面には、バーコード103が貼り付けられており、これをバーコードリーダ30で読み取ることで、制御部20は、校正治具100が投入されたと判断し、校正動作を開始する(ステップS10)。搬送ライン19は、校正治具100を搬送し、液位測定位置用センサ34で校正治具100の位置を検出し、液位測定位置31に校正治具100を位置決めする(ステップS20)。超音波式センサ23は、液位測定位置31にある校正治具100の検出面102aを検出し、校正を行う(ステップS30)。詳細な校正動作は後述する。超音波式センサ23の校正を終えた後、搬送ライン19は校正治具100を搬送し、検体吸引位置用センサ35で校正治具100の位置を検出し、検体吸引位置32に校正治具100を位置決めする(ステップS40)。検体分注機構15は、検体分注ノズル25の先端が検出面102aに接触するまでの下降量に基づいて校正を行う(ステップS50)。詳細な校正動作は後述する。すべての超音波式センサ23及び検体分注機構15の校正を終えると、搬送ライン19は校正治具100を回収ライン17まで搬送して、校正治具100を回収し(ステップS60)、校正動作を終了する。
一つ目の校正動作として、超音波式センサ23の設置高さのオフセットを校正する動作について説明する。図4は、校正治具100が液位測定位置31にあるときの側面図である。超音波式センサ23は、設計上では搬送ライン19から高さH1の位置に取り付けられる。そして、液位測定を行う際には、検体の液面までの距離を測定し、この距離と高さH1とに基づいて、液面の高さを算出する。しかし、前述したように、組立誤差や部品寸法誤差によって、超音波式センサ23の設置高さにはオフセットΔH1が加算された状態である。そのため、校正を行わずに液位を測定すると、実際の液位にオフセットΔH1を加算した値が、液位の測定値として出力されてしまう。そこで、超音波式センサ23の校正では、オフセットΔH1を算出し、正確な液位を測定できるようにする。
図5は、超音波式センサ23の校正動作の詳細を示すフローチャートである。まず、制御部20は、超音波式センサ23を用いて校正治具100までの距離D1を測定し、超音波式センサ23の設計上の高さH1から距離D1を減算することにより、校正治具100の高さを算出する(ステップS301)。ここで、校正治具100の実際の高さ寸法L3は既知であるから、制御部20は、実際の高さ寸法L3と、算出した高さ(H1-D1)との差により、オフセットΔH1を算出し、これを校正値とする(ステップS302)。次に、制御部20は、校正値が事前に規定された許容範囲内であるかを確認する(ステップS303)。校正値が許容範囲よりも大きい場合、制御部20は、超音波式センサ23に異常があると判断し、自動分析装置10の表示部にアラートを表示する(ステップS304)。許容範囲内であった場合、制御部20は、校正値を記録して(ステップS305)、超音波式センサ23の校正を終了する。
二つ目の校正動作として、検体分注機構15(検体分注ノズル25先端)の停止高さのオフセットを校正する動作について説明する。図6は、校正治具100が検体吸引位置32にあるときの側面図である。検体分注機構15は、上停止位置における検体分注ノズル25の先端が、設計上では搬送ライン19から高さH2となるように取り付けられている。そして、検体の吸引を行う際には、超音波式センサ23で測定した液面位置に基づいて、検体分注ノズル25の下降動作を制御する。しかし、前述したように、組立誤差や部品寸法誤差によって、上停止位置における検体分注ノズル25先端の高さにはオフセットΔH2が加算された状態である。そのため、校正を行わずに検体分注ノズル25を下降させると、実際の液面の位置にオフセットΔH2を加算した位置を、液面の位置と誤認識した状態となるため、正確な分注が行えない可能性がある。そこで、検体分注機構15の校正では、オフセットΔH2を算出し、正確な分注が行えるようにする。
図7は、検体分注機構15の校正動作の詳細を示すフローチャートである。まず、制御部20は、静電容量式センサ26が検体分注ノズル25先端と検出面102aとの接触を検出するまで、検体分注ノズル25下降させる。このとき、制御部20は、上停止位置における検体分注ノズル25先端の設計上の高さH2から、検体分注ノズル25の下降量D2を減算することにより、校正治具100の高さを算出する(ステップS501)。ここで、校正治具100の実際の高さL3は既知であるから、制御部20は、実際の高さ寸法L3と、算出した高さ(H2-D2)との差により、オフセットΔH2を算出し、これを校正値とする(ステップS502)。次に、制御部20は、校正値が事前に規定された許容範囲内であるかを確認する(ステップS503)。校正値が許容範囲よりも大きい場合、制御部20は、検体分注機構15に異常があると判断し、自動分析装置10の表示部にアラートを表示する(ステップS504)。許容範囲内であった場合、制御部20は、校正値を記録して(ステップS505)、検体分注機構15の校正を終了する。
以上の方法では、搬送ライン19上に校正治具100を置いて校正を行うため、搬送ラインの高さがずれている場合と、超音波式センサ23や検体分注機構15の高さがずれている場合と、のどちらにも対応できる。また、搬送ライン19の高さを基準に、超音波式センサ23や検体分注機構15の高さのオフセットを算出し、校正を行うため、結果的に超音波式センサ23と検体分注ノズル25先端の相対的な位置関係が校正できる。
本実施形態によれば、自動分析装置10の部品の寸法誤差や組立誤差による超音波式センサ23や検体分注ノズル25の高さのオフセットを校正できる。このため、超音波式センサ23による液位の測定値に基づいて、検体分注ノズル25の検体への挿入量を高精度に制御し、分注量のばらつきを最小化することが可能である。また、超音波式センサ23や検体分注機構15の異常を早期に検出できるため、故障による検査結果の異常を最小限にとどめることもできる。
10 自動分析装置
11 試薬容器
12 試薬ディスク
13 反応ディスク
14 試薬分注機構
15 検体分注機構
16 投入ライン
17 回収ライン
19 搬送ライン
21 検体容器
22 検体ラック
23 超音波式センサ(第1の液面検出器)
25 検体分注ノズル
26 静電容量式センサ(第2の液面検出器)
27 反応容器
31 液位測定位置
32 検体吸引位置
100 校正治具
102a 検出面

Claims (3)

  1. 検体を収容した検体容器を、液位測定位置及び検体吸引位置に搬送する搬送ラインと、
    前記液位測定位置にある前記検体容器内の液面までの距離を非接触で測定する超音波式センサと、
    前記検体吸引位置にある前記検体容器に収容された液体を吸引して反応容器に吐出する検体分注ノズルと、
    前記検体分注ノズルの先端に設けられて前記検体容器内の液面と接触したことを検出する静電容量式センサと、
    前記搬送ライン、前記超音波式センサ、前記検体分注ノズル、前記静電容量式センサ、を制御する制御部と、
    を有する自動分析装置において、
    前記搬送ラインは、上端が平坦な検出面である導電性の検出用部材を備えた校正治具を、前記液位測定位置及び前記検体吸引位置に搬送し、
    前記制御部は、
    前記超音波式センサから前記校正治具までの距離D1を、前記超音波式センサの設計上の高さH1から減算することにより、前記校正治具の高さ(H1-D1)を算出し、
    前記校正治具の既知である実際の高さ寸法L3と、前記校正治具の算出した高さ(H1-D1)と、の差により、オフセットΔH1を算出することで、前記超音波式センサの高さのオフセットを校正するとともに、
    前記静電容量式センサが前記検体分注ノズル先端と前記検出面との接触を検出するまでの前記検体分注ノズルの下降量D2を、上停止位置における前記検体分注ノズル先端の設計上の高さH2から減算することにより、前記校正治具の高さ(H2-D2)を算出し、
    前記校正治具の既知である実際の高さ寸法L3と、前記校正治具の算出した高さ(H2-D2)と、の差により、オフセットΔH2を算出することで、前記検体分注ノズルの高さのオフセットを校正する、
    ことを特徴とする自動分析装置。
  2. 請求項に記載の自動分析装置おいて
    前記検出用部材を介して前記校正治具の上面から前記搬送ラインまで、電気的に接続されていることを特徴とする自動分析装置。
  3. 請求項1に記載の自動分析装置において、
    装置の状態を表示する表示部をさらに有し
    前記制御部は、前記校正治具の既知である実際の高さ寸法と、前記校正治具の算出した高さと、の差が所定値よりも大きい場合、前記表示部にアラートを表示することを特徴とする自動分析装置。
JP2020019377A 2020-02-07 2020-02-07 自動分析装置 Active JP7301764B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020019377A JP7301764B2 (ja) 2020-02-07 2020-02-07 自動分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020019377A JP7301764B2 (ja) 2020-02-07 2020-02-07 自動分析装置

Publications (2)

Publication Number Publication Date
JP2021124443A JP2021124443A (ja) 2021-08-30
JP7301764B2 true JP7301764B2 (ja) 2023-07-03

Family

ID=77459523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020019377A Active JP7301764B2 (ja) 2020-02-07 2020-02-07 自動分析装置

Country Status (1)

Country Link
JP (1) JP7301764B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202412709D0 (en) * 2022-03-18 2024-10-16 Hitachi High Tech Corp Electrophoresis device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121413A (ja) 1998-07-14 2000-04-28 Bayer Corp 超音波を用いて分析容器の特徴を決定するための動的非接触検出
JP2014202588A (ja) 2013-04-04 2014-10-27 株式会社東芝 自動分析装置
US20160045911A1 (en) 2014-08-15 2016-02-18 Biomerieux, Inc. Methods, systems, and computer program products for detecting pipette tip integrity
JP2016183913A (ja) 2015-03-26 2016-10-20 株式会社日立ハイテクノロジーズ 自動分析装置
JP2019158639A (ja) 2018-03-14 2019-09-19 株式会社日立ハイテクノロジーズ 自動分析装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145763A (ja) * 1994-11-24 1996-06-07 Sanyo Electric Co Ltd 分注機の液面位検出装置
JPH1183867A (ja) * 1997-09-02 1999-03-26 Olympus Optical Co Ltd 分注装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121413A (ja) 1998-07-14 2000-04-28 Bayer Corp 超音波を用いて分析容器の特徴を決定するための動的非接触検出
JP2014202588A (ja) 2013-04-04 2014-10-27 株式会社東芝 自動分析装置
US20160045911A1 (en) 2014-08-15 2016-02-18 Biomerieux, Inc. Methods, systems, and computer program products for detecting pipette tip integrity
JP2016183913A (ja) 2015-03-26 2016-10-20 株式会社日立ハイテクノロジーズ 自動分析装置
JP2019158639A (ja) 2018-03-14 2019-09-19 株式会社日立ハイテクノロジーズ 自動分析装置

Also Published As

Publication number Publication date
JP2021124443A (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
US6270726B1 (en) Tube bottom sensing for small fluid samples
EP1607747B1 (en) Liquid measurements using capacitive monitoring
US9285262B2 (en) System for managing bulk liquids and/or solids
EP2525230A1 (en) Automatic analyzing device
US20120222773A1 (en) Analyzer and position confirming method
WO2017033910A1 (ja) 自動分析装置、分注方法、および液面検知方法
CN110291405B (zh) 自动分析装置和自动分析装置中的清洗机构
EP3779467B1 (en) Automated analysis device
US11415589B2 (en) Automatic analyzer
JPH0843403A (ja) 分析装置
JP7301764B2 (ja) 自動分析装置
WO2010032507A1 (ja) 分注装置、自動分析装置および分注不良確認方法
JP5231186B2 (ja) 検体分注方法および分析装置
JP6863708B2 (ja) 自動分析装置
JP2004151087A (ja) 臨床分析装置と共に使用される反応容器内における流体測定の改良
CN112083178A (zh) 用于光学监控待移液的液体的剂量分配的设备
JP2018194301A (ja) 自動分析装置、及び洗浄液量の調整方法
EP4310508A1 (en) Automatic analysis device
JP7461963B2 (ja) 自動分析装置および試薬の分注方法
WO2020195500A1 (ja) 自動分析装置
JPH05306973A (ja) 液体の分注方法及び液体の分注装置
JP7105577B2 (ja) 自動分析装置
JP6338898B2 (ja) 自動分析装置
US20240192245A1 (en) Automatic analysis device and abnormality detection method
JP2000046624A (ja) 液体残量検出機能を備えた分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R150 Certificate of patent or registration of utility model

Ref document number: 7301764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150