JP7293148B2 - 検査装置及び検査方法 - Google Patents

検査装置及び検査方法 Download PDF

Info

Publication number
JP7293148B2
JP7293148B2 JP2020024270A JP2020024270A JP7293148B2 JP 7293148 B2 JP7293148 B2 JP 7293148B2 JP 2020024270 A JP2020024270 A JP 2020024270A JP 2020024270 A JP2020024270 A JP 2020024270A JP 7293148 B2 JP7293148 B2 JP 7293148B2
Authority
JP
Japan
Prior art keywords
area
height
stage
inspection
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020024270A
Other languages
English (en)
Other versions
JP2021128119A (ja
Inventor
広 井上
力 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2020024270A priority Critical patent/JP7293148B2/ja
Publication of JP2021128119A publication Critical patent/JP2021128119A/ja
Application granted granted Critical
Publication of JP7293148B2 publication Critical patent/JP7293148B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、試料上に形成されたパターンを検査するための検査装置及び検査方法に関する。
大規模集積回路(LSI:Large Scale Integration)の高集積化及び大容量化に伴い、半導体素子に要求される回路寸法は、微細化の一途を辿っている。半導体素子の製造では、縮小投影露光装置(ステッパまたはスキャナーと呼ばれる)において、回路パターン(以下、パターンと記す)が形成されたマスクを用いて、ウェハ上にパターンが露光される。
LSIの製造において、歩留まりを低下させる要因の1つとして、マスクに形成されたパターンの欠陥(形成不良)があげられる。
例えば、最先端のデバイスでは、数nmの線幅のパターンの形成が要求される。パターンの微細化に伴い、マスクにおけるパターンの欠陥も微細化している。したがって、マスクの検査装置は、極めて小さなパターンの欠陥の検出精度の向上が求められている。
マスクの検査装置では、マスクは、検査装置内のステージ上に保持されて載置される。そして、ステージが移動することによって、光学系を介して照射された光がマスク上を走査する。マスクを透過、または反射した光は、レンズを介してセンサに結像する。マスクの欠陥検査は、例えば、センサで撮像された光学画像とマスクの設計データ(以下、設計パターンデータと記す)から生成された参照画像とを比較することによって行われる。または、ウェハ上に形成される半導体素子(ダイ)毎に光学画像が取得されるため、マスクの欠陥検査は、各ダイの光学画像を比較することによっても行うことができる。したがって、参照画像には、設計パターンデータから生成された画像だけでなく、あるダイについて取得された光学画像も含まれる。
なお、検査装置の検査対象となる試料は、マスクに限定されない。試料は、ウェハ、または液晶表示装置などに使用される基板等であってもよい。
マスクに形成されたパターンの微細化に対応して、パターンの光学画像を撮像するための光学系における高倍率化と高NA(Numerical Aperture)化が進められている。このため、光学系とマスクとの距離の許容範囲である焦点深度が浅くなる。焦点深度が浅くなると、光学系とマスクとの距離が僅かに変化しただけで、光のフォーカスずれが生じる。この結果、光学画像のパターン像がぼやけ、光学画像の取得及び欠陥検出処理に支障を来たす。フォーカスずれを抑制するため、マスクに照射する光のオートフォーカス制御を行うオートフォーカス機構を備えた検査装置が知られている。
オートフォーカス機構として、例えば、特許文献1には、予め設定された位置においてオートフォーカス制御を行うオートフォーカス機構が開示されている。また、特許文献2には、マスク検査の測定位置が、予め設定された領域から外れた場合にオートフォーカス制御をオフにするオートフォーカス機構が開示されている。これらの特許文献は、いずれもオートフォーカス制御を行う位置または領域を指定するものであり、オートフォーカス制御を行わない領域におけるマスク表面の段差に対応する制御機構または方法については、開示されていない。
特開2009-168607号公報 特開2012-78164号公報
本発明は、検査対象の試料のパターン表面に段差やメサ部(突出部)があったとしても、段差やメサ部の端でフォーカスを追随できる様にする制御機構および方法を提供にするものである。半導体の製造工程では、ウェハ上に微細なパターンを形成する原盤となるフォトマスクの一例として、位相シフトマスクの1つであるハーフトーンマスクが知られている。ハーフトーンマスクの場合、例えば石英ガラスを用いた基板の上に、ある程度の光の透過率を有し位相を180度反転させる位相シフト膜を用いたパターンが形成されている。以下、位相シフト膜によるパターンが形成された領域を透過領域と記す。また、パターンが形成されておらず露光に寄与しない透過領域の外周には、基板の上に、例えばクロム(Cr)膜を用いた遮光膜が設けられている。以下、遮光膜が形成された領域を遮光領域と記す。この場合、マスク表面における基板と遮光膜との段差(高さ)は、基板と位相シフト膜との段差よりも大きい。
ハーフトーンマスクの欠陥を検査する場合、欠陥の検査領域には、透過領域と、遮光領域の一部とが含まれる。検査装置は、検査領域内にて光を走査して、光学画像を取得する。基板と遮光膜との段差は基板と位相シフト膜との段差よりも大きい。このため、光を走査する際、基板と遮光膜との段差をオートフォーカス制御が追従できない場合がある。例えば、遮光領域から透過領域に向かって光を走査した場合、オートフォーカス制御が追従できない影響により、光学画像のパターン像がぼやけることがある。パターン像がぼやけると、光学画像と参照画像との差異により、擬似欠陥が検出される、または欠陥が検出されなくなる可能性が高くなる。このため、欠陥の検出精度が低下する可能性がある。
本発明はこうした点に鑑みてなされたものである。すなわち、本発明は、オートフォーカス制御の追従が困難な程度の段差やメサ部を有する試料に対して、欠陥の検出精度の低下を抑制できる検査装置及び検査方法を提供することを目的とする。
本発明の第1の態様によれば、検査装置は、表面に第1領域と第1領域と高さが異なる第2領域とを有する試料が載置されるステージと、第1領域の一部と第2領域とを検査領域とし、試料の光学画像の取得に用いられる光を射出する光源と、ステージの表面に垂直な第1方向における試料の表面の第1の高さ位置を測定する第1測定部と、ステージの表面に平行であり且つ第1方向に交差する第2方向と、ステージの表面に平行であり且つ第1及び第2方向に交差する第3方向とにおけるステージのステージ位置を測定する第2測定部と、第1方向におけるステージの第2の高さ位置を制御する高さ制御部と、試料に照射する光のオートフォーカス制御をオン状態またはオフ状態に切り替える制御信号及びフォーカスオフセット値を高さ制御部に送信するコントローラと、を備える。高さ制御部は、検査領域において光の照射位置がオートフォーカス制御をオン状態にする第3領域内にある場合、第1測定部が測定した第1の高さ位置のデータに基づくオートフォーカス制御を実行し、照射位置が第3領域と異なる、オートフォーカス制御をオフ状態にする第4領域内にある場合、コントローラから受信したフォーカスオフセット値に基づいて第2の高さ位置を変更する。コントローラは、第2測定部で測定されたステージ位置のデータ、第3領域に関する位置情報、半導体のマスクの表面に設けられ且つ第1領域と第2領域との間に位置する段差部についての情報を含む第4領域に関する位置情報、及び試料の表面の高さ情報とに基づいて、制御信号及びフォーカスオフセット値を高さ制御部に送信し、さらに、コントローラは、第3領域において、光のオートフォーカス制御をオン状態にする制御信号を高さ制御部に送信し、第4領域において、照射位置が段差部の上を通過するときに、光のオートフォーカス制御をオフ状態にする制御信号及びフォーカスオフセット値を高さ制御部に送信する。
本発明の第1の態様によれば、第領域及び第領域の位置座標は、試料のパターンのレイアウト情報に基づく座標とし、コントローラは、照射位置が第領域内にある場合、制御信号を第1論理レベルとし、照射位置が第領域内にある場合、制御信号を第1論理レベルとは異なる第2論理レベルとすることが好ましい。
本発明の第1の態様によれば、フォーカスオフセット値は、試料の表面の高さ情報に基づく値とすることが好ましい。
本発明の第1の態様によれば、高さ制御部による制御に基づいてステージを第1方向に移動させる圧電素子を用いたアクチュエータを更に備えることが好ましい。
本発明の第2の態様によれば、検査方法は、表面に第1領域と第1領域と高さが異なる第2領域とを有する試料をステージ上に載置する工程と、第1領域の一部と第2領域とを検査領域とし、試料に光を照射して光学画像を取得する工程とを備える。検査領域において光の照射位置がオートフォーカス制御をオン状態にする領域内にある場合、光学画像を取得する工程は、ステージの表面に垂直な第1方向における試料の表面の第1の高さ位置のデータを取得する工程と、取得した第1の高さ位置のデータに基づいて試料に照射する光のオートフォーカス制御を実行する工程とを含む。検査領域において光の照射位置が第3領域と異なる、オートフォーカス制御をオフ状態にする領域内にある場合、光学画像を取得する工程は、試料の表面の高さ情報に基づくフォーカスオフセット値を用いて第1方向におけるステージの第2の高さ位置を変更する工程を含む。
本発明の第2の態様によれば、第2の高さ位置を変更する工程は、第4領域において照射位置が試料の表面に設けられ且つ第1領域と第2領域の間に位置する段差部の上を通過するときに実行されることが好ましい。
本発明の試料検査装置及び試料検査方法によれば、オートフォーカス制御が困難な程度の段差を有する試料の欠陥の検出精度の低下を抑制できる。
図1は、一実施形態に係る検査装置の構成を示す図である。 図2は、一実施形態に係る検査装置の備えるオートフォーカス機構の構成を示す図である。 図3は、一実施形態に係る検査装置において検査対象となるマスクの表面及び断面を示す図である。 図4は、一実施形態に係る検査装置における検査手順を示すフローチャートである。 図5は、図3の領域RAの拡大図及び領域RAにおけるマスクの高さ位置の測定結果を示す図である。 図6は、比較例として常時オートフォーカス制御を実行した場合のステージの高さ位置を示す図である。
以下に、実施形態について図面を参照して説明する。実施形態は、発明の技術的思想を具体化するための装置や方法を例示している。図面は模式的または概念的なものであり、各図面の寸法及び比率等は必ずしも現実のものと同一とは限らない。本発明の技術的思想は、構成要素の形状、構造、配置等によって特定されるものではない。
以下では、試料の検査装置として、マスクの検査装置を例にあげて説明する。なお、本実施形態では、検査対象の試料、すなわちマスクとしてハーフトーンマスクを用いた場合について説明するが、ハーフトーンマスクに限定されない。
以下、マスクがハーフトーンマスクに限定されない場合は、単にマスクと表記する。
1.検査装置の全体構成
まず、検査装置の全体構成について、図1を用いて説明する。図1は、検査装置1の全体構成を示す図である。
図1に示すように、検査装置1は、光学画像取得装置10と制御装置20とを含む。
光学画像取得装置10は、第1の光源120、第2の光源130、ステージ111、XY駆動部112、Z駆動部116、レンズ121、123、及び124、ミラー122、131、及び132、フォトダイオードアレイ125、センサ回路126、高さ測定システム133、レーザ測長システム140、並びにオートローダ150を含む。
第1の光源120は、マスク(試料)2に、マスク2の欠陥検査用の光を照射する。第1の光源120から出射された光は、レンズ121を透過し、ミラー122によって向きを変えられた後、レンズ123によってマスク2の上に集光される。マスク2を透過した光は、マスク2の下方に設けられたレンズ124によって、フォトダイオードアレイ125の上に結像される。
第2の光源130は、マスク2に、マスク2の高さ測定用の光を照射する。第2の光源130から出射された光は、ミラー131によって向きを変えられて、マスク2の上に照射される。次いで、この光は、マスク2上で反射した後、ミラー132によって向きを変えられて高さ測定システム133に入射する。なお、ミラー132は省略されてもよい。この場合、マスク2上で反射した光は、高さ測定システム133に直接入射する。
ステージ111は、ステージ111の表面に平行なX方向、ステージ111の表面に平行であり且つX方向と交差するY方向、並びにステージ111の表面に垂直なZ方向に移動可能である。マスク2は、ステージ111の上に載置される。
XY駆動部112は、ステージ111を、X方向及びY方向から構成されるXY平面において移動させるための駆動機構を有する。より具体的には、XY駆動部112は、ステージ111をX方向に駆動させるX軸モータ113及びステージ111をY方向に駆動させるY軸モータ114を含む。X軸モータ113及びY軸モータ114には、例えばステッピングモータを用いることができる。なお、XY駆動部112は、例えば、Z方向を回転軸として、ステージ111をXY平面上で回転軸周りに回転させる回転軸モータを有していてもよい。
マスク2のパターンの欠陥を検査する検査領域は、例えば、Y方向に沿って複数に仮想的に分割される。以下、分割された検査領域の各々を「検査フレーム」と表記する。XY駆動部112は、分割された各検査フレームに対し光を連続的に走査(スキャン)するように、ステージ111の動作を制御する。
Z駆動部116は、ステージ111をZ方向に移動させるための駆動機構を有する。より具体的には、Z駆動部116は、ステージ111をZ方向に駆動させる複数のZ軸アクチュエータ117を含む。Z軸アクチュエータ117には、例えばピエゾ素子等の圧電素子を用いたアクチュエータを用いることができる。
フォトダイオードアレイ125は、マスク2を透過した欠陥検査用の光を光電変換し、電気信号を生成する。フォトダイオードアレイ125は、生成した電気信号をセンサ回路126に送信する。より具体的には、フォトダイオードアレイ125は、図示せぬ画像センサを含む。画像センサとしては、例えば、撮像素子としてのCCDカメラを一列に並べたラインセンサが用いられてもよい。ラインセンサの例としては、TDI(Time Delay Integration)センサがあげられる。例えば、ステージ111がX方向に連続的に移動しながら、TDIセンサによってマスク2のパターンが撮像される。
センサ回路126は、フォトダイオードアレイ125から受信した電気信号をA/D(アナログ/デジタル)変換する。センサ回路126は、変換したデジタル信号、すなわち光学画像データを制御装置20の比較回路173に送信する。光学画像は、設計パターンデータに含まれる図形データに基づく図形が描画されたマスク2の画像である。また、光学画像は、例えば、8ビットの符号なしデータであって、検査領域をXY平面上に分割した各画素の明るさを階調で表現する。
なお、図1は、マスク2を透過した光から画像を取得する構成を有する例を示しているが、検査装置1はこれに限定されない。検査装置1は、マスク2で反射した光をフォトダイオードアレイに導いて画像を取得する構成を有していてもよい。また、検査装置1は、マスク2からの透過光による画像とマスク2からの反射光による画像とを同時に取得する構成を有してもよい。
高さ測定システム133は、第2の光源130から射出され、マスク2の表面を反射した高さ測定用の光を受光する。高さ測定システム133は、この受光した光に基づいて、マスク2(すなわちステージ111)のZ方向における高さ位置を測定する測定部である。
レーザ測長システム140は、ステージ111のX方向及びY方向における位置(「ステージ位置」とも表記する)を測定する測定部である。レーザ測長システム140は、測定したデータを、制御装置20の位置回路174に送信する。
オートローダ150には、複数のマスク2がセットされる。オートローダ150は、検査対象のマスク2をステージ111に搬入する。オートローダ150は、光学画像の撮像が終了したマスク2をステージ111から搬出させ、次のマスク2をステージ111に搬入する。
制御装置20は、中央処理装置(CPU:Central Processing Unit)160、ランダムアクセスメモリ(RAM)161、リードオンリーメモリ(ROM)162、外部ストレージ163、表示装置164、入力装置165、及び通信装置166を備える。これらは、バスラインを介して互いに接続されている。
CPU160は、検査装置1の各部の動作を制御するプロセッサであり、1つまたは複数のマイクロプロセッサで構成される。CPU160の一部または全部の機能が、特定用途集積回路(ASIC:Application Specific Integrated Circuit)、フィールドプログラマブルアレイ(FPGA)、グラフィック処理ユニット(GPU)などの他の集積回路によって担われてもよい。
RAM161は、例えばCPU160の主記憶装置として機能する。例えば、RAM161には、CPU160が実行するプログラム、並びにプログラムの実行に必要なパラメータまたデータ等が記憶される。
ROM162は、例えば、起動プログラム、オペレーティングシステム、検査のための制御装置20内部の回路や検査装置1の各部の制御を行うためのプログラム、などを記録する。
外部ストレージ163には、例えば、磁気ディスク記憶装置(HDD:Hard Disk Drive)、ソリッドステートドライブ(SSD)などの各種記憶装置が用いられる。外部ストレージ163には、本実施形態に係る検査処理のための各種パラメータなどが記録されている。また、外部ストレージ163には、検査装置1で取得されたデータ、制御装置20で処理された検査結果に関するデータなども記録される。
更に、本実施形態の外部ストレージ163には、マスク2の検査領域についての位置情報及びZオフセット情報も記憶される。位置情報には、マスク2の検査領域においてオートフォーカス制御を行う領域(以下、「AF-ON領域」と表記する)とオートフォーカス制御を行わない領域(以下、「AF-OFF領域」と表記する)とを示す情報が含まれる。AF-ON領域及びAF-OFF領域の位置座標は、マスク上に設けられたパターンのレイアウト情報に基づく。また、位置情報には、AF-OFF領域において、ステージ111の高さ位置の調整(変更)が必要となる位置(例えば、遮光膜によるマスク2の表面の段差部)を示した情報が含まれる。Zオフセット情報は、マスク2の表面の段差(高さ)情報である。Zオフセット情報には、AF-OFF領域においてステージ111の高さ位置調整に用いられるフォーカスオフセット値を設定するための情報が含まれる。より具体的には、例えば、Zオフセット情報には、遮光膜の膜厚(基板と遮光膜とによる段差)についての情報が含まれる。
なお、位置情報及びZオフセット情報は、入力装置165を介してユーザにより設定されてもよく、CPU160により設定されてもよい。例えば、CPU160は、位置情報及びZオフセット情報を、設計パターンデータ、マスク情報、及び検査条件等に基づいて設定してもよく、光学画像を取得する前に実行された検査領域の高さ測定結果に基づいて設定してもよい。
表示装置164は、CRTディスプレイ、液晶ディスプレイ、または有機ELディスプレイなどの表示装置である。制御装置20には、スピーカなどの音声出力装置が設けられてもよい。
入力装置165は、キーボード、マウス、タッチパネル、またはボタンスイッチなどの入力装置である。
通信装置166は、外部装置との間でデータの送受信を行うために、ネットワークに接続するための装置である。通信には、各種の通信規格が用いられ得る。例えば、通信装置166は、外部装置から設計パターンデータを受信し、検査装置1で取得されたデータ、制御装置20で処理された検査結果に関するデータなどを外部装置に送信する。
また、制御装置20は、オートローダ制御回路167、光源制御回路168、XY駆動部制御回路169、Z駆動部制御回路170、展開回路171、参照回路172、比較回路173、及び位置回路174を備える。なお、これらは、CPU、ASIC、FPGA、または、GPUなどの集積回路が実行するプログラムによって構成されてもよく、それらの集積回路が備えるハードウェアまたはファームウェアによって構成されてもよく、それらの集積回路によって制御される個別の回路によって構成されてもよい。以下では、これらが、検査処理を行うために外部ストレージ163に格納され、CPU160によって実行されるプログラムである場合について説明する。
オートローダ制御回路167は、CPU160の制御下で、オートローダ150の動作を制御する。オートローダ制御回路167は、オートローダ150を操作して、検査対象のマスク2をステージ111に搬入させる。また、オートローダ制御回路167は、オートローダ150を操作して、ステージ111からマスク2を搬出させる。
光源制御回路168は、CPU160の制御下で、第1の光源120及び第2の光源130を制御する。
XY駆動部制御回路169は、CPU160の制御下で、XY駆動部112を制御する。より具体的には、XY駆動部制御回路169は、位置回路174を介してレーザ測長システム140が測定したステージ111のX方向及びY方向における位置測定結果を取得し、取得した結果に基づいてXY駆動部112を制御する。
Z駆動部制御回路170は、CPU160の制御下で、Z駆動部116を制御する。本実施形態では、Z駆動部制御回路170は、マスク2の検査領域を、AF-ON領域とAF-OFF領域とに分けて、Z駆動部116を制御する。より具体的には、AF-ON領域では、Z駆動部制御回路170は、高さ測定システム133から受信したマスク2の表面の高さデータに基づいてレンズ123とマスク2のパターン表面との距離が一定になるようにステージ111の高さ位置を制御する。また、AF-OFF領域では、Z駆動部制御回路170は、ステージ111(マスク2)の位置座標に応じてステージ111の高さ位置を変更する。
展開回路171は、例えば、外部ストレージ163に保持されている設計パターンデータを用いて2値または多値のイメージデータ(設計画素データ)を生成する。生成されたイメージデータは、参照回路172に送られる。
参照回路172は、展開回路171から受信したイメージデータを用いて参照画像を生成する。参照回路172は、生成した参照画像を比較回路173に送信する。
比較回路173は、センサ回路126から受信した光学画像と、参照回路172で生成された参照画像とを、適切なアルゴリズムを用いて比較する。そして、比較回路173は、光学画像と参照画像の誤差が予め設定された値を超えた場合には、対応するマスク2の座標位置(X方向及びY方向におけるステージ位置)に欠陥があると判定する。マスク2における欠陥の座標位置と、欠陥判定の根拠となった光学画像及び参照画像は、例えば、検査結果として、外部ストレージ163に保存される。
位置回路174は、レーザ測長システム140から受信したデータに基づいて、ステージ111のX方向及びY方向における位置データを生成する。
2.高さ測定システム及びZ駆動部制御回路の詳細
次に、高さ測定システム133及びZ駆動部制御回路170の詳細について、図2を用いて説明する。図2は、図1で示した検査装置1においてオートフォーカス機構、すなわち、ステージ111の高さ位置制御に対応する機構の構成を抜粋した図である。
図2に示すように、オートフォーカス機構には、第2の光源130、ステージ111、XY駆動部112、Z駆動部116、レンズ123、ミラー131及び132、高さ測定システム133、レーザ測長システム140、XY駆動部制御回路169、Z駆動部制御回路170、及び位置回路174が含まれる。
高さ測定システム133は、高さ位置センサ134及び高さ測定制御部135を含む。
高さ位置センサ134は、図示せぬ受光素子を含む。受光素子としては、例えば、位置検出素子(PSD:Position Sensitive Detector)が用いられる。PSDは、PIN型フォトダイオードと同様の構造であって、光起電力効果により、光の入射位置における光電流を測定して光の重心位置計測を実現するものである。
高さ測定制御部135は、高さ位置センサ134から出力された信号を、I/V変換アンプで電流値から電圧値に変換する。その後、高さ測定制御部135は、変換した電圧値を非反転増幅アンプによって適切な電圧レベルに増幅した後、A/D変換部でデジタルデータに変換する。そして、高さ測定制御部135は、受光素子で検出した光の位置に応じたマスク2の表面の高さデータを作成する。
Z駆動部制御回路170は、Zドライバ180、Zドライバ制御部181、及びZコントローラ182を含む。
Zドライバ180は、Z駆動部116のZ軸アクチュエータ117を駆動させるドライバ回路である。
Zドライバ制御部181は、Zコントローラ182の制御に基づいて、Zドライバ180を制御するステージ111の高さ制御部である。Zドライバ制御部181は、Zコントローラ182から受信したAF制御信号に基づいて、オートフォーカス制御のオン/オフを切り替える。オートフォーカス制御を実行している間、Zドライバ制御部181は、高さ測定システム133から受信したマスク2の表面の高さデータに基づいて、光の焦点位置がマスク2のパターン表面に一致するようにステージ111の高さ位置を決定し、Zドライバ180を制御する。また、オートフォーカス制御を実行していない間、Zドライバ制御部181は、Zコントローラ182から受信したフォーカスオフセット値に基づいて、ステージ111の高さ位置を変更するようにZドライバ180を制御する。
Zコントローラ182は、Zドライバ制御部181を制御する。より具体的には、Zコントローラ182は、位置回路174からステージ111(すなわちマスク2)のX方向及びY方向における位置データを取得する。また、Zコントローラ182は、例えば外部ストレージ163からマスク2についての位置情報及びZオフセット情報を取得する。Zコントローラ182は、位置データ及び位置情報等に基づいて、AF制御信号をZドライバ制御部181に送信する。例えば、Zコントローラ182は、位置データ及び位置情報から、欠陥検査用の光の照射位置がAF-ON領域にあると判断した場合には、オートフォーカス制御をオン状態にするため、AF制御信号を“High”(“H”)レベルとする。または、Zコントローラ182は、位置データ及び位置情報から、欠陥検査用の光の照射位置がAF-OFF領域にあると判断した場合には、オートフォーカス制御をオフ状態にするため、AF制御信号を“Low”(“L”)レベルとする。
Zコントローラ182は、Zオフセット情報に基づいてAF-OFF領域のマスク2の表面段差(表面の高さ情報)に応じたフォーカスオフセット値を設定する。そして、Zコントローラ182は、AF-OFF領域において、位置データ及び位置情報から、欠陥検査用の光の照射位置が、例えば、基板と遮光膜との段差部を通過すると判断した場合、ステージ111の高さ位置を変更するためにフォーカスオフセット値をZドライバ制御部181に送信する。
3.マスクの検査領域
次に、マスク2の検査領域について、図3を用いて説明する。図3は、マスク2の表面及びA1-A2線に沿った断面を示す図である。
図3に示すように、マスク2の基板200は、透過領域と遮光領域とを含む。
透過領域は、基板200上に位相シフト膜202により形成されたパターンが設けられている領域である。透過領域では、基板200及び位相シフト膜202を光が透過する。縮小投影露光装置では、透過領域を透過した光により、パターンが露光される。
遮光領域は、基板200上に遮光膜201が設けられた領域である。遮光領域は、透過領域の外周に設けられており、縮小投影露光装置において、パターンの露光には寄与しない領域である。例えば、遮光領域に、マスク2のX方向及びY方向における位置を調整するためのアライメントパターンが設けられていてもよい。
遮光膜201の膜厚(高さ)をZ1とし、位相シフト膜202の膜厚をZ2とすると、Z1>Z2の関係にある。なお、膜厚Z2は光学系の焦点深度内にあり、位相シフト膜202をスキャンする場合は、Z2の厚さでフォーカス誤差は生じないものとする。
マスク2の検査領域には、透過領域と遮光領域の一部とが含まれる。マスク2の検査領域は、Y方向に沿って、走査幅Wの複数の検査フレームに仮想的に分割される。図3の例では、6つの検査フレーム211~216に分割されているが、分割する検査フレーム数は、任意に設定可能である。そして、分割された各検査フレーム211~216が連続的に走査されるように、XY駆動部112によりステージ111の動作が制御される。より具体的には、検査装置1は、まず、検査フレーム211を、紙面左側から右側に向かってX方向に走査し、光学画像を取得する。すなわち、検査装置1は、ステージ111を、紙面右側から左側に向かってX方向に移動させる。このとき、検査装置1は、センサ回路126において、走査幅Wの光学画像を連続的に取得する。検査装置1は、検査フレーム211における光学画像を取得した後、検査フレーム212を、検査フレーム211の場合とは逆方向に走査しながら、光学画像を連続的に取得する。検査装置1は、検査フレーム213における光学画像を取得する場合には、検査フレーム213を、検査フレーム212の場合とは逆方向に走査する。他の検査フレーム214、215、216も同様に、交互に走査方向を変えながら光学画像が取得される。
または、本実施形態の検査領域は、AF-ON領域とAF-OFF領域とに分けられる。図3の例では、高さZ1の段差を有する透過領域と遮光領域との境界、及び境界近傍を含む四角の枠状の領域が、AF-OFF領域に設定されている。そして、検査領域におけるAF-OFF領域の内側及び外側、すなわち、検査領域においてAF-OFF領域を含まない透過領域及び遮光領域が、AF-ON領域に設定されている。なお、AF-OFF領域の設定は、任意である。例えば、透過領域と遮光領域との境界において、走査方向に沿ったY方向の両辺を含む領域は、AF-ON領域に設定してもよい。また、AF-OFF領域に含まれる境界の近傍の幅も任意に設定可能である。検査領域、または検査条件(走査速度等)に応じて、AF-OFF領域は任意に設定可能である。
4.検査工程の流れ
次に、検査工程の流れについて、図4を用いて説明する。図4は、検査工程のフローチャートである。なお、以下では、検査対象の光学画像と、描画データ(設計パターンデータ)をベースに作成された参照画像とを比較する検査方式(ダイ-トゥ-データベース(Die to Database)方式)について説明する。
図4に示すように、検査工程は、光学画像を取得する光学画像取得工程(ステップS1)と、参照画像を取得する参照画像取得工程(ステップS2)と、光学画像と参照画像との比較工程(ステップS3)とを含む。
4.1 光学画像取得工程
引き続き図4を用いて、ステップS1の光学画像取得工程の一例について説明する。光学画像取得工程では、光学画像取得装置10が、マスク2の光学画像を取得する。
まず、CPU160は、光学画像の取得を開始する(ステップS11)。より具体的には、オートローダ制御回路167は、オートローダ150からマスク2を搬入し、ステージ111の上に載置させる。そして、XY駆動部制御回路169は、位置回路174から取得した位置データに基づいて、XY駆動部112を制御し、ステージ111(マスク2)を走査開始位置まで移動させる。光源制御回路168は、第1の光源120及び第2の光源130からそれぞれ光を射出させる。XY駆動部制御回路169は、光学画像の取得を開始すると、検査フレームに合わせてステージ111を移動させる。センサ回路126において取得された光学画像は、比較回路173に送信される。Z駆動部制御回路170のZコントローラ182は、まず、位置データ、位置情報、及びZオフセット情報を取得する。
Zコントローラ182は、走査開始位置が、AF-ON領域であるのを確認すると、“H”レベルのAF制御信号を、Zドライバ制御部181に送信する。Zドライバ制御部181は、“H”レベルのAF制御信号を受信すると、オートフォーカス制御をオン状態にする(ステップS12)。より具体的には、Zドライバ制御部181は、高さ測定システム133から受信したマスク2の表面の高さデータに基づいて、レンズ123とマスク2の表面との距離が一定になるように、Zドライバ180を介してZ駆動部116を制御し、ステージ111の高さ位置を調整する。
AF-ON領域では、ステージ111の移動によりマスク2の表面の高さデータが変動してもレンズ123とマスク2の表面との距離が一定になるように、マスク2の表面の高さデータに基づくフィードバック制御により、ステージ111の高さ位置が調整される。
ステージ111が移動して光学画像の取得位置がAF-ON領域からAF-OFF領域に移動した場合(ステップS13_Yes)、Zコントローラ182は、オートフォーカス制御をオフ状態にするため、AF制御信号を“L”レベルとする(ステップS14)。Zドライバ制御部181は、“L”レベルのAF制御信号を受信すると、オートフォーカス制御をオフ状態にする。Zドライバ制御部181は、Zコントローラ182からフォーカスオフセット値を受信した場合、ステージ111の高さ位置を変更する(ステップS15)。
例えば、Zコントローラ182は、AF-OFF領域において、位置回路174から取得した位置データ及び外部ストレージ163から取得した位置情報から、光学画像の取得位置がマスク2において遮光領域と透過領域との境界、すなわち遮光膜201による段差部に差し掛かったと判断した場合、Zドライバ制御部181に、ステージ111の高さ位置を調整するためのフォーカスオフセット値を送信する。より具体的には、例えば、Zコントローラ182は、走査方向が遮光領域から透過領域に向かう場合には、ステージ111の高さ位置を高くするように、正のフォーカスオフセット値を設定する。また、例えば、Zコントローラ182は、走査方向が透過領域から遮光領域に向かう場合には、ステージ111の高さ位置を低くするように、負のフォーカスオフセット値を設定する。Zドライバ制御部181は、フォーカスオフセット値を受信すると、ステージ111の高さ位置がフォーカスオフセット値を加算した設定値となるようにZ駆動部116を制御する。したがって、AF-OFF領域では、フォーカスオフセット値に基づくオープン制御により、ステージ111の高さ位置が調整される。
ステージ111が移動して光学画像の取得位置がAF-OFF領域からAF-ON領域に移動した場合(ステップS16_Yes)、Zコントローラ182は、オートフォーカス制御をオン状態にするため、AF制御信号を“H”レベルとする。Zドライバ制御部181は、“H”レベルのAF制御信号を受信すると、オートフォーカス制御をオン状態にする(ステップS17)。
ステージ111が移動しても光学画像の取得位置がAF-OFF領域のままの場合(ステップS16_No)、ステップS15に戻る。
光学画像の取得位置がAF-ON領域にある状態(ステップS13_Yes、またはステップS17)において、CPU160は、検査領域の走査がしたか確認する(ステップS18)。
検査領域の走査が終了していない場合(ステップS18_No)、ステップS13に戻り、CPU160は、光学画像の取得を継続する。
検査領域の走査が終了している場合(ステップS18_Yes)、CPU160は、光学画像取得工程を終了させる(ステップS19)。取得した光学画像は、比較回路173に送信される。
4.2 参照画像取得工程
次に、図4の参照画像取得工程の一例について説明する。参照画像取得工程では、設計パターンデータに基づく参照画像が作成される。
まず、検査装置1は、通信装置166を介して、設計パターンデータを取得する(ステップS21)。
取得された設計パターンデータは、例えば、外部ストレージ163に記憶される(ステップS22)。設計パターンに含まれる図形は、長方形や三角形を基本図形としたものである。外部ストレージ163には、例えば、図形の基準位置における座標、辺の長さ、長方形や三角形などの図形種を区別する識別子となる図形コードといった情報であって、各パターン図形の形、大きさ、位置などを定義した図形データが格納される。さらに、例えば、数十μm程度の範囲に存在する図形の集合を一般にクラスタまたはセルと称するが、これを用いてデータを階層化することが行われている。クラスタまたはセルには、各種図形を単独で配置したり、ある間隔で繰り返し配置したりする場合の配置座標や繰り返し記述も定義される。クラスタまたはセルデータは、さらに検査フレーム毎に配置される。
次に、展開回路171は、外部ストレージ163に記憶された設計パターンデータを読み出す。そして、展開回路171は、設計パターンデータを2値または多値のイメージデータ(設計画像データ)に変換(展開)する(ステップS23)。そして、このイメージデータは参照回路172に送られる。
より具体的には、図形データとなる設計パターンデータが展開回路171に入力されると、展開回路171は、設計パターンデータを図形毎のデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の設計画像データを展開する。展開された設計画像データは、センサ画素に相当する領域(マス目)毎に設計パターンにおける図形が占める占有率を演算する。このようにして演算された各画素内の図形占有率が画素値である。
次に、参照回路172は、展開回路171から送られてきた図形のイメージデータである設計画像データに適切なフィルタ処理を施す(ステップS24)。
より具体的には、例えば、センサ回路126から得られた光学画像としての測定データは、レンズ124の解像特性やフォトダイオードアレイ125のアパーチャ効果などによってフィルタが作用した状態、言い換えれば連続的に変化するアナログ状態にある。したがって、参照回路172は、画像強度(濃淡値)がデジタル値である設計画像データをフィルタ処理し、測定データと比較できる状態、すなわち参照画像を作成する。
そして、参照回路172は、作成した参照画像を比較回路173に送信し、参照画像取得工程が終了する(ステップS25)。
4.3 比較工程
次に、図4のステップS3における比較工程の一例について説明する。ステップS3において、比較回路173は、センサ回路126から送られた光学画像と、参照回路172から送られてきた参照画像とを、適切な比較判定アルゴリズムを用いて比較する。そして、比較回路173は、誤差が予め設定された値を超えた場合に、その箇所(マスク2の座標位置)には欠陥があると判定する。例えば、欠陥の座標、並びに欠陥判定の根拠となった光学画像及び参照画像は、検査結果として、外部ストレージ163に保存された後、表示装置164に表示されてもよく、通信装置166を介して外部デバイス(例えば、レビュー装置等)に出力されてもよい。
なお、欠陥判定は、次の2種類の方法により行うことができる。1つは、参照画像における輪郭線の位置と、光学画像における輪郭線の位置との間に、予め設定された閾値寸法を超える差が認められる場合に欠陥と判定する方法である。他の1つは、参照画像におけるパターンの線幅と、光学画像におけるパターンの線幅との比率が予め設定された閾値を超える場合に欠陥と判定する方法である。この方法では、参照画像におけるパターン間の距離と、光学画像におけるパターン間の距離との比率を対象としてもよい。
5.オートフォーカス制御の具体例
次に、オートフォーカス制御の具体例について、図5を用いて説明する。図5は、図3の領域RAの拡大図及びステージ111の高さ位置を示す図である。図5の例では、透過領域から遮光領域に向かって欠陥検査用の光を走査(スキャン)する場合のステージ111の高さ位置が実線で示されている。また、遮光領域から透過領域に向かって欠陥検査用の光をスキャンする場合のステージ111の高さ位置が破線で示されている。
図5に示すように、まず、透過領域から遮光領域に向かってスキャンする場合について説明する。スキャンの位置(欠陥検査用の光の照射位置)が透過領域内のAF-ON領域にある場合、Zコントローラ182は、AF制御信号を“H”レベルとする。Zドライバ制御部181は、“H”レベルのAF制御信号に基づいて、レンズ123とマスク2の表面との距離が一定となるように、オートフォーカス制御を実行する。より具体的には、例えば、基板200の表面をスキャンしているときのステージ111の高さ位置をT1とし、位相シフト膜202の表面をスキャンしているときのステージ111の高さ位置をT2とする。一方、Zドライバ制御部181は、位相シフト膜202の表面をスキャンするときのステージの高さ位置T2が、基板200の表面をスキャンしているときの高さ位置T1よりも低くなるよう、例えば、位相シフト膜202の膜厚がZ2である場合、T2はT1-Z2と概略等しい値となるようにZ駆動部116を制御する。なお、実際の検査では、パターンが密に形成されているエリアを高速でスキャンすることになり、制御の応答性の制約から、オートフォーカスで制御されるZ位置は、T1とT2の間になる。
スキャンの位置が透過領域内のAF-ON領域からAF-OFF領域に移動した場合、Zコントローラ182は、AF制御信号を“L”レベルとする。Zドライバ制御部181は、“L”レベルのAF制御信号に基づいて、オートフォーカス制御をオフ状態とする。Zドライバ制御部181は、Zコントローラ182からフォーカスオフセット値を受信していない期間、ステージ111の高さ位置を維持する。Zコントローラ182は、例えば、スキャンの位置が基板200と遮光膜201との段差部を移動する際に、フォーカスオフセット値として、遮光膜201の膜厚(Z1)に基づく値(-Z1)をZドライバ制御部181に送信する。Zドライバ制御部181は、フォーカスオフセット値として-Z1を受信すると、現在のステージ111の高さ位置T1に-Z1を加算し、T1-Z1とする。すなわち、Zドライバ制御部181は、Z1だけステージ111の高さ位置が低くなるように、Z駆動部116を制御する。
スキャンの位置が、AF-OFF領域から遮光領域内のAF-ON領域に移動した場合、Zコントローラ182は、AF制御信号を“H”レベルとする。Zドライバ制御部181は、“H”レベルのAF制御信号に基づいて、レンズ123とマスク2の表面(遮光膜201の表面)との距離が一定となるように、オートフォーカス制御を実行する。より具体的には、例えば、遮光膜201の表面をスキャンしているときのステージ111の高さ位置をT3とする。すると、Zドライバ制御部181は、遮光膜201の表面をスキャンするときのステージの高さ位置T3が、基板200の表面をスキャンしているときの高さ位置T1よりも低くなるように、Z駆動部116を制御する。例えば、遮光膜201の膜厚がZ1である場合、T3はT1-Z1と概略等しい値となる。
次に、遮光領域から透過領域に向かってスキャンする場合について説明する。まず、スキャンの位置が遮光領域内のAF-ON領域にある場合、Zコントローラ182は、AF制御信号を“H”レベルとする。Zドライバ制御部181は、“H”レベルのAF制御信号に基づいて、オートフォーカス制御を実行する。
スキャンの位置が遮光領域内のAF-ON領域からAF-OFF領域に移動した場合、Zコントローラ182は、AF制御信号を“L”レベルとする。Zドライバ制御部181は、“L”レベルのAF制御信号に基づいて、オートフォーカス制御をオフ状態とする。Zドライバ制御部181は、Zコントローラ182からフォーカスオフセット値を受信していない期間、ステージ111の高さ位置を維持する。Zコントローラ182は、例えば、スキャンの位置が基板200と遮光膜201との段差部を移動する際に、フォーカスオフセット値として、遮光膜201の膜厚(Z1)に基づく値(+Z1)をZドライバ制御部181に送信する。Zドライバ制御部181は、フォーカスオフセット値として+Z1を受信すると、現在のステージ111の高さ位置T3に+Z1を加算し、T3+Z1とする。すなわち、Zドライバ制御部181は、Z1だけステージ111の高さ位置が高くなるように、Z駆動部116を制御する。
スキャンの位置が、AF-OFF領域から透過領域内のAF-ON領域に移動した場合、Zコントローラ182は、AF制御信号を“H”レベルとする。Zドライバ制御部181は、“H”レベルのAF制御信号に基づいて、オートフォーカス制御を実行する。
6.本実施形態に係る効果
本実施形態に係る構成であれば、オートフォーカス制御の追従が困難な程度の段差を有する試料に対して、欠陥の検出精度の低下を抑制できる検査装置及び検査方法を提供することができる。本効果につき、詳述する。
例えば、ハーフトーンマスクにおいて、遮光膜201の膜厚は、位相シフト膜202の膜厚よりも厚い。このため、ハーフトーンマスクの表面を欠陥検査用の光が走査する場合、比較的段差の大きい基板200と遮光膜201との段差部では、オートフォーカス制御が追従できない場合がある。このような例を図6に示す。図6は、図5の比較例として、領域RAにおいてオートフォーカス制御を常時実行している場合のステージ111の高さ位置の一例を示す図である。
図6に示すように、基板200と遮光膜201との段差部では、オートフォーカスのZ位置が一時的に定まらず、またオートフォーカス機構の制御遅れにより、オートフォーカス制御が追従できない。このため、例えば、基板200と遮光膜201との段差部を通過した後に、ステージ111の高さ位置の制御遅れによるオーバシュートなどで、高さ位置の設定誤差が生じることになる。これにより、実際のマスク2の表面の高さ位置によらず、ステージ111の高さ位置が変動する。また、遮光領域から透過領域に向かってスキャンを実行する場合も、ステージ111の高さ位置の制御遅れによるオーバシュートにより、位相シフト膜202に対応したステージ111の高さ位置調整に遅れが生じ、光学画像のイメージ像がぼやける場合がある。このため、欠陥検査の精度が劣化する可能性がある。
これに対し、本実施形態に係る構成であれば、オートフォーカス制御の追従が困難な領域においては、オートフォーカス制御をオフ状態できる。更に、オートフォーカス制御を実行していない領域においては、フォーカスオフセット値に基づくオープン制御によりステージ111の高さ位置を調整できる。これにより、光学画像のフォーカスずれによる欠陥の検出精度の低下を抑制できる。
7.変形例等
上述の実施形態は、試料としてフォトリソグラフィ法などで使用されるマスク(ハーフトーンマスク)を検査するための検査装置を例に挙げて説明した。しかしながら、本実施形態に係る技術の適用範囲は、これに限らない。例えば、試料として、ナノインプリントリソグラフィ(Nanoimprintlithography;NIL)に用いられるテンプレートが用いられてもよい。試料として、ウェハまたは液晶表示装置などに使用される基板等が用いられてもよい。また、上述の実施形態で説明したオートフォーカス機構は、検査装置に限定されず、例えば、マスクの作製に用いられる荷電粒子ビーム描画装置等、他の装置に適用されてもよい。
なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
1…検査装置、2…マスク、10…光学画像取得装置、20…制御装置、111…ステージ、112…XY駆動部、113…X軸モータ、114…Y軸モータ、116…Z駆動部、117…Z軸アクチュエータ、120…第1の光源、121、123、124…レンズ、122、131、132…ミラー、125…フォトダイオードアレイ、126…センサ回路、130…第2の光源、133…高さ測定システム、134…高さ位置センサ、135…高さ測定制御部、140…レーザ測長システム、150…オートローダ、160…CPU、161…RAM、162…ROM、163…外部ストレージ、164…表示装置、165…入力装置、166…通信装置、167…オートローダ制御回路、168…光源制御回路、169…XY駆動部制御回路、170…Z駆動部制御回路、171…展開回路、172…参照回路、173…比較回路、174…位置回路、180…Zドライバ、181…Zドライバ制御部、182…Zコントローラ、200…基板、201…遮光膜、202…位相シフト膜、211~216…検査フレーム。

Claims (6)

  1. 表面に第1領域と前記第1領域と高さが異なる第2領域とを有する試料が載置されるステージと、
    前記第1領域の一部と前記第2領域とを検査領域とし、前記試料の光学画像の取得に用いられる光を射出する光源と、
    前記ステージの表面に垂直な第1方向における前記試料の前記表面の第1の高さ位置を測定する第1測定部と、
    前記ステージの前記表面に平行であり且つ前記第1方向に交差する第2方向と、前記ステージの前記表面に平行であり且つ前記第1及び第2方向に交差する第3方向とにおける前記ステージのステージ位置を測定する第2測定部と、
    前記第1方向における前記ステージの第2の高さ位置を制御する高さ制御部と、
    前記試料に照射する前記光のオートフォーカス制御をオン状態またはオフ状態に切り替える制御信号及びフォーカスオフセット値を前記高さ制御部に送信するコントローラと
    を備え、
    前記高さ制御部は、前記検査領域において前記光の照射位置がオートフォーカス制御をオン状態にする第3領域内にある場合、前記第1測定部が測定した前記第1の高さ位置のデータに基づく前記オートフォーカス制御を実行し、前記照射位置が前記第3領域と異なる、前記オートフォーカス制御を前記オフ状態にする第4領域内にある場合、前記コントローラから受信した前記フォーカスオフセット値に基づいて前記第2の高さ位置を変更し、
    前記コントローラは、前記第2測定部で測定された前記ステージ位置のデータ、前記第3領域に関する位置情報、前記試料の前記表面に設けられ且つ前記第1領域と前記第2領域との間に位置する段差部についての情報を含む前記第4領域に関する位置情報、及び前記試料の前記表面の高さ情報に基づいて、前記制御信号及び前記フォーカスオフセット値を前記高さ制御部に送信し、
    さらに、前記コントローラは、前記第3領域において、前記光の前記オートフォーカス制御を前記オン状態にする前記制御信号を前記高さ制御部に送信し、前記第4領域において、前記照射位置が前記段差部の上を通過するときに、前記光の前記オートフォーカス制御を前記オフ状態にする前記制御信号及び前記フォーカスオフセット値を前記高さ制御部に送信する、
    検査装置。
  2. 前記第3領域及び前記第4領域の位置座標は、前記試料のパターンのレイアウト情報に基づく座標とし、前記コントローラは、前記照射位置が前記第3領域内にある場合、前記制御信号を第1論理レベルとし、前記照射位置が前記第4領域内にある場合、前記制御信号を前記第1論理レベルとは異なる第2論理レベルとする、
    請求項1に記載の検査装置。
  3. 前記フォーカスオフセット値は、前記試料の前記表面の前記高さ情報に基づく値である、請求項1に記載の検査装置。
  4. 前記高さ制御部による制御に基づいて前記ステージを前記第1方向に移動させる圧電素子を用いたアクチュエータを更に備える、
    請求項1乃至3のいずれか一項に記載の検査装置。
  5. 表面に第1領域と前記第1領域と高さが異なる第2領域とを有する試料をステージ上に載置する工程と、
    前記第1領域の一部と前記第2領域とを検査領域とし、前記試料に光を照射して光学画像を取得する工程と
    を備え、
    前記検査領域において前記光の照射位置がオートフォーカス制御をオン状態にする第3領域内にある場合、前記光学画像を取得する工程は、前記ステージの表面に垂直な第1方向における前記試料の前記表面の第1の高さ位置のデータを取得する工程と、取得した前記第1の高さ位置のデータに基づいて前記試料に照射する前記光の前記オートフォーカス制御を実行する工程とを含み、
    前記検査領域において前記光の前記照射位置が前記第3領域と異なる、前記オートフォーカス制御をオフ状態にする第4領域内にある場合、前記光学画像を取得する工程は、前記試料の前記表面の高さ情報に基づくフォーカスオフセット値を用いて前記第1方向における前記ステージの第2の高さ位置を変更する工程を含む、
    検査方法。
  6. 前記第2の高さ位置を変更する工程は、前記第4領域において前記照射位置が前記試料の前記表面に設けられ且つ前記第1領域と前記第2領域との間に位置する段差部の上を通過するときに実行される、
    前記請求項5に記載の検査方法。
JP2020024270A 2020-02-17 2020-02-17 検査装置及び検査方法 Active JP7293148B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020024270A JP7293148B2 (ja) 2020-02-17 2020-02-17 検査装置及び検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020024270A JP7293148B2 (ja) 2020-02-17 2020-02-17 検査装置及び検査方法

Publications (2)

Publication Number Publication Date
JP2021128119A JP2021128119A (ja) 2021-09-02
JP7293148B2 true JP7293148B2 (ja) 2023-06-19

Family

ID=77488466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020024270A Active JP7293148B2 (ja) 2020-02-17 2020-02-17 検査装置及び検査方法

Country Status (1)

Country Link
JP (1) JP7293148B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266989A (ja) 1999-03-17 2000-09-29 Olympus Optical Co Ltd 合焦装置
JP2007142292A (ja) 2005-11-22 2007-06-07 Advanced Mask Inspection Technology Kk 基板検査装置
JP2012068321A (ja) 2010-09-21 2012-04-05 Nuflare Technology Inc マスク欠陥検査装置およびマスク欠陥検査方法
JP2012078164A (ja) 2010-09-30 2012-04-19 Nuflare Technology Inc パターン検査装置
JP2014006223A (ja) 2012-06-27 2014-01-16 Nuflare Technology Inc 検査方法および検査装置
JP2014115336A (ja) 2012-12-06 2014-06-26 Samsung R&D Institute Japan Co Ltd 焦点制御装置及びその方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931967B1 (ko) * 2011-09-19 2018-12-27 삼성전자 주식회사 광학 현미경의 자동 초점 조절 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266989A (ja) 1999-03-17 2000-09-29 Olympus Optical Co Ltd 合焦装置
JP2007142292A (ja) 2005-11-22 2007-06-07 Advanced Mask Inspection Technology Kk 基板検査装置
JP2012068321A (ja) 2010-09-21 2012-04-05 Nuflare Technology Inc マスク欠陥検査装置およびマスク欠陥検査方法
JP2012078164A (ja) 2010-09-30 2012-04-19 Nuflare Technology Inc パターン検査装置
JP2014006223A (ja) 2012-06-27 2014-01-16 Nuflare Technology Inc 検査方法および検査装置
JP2014115336A (ja) 2012-12-06 2014-06-26 Samsung R&D Institute Japan Co Ltd 焦点制御装置及びその方法

Also Published As

Publication number Publication date
JP2021128119A (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
US9116136B2 (en) Inspection method and system
JP6527808B2 (ja) 検査方法および検査装置
KR102335198B1 (ko) 단순화된 옵틱스를 갖는 극자외선(euv) 기판 검사 시스템 및 그 제조 방법
JP5793093B2 (ja) 検査装置および検査方法
KR101640914B1 (ko) 초점 위치 조정 방법 및 검사 방법
JP6640482B2 (ja) パターン検査装置及びパターン検査方法
JP6745152B2 (ja) 合焦装置、合焦方法、及びパターン検査方法
KR20140034060A (ko) 패턴 평가 방법 및 패턴 평가 장치
JP2016156746A (ja) 線幅誤差取得方法、線幅誤差取得装置および検査システム
JP2011085536A (ja) レビュー装置および検査装置システム
JP5635309B2 (ja) 検査装置および検査方法
JP2011169743A (ja) 検査装置および検査方法
JP6220553B2 (ja) 焦点位置調整方法および検査方法
JP7293148B2 (ja) 検査装置及び検査方法
JP6815469B2 (ja) パターン検査装置及びパターン検査方法
JP2019135464A (ja) パターン検査方法およびパターン検査装置
JP2015105897A (ja) マスクパターンの検査方法
JP4922381B2 (ja) パターン検査装置及びパターン検査方法
JP6255191B2 (ja) 検査装置および検査方法
KR20180118530A (ko) 검사 방법
US20230137226A1 (en) Inspection apparatus and focal position adjustment method
JP6851178B2 (ja) パターン検査方法及びパターン検査装置
JP2011128376A (ja) レーザ装置の出力調整方法、レーザ装置および検査装置
JP2024119099A (ja) 検査装置の焦点位置調整方法及びパターン検査装置
JP2022187831A (ja) 計測装置、リソグラフィ装置及び物品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230607

R150 Certificate of patent or registration of utility model

Ref document number: 7293148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150