JP7283064B2 - マイクロ構造およびマイクロ構造の制御方法 - Google Patents

マイクロ構造およびマイクロ構造の制御方法 Download PDF

Info

Publication number
JP7283064B2
JP7283064B2 JP2018228698A JP2018228698A JP7283064B2 JP 7283064 B2 JP7283064 B2 JP 7283064B2 JP 2018228698 A JP2018228698 A JP 2018228698A JP 2018228698 A JP2018228698 A JP 2018228698A JP 7283064 B2 JP7283064 B2 JP 7283064B2
Authority
JP
Japan
Prior art keywords
piece
force
long
short
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018228698A
Other languages
English (en)
Other versions
JP2020089946A (ja
Inventor
晴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2018228698A priority Critical patent/JP7283064B2/ja
Publication of JP2020089946A publication Critical patent/JP2020089946A/ja
Application granted granted Critical
Publication of JP7283064B2 publication Critical patent/JP7283064B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)

Description

本発明は、マイクロ構造およびマイクロ構造の制御方法に関する。
MEMS(Micro Electro Mechanical Systems)などに用いられるマイクロ構造として、基板上に片持ちまたは両持ちの梁構造を設置した構造が知られている。この構造では、例えば、梁と基板とを近づけたり、離したりする動作を行うことができる。この動作を利用すると、例えば、梁と基板とが近づくとオンになり、離れるとオフになるスイッチを構成したり、マイクロポンプを駆動したりすることができる。
梁を駆動するための作動源としては、静電力、磁力、圧電変形力、などが用いられる。作動源として静電力を用いる場合、半導体プロセスと同様の装置を適用できるため、製造が容易であり製造コストの低減が見込まれる。
このような梁構造では、梁の一部を固定し、梁を撓ませる動作をさせることが多く行われている。そして、この動作に上記の作動源の力を用い、復帰には、梁の弾性力(ばね力)を利用することが多い。ところが、ばね力による復帰では、ばね力自体が電磁力等に比べて大きくないことや、梁の劣化によるばね力の低下などがあるため、復帰の確実性に問題がある。
このため、スイッチの復帰を確実にする方法が検討されている。例えば、特許文献1には、所定ギャップをもって基板面の上方に支持された梁の復帰を確実にするための技術が開示されている。この技術では、基板上に、梁を基板側に引っ張って導通状態を作る第1の固定電極を設けるとともに、梁の上方に所定ギャップを隔てて固定された第2の固定電極を設けている。第2の固定電極を用いて、梁を基板から離れる方向に引っ張ることで非導通状態に復帰する確実性を高めている。
また特許文献2には、梁の中央を支点とするシーソー構造を構成し、梁の両端それぞれを基板側からの静電力で駆動するマイクロスイッチが開示されている。このスイッチでは、オンからの復帰、すなわちスイッチをオフする動作にも、オンと同じ駆動力を用いるため、復帰の確実性を高めることができる。
特許第5478060号明細書 特開2001-076605号公報
しかし、特許文献1の技術では、梁の上方に空中に固定された第2の固定電極を設けているため構造が複雑になるという問題があった。また、特許文献2の技術では、主動作と復帰のための副動作に同じ電圧を必要とするという問題点があった。梁のばね力を用いる構造が好まれることから明らかなように、復帰動作に用いるエネルギーを小さくしたいという要望がある。特許文献2の技術では、この要望に応えることができていなかった。
本発明は、上記の問題点に鑑みてなされたものであり、構造がシンプルで、復帰動作に必要なエネルギーが小さいマイクロ構造を提供することを目的としている。
上記の課題を解決するため、マイクロ構造は、基体と、支持体と、梁と、長片駆動手段と、短片駆動手段とを有している。基体は、剛性を有し、面上の広がりを持つ固体である。支持体は、基体の表面に平行な支持軸を形成しで、梁を支持する。梁は、その延伸方向中央からずれた位置を支持軸に支持され、支持軸から端部までの長さが長い長片と、支持軸から端部までの長さが短い短片とが形成される。梁は、支持軸を軸として回動できるようになっている。長片駆動手段は長片を駆動し、短片駆動手段は短片を駆動する。短片駆動手段の駆動力は、距離の2乗に反比例する力、または距離の2乗以上に増加の速い関数に反比例する力とする。
本発明の効果は、構造がシンプルで、復帰動作に必要なエネルギーが小さいマイクロ構造を提供できることである。
第1の実施形態のマイクロ構造を示す側面図と平面図である。 第2の実施形態のマイクロ構造を示す断面図と平面図である 第2の実施形態のマイクロ構造の動作を示す断面図と平面図である。 第2の実施形態のマイクロ構造の製造方法を示す断面図と平面図である。 第3の実施形態のマイクロ構造を示す断面図と平面図である。 第3の実施形態のマイクロ構造の製造方法の一部を示す断面図と平面図である。 第3の実施形態のマイクロ構造の製造方法の別の一部を示す断面図と平面図である。 第4の実施形態のマイクロ構造を示す側面図と平面図である。 第5の実施形態のマイクロ構造を示す断面図である。 第5の実施形態のマイク構造の別の例を示す断面図である。
以下、図面を参照しながら、本発明の実施形態を詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお各図面の同様の構成要素には同じ番号を付し、説明を省略する場合がある。
(第1の実施形態)
図1は、本実施形態のマイクロ構造を示す側面図と平面図である。マイクロ構造は、基体1と、支持体2と、梁3と、長片駆動手段4と、短片駆動手段5とを有している。
基体1は、剛性を有し、面上の広がりを持つ固体である。図1の例では平板状の形状としているが、基体1の形状はこれに限らず、例えば、曲面を持つような形状であっても良い。
支持体2は、基体1の表面に平行な支持軸2aを形成しで、梁3を支持する。
梁3は、基体1の表面に沿った方向に延伸する形状を有する固体である。梁3は、その延伸方向中央からずれた位置を支持軸2aに支持される。その結果、支持軸2aから端部までの長さが長い長片3aと、支持軸2aから端部までの長さが短い短片3bとが形成される。梁3は、支持軸2aを軸として回動できるようになっている。
長片駆動手段4は、長片3aを駆動する。その駆動力は例えば吸引力とすることができるが、斥力であっても良い。短片駆動手段5は、短片を駆動する。短片駆動手段5の駆動力は、長片駆動手段4と同様に、吸引力や斥力とすることができる。ここで、少なくとも、短片駆動手段5が発生する駆動力は、距離の2乗に反比例する力、または距離の2乗以上に増加の速い関数に反比例する力とする。
上記の構成では、梁3の回動動作における長片3a端部の変位量は、短片3b端部の変位量よりも常に小さい。短編3bの端部と支持軸2aとの距離が短くなると、回転のモーメントは該距離の1乗に比例して減少する。一方で、短片3bの端部と短片駆動手段5とのギャップは、該距離の1乗に比例して小さくなる。既述の通り、短片駆動手段5が発生する駆動力は、距離の2乗に反比例する力、または距離の2乗以上に増加の速い関数に反比例する力である。その結果、短片3bの長さが短くなるほど、短片駆動手段5が短片3bの端部に及ぼす力は大きくなる。すなわち、長片3aの駆動を主動作、短片3bの駆動を復帰動作とした場合、復帰動作に必要なエネルギーを小さくすることができる。
以上説明したように、本実施形態によれば、構造がシンプルで、復帰動作に必要なエネルギーが小さいマイクロ構造を提供することができる。
(第2の実施形態)
図2は、第2の実施形態のマイクロ構造を示す断面図と平面図である。図2(a)は、図2(b)のX-X´における断面を示している。マイクロ構造は、基板10と、支持部20と、支持部20に支持された梁30とを有する。
基板1上には、支持部20と、長片駆動手段41と、短片駆動手段42と、基板側信号線43とを設けている。なお、長片駆動手段41、短片駆動手段42、基板側信号線43は、それぞれ基板1の内部に形成されていてもよい。
支持部20は、例えば両持ちの形によって、基板の表面に平行な支持軸21を形成する。ここで両持ちとは、2つの基部によって軸の2カ所を支持する構造である。図2の例では、梁30と支持部20とが一体化している例を示しているが、ヒンジ構造のように一体化していない構造であってもよい。
梁30は、その延伸方向の中央からずれた位置を支持軸21によって支持され、支持軸21を軸とする回動を行うことが可能になっている。このように非対称に支持することによって、梁30には、支持軸21から端部までの長さが長い長片31と、支持軸21から端部までの長さが短い短片32とができる。
また、図2の例では、長片31の端部近傍に長片駆動要素51、短片32の端部近傍に短片駆動要素52を有している。長片駆動要素51は長片駆動手段41の駆動力を感受し、短片駆動要素52は短片駆動手段42の駆動力を感受する。長片駆動要素51および短片駆動要素52の位置は特に限定されないが、支持軸21からの距離が、長片駆動要素51の方が遠くなるよう配置する。
また、図2の例では、長片31の基板側信号線43に対応する位置に、梁側信号線53を設けている。そして、長片駆動要素51が長片駆動手段41に吸引され、梁側信号線53が基板側信号線43に近付くと、両者の間で信号が授受されるようになっている。すなわち、図2のマイクロ構造では、長片31が基板10に近付くとオンになり、短片32が基板10に近付いて長片31が基板10から離れるとオフになるマイクロスイッチを形成している。基板側信号線43には端子11を介して、外部から信号が供給される。また長片駆動手段41、短片駆動手段42には、端子11を介して、それぞれに駆動力を発生させるための駆動信号が入力される。なお、図2の例では、梁側信号線53を、長片31の基板10から遠い側の面に設けているが、長片31の基板10側に設けても良く、長片31の内部に設けても良い。あるいは、長片31そのものが、信号線の役割を果たすものであっても良い。また、図2では、梁側信号線53が長片駆動要素51の支持軸21側に配置されているが、逆であっても良い。ただし、(支持軸21から長片駆動要素51までの距離)>(支持軸21から短片駆動要素52までの距離)の関係が必ず満たされるようにする。
長片駆動手段41は、長片駆動要素51に対して引力または斥力を発生させる。また、短片駆動手段42は、短片駆動要素52に対して引力または斥力を発生させる。ここでは、長片駆動手段41、短片駆動手段42の発生する力が、ペアとなる長片駆動要素51、短片駆動要素52を吸引する吸引力である例を用いて説明する。そして、長片駆動手段41と短片駆動手段42は協調し、互いの動作を妨げないように動作するものとする。例えば、長片駆動手段41が吸引力を発生させている時は、短片駆動手段42は吸引力を発生させず、短片駆動手段42が吸引力を発生させている時は、短片駆動手段42は力を発生させないように動作する。長片駆動手段41が発生させる力は、例えば、静電力、磁力、吸着力、などとすることができる。また、短片駆動手段42が発生させる力は、距離の2乗以上に増加の速い関数に反比例する原理を持つ力である。この力は、例えば静電力、磁力、吸着力、などとすることができる。
図3は、第2の実施形態のマイクロ構造の動作を示す断面図である。図3(a)は、長片駆動手段41が長片駆動要素51を吸引し、マイクロスイッチがオンした状態を示している。図2、3に示したように、梁30と支持部20とが一体化している場合、支持部20と梁30の接続部が支持軸21となり、支持軸21がねじれることで、梁30がシーソー様の回動動作をする。
図3(a)に示すように、フラット状態からオン状態に至るまでの短片駆動要素52の変位d2は、長片駆動要素51の変位d1よりも小さい。また、図3(b)には、短片駆動手段42が短片駆動要素52を吸引し、マイクロスイッチがオフした状態を示している。ここで、フラット状態からオフ状態に至るまでの短片駆動要素52の変位d2´は、長片駆動要素51の変位d1´よりも小さい。これらの例から明らかなように、梁30が回動する時の、短片駆動要素52の変位は、長片駆動要素51の変位よりも常に小さくなる。既述の通り、てこの原理は距離の1乗に反比例し、短片駆動手段42の吸引力は距離の2乗以上に増加の速い関数に反比例する。この為、短片駆動要素52を吸引するために短片駆動手段42に投入するエネルギーは、長片駆動要素51を吸引するために長片駆動手段41に投入するエネルギーよりも小さくなる。例えば、吸引力を静電力で生み出す場合は、短片駆動手段42への印加電圧を小さくすることが可能となる。なお静電力を用いる場合は、短片駆動手段42、長片駆動手段41は、例えば電極とすることができる。
次に、本実施形態のマイクロ構造の製造方法について説明する。図4は、この製造方法を示す断面図および平面図である。始めに、基板10上に、メタルマスクを介した蒸着や、フォトリソグラフィを伴うめっき、などの任意の工法を用いて、長片駆動手段41、基板側信号線43、短片駆動手段42、の各要素を形成する[図4(a)]。
次に、メタルマスクと蒸着やフォトリソグラフィとめっきなどの任意の工法を用いて、梁30および支持部20の土台となる犠牲層60を形成する。更に、犠牲層60以外の箇所をレジストやメタルマスクなどのマスク層70で保護する[図4(b)]。
次に、犠牲層60上に、蒸着やCVD等やめっきなどの任意の工法を用いて、梁30、支持部20の元となる層を形成する。この層を、フォトリソグラフィおよび、ドライエッチングやウェットエッチングなどの任意の工法で加工し、梁30と支持部20を形成する。そして犠牲層60及びマスク層70を除去する[図2(c)]。次に、梁30上に、メタルマスクと蒸着やフォトリソグラフィとめっきなどの任意の工法を用いて、梁側信号線53、長片駆動要素51、短片駆動要素52、端子11と、これらの要素を接続する配線を形成する。[図2(d)]こうしてマイクロ構造が完成する。
以上説明したように、本実施形態によれば、シンプルな構造で、復帰動作に必要なエネルギーが小さいマイクロ構造を製造することができる。
(第3の実施形態)
図5は、第3の実施形態のマイクロ構造を示す断面図と平面図である。図5(a)は、図5(b)の平面図のB-B´における断面図である。本実施形態のマイクロ構造では、短片駆動手段42aと基板10との間に台座42bを設けることによって、短片駆動手段42aと短片駆動要素52との距離を小さくしている。その他の構成は、第2の実施形態と同様である。
第2の実施形態で説明したように、短片駆動手段42aが発生する力は、距離の2乗に反比例する力、または距離の2乗以上に増加の速い関数に反比例する力である。したがって、本実施形態の短片駆動手段42aを用いた場合は、短片駆動要素52に同じ力を作用させる場合に、第2の実施形態の短片駆動手段42に比べて、供給するエネルギーを小さくすることができる。例えば、短片駆動手段42aが発生する力が静電力であれば、供給する電圧を小さくすることができる。
次に、本実施形態のマイクロ構造の製造方法について説明する。図6および図7は、この製造方法を示す断面図および平面図である。始めに、基板101上に、メタルマスクと蒸着やフォトリソグラフィとめっきなどの任意の工法を用いて、基板側信号線43、長片駆動手段41、短片駆動手段42、の各要素を形成する[図6(a)]。
次に、基板10上に、メタルマスクと蒸着やフォトリソグラフィとめっきなどの任意の工法を用いて、台座42bと、短片駆動手段42aとを形成する[図6(b)]。
次に、メタルマスクと蒸着やフォトリソグラフィとめっきなどの任意の工法を用いて、梁30および支持部20の土台となる犠牲層60を形成する[図6(c)]。このとき、犠牲層60の形成プロセスと、台座42bおよび短片駆動手段42aの高さとに依存して、短片駆動手段42a上の犠牲層60が、図6(c)に示すように、周辺よりも高く形成される可能性がある。この場合、全面をレジスト71で保護し[図4(d)]、CMPなどの工法で平坦化を行う[図7(e)]。そして、残りの犠牲層60上にあるレジスト71を取り除く[図4(f)]。ここで加工するレジスト除去部72を、図7(f)に示している。
次に、犠牲層60上に、蒸着やCVD等やめっきなどの任意の工法を用いて、梁30、支持部20の元となる層を形成する。この層を、フォトリソグラフィおよび、ドライエッチングやウェットエッチングなどの任意の工法で加工し、梁30と支持部20を形成する。そして犠牲層60及びマスク層70を除去する[図7(g)]。
次に、梁30上に、メタルマスクと蒸着やフォトリソグラフィとめっきなどの任意の工法を用いて、梁側信号線53、長片駆動要素51、短片駆動要素52と、これらの要素を接続する配線を形成する[図7(h)]。こうして、本実施形態のマイクロ構造が完成する。
以上、説明したように、本実施形態によれば、復帰動作に要するエネルギーを低減したマイクロ構造を得ることができる。
(第4の実施形態)
図8は、第4の実施形態のマイクロ構造を示す側面図および平面図である。第1から第3の実施形態では、梁が支持部と一体化した構造について説明したが、一体化していなくても良い。例えば、梁が、延伸方向の中心からずれた位置に軸を持ち、支持部がこの軸を受ける軸受を有する構造とすることができる。
図8は、このような構成のマイクロ構造の例を示す側面図と平面図である。図8(a)、(b)に示すように、梁30aは、延伸方向の中心からずれた位置に軸33aを有している。支持部20aは、梁30aに結合する軸33aが挿入される孔を有している。軸支持部20aが軸33aを回動可能に支持することで、梁30aは、長片31aと、長片31aより短い短片32aとがシーソー動作を行う構造を形成し、第1から第3の実施形態と同様な動作を行うことができる。
以上説明したように、本実施形態によれば、シンプルな構造で、復帰動作に必要なエネルギーが小さいマイクロ構造を構成することができる。
(第5の実施形態)
第2の実施形態の図3(b)に示したように、第2の実施形態のマイクロ構造では、短片32を基板10側に吸引した時に、シーソー構造の逆サイドに位置する長片駆動要素51と長片駆動手段41とのギャップが大きくなる。このギャップが大きくなることで、長片駆動手段41が長片31を駆動するために必要なエネルギーが大きくなる。本実施形態では、このエネルギーを低減するための構成について説明する。
図9は、ストッパー81を有するキャップ80を、第2の実施形態のマイクロ構造に被せた構成の断面図を示している。キャップ80は、基板10に固定される。このように固定された状態で、ストッパー81は、所定のギャップをもって長片31と相対するように配置される。ストッパー81は、梁側信号線53と基板側信号線43とが離れる方向に梁30が回動する時に、一定以上の回動を防ぐ機能を有する。梁30がフラットな状態の時の、ストッパー81と長片31とのギャップは適宜定めることができる。例えば、オン動作(長辺31の端部が長片駆動手段41に吸引された状態)時の、短片駆動要素52と短編をd2とした時に、オフ時における長片駆動要素51と長片駆動手段41との距離がd2と同程度となるようにする。このような構成とすることにより、復帰時のエネルギーだけでなく、主動作、すなわち長片を基板側に吸引するエネルギーも低減することができる。なお、長片31はストッパー81から下方に向かう力を受けるため、変形で破損しないように、可撓性を有する材料で形成することが望ましい。また、梁側信号線53や、長片駆動要素51と電気的に干渉しないように、ストッパー81とこれらの要素が接触しない位置関係としたり、ストッパーを非導電性の材質で形成したりすることが望ましい。
図10は、図9の構成の変形例を示す断面図である。この例では、ストッパー81aを基板10に固定したストッパー支持体80aで支持している。ストッパー81aと長片31との位置関係等は、図9と同様とすれば良い。この構成では、図4に示したような製造方法と同様な方法で、ストッパー81aを形成することも可能である。
以上説明したように、本実施形態によれば、長片を駆動するためのエネルギーを低減したマイクロ構造を構成することができる。
以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上記実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
1 基体
2 支持体
2a、21 支持軸
3、30 梁
4、41 長片駆動手段
5、42 短片駆動手段
10 基板
11 端子
20 支持部
43 基板側信号線
51 長片駆動要素
52 短片駆動要素
53 梁側信号線
60 犠牲層
70 マスク層

Claims (8)

  1. 剛性を有する基体と、
    前記基体の所定高さに前記基体の表面と平行な支持軸を形成する支持体と、
    前記支持軸から端部までの長さが長い長片と、前記支持軸から端部までの長さが短い短片とができるように前記支持軸に支持され、前記支持軸に対して回転運動することが可能な梁と、
    前記基体上に固定され、前記長片を前記基体の方向に駆動させる力を発生する長片駆動手段と、
    前記基体上に固定され、前記短片を前記基体の方向に駆動させる力を発生する短片駆動手段と、
    前記長片の前記長片駆動手段に対応する位置に、前記長片駆動手段と対となって駆動力を発生させる可動側長片駆動要素と、
    前記長片において前記可動側長片駆動要素の前記支持軸側に設けられ、前記長片が、前記基体から離れる方向に移動することを制限するストッパーと、
    を有し、
    前記短片駆動手段が発生する力は、距離の2乗に反比例する力、または距離の2乗以上に増加の速い関数に反比例する力である、
    ことを特徴とするマイクロ構造。
  2. 前記短片駆動手段が発生する力が、電磁力である
    ことを特徴とする請求項1に記載のマイクロ構造。
  3. 前記電磁力が静電力である
    ことを特徴とする請求項2に記載のマイクロ構造。
  4. 前記短片と前記短片駆動手段あとのギャップが、前記長片と前記長片駆動手段とのギャップよりも小さい
    ことを特徴とする請求項1乃至3のいずれか一項に記載のマイクロ構造。
  5. 前記短片の前記短片駆動手段に対応する位置に、前記短片駆動手段と対となって駆動力を発生させる可動側短片駆動要素を有する
    を有することを特徴とする請求項1乃至のいずれか一項に記載のマイクロ構造。
  6. 前記長片に配置された第1の電磁気要素と、前記基体上に配置され前記長片が前記基体に近付くことで前記第1の電磁気要素との相互作用を生じる第2の電磁気要素とからなる第1のペア、または、前記短片に配置された第3の電磁気要素と、前記基体上に配置され前記短片が前記基体に近付くことで前記第3の電磁気要素との相互作用を生じる第4の電磁気要素とからなる第2のペア、の少なくとも一方を有する
    ことを特徴とする請求項1乃至のいずれか一項に記載のマイクロ構造。
  7. 剛性を有する基体の所定高さに前記基体の表面と平行な支持軸を形成し、
    前記支持軸から端部までの長さが長い長片と、前記支持軸から端部までの長さが短い短片とができるように梁を支持し、
    前記梁が前記支持軸に対して回動可能とし、
    前記長片を前記基体の方向に駆動させ、
    前記短片を前記基体の方向に駆動させ
    前記短片を前記基体の方向に駆動させる力は、距離の2乗に反比例する力、または距離の2乗以上に増加の速い関数に反比例する力であり、
    前記長片のうちで、前記長片を前記基体の方向に駆動させる力が作用する点よりも前記支持軸側の点において、前記長片が、前記基体から離れる方向に移動することを制限する
    ことを特徴とするマイクロ構造の制御方法。
  8. 前記短片を前記基体の方向に駆動させる力が、電磁力である
    ことを特徴とする請求項に記載のマイクロ構造の制御方法。
JP2018228698A 2018-12-06 2018-12-06 マイクロ構造およびマイクロ構造の制御方法 Active JP7283064B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228698A JP7283064B2 (ja) 2018-12-06 2018-12-06 マイクロ構造およびマイクロ構造の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228698A JP7283064B2 (ja) 2018-12-06 2018-12-06 マイクロ構造およびマイクロ構造の制御方法

Publications (2)

Publication Number Publication Date
JP2020089946A JP2020089946A (ja) 2020-06-11
JP7283064B2 true JP7283064B2 (ja) 2023-05-30

Family

ID=71013471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228698A Active JP7283064B2 (ja) 2018-12-06 2018-12-06 マイクロ構造およびマイクロ構造の制御方法

Country Status (1)

Country Link
JP (1) JP7283064B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167214A1 (en) * 2011-06-03 2012-12-06 Ophidion Inc. Compositions and methods for transport across the blood brain barrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076605A (ja) 1999-07-01 2001-03-23 Advantest Corp 集積型マイクロスイッチおよびその製造方法
JP2004101554A (ja) 2002-09-04 2004-04-02 Seiko Epson Corp ミラーデバイス、光スイッチ、電子機器およびミラーデバイス駆動方法
JP2004317744A (ja) 2003-04-15 2004-11-11 Ricoh Co Ltd 光偏向装置、光偏向装置の製造方法、光偏向アレー、画像形成装置および画像投影表示装置
JP2015211042A (ja) 2014-04-25 2015-11-24 アナログ デバイシス グローバル Memsスイッチ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052256A (ja) * 2005-08-18 2007-03-01 Fujifilm Corp 回転変位型光変調素子及びこれを用いた光学装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076605A (ja) 1999-07-01 2001-03-23 Advantest Corp 集積型マイクロスイッチおよびその製造方法
JP2004101554A (ja) 2002-09-04 2004-04-02 Seiko Epson Corp ミラーデバイス、光スイッチ、電子機器およびミラーデバイス駆動方法
JP2004317744A (ja) 2003-04-15 2004-11-11 Ricoh Co Ltd 光偏向装置、光偏向装置の製造方法、光偏向アレー、画像形成装置および画像投影表示装置
JP2015211042A (ja) 2014-04-25 2015-11-24 アナログ デバイシス グローバル Memsスイッチ

Also Published As

Publication number Publication date
JP2020089946A (ja) 2020-06-11

Similar Documents

Publication Publication Date Title
JP5449756B2 (ja) 導電性機械的ストッパを有するmemsスイッチ
JP4613165B2 (ja) 微小電気機械システムのスイッチ
US6731492B2 (en) Overdrive structures for flexible electrostatic switch
JP4045274B2 (ja) ダイアフラム作動微小電気機械スイッチ
JP5588663B2 (ja) マイクロ電気機械システムスイッチ
JP5263203B2 (ja) 静電リレー
JP5530624B2 (ja) デュアルアクチュエータと共用ゲートとを有するmemsマイクロスイッチ
WO2006072170A1 (en) Micro-electromechanical relay and related methods
JP2006102934A (ja) 適応光学装置で使用するための傾斜またはピストン運動を有するmemsミラー
US7253550B2 (en) Torsional electrostatic actuator
JP4355717B2 (ja) コーム構造のアクチュエータを含むrf−memsスイッチ
TWI425547B (zh) Cmos微機電開關結構
JP4871389B2 (ja) 静電アクチュエータ
KR101766482B1 (ko) 스위치 구조물
CN109273326A (zh) 电磁驱动的微电子机械开关
JP2002216606A (ja) 超小型電気機械スイッチ
JP2006179252A (ja) スイッチデバイス
JP7283064B2 (ja) マイクロ構造およびマイクロ構造の制御方法
TWI501274B (zh) 微機電系統裝置及其製造方法
CN102822931B (zh) 集成式机电致动器
JP2007259691A (ja) Memsの静電駆動法、静電アクチュエーター、及びマイクロスイッチ
JP6017677B2 (ja) Rfマイクロ・エレクトロ・メカニカル・システム(mems)静電容量スイッチ
JP2007294452A (ja) 第1の被作動部と第2の接触部とを備えたマイクロスイッチ
EP1321957A1 (en) A micro relay device having a membrane with slits
JP4174761B2 (ja) 機構デバイスの製造方法及び機構デバイス

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20211015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R151 Written notification of patent or utility model registration

Ref document number: 7283064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151