JP7281614B2 - COMPONENT MOUNTING APPARATUS AND MOUNTING BOARD MANUFACTURING METHOD - Google Patents

COMPONENT MOUNTING APPARATUS AND MOUNTING BOARD MANUFACTURING METHOD Download PDF

Info

Publication number
JP7281614B2
JP7281614B2 JP2018234030A JP2018234030A JP7281614B2 JP 7281614 B2 JP7281614 B2 JP 7281614B2 JP 2018234030 A JP2018234030 A JP 2018234030A JP 2018234030 A JP2018234030 A JP 2018234030A JP 7281614 B2 JP7281614 B2 JP 7281614B2
Authority
JP
Japan
Prior art keywords
component
mounting
adjacent
mounting position
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018234030A
Other languages
Japanese (ja)
Other versions
JP2020096114A (en
Inventor
利彦 永冶
昌弘 谷口
正宏 木原
秀明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018234030A priority Critical patent/JP7281614B2/en
Publication of JP2020096114A publication Critical patent/JP2020096114A/en
Application granted granted Critical
Publication of JP7281614B2 publication Critical patent/JP7281614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、基板に部品を実装する部品実装装置および部品を基板に実装した実装基板の製造方法に関する。 The present invention relates to a component mounting apparatus for mounting components on a substrate and a method for manufacturing a mounting substrate having components mounted on the substrate.

部品を基板に実装した実装基板に搭載される部品として、BGA(Ball Grid Array)部品などの部品の下面に形成された電極をはんだを介して基板の表面に形成されたランドに接続する下面電極部品が知られている(例えば、特許文献1参照)。特許文献1に記載の部品実装装置では、基板に搭載する前にBGA部品の電極(BG接合部)に形成されたはんだバンプの欠落、ずれ、はんだ量不足などの良否を判定して、不良部品は廃棄して基板に搭載しないことで実装基板の品質を向上させている。 As a component mounted on a mounting board in which components are mounted on the board, a bottom surface electrode that connects an electrode formed on the bottom surface of a component such as a BGA (Ball Grid Array) component to a land formed on the surface of the board via solder. Parts are known (see, for example, Patent Document 1). In the component mounting apparatus described in Patent Document 1, the quality of solder bumps formed on the electrodes (BG joints) of the BGA component is determined before mounting on the board, such as missing, misalignment, and insufficient amount of solder. The quality of the mounting board is improved by discarding it and not mounting it on the board.

国際公開第98/26641号WO 98/26641

しかしながら、特許文献1を含む従来技術では、下面電極部品の電極に不良がないと判定されて基板の実装位置に搭載した後に、リフローによる加熱で融解したはんだの表面張力によって下面電極部品の位置が移動して、隣接する部品に接触する不良が発生することがあるという問題点があった。 However, in the prior art including Patent Document 1, after it is determined that there is no defect in the electrode of the lower surface electrode component and it is mounted on the mounting position of the substrate, the position of the lower surface electrode component is shifted by the surface tension of the solder melted by the heating due to reflow. There is a problem that a defect may occur due to movement and contact with adjacent parts.

そこで本発明は、下面電極部品を実装した実装基板の品質を向上することができる部品実装装置および実装基板の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a component mounting apparatus and a method for manufacturing a mounting board, which can improve the quality of the mounting board on which the lower surface electrode component is mounted.

本発明の部品実装装置は、部品搭載手段で基板の実装位置に部品を搭載することによって、前記基板に形成されたランドにはんだを介して前記部品の電極を接続させる部品実装装置であって、前記実装位置に搭載される部品の外形に対する前記電極の位置のずれ方向とずれ量に基づいて、当該部品を前記実装位置に搭載して前記はんだを融解させた場合に、当該部品が当該部品に隣接する隣接部品に干渉するか否かを判定する干渉判定手段を備え、前記部品搭載手段は、前記干渉判定手段によって当該部品が前記隣接部品に干渉すると判断された場合に、当該部品を前記実装位置に搭載しない。 The component mounting apparatus of the present invention is a component mounting apparatus that connects electrodes of the component to lands formed on the substrate through solder by mounting the component on the mounting position of the substrate by component mounting means, When the component is mounted on the mounting position and the solder is melted based on the direction and amount of deviation of the position of the electrode with respect to the outer shape of the component mounted on the mounting position, the component is attached to the component. Interference determination means for determining whether or not the component interferes with the adjacent adjacent component, and the component mounting means mounts the component when the interference determination means determines that the component interferes with the adjacent component. Do not install in position.

本発明の実装基板の製造方法は、基板の実装位置に部品を搭載することによって、前記基板に形成されたランドにはんだを介して前記部品の電極を接続させる実装基板の製造方法であって、前記実装位置に搭載される部品の外形に対する前記電極の位置のずれ方向とずれ量に基づいて、当該部品を前記実装位置に搭載して前記はんだを融解させた場合に、当該部品が当該部品に隣接する隣接部品に干渉するか否かを判定する干渉判定工程と、前記干渉判定工程による判定結果に基づいて、当該部品を処理する判定後処理工程と、を含み、前記干渉判定工程において当該部品が前記隣接部品に干渉すると判断された場合に、前記判定後処理工程において当該部品が前記実装位置に搭載されない。 A method for manufacturing a mounting substrate according to the present invention is a method for manufacturing a mounting substrate in which a component is mounted at a mounting position on a substrate so that electrodes of the component are connected to lands formed on the substrate via solder, When the component is mounted on the mounting position and the solder is melted based on the direction and amount of deviation of the position of the electrode with respect to the outer shape of the component mounted on the mounting position, the component is attached to the component. and a post-determination processing step of processing the component based on the determination result of the interference determination step. is determined to interfere with the adjacent component, the component is not mounted at the mounting position in the post-determination processing step.

本発明によれば、下面電極部品を実装した実装基板の品質を向上することができる。 According to the present invention, it is possible to improve the quality of the mounting board on which the lower surface electrode component is mounted.

本発明の一実施の形態の部品実装装置の構成を示す平面図1 is a plan view showing the configuration of a component mounting apparatus according to one embodiment of the present invention; 本発明の一実施の形態の部品実装装置によって基板に搭載される下面に電極を有する部品の(a)側面図(b)底面図1(a) side view and (b) bottom view of a component having electrodes on its lower surface mounted on a substrate by a component mounting apparatus according to an embodiment of the present invention. FIG. 本発明の一実施の形態の部品実装装置が備える部品認識カメラによる部品撮像動作の説明図FIG. 4 is an explanatory diagram of a component imaging operation by a component recognition camera provided in the component mounting apparatus according to one embodiment of the present invention; (a)(b)(c)本発明の一実施の形態の部品実装装置によって基板に部品を搭載する工程説明図(a), (b), and (c) process explanatory diagrams for mounting a component on a substrate by the component mounting apparatus according to one embodiment of the present invention; 本発明の一実施の形態の部品実装装置の制御系の構成を示すブロック図1 is a block diagram showing the configuration of a control system of a component mounting apparatus according to one embodiment of the present invention; FIG. 本発明の一実施の形態の部品実装装置が備える部品認識カメラが撮像した部品認識画像の例を示す図FIG. 2 is a diagram showing an example of a component recognition image captured by a component recognition camera included in the component mounting apparatus according to one embodiment of the present invention; 本発明の一実施の形態の部品実装装置によって部品が搭載される基板の実装位置付近の部分平面図FIG. 2 is a partial plan view of the vicinity of a mounting position of a board on which components are mounted by a component mounting apparatus according to an embodiment of the present invention; 本発明の一実施の形態の部品実装装置によって部品が搭載された基板の(a)はんだ融解前の部分平面図(b)はんだ融解後の部分平面図FIG. 2(a) Partial plan view before solder melting and (b) Partial plan view after solder melting of a board on which components are mounted by a component mounting apparatus according to an embodiment of the present invention. 本発明の一実施の形態の実装基板の製造方法のフロー図FIG. 1 is a flowchart of a method for manufacturing a mounting board according to one embodiment of the present invention;

以下に図面を用いて、本発明の一実施の形態を詳細に説明する。以下で述べる構成、形状等は説明のための例示であって、部品実装装置の仕様に応じ、適宜変更が可能である。以下では、全ての図面において対応する要素には同一符号を付し、重複する説明を省略する。図1、及び後述する一部では、水平面内で互いに直交する2軸方向として、基板搬送方向のX方向(図1における左右方向)、基板搬送方向に直交するY方向(図1における上下方向)が示される。 An embodiment of the present invention will be described in detail below with reference to the drawings. The configuration, shape, etc. described below are examples for explanation, and can be changed as appropriate according to the specifications of the component mounting apparatus. In the following, the same reference numerals are given to the corresponding elements in all the drawings, and redundant explanations are omitted. In FIG. 1 and a part described later, the two axial directions perpendicular to each other in the horizontal plane are the X direction of the substrate transfer direction (horizontal direction in FIG. 1) and the Y direction perpendicular to the substrate transfer direction (vertical direction in FIG. 1). is shown.

まず図1を参照して、部品実装装置1の構成を説明する。図1において、基台1aの中央には、基板搬送機構2がX方向に設置されている。基板搬送機構2は、上流側から搬入された基板3をX方向へ搬送し、以下に説明する実装ヘッドによる実装作業位置に位置決めして保持する。また、基板搬送機構2は、部品搭載作業が完了した基板3を下流側に搬出する。基板搬送機構2の両側方には、それぞれ部品供給部4が設置されている。 First, the configuration of a component mounting apparatus 1 will be described with reference to FIG. In FIG. 1, a substrate transfer mechanism 2 is installed in the X direction at the center of the base 1a. The substrate transport mechanism 2 transports the substrate 3 carried in from the upstream side in the X direction, and positions and holds it at a mounting work position by the mounting head described below. Further, the board transfer mechanism 2 carries out the board 3 on which the component mounting work is completed to the downstream side. A component supply unit 4 is installed on each side of the board transfer mechanism 2 .

両方の部品供給部4には、複数のテープフィーダ5がX方向に並列に装着されている。テープフィーダ5は、部品を格納するポケットが形成されたキャリアテープを部品供給部4の外側から基板搬送機構2に向かう方向(テープ送り方向)にピッチ送りすることにより、実装ヘッドが部品をピックアップする部品取出し位置に部品を供給する。また、一方の部品供給部4には、部品Dを整列して保持するトレイ6を部品取出し位置に供給するトレイフィーダ7が装着されている。 A plurality of tape feeders 5 are mounted in parallel in the X direction on both component supply units 4 . The tape feeder 5 pitch-feeds the carrier tape in which pockets for storing components are formed in a direction (tape feeding direction) from the outside of the component supply unit 4 toward the substrate transport mechanism 2, so that the mounting head picks up the components. Parts are supplied to the parts pick-up position. A tray feeder 7 for supplying a tray 6 holding the components D in an aligned manner to a component pick-up position is attached to one of the component supply units 4 .

ここで図2(a)、図2(b)を参照して、部品Dの構造について説明する。図2(a)に示す部品Dは、その下面Ddに基板3のランドと接続される複数の電極E(ここでは4個)が形成された下面電極部品である。図2(b)において、部品Dの下面Ddには、4個の電極Eが上下左右に等間隔で形成されている。この例では、部品Dの4個の電極Eの中心(以下、単に「電極中心Ce」と称する。)が、部品Dの外形に基づく部品Dの中心(以下、単に「部品中心Cd」と称する。)と一致するように電極Eが形成されている。なお、図2に示す部品Dは下部電極部品の一例であり、電極Eの数は4個に限定されることはない。また、部品Dの外形は正方形に限定されることはなく、電極中心Ceが部品中心Cdに一致しない位置に電極Eが設定されていてもよい。 Here, the structure of the component D will be described with reference to FIGS. 2(a) and 2(b). A component D shown in FIG. 2A is a bottom electrode component having a plurality of electrodes E (here, four electrodes) connected to lands of the substrate 3 on its bottom surface Dd. In FIG. 2(b), four electrodes E are formed on the lower surface Dd of the component D at equal intervals vertically and horizontally. In this example, the center of the four electrodes E of the component D (hereinafter simply referred to as "electrode center Ce") is the center of the component D based on the outline of the component D (hereinafter simply referred to as "component center Cd"). ) are formed so as to coincide with each other. Note that the component D shown in FIG. 2 is an example of the lower electrode component, and the number of electrodes E is not limited to four. Further, the outer shape of the part D is not limited to a square, and the electrode E may be set at a position where the electrode center Ce does not match the part center Cd.

図1において、基台1aの上面におけるX方向の両端部には、リニア駆動機構を備えたY軸テーブル8が配置されている。Y軸テーブル8には、同様にリニア機構を備えたビーム9がY方向に移動自在に結合されている。ビーム9には、実装ヘッド10がX方向に移動自在に装着されている。実装ヘッド10は、部品Dを保持して昇降可能な複数の吸着ユニット(図示省略)を備える。吸着ユニットのそれぞれの下端部には、部品Dを吸着して保持する吸着ノズル10a(図3参照)が装着されている。 In FIG. 1, a Y-axis table 8 having a linear drive mechanism is arranged at both ends in the X direction on the upper surface of the base 1a. A beam 9 similarly provided with a linear mechanism is coupled to the Y-axis table 8 so as to be movable in the Y direction. A mounting head 10 is attached to the beam 9 so as to be movable in the X direction. The mounting head 10 includes a plurality of suction units (not shown) that hold the component D and can move up and down. A suction nozzle 10a (see FIG. 3) for sucking and holding the component D is attached to the lower end of each suction unit.

Y軸テーブル8およびビーム9は、実装ヘッド10を水平方向(X方向、Y方向)に移動させる実装ヘッド移動機構を構成する。実装ヘッド移動機構および実装ヘッド10は、基板3の実装位置に部品Dを搭載する部品搭載手段11を構成する。部品搭載手段11は、部品供給部4に装着されているテープフィーダ5およびトレイフィーダ7の部品取出し位置から部品Dの上面Du(図2(a)参照)を吸着ノズル10aによって真空吸着してピックアップし、基板搬送機構2に保持された基板3の実装位置に移送して搭載する部品搭載作業を実行する。 The Y-axis table 8 and the beam 9 constitute a mounting head moving mechanism for moving the mounting head 10 in horizontal directions (X direction and Y direction). The mounting head moving mechanism and the mounting head 10 constitute component mounting means 11 for mounting the component D at the mounting position on the board 3 . The component mounting means 11 picks up the upper surface Du (see FIG. 2(a)) of the component D from the component take-out position of the tape feeder 5 and the tray feeder 7 mounted in the component supply unit 4 by vacuum suction with the suction nozzle 10a. Then, the component mounting work of transferring and mounting the substrate 3 held by the substrate transport mechanism 2 to the mounting position is executed.

部品搭載作業において実装ヘッド10は、部品供給部4の上方に移動し、各吸着ノズル10aで所定の部品Dをそれぞれピックアップし、基板3の上方に移動し、各吸着ノズル10aが保持する部品Dをそれぞれの実装位置に実装する一連のターンを繰り返す。 In the component mounting operation, the mounting head 10 moves above the component supply unit 4, picks up a predetermined component D with each suction nozzle 10a, moves above the substrate 3, and picks up the component D held by each suction nozzle 10a. to each mounting position.

図1において、ビーム9には、ビーム9の下面側に位置して実装ヘッド10とともに一体的に移動するヘッドカメラ12が装着されている。実装ヘッド10が移動することにより、ヘッドカメラ12は基板搬送機構2の実装作業位置に位置決めされた基板3の上方に移動して、基板3に設けられた基板マーク(図示せず)を撮像して基板3の位置を認識する。 In FIG. 1, the beam 9 is equipped with a head camera 12 positioned below the beam 9 and moving integrally with the mounting head 10 . As the mounting head 10 moves, the head camera 12 moves above the board 3 positioned at the mounting work position of the board transport mechanism 2 and picks up an image of a board mark (not shown) provided on the board 3 . to recognize the position of the substrate 3.

部品供給部4と基板搬送機構2との間には、部品認識カメラ13および廃棄部14が設置されている。部品認識カメラ13は、部品供給部4から部品Dを取り出した実装ヘッド10が部品認識カメラ13の上方に位置した際に、吸着ノズル10aに保持された部品Dを下方から撮像する(図3参照)。実装ヘッド10による部品Dの基板3への部品搭載作業では、ヘッドカメラ12による基板3の認識結果と部品認識カメラ13による部品Dの認識結果とを加味して実装位置の補正が行われる。 A component recognition camera 13 and a disposal unit 14 are installed between the component supply unit 4 and the substrate transport mechanism 2 . The component recognition camera 13 captures an image of the component D held by the suction nozzle 10a from below when the mounting head 10 that has taken out the component D from the component supply unit 4 is positioned above the component recognition camera 13 (see FIG. 3). ). In the work of mounting the component D on the board 3 by the mounting head 10, the mounting position is corrected in consideration of the recognition result of the board 3 by the head camera 12 and the recognition result of the component D by the component recognition camera 13. FIG.

図1において、廃棄部14には、実装ヘッド10が保持した部品Dのうち、基板3に実装しない部品Dが廃棄される。部品実装装置1の前面で作業者が作業する位置には、作業者が操作するタッチパネル15が設置されている。タッチパネル15は、その表示部に各種情報を表示し、また表示部に表示される操作ボタンなどを使って作業者がデータ入力や部品実装装置1の操作を行う。 In FIG. 1 , among the components D held by the mounting head 10 , the components D that are not mounted on the substrate 3 are discarded in the disposal section 14 . A touch panel 15 operated by a worker is installed at a position where the worker works on the front surface of the component mounting apparatus 1 . The touch panel 15 displays various information on its display section, and the operator inputs data and operates the component mounting apparatus 1 using operation buttons displayed on the display section.

次に図4(a)~図4(c)を参照して、基板3に部品Dを搭載する部品搭載作業の工程につて説明する。図4(a)は、図2に示す部品Dが搭載される実装位置S1付近の基板3の部分平面図である。基板3には、部品Dに隣接して抵抗や容量などのチップ部品P(P1,P2)が搭載される。図4(a)において、基板3の表面には、部品Dまたはチップ部品Pの電極Eが接続されるランドLが形成されている。図4(b)に示すように、部品搭載作業の前に、基板3のランドLの表面には、図示省略するスクリーン印刷装置などでランドLの形状に対応したはんだQが印刷(堆積)される。次いではんだQが印刷された基板3は部品実装装置1に搬入されて、実装作業位置に保持される。 Next, with reference to FIGS. 4(a) to 4(c), the component mounting process for mounting the component D on the board 3 will be described. FIG. 4(a) is a partial plan view of the substrate 3 near the mounting position S1 where the component D shown in FIG. 2 is mounted. Chip components P (P1, P2) such as resistors and capacitors are mounted adjacent to the components D on the substrate 3 . In FIG. 4A, on the surface of the substrate 3, lands L to which the electrodes E of the component D or the chip component P are connected are formed. As shown in FIG. 4B, prior to the component mounting operation, solder Q corresponding to the shape of the land L is printed (deposited) on the surface of the land L of the substrate 3 by a screen printer or the like (not shown). be. Next, the board 3 on which the solder Q is printed is carried into the component mounting apparatus 1 and held at the mounting work position.

次いで部品搭載手段11は、トレイフィーダ7またはテープフィーダ5から供給された部品Dまたはチップ部品Pをピックアップし、部品認識カメラ13によって撮像(図3)した後、基板3に設定された実装位置Sに部品Dまたはチップ部品Pを搭載する。図4の例では、部品Dの実装位置S1は4個のランドL1の中心に、チップ部品P1の実装位置S2は2個のランドL2の間に、チップ部品P2の実装位置S3は2個のランドL3の間に、それぞれ設定されている。部品搭載手段11は、部品認識カメラ13による認識結果を加味して、部品D、チップ部品P1,P2を実装位置S1~S3に搭載する。図4(c)に示すように、部品Dは、部品中心Cdが実装位置S1に一致するように基板3に搭載される。 Next, the component mounting means 11 picks up the component D or the chip component P supplied from the tray feeder 7 or the tape feeder 5, picks up an image (FIG. 3) with the component recognition camera 13, and then picks up the component at the mounting position S set on the board 3. A component D or a chip component P is mounted on the . In the example of FIG. 4, the mounting position S1 of the component D is at the center of the four lands L1, the mounting position S2 of the chip component P1 is between the two lands L2, and the mounting position S3 of the chip component P2 is between the two lands L2. Each is set between the lands L3. The component mounting means 11 mounts the component D and the chip components P1 and P2 on the mounting positions S1 to S3 in consideration of the recognition result by the component recognition camera 13. FIG. As shown in FIG. 4(c), the component D is mounted on the board 3 so that the component center Cd coincides with the mounting position S1.

次いで部品Dおよびチップ部品P1,P2が搭載された基板3は、図示省略するリフロー装置に搬送される。リフロー装置は、基板3を搬送しながら加熱してはんだQを融解させた後、はんだQを固化させて部品Dおよびチップ部品P1,P2を基板3にはんだ付けする。このように、部品実装装置1は、部品搭載手段11で基板3の実装位置Sに部品Dまたはチップ部品Pを搭載することによって、基板3に形成されたランドLにはんだを介して部品Dまたはチップ部品Pの電極Eを接続させる。 Next, the substrate 3 on which the component D and the chip components P1 and P2 are mounted is transported to a reflow device (not shown). The reflow device melts the solder Q by heating the substrate 3 while transporting it, and then solidifies the solder Q to solder the component D and the chip components P1 and P2 to the substrate 3 . As described above, the component mounting apparatus 1 mounts the component D or the chip component P on the mounting position S of the substrate 3 by the component mounting means 11, thereby mounting the component D or the chip component P on the land L formed on the substrate 3 via the solder. The electrode E of the chip component P is connected.

次に図5を参照して、部品実装装置1の制御系の構成について説明する。部品実装装置1が備える制御部20には、基板搬送機構2、部品供給部4、部品搭載手段11、ヘッドカメラ12、部品認識カメラ13、タッチパネル15が接続されている。制御部20は、認識処理部21、干渉判定処理部22、搭載制御部23、生産データ記憶部24、部品情報記憶部25、位置ずれ情報記憶部26を備えている。 Next, the configuration of the control system of the component mounting apparatus 1 will be described with reference to FIG. A control unit 20 provided in the component mounting apparatus 1 is connected with a substrate transport mechanism 2, a component supply unit 4, a component mounting means 11, a head camera 12, a component recognition camera 13, and a touch panel 15. FIG. The control unit 20 includes a recognition processing unit 21 , an interference determination processing unit 22 , a mounting control unit 23 , a production data storage unit 24 , a parts information storage unit 25 and a misalignment information storage unit 26 .

生産データ記憶部24は記憶装置であり、部品D、チップ部品Pを基板3に実装する際に参照される部品D、チップ部品Pの部品名(種類)、実装位置S(XY座標)などを含む生産データを記憶する。部品情報記憶部25は記憶装置であり、基板3に実装される部品D、チップ部品Pの部品名毎に、サイズ、外形に対する電極Eの規格位置、隣接部品との最小間隔などが記憶されている。 The production data storage unit 24 is a storage device, and stores the component D, the component name (kind) of the chip component P referred to when mounting the component D and the chip component P on the substrate 3, the mounting position S (XY coordinates), and the like. store production data including; The component information storage unit 25 is a storage device, and stores the size, the standard position of the electrode E with respect to the outer shape, the minimum distance between adjacent components, and the like for each component name of the component D and the chip component P mounted on the substrate 3. there is

図5において、認識処理部21は、部品認識カメラ13が撮像した吸着ノズル10aに保持された部品Dの下面Ddの画像を認識処理して、部品Dの外形および電極Eの位置を認識する。すなわち、部品認識カメラ13は、部品搭載手段11が保持する部品Dの外形と電極Eを撮像する撮像部である。また、認識処理部21は、認識した部品Dの外形に基づいて、部品Dを真空吸着している吸着ノズル10aに対する部品Dの位置を算出する。 In FIG. 5, the recognition processing unit 21 recognizes the outline of the component D and the position of the electrode E by recognizing the image of the lower surface Dd of the component D held by the suction nozzle 10a captured by the component recognition camera 13 . That is, the component recognition camera 13 is an imaging unit that captures an image of the external shape and the electrode E of the component D held by the component mounting means 11 . Further, the recognition processing unit 21 calculates the position of the component D with respect to the suction nozzle 10a that vacuum-sucks the component D based on the recognized outer shape of the component D. FIG.

下面電極部品である部品Dは、製造過程の製造誤差やばらつきに起因して、電極Eの位置が規格位置からずれることがある。認識処理部21は、認識した部品Dの外形と電極Eの位置、および部品情報記憶部25に記憶されている部品Dの外形に対する電極Eの規格位置に基づいて、電極Eの規格位置からの位置ずれ(ずれ方向とずれ量)を算出する。すなわち、認識処理部21は、撮像部による撮像結果より部品Dの外形に対する電極Eの位置のずれ方向とずれ量を算出する処理部である。 The position of the electrode E of the component D, which is a lower surface electrode component, may deviate from the standard position due to manufacturing errors and variations in the manufacturing process. The recognition processing unit 21 determines the position of the electrode E from the standard position based on the recognized external shape of the component D, the position of the electrode E, and the standard position of the electrode E with respect to the external shape of the component D stored in the component information storage unit 25. A positional deviation (a deviation direction and a deviation amount) is calculated. That is, the recognition processing unit 21 is a processing unit that calculates the deviation direction and the deviation amount of the position of the electrode E with respect to the outer shape of the part D from the result of imaging by the imaging unit.

ここで図6を参照して、部品認識カメラ13によって撮像された吸着ノズル10aに吸着された部品Dの部品認識画像13aの一例における部品Dの位置(部品中心Cd)、電極Eの位置(電極中心Ce)について説明する。部品認識画像13aには、X方向の中心線13xとY方向の中心線13yが重ねて表示されている。X方向の中心線13xとY方向の中心線13yの交点が、部品認識画像13aの中心13cである。 Here, referring to FIG. 6, the position of the component D (component center Cd), the position of the electrode E (the electrode The center Ce) will be explained. In the component recognition image 13a, the center line 13x in the X direction and the center line 13y in the Y direction are superimposed and displayed. The intersection of the center line 13x in the X direction and the center line 13y in the Y direction is the center 13c of the component recognition image 13a.

図6において、部品Dを保持した吸着ノズル10aは、部品認識画像13aの中心13cと吸着ノズル10aの中心Cnとが一致するように停止位置が調整されている。部品中心Cdは、認識処理部21によって部品Dの外形より認識されている。さらに認識処理部21によって、部品Dの吸着位置ずれ(ΔXd,ΔYd)が部品認識画像13aの中心13cに対する部品中心Cdの位置から算出される。 In FIG. 6, the stop position of the suction nozzle 10a holding the component D is adjusted so that the center 13c of the component recognition image 13a and the center Cn of the suction nozzle 10a are aligned. The part center Cd is recognized from the outer shape of the part D by the recognition processing unit 21 . Further, the recognition processing unit 21 calculates the pickup position deviation (ΔXd, ΔYd) of the component D from the position of the component center Cd with respect to the center 13c of the component recognition image 13a.

電極中心Ceは、認識処理部21によって4個の電極Eの位置より認識されている。さらに認識処理部21によって、電極Eの位置ずれ(ΔXe,ΔYe)が部品中心Cd、電極中心Ce、部品情報記憶部25に記憶されている電極Eの規格位置から算出される。この例では、電極Eの規格位置(電極中心Ce)は部品中心Cdに一致しており、部品中心Cdに対する電極中心Ceの相対的な位置が電極Eの位置ずれ(ΔXe,ΔYe)になる。認識処理部21は、算出した部品Dの吸着位置ずれ(ΔXd,ΔYd)と電極Eの位置ずれ(ΔXe,ΔYe)を、位置ずれ情報記憶部26に記憶させる。 The electrode center Ce is recognized from the positions of the four electrodes E by the recognition processing unit 21 . Further, the recognition processing unit 21 calculates the displacement (ΔXe, ΔYe) of the electrode E from the component center Cd, the electrode center Ce, and the standard position of the electrode E stored in the component information storage unit 25 . In this example, the standard position (electrode center Ce) of the electrode E coincides with the component center Cd, and the relative position of the electrode center Ce with respect to the component center Cd is the displacement of the electrode E (ΔXe, ΔYe). The recognition processing unit 21 stores the calculated suction position shift (ΔXd, ΔYd) of the component D and the calculated position shift (ΔXe, ΔYe) of the electrode E in the position shift information storage unit 26 .

図5において、干渉判定処理部22は、位置ずれ情報記憶部26に記憶される電極Eの位置ずれ(ΔXe,ΔYe)、生産データ記憶部24に記憶される部品Dと部品Dに隣接する隣接部品の実装位置S、部品情報記憶部25に記憶される部品Dと隣接部品のサイズ、部品Dと隣接部品の最小間隔に基づいて、部品Dを実装位置S1に搭載してはんだを融解させた場合に部品Dが隣接部品に干渉するか否かを判定する。 In FIG. 5, the interference determination processing unit 22 calculates the positional deviation (ΔXe, ΔYe) of the electrode E stored in the positional deviation information storage unit 26, the part D stored in the production data storage unit 24, and the adjoining parts D. Based on the mounting position S of the component, the size of the component D and the adjacent component stored in the component information storage unit 25, and the minimum distance between the component D and the adjacent component, the component D is mounted at the mounting position S1 and the solder is melted. In this case, it is determined whether or not the component D interferes with the adjacent component.

ここで図7を参照して、部品Dが搭載される実装位置S1が設定された基板3の例について説明する。実装位置S1は、部品Dの4個の電極Eが接続される基板3上に形成された4個のランドL1の中心の位置に設定されている。部品Dは、部品中心Cdが実装位置S1に一致するように位置補正されて基板3上に搭載される。実装位置S1の上側(Y方向)には、隣接部品であるチップ部品P1が搭載される実装位置S2が設定されている。実装位置S2は、実装位置S1からY方向に距離Y0だけ離れて設定されている。実装位置S2は、チップ部品P1の2個の電極Eが接続される2個のランドL2の中心の位置に設定されている。チップ部品P1は、部品中心Cpが実装位置S2に一致するように位置補正されて基板3上に搭載される。 Here, with reference to FIG. 7, an example of the substrate 3 in which the mounting position S1 on which the component D is mounted will be described. The mounting position S1 is set at the center position of four lands L1 formed on the substrate 3 to which the four electrodes E of the component D are connected. The component D is mounted on the board 3 after position correction so that the component center Cd coincides with the mounting position S1. Above the mounting position S1 (in the Y direction), a mounting position S2 is set where the chip component P1, which is an adjacent component, is mounted. The mounting position S2 is set apart from the mounting position S1 by a distance Y0 in the Y direction. The mounting position S2 is set at the center position of the two lands L2 to which the two electrodes E of the chip component P1 are connected. The chip component P1 is mounted on the substrate 3 after being positionally corrected so that the component center Cp coincides with the mounting position S2.

実装位置S1の左側(X方向)には、隣接部品であるチップ部品P2が搭載される実装位置S3が設定されている。実装位置S3は、実装位置S1からX方向に距離X0だけ離れて設定されている。実装位置S3は、チップ部品P2の2個の電極Eが接続される2個のランドL3の中心の位置に設定されている。チップ部品P2は、部品中心Cpが実装位置S3に一致するように位置補正されて基板3上に搭載される。 A mounting position S3 is set on the left side (X direction) of the mounting position S1, where the chip component P2, which is an adjacent component, is mounted. The mounting position S3 is set apart from the mounting position S1 by a distance X0 in the X direction. The mounting position S3 is set at the center position of the two lands L3 to which the two electrodes E of the chip component P2 are connected. The chip component P2 is mounted on the substrate 3 after position correction so that the component center Cp coincides with the mounting position S3.

図7において、部品DのサイズはX方向がDx、Y方向がDyである。また、チップ部品P1のY方向のサイズはPy、チップ部品P2のX方向のサイズはPxである。部品Dとチップ部品P2がずれなく基板3に搭載されると、部品Dとチップ部品P2との間のX方向の間隔Gxは、X0-Dx/2-Px/2となる。同様に、部品Dとチップ部品P1がずれなく基板3に搭載されると、部品Dとチップ部品P1との間のY方向の間隔Gyは、Y0-Dy/2-Py/2となる。 In FIG. 7, the size of the component D is Dx in the X direction and Dy in the Y direction. The Y-direction size of the chip component P1 is Py, and the X-direction size of the chip component P2 is Px. When the component D and the chip component P2 are mounted on the substrate 3 without deviation, the distance Gx in the X direction between the component D and the chip component P2 is X0-Dx/2-Px/2. Similarly, when the component D and the chip component P1 are mounted on the substrate 3 without deviation, the Y-direction spacing Gy between the component D and the chip component P1 is Y0-Dy/2-Py/2.

次に図8(a)、図8(b)を参照して、電極Eの位置ずれ(ΔXe,ΔYe)がある部品Dを基板3の搭載した例について説明する。図8(a)はランドLにはんだQが印刷された基板3に部品Dが搭載された直後の状態を示し、図8(b)は部品Dを搭載した後にはんだQを融解させて固化させた状態を示している。図8(a)において、部品Dの部品中心Cdを実装位置S1に一致させて基板3に搭載すると、部品Dの電極Eは基板3の実装位置S1から電極Eの位置ずれ(ΔXe,ΔYe)だけずれた状態となる。すなわち、電極Eの位置がランドL1に対してX方向はΔXeだけチップ部品P2から遠い側にあり、Y方向はチップ部品P1からΔYeだけ遠い側にある。 Next, with reference to FIGS. 8(a) and 8(b), an example in which the component D with the positional deviation (ΔXe, ΔYe) of the electrode E is mounted on the substrate 3 will be described. FIG. 8(a) shows the state immediately after the component D is mounted on the board 3 on which the solder Q is printed on the land L, and FIG. 8(b) shows the state after the component D is mounted and the solder Q is melted and solidified. state. In FIG. 8A, when the component center Cd of the component D is aligned with the mounting position S1 and mounted on the board 3, the electrode E of the component D is shifted from the mounting position S1 of the board 3 by the position of the electrode E (.DELTA.Xe, .DELTA.Ye). It will be in a state of being displaced. That is, the position of the electrode E is on the side farther from the chip component P2 than the land L1 by ΔXe in the X direction, and on the side farther from the chip component P1 by ΔYe in the Y direction.

はんだQを融解させると、図8(b)に示すように融解された液状のはんだQの表面張力により部品Dの電極EがランドL1に一致するように部品Dの位置が移動する。すなわち、はんだQを融解させると、電極中心Ceが実装位置S1に一致する位置まで部品Dが移動する。そして、電極Eのずれ方向が隣接部品(チップ部品P1,P2)から遠い位置にあり、かつ、ずれ量が大きい部品Dでは、はんだQを融解させた際の移動で隣接部品に接触(衝突)したり近づき過ぎる干渉が発生する場合がある。 When the solder Q is melted, the surface tension of the melted liquid solder Q moves the position of the component D so that the electrode E of the component D is aligned with the land L1 as shown in FIG. 8(b). That is, when the solder Q is melted, the component D moves to a position where the electrode center Ce coincides with the mounting position S1. Then, in the component D where the displacement direction of the electrode E is far from the adjacent components (chip components P1 and P2) and the amount of deviation is large, contact (collision) with the adjacent component occurs when the solder Q is melted. or too close interference may occur.

干渉判定処理部22は、部品Dが隣接部品(チップ部品P1,P2)に干渉するか否かを判定する。具体的には、干渉判定処理部22は、はんだQを融解させた後に部品Dとチップ部品P2とのX方向の間隔Gx(X0-Dx/2-Px/2-ΔXe)が最小間隔Gxmより小さくなる(負となる場合を含む)場合に、部品Dが隣接するチップ部品P2と干渉すると判定する。または、干渉判定処理部22は、はんだを融解させた後に部品Dとチップ部品P1とのY方向の間隔Gy(Y0-Dy/2-Py/2-ΔYe)が最小間隔Gymより小さくなる(負となる場合を含む)場合に、部品Dが隣接するチップ部品P1と干渉すると判定する。 The interference determination processing unit 22 determines whether or not the component D interferes with adjacent components (chip components P1 and P2). Specifically, the interference determination processing unit 22 determines that the distance Gx (X0−Dx/2−Px/2−ΔXe) between the component D and the chip component P2 in the X direction after melting the solder Q is greater than the minimum distance Gxm. When it becomes smaller (including when it becomes negative), it is determined that the component D interferes with the adjacent chip component P2. Alternatively, the interference determination processing unit 22 determines that the distance Gy (Y0−Dy/2−Py/2−ΔYe) between the component D and the chip component P1 in the Y direction after melting the solder becomes smaller than the minimum distance Gym (negative ), it is determined that the component D interferes with the adjacent chip component P1.

すなわち、干渉判定処理部22は、部品Dを実装位置S1に搭載してはんだQを融解させた場合の当該部品Dの外形と隣接部品(チップ部品P1,P2)の外形との間隔(Gx,Gy)が所定値(Gxm,Gym)以下の場合に、当該部品Dが隣接部品に干渉すると判定する。このように、部品認識カメラ13(撮像部)、認識処理部21(処理部)、干渉判定処理部22は、実装位置S1に搭載される部品Dの外形に対する電極Eの位置のずれ方向とずれ量(電極Eの位置ずれ(ΔXe,ΔYe))に基づいて、当該部品Dを実装位置S1に搭載してはんだQを融解させた場合に、当該部品Dが当該部品Dに隣接する隣接部品に干渉するか否かを判定する干渉判定手段27(図5参照)を構成する。 That is, the interference determination processing unit 22 determines the distance (Gx, Gy) is equal to or less than a predetermined value (Gxm, Gym), it is determined that the component D interferes with an adjacent component. In this way, the component recognition camera 13 (imaging unit), the recognition processing unit 21 (processing unit), and the interference determination processing unit 22 determine the deviation direction and deviation of the position of the electrode E with respect to the external shape of the component D mounted at the mounting position S1. Based on the amount (positional deviation (ΔXe, ΔYe) of the electrode E), when the component D is mounted on the mounting position S1 and the solder Q is melted, the component D is attached to the adjacent component adjacent to the component D. Interference judgment means 27 (see FIG. 5) for judging whether or not there is interference is provided.

図5において、搭載制御部23は、部品搭載手段11を制御して、吸着ノズル10aによってトレイ6に収納された部品Dの上面Duを真空吸着してピックアップし、吸着ノズル10aが保持する部品Dを基板3の実装位置S1に搭載させる部品搭載作業を実行させる。その際、搭載制御部23は、部品Dの吸着位置ずれ(ΔXd,ΔYd)に基づいて、部品Dの部品中心Cpが実装位置S1に一致するように補正して基板3に搭載させる。また、搭載制御部23は、干渉判定処理部22が、吸着ノズル10aが保持する部品Dが隣接部品に干渉すると判断すると、その部品Dを廃棄部14に廃棄させる。 In FIG. 5, the mounting control unit 23 controls the component mounting means 11 to vacuum-suck the upper surface Du of the component D stored in the tray 6 by the suction nozzle 10a to pick up the component D held by the suction nozzle 10a. is mounted on the mounting position S1 of the substrate 3, the component mounting work is executed. At this time, the mounting control unit 23 mounts the component D on the board 3 after correcting the component center Cp of the component D to match the mounting position S1 based on the pickup position deviation (ΔXd, ΔYd) of the component D. Further, when the interference determination processing unit 22 determines that the component D held by the suction nozzle 10a interferes with an adjacent component, the mounting control unit 23 causes the disposal unit 14 to discard the component D.

すなわち、部品搭載手段11は、干渉判定手段27によって当該部品Dが隣接部品に干渉すると判定された場合に、当該部品Dを廃棄部14に廃棄して、当該部品Dを実装位置S1に搭載しない。これによって、基板3に搭載した部品DがはんだQを融解させた後に隣接部品に干渉することを防止することができ、下面電極部品(部品D)を実装した実装基板の品質を向上することができる。 That is, when the interference determination means 27 determines that the component D interferes with the adjacent component, the component mounting means 11 discards the component D to the disposal unit 14 and does not mount the component D at the mounting position S1. . As a result, it is possible to prevent the component D mounted on the board 3 from interfering with the adjacent components after the solder Q is melted, thereby improving the quality of the mounting board on which the lower surface electrode component (component D) is mounted. can.

また、干渉判定処理部22は、吸着ノズル10aが保持する部品Dを当初予定の実装位置S1に搭載すると隣接部品に干渉すると判定した場合、同一の基板3上に隣接部品と干渉することなくその部品Dを搭載することができる代替の実装位置Sがないかを探索する。基板3上に部品Dと同じ種類の部品が複数実装される場合で、当初予定の実装位置S1より隣接部品が離れていたり、隣接部品との相対的な位置関係が干渉しない方向であったりする場合に、代替の実装位置Sが見つかる場合がある。 Further, when the interference determination processing unit 22 determines that the component D held by the suction nozzle 10a will interfere with the adjacent component if it is mounted on the initially planned mounting position S1, the interference determination processing unit 22 mounts the adjacent component on the same substrate 3 without interfering with the adjacent component. A search is made for an alternative mounting position S where the component D can be mounted. When a plurality of components of the same type as component D are mounted on the board 3, the adjacent component may be farther from the initially planned mounting position S1, or the relative positional relationship with the adjacent component may be in a direction that does not interfere. In some cases, alternative mounting locations S may be found.

干渉判定処理部22が、吸着ノズル10aが保持する部品Dを搭載可能な実装位置Sを見つけると、搭載制御部23は、部品搭載手段11を制御して、その部品Dを実装位置Sに搭載させる。すなわち、部品搭載手段11は、当該部品Dが隣接部品に干渉すると判定された場合に、当該部品Dを他の実装位置Sに搭載する。これによって、部品Dを廃棄する損失の発生を回避することができる。 When the interference determination processing unit 22 finds the mounting position S where the component D held by the suction nozzle 10a can be mounted, the mounting control unit 23 controls the component mounting means 11 to mount the component D at the mounting position S. Let That is, the component mounting means 11 mounts the component D on another mounting position S when it is determined that the component D interferes with the adjacent component. As a result, it is possible to avoid the loss caused by discarding the part D.

次に図9のフローに沿って、部品実装装置1においてトレイ6に収納された部品Dを吸着ノズル10aでピックアップして基板3の実装位置S1に搭載することによって、基板3に形成されたランドL1にはんだQを介して部品Dの電極Eを接続させる実装基板の製造方法の1ターン分について説明する。部品実装装置1の実装作業位置には、ランドLにはんだQが印刷された基板3が位置決めして保持されているとする。まず、部品搭載手段11は、トレイ6から部品Dを取り出す(ST1:部品取出し工程)。次いで部品Dを保持する部品搭載手段11が上方を移動する際に、部品認識カメラ13(撮像部)は、部品搭載手段11が保持する部品Dの外形と電極Eを撮像する(ST2:撮像工程)。 Next, according to the flow of FIG. 9, the part D stored in the tray 6 is picked up by the suction nozzle 10a in the component mounting apparatus 1 and mounted on the mounting position S1 of the board 3, thereby forming the land formed on the board 3. One turn of the manufacturing method of the mounting board in which the electrode E of the component D is connected to L1 via the solder Q will be described. Assume that a substrate 3 having solder Q printed on a land L is positioned and held at the mounting work position of the component mounting apparatus 1 . First, the component mounting means 11 picks up the component D from the tray 6 (ST1: component picking step). Next, when the component mounting means 11 holding the component D moves upward, the component recognition camera 13 (imaging section) images the outer shape of the component D held by the component mounting means 11 and the electrodes E (ST2: imaging step ).

次いで認識処理部21は、撮像工程(ST2)による撮像結果より部品Dの外形に対する電極Eの位置のずれ方向とずれ量(電極Eの位置ずれ(ΔXe,ΔYe))を算出する(ST3:処理工程)。この際、認識処理部21は部品Dの吸着位置ずれ(ΔXd,ΔYd)も算出し、電極Eの位置ずれ(ΔXe,ΔYe)と伴に位置ずれ情報記憶部26に記憶させる。次いで干渉判定処理部22は、実装位置S1に搭載される部品Dの電極Eの位置ずれ(ΔXe,ΔYe)に基づいて、当該部品Dを実装位置S1に搭載してはんだQを融解させた場合に、当該部品Dが当該部品Dに隣接する隣接部品(チップ部品P1,P2)に干渉するか否かを判定する(ST4:干渉判定工程)。 Next, the recognition processing unit 21 calculates the displacement direction and displacement amount of the electrode E with respect to the external shape of the component D (positional displacement (ΔXe, ΔYe) of the electrode E) from the imaging result of the imaging step (ST2) (ST3: process process). At this time, the recognition processing unit 21 also calculates the pick-up position deviation (ΔXd, ΔYd) of the component D, and stores it in the position deviation information storage unit 26 together with the position deviation (ΔXe, ΔYe) of the electrode E. Next, based on the positional deviation (ΔXe, ΔYe) of the electrodes E of the component D mounted on the mounting position S1, the interference determination processing unit 22 determines that when the component D is mounted on the mounting position S1 and the solder Q is melted, First, it is determined whether or not the component D interferes with adjacent components (chip components P1 and P2) adjacent to the component D (ST4: interference determination step).

具体的には、干渉判定工程(ST4)において干渉判定処理部22は、当該部品Dを実装位置S1に搭載してはんだQを融解させた場合の当該部品Dの外形と隣接部品の外形との間隔(Gx,Gy)が所定値(Gxm,Gym)以下の場合に、当該部品Dが隣接部品に干渉すると判定する。干渉判定工程(ST4)において干渉しないと判定された場合(No)、部品搭載手段11は、部品Dの吸着位置ずれ(ΔXd,ΔYd)に基づいて位置補正して、部品Dの部品中心Cdが実装位置S1に一致するように基板3に搭載させる(ST5)。 Specifically, in the interference determination step (ST4), the interference determination processing unit 22 compares the outer shape of the component D and the outer shape of the adjacent component when the component D is mounted on the mounting position S1 and the solder Q is melted. When the interval (Gx, Gy) is equal to or less than a predetermined value (Gxm, Gym), it is determined that the component D interferes with the adjacent component. If it is determined that there is no interference in the interference determination step (ST4) (No), the component mounting means 11 corrects the position based on the pickup position deviation (ΔXd, ΔYd) of the component D so that the component center Cd of the component D is It is mounted on the substrate 3 so as to match the mounting position S1 (ST5).

図9において、干渉判定工程(ST4)において干渉すると判定された場合(Yes)、干渉判定処理部22は、当初予定の実装位置S1の代わりに当該部品Dを搭載可能な他の実装位置Sを探索する(ST6:代替実装位置探索工程)。他の実装位置Sに搭載可能な場合(ST6においてYes)、部品搭載手段11は、当該部品Dを他の実装位置Sに搭載させる(ST7)。他に搭載可能な実装位置Sがない場合(ST6においてNo)、部品搭載手段11は、当該部品Dを廃棄部14に破棄し(ST8:部品廃棄工程)、部品取出し工程(ST1)に戻って次の部品Dを取り出す。 In FIG. 9, when it is determined that there is interference in the interference determination step (ST4) (Yes), the interference determination processing unit 22 replaces the initially planned mounting position S1 with another mounting position S where the component D can be mounted. search (ST6: alternative mounting position search step). If the component D can be mounted on another mounting position S (Yes in ST6), the component mounting means 11 mounts the component D on another mounting position S (ST7). If there is no other mounting position S that can be mounted (No in ST6), the component mounting means 11 discards the component D to the discarding unit 14 (ST8: component discarding step), and returns to the component extraction step (ST1). Take out the next part D.

このように、図9に示すフローのST5からST8は、干渉判定工程(ST4)による判定結果に基づいて、当該部品Dを処理する判定後処理工程となる。判定後処理工程では、当該部品Dが隣接部品に干渉しないと判定された場合(ST4においてNo)、当該部品Dが実装位置S1に搭載される。また、判定後処理工程では、干渉判定工程(ST4)において当該部品Dが隣接部品に干渉すると判定された場合(Yes)、他の実装位置Sに搭載可能と判定されると(ST6においてYes)当該部品Dが他の実装位置Sに搭載され(ST7)、他に搭載可能な実装位置Sがない場合は(ST6においてNo)当該部品Dが廃棄部14に廃棄される(ST8)。 Thus, ST5 to ST8 in the flow shown in FIG. 9 are post-determination processing steps for processing the component D based on the determination result of the interference determination step (ST4). In the post-determination process, when it is determined that the component D does not interfere with the adjacent component (No in ST4), the component D is mounted at the mounting position S1. Further, in the post-determination processing step, if it is determined in the interference determination step (ST4) that the component D interferes with the adjacent component (Yes), if it is determined that the component D can be mounted at another mounting position S (Yes in ST6). The component D is mounted on another mounting position S (ST7), and if there is no other mounting position S that can be mounted (No in ST6), the component D is discarded by the discarding unit 14 (ST8).

すなわち、干渉判定工程(ST4)において当該部品Dが隣接部品に干渉すると判断された場合(Yes)、判定後処理工程において当該部品Dが当初予定の実装位置S1に搭載されない(ST7、ST8)。これによって、基板3に搭載した部品DがはんだQを融解させた後に隣接部品に干渉することを防止することができ、下面電極部品(部品D)を実装した実装基板の品質を向上することができる。 That is, when it is determined in the interference determination step (ST4) that the component D interferes with the adjacent component (Yes), the component D is not mounted at the initially planned mounting position S1 in the post-determination process (ST7, ST8). As a result, it is possible to prevent the component D mounted on the board 3 from interfering with the adjacent components after the solder Q is melted, thereby improving the quality of the mounting board on which the lower surface electrode component (component D) is mounted. can.

上記説明したように、本実施の形態の部品実装装置1は、実装位置S1に搭載される部品Dの外形に対する電極Eの位置のずれ方向とずれ量(電極Eの位置ずれ(ΔXe,ΔYe))に基づいて、当該部品Dを実装位置S1に搭載してはんだQを融解させた場合に、当該部品Dが隣接部品(チップ部品P1,P2)に干渉するか否かを判定する干渉判定手段27(部品認識カメラ13、認識処理部21、干渉判定処理部22)を備えている。そして、部品搭載手段11は、干渉判定手段27によって当該部品Dが隣接部品に干渉すると判断された場合に、当該部品Dを実装位置S1に搭載しない。これによって、基板3に搭載した部品DがはんだQを融解させた後に隣接部品に干渉することを防止することができ、下面電極部品(部品D)を実装した実装基板の品質を向上することができる。 As described above, the component mounting apparatus 1 of the present embodiment has the positional deviation direction and deviation amount of the electrode E with respect to the external shape of the component D mounted on the mounting position S1 (positional deviation (ΔXe, ΔYe) of the electrode E). ), interference determination means for determining whether or not the component D interferes with adjacent components (chip components P1 and P2) when the component D is mounted on the mounting position S1 and the solder Q is melted. 27 (component recognition camera 13, recognition processing unit 21, interference determination processing unit 22). When the interference determining means 27 determines that the component D interferes with the adjacent component, the component mounting means 11 does not mount the component D at the mounting position S1. As a result, it is possible to prevent the component D mounted on the board 3 from interfering with the adjacent components after the solder Q is melted, thereby improving the quality of the mounting board on which the lower surface electrode component (component D) is mounted. can.

なお、上記の説明では、部品Dをトレイ6から取り出した後に部品Dの電極Eの位置ずれ(ΔXe,ΔYe)を部品認識カメラ13(撮像部)と認識処理部21(処理部)で算出しているが、実施の形態はこれに限定されることはない。例えば、部品Dをトレイ6やキャリアテープに格納する前に部品Dの電極Eの位置ずれ(ΔXe,ΔYe)を計測して、各部品Dに関連付けて位置ずれ情報記憶部26に記憶させ、トレイ6から取り出した部品Dを基板3に搭載する前に位置ずれ情報記憶部26から読み出して干渉判定を実行するようにしてもよい。 In the above description, after the component D is taken out from the tray 6, the displacement (ΔXe, ΔYe) of the electrode E of the component D is calculated by the component recognition camera 13 (imaging unit) and the recognition processing unit 21 (processing unit). However, embodiments are not limited to this. For example, before the components D are stored in the tray 6 or the carrier tape, the positional deviation (ΔXe, ΔYe) of the electrodes E of the components D is measured, and stored in the positional deviation information storage unit 26 in association with each component D. Before the component D taken out from 6 is mounted on the board 3, it may be read out from the positional deviation information storage unit 26 and interference determination may be executed.

本発明の部品実装装置および実装基板の製造方法は、下面電極部品を実装した実装基板の品質を向上することができるという効果を有し、部品を基板に実装する分野において有用である。 INDUSTRIAL APPLICABILITY The component mounting apparatus and the method for manufacturing a mounting board according to the present invention have the effect of improving the quality of the mounting board on which the lower surface electrode component is mounted, and are useful in the field of mounting components on the board.

1 部品実装装置
3 基板
11 部品搭載手段
13 部品認識カメラ(撮像部)
D 部品
E 電極
Gx、Gy 間隔
L、L1、L2、L3 ランド
Q はんだ
S、S1、S2、S3 実装位置
REFERENCE SIGNS LIST 1 component mounting device 3 board 11 component mounting means 13 component recognition camera (imaging unit)
D Part E Electrode Gx, Gy Spacing L, L1, L2, L3 Land Q Solder S, S1, S2, S3 Mounting position

Claims (10)

部品搭載手段で基板の実装位置に部品を搭載することによって、前記基板に形成されたランドにはんだを介して前記部品の電極を接続させる部品実装装置であって、
前記実装位置に搭載される部品の外形に対する前記電極の位置のずれ方向とずれ量に基づいて、当該部品を前記実装位置に搭載して前記はんだを融解させた場合に、当該部品が当該部品に隣接する隣接部品に干渉するか否かを判定する干渉判定手段を備え、
前記部品搭載手段は、
前記干渉判定手段によって当該部品が前記隣接部品に干渉すると判断された場合に、当該部品を前記実装位置に搭載しない、部品実装装置。
A component mounting apparatus for connecting electrodes of the component to lands formed on the substrate through solder by mounting the component on the mounting position of the substrate by component mounting means,
When the component is mounted on the mounting position and the solder is melted based on the direction and amount of deviation of the position of the electrode with respect to the outer shape of the component mounted on the mounting position, the component is attached to the component. Equipped with interference determination means for determining whether or not there is interference with adjacent adjacent parts,
The component mounting means is
A component mounting apparatus which does not mount the component on the mounting position when the interference determining means determines that the component interferes with the adjacent component.
前記干渉判定手段は、
当該部品を前記実装位置に搭載して前記はんだを融解させた場合の当該部品の外形と前記隣接部品の外形との間隔が所定値以下の場合に、当該部品が前記隣接部品に干渉すると判定する、請求項1に記載の部品実装装置。
The interference determination means is
It is determined that the component interferes with the adjacent component when the distance between the outer shape of the component and the outer shape of the adjacent component when the component is mounted on the mounting position and the solder is melted is a predetermined value or less. , The component mounting apparatus according to claim 1.
前記部品搭載手段は、
当該部品が前記隣接部品に干渉すると判定された場合に、当該部品を廃棄する、請求項1または2に記載の部品実装装置。
The component mounting means is
3. The component mounting apparatus according to claim 1, wherein said component is discarded when it is determined that said component interferes with said adjacent component.
前記部品搭載手段は、
当該部品が前記隣接部品に干渉すると判定された場合に、当該部品を他の実装位置に搭載する、請求項1または2に記載の部品実装装置。
The component mounting means is
3. The component mounting apparatus according to claim 1, wherein said component is mounted at another mounting position when it is determined that said component interferes with said adjacent component.
前記干渉判定手段は、
前記部品搭載手段が保持する部品の外形と電極を撮像する撮像部と、
前記撮像部による撮像結果より前記部品の外形に対する前記電極の位置のずれ方向とずれ量を算出する処理部と、を有する、請求項1から4のいずれかに記載の部品実装装置。
The interference determination means is
an imaging unit that captures an image of the external shape and electrode of the component held by the component mounting means;
5. The component mounting apparatus according to any one of claims 1 to 4, further comprising a processing unit that calculates a deviation direction and a deviation amount of the position of the electrode with respect to the outer shape of the component based on the imaging result of the imaging unit.
基板の実装位置に部品を搭載することによって、前記基板に形成されたランドにはんだを介して前記部品の電極を接続させる実装基板の製造方法であって、
前記実装位置に搭載される部品の外形に対する前記電極の位置のずれ方向とずれ量に基づいて、当該部品を前記実装位置に搭載して前記はんだを融解させた場合に、当該部品が当該部品に隣接する隣接部品に干渉するか否かを判定する干渉判定工程と、
前記干渉判定工程による判定結果に基づいて、当該部品を処理する判定後処理工程と、を含み、
前記干渉判定工程において当該部品が前記隣接部品に干渉すると判断された場合に、前記判定後処理工程において当該部品が前記実装位置に搭載されない、実装基板の製造方法。
A method for manufacturing a mounting substrate, wherein the electrodes of the component are connected to lands formed on the substrate via solder by mounting the component on the mounting position of the substrate,
When the component is mounted on the mounting position and the solder is melted based on the direction and amount of deviation of the position of the electrode with respect to the outer shape of the component mounted on the mounting position, the component is attached to the component. an interference determination step of determining whether or not there is interference with adjacent adjacent parts;
a post-determination processing step of processing the component based on the determination result of the interference determination step;
A method of manufacturing a mounted board, wherein the component is not mounted at the mounting position in the post-determination processing step when it is determined in the interference determination step that the component interferes with the adjacent component.
前記干渉判定工程は、当該部品を前記実装位置に搭載して前記はんだを融解させた場合の当該部品の外形と前記隣接部品の外形との間隔が所定値以下の場合に、当該部品が前記隣接部品に干渉すると判定する、請求項6に記載の実装基板の製造方法。 In the interference determination step, when the distance between the outer shape of the component and the outer shape of the adjacent component when the component is mounted on the mounting position and the solder is melted is a predetermined value or less, the component is positioned adjacent to the adjacent component. 7. The method of manufacturing a mounting board according to claim 6, wherein it is determined that the component interferes with the component. 前記干渉判定工程において当該部品が前記隣接部品に干渉すると判定された場合に、前記判定後処理工程において当該部品が廃棄される、請求項6または7に記載の実装基板の製造方法。 8. The method of manufacturing a mounting board according to claim 6, wherein, when it is determined in said interference determination step that said component interferes with said adjacent component, said component is discarded in said post-determination processing step. 前記干渉判定工程において当該部品が前記隣接部品に干渉すると判定された場合に、前記判定後処理工程において当該部品が他の実装位置に搭載される、請求項6または7に記載の実装基板の製造方法。 8. The manufacturing of the mounted board according to claim 6, wherein when the component is determined to interfere with the adjacent component in the interference determination step, the component is mounted at another mounting position in the post-determination processing step. Method. 記部品の外形と電極を撮像する撮像工程と、
前記撮像工程による撮像結果より前記部品の外形に対する前記電極の位置のずれ方向とずれ量を算出する処理工程と、をさらに含む、請求項6から9のいずれかに記載の実装基板の製造方法。
an imaging step of imaging the external shape and electrodes of the component ;
10. The method of manufacturing a mounting board according to claim 6, further comprising a processing step of calculating a shift direction and a shift amount of the position of the electrode with respect to the outer shape of the component based on the imaging result of the imaging step.
JP2018234030A 2018-12-14 2018-12-14 COMPONENT MOUNTING APPARATUS AND MOUNTING BOARD MANUFACTURING METHOD Active JP7281614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018234030A JP7281614B2 (en) 2018-12-14 2018-12-14 COMPONENT MOUNTING APPARATUS AND MOUNTING BOARD MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018234030A JP7281614B2 (en) 2018-12-14 2018-12-14 COMPONENT MOUNTING APPARATUS AND MOUNTING BOARD MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2020096114A JP2020096114A (en) 2020-06-18
JP7281614B2 true JP7281614B2 (en) 2023-05-26

Family

ID=71085775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018234030A Active JP7281614B2 (en) 2018-12-14 2018-12-14 COMPONENT MOUNTING APPARATUS AND MOUNTING BOARD MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP7281614B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022001309T5 (en) * 2021-03-01 2023-12-21 Panasonic Intellectual Property Management Co., Ltd. Assembly system and assembly method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094297A (en) 2000-09-18 2002-03-29 Matsushita Electric Ind Co Ltd Method and apparatus for mounting electric component
JP2007266425A (en) 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Mounting device and mounting method
JP2011181675A (en) 2010-03-01 2011-09-15 Nec Corp Mounting device for circuit component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094297A (en) 2000-09-18 2002-03-29 Matsushita Electric Ind Co Ltd Method and apparatus for mounting electric component
JP2007266425A (en) 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Mounting device and mounting method
JP2011181675A (en) 2010-03-01 2011-09-15 Nec Corp Mounting device for circuit component

Also Published As

Publication number Publication date
JP2020096114A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
KR100881908B1 (en) Apparatus and method for mounting electronic parts
JP4952692B2 (en) Electronic component mounting apparatus and electronic component mounting method
KR101051106B1 (en) Electronic component mounting device and electronic component mounting method
JP4801558B2 (en) Mounting machine and component imaging method thereof
JP4712623B2 (en) Component conveying method, component conveying apparatus and surface mounter
US20080014772A1 (en) Component mounting position correcting method and component mouting apparatus
JP7281614B2 (en) COMPONENT MOUNTING APPARATUS AND MOUNTING BOARD MANUFACTURING METHOD
JP4872854B2 (en) Component mounting equipment
US20090088888A1 (en) Component mounting method
JP4852456B2 (en) Mounting line and mounting method
JP4810586B2 (en) Mounting machine
JP5067412B2 (en) Connector mounting method
JP2007287838A (en) Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
JP4782590B2 (en) Component mounting position teaching method
JP4401193B2 (en) Electronic component mounting equipment
JP7394283B2 (en) Component mounting device, 3D shape determination device, and 3D shape determination method
JP7329727B2 (en) Component mounting device, three-dimensional shape measuring device, and three-dimensional shape measuring method
JP7426555B2 (en) Component mounting equipment and mounting board manufacturing method
WO2023012981A1 (en) Component mounting system
WO2023037513A1 (en) Component mounting system
JP7365542B2 (en) Component mounting system and component mounting method
JP7194881B2 (en) COMPONENT MOUNTING SYSTEM AND MOUNTING BOARD MANUFACTURING METHOD
JP7233974B2 (en) Component mounting equipment and component mounting system
JP4989517B2 (en) Mounting method of electronic parts
JP2008124169A (en) Surface mounting apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R151 Written notification of patent or utility model registration

Ref document number: 7281614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151