JP7394283B2 - Component mounting device, 3D shape determination device, and 3D shape determination method - Google Patents

Component mounting device, 3D shape determination device, and 3D shape determination method Download PDF

Info

Publication number
JP7394283B2
JP7394283B2 JP2019131529A JP2019131529A JP7394283B2 JP 7394283 B2 JP7394283 B2 JP 7394283B2 JP 2019131529 A JP2019131529 A JP 2019131529A JP 2019131529 A JP2019131529 A JP 2019131529A JP 7394283 B2 JP7394283 B2 JP 7394283B2
Authority
JP
Japan
Prior art keywords
workpiece
component
imaging means
imaging
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019131529A
Other languages
Japanese (ja)
Other versions
JP2021018994A (en
Inventor
猛 韓
純一 秦
鷹則 松田
秀雄 森
誠一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019131529A priority Critical patent/JP7394283B2/en
Publication of JP2021018994A publication Critical patent/JP2021018994A/en
Application granted granted Critical
Publication of JP7394283B2 publication Critical patent/JP7394283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

本発明は、部品の立体形状の良否を判断して基板に装着する部品実装装置および部品の立体形状の良否を判断する立体形状判断装置ならびに立体形状判断方法に関する。 The present invention relates to a component mounting apparatus that determines the quality of the three-dimensional shape of a component and mounts it on a board, a three-dimensional shape determination device, and a three-dimensional shape determination method that determine the quality of the three-dimensional shape of the component.

部品実装装置は、フィーダが供給する部品を実装ヘッドのノズルで吸着して取り出し、吸着した部品を基板に移載して実装基板を製造する。特許文献1に記載の部品実装装置(電子部品実装機)は、実装ヘッドが備える複数のノズルでフィーダからそれぞれ部品を取り出した後、部品認識用カメラでノズルが吸着する部品を撮像し、部品の吸着姿勢や部品自体が不良と判定した部品は廃棄位置に廃棄し、良好と判定した部品のみを基板に実装している。これによって、不良基板の発生を防止している。 The component mounting apparatus picks up components supplied by a feeder using a nozzle of a mounting head, transfers the sucked components onto a board, and manufactures a mounting board. The component mounting apparatus (electronic component mounting machine) described in Patent Document 1 uses a plurality of nozzles included in a mounting head to take out components from a feeder, and then uses a component recognition camera to image the component picked up by the nozzle. Components that are determined to be defective due to the suction position or the component itself are discarded to a disposal position, and only components that are determined to be good are mounted on the board. This prevents the occurrence of defective boards.

特開2007-200989号公報Japanese Patent Application Publication No. 2007-200989

しかしながら、特許文献1を含む従来技術では、カメラによる撮像結果で部品の形状の良否を判断する場合は、ノズルによる部品の保持姿勢のばらつきなどに起因して本来良品である部品を不良品と誤判定して廃棄してしまうことがあり、部品の形状の良否を適切に判断できることが望まれていた。 However, in the conventional technology including Patent Document 1, when determining the quality of the shape of a component based on the image taken by a camera, a component that is originally a good product may be mistaken as a defective product due to variations in the holding posture of the component by the nozzle. There are cases where parts are judged and discarded, so it has been desired to be able to appropriately judge whether the shape of a part is good or bad.

そこで本発明は、部品の立体形状を適切に判断することができる部品実装装置および立体形状判断装置ならびに立体形状判断方法を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a component mounting apparatus, a three-dimensional shape determining apparatus, and a three-dimensional shape determining method that can appropriately determine the three-dimensional shape of a component.

本発明の部品実装装置は、部品を撮像する撮像手段と、部品を保持し、保持した部品を前記撮像手段の前で移動させる部品保持移動機構と、前記撮像手段によって撮像された撮像画像に基づいて、前記部品の立体形状が所定の条件を満たす良品か不良品かを判断する良否判断手段と、良品と判断された前記部品を基板に装着する装着手段と、を備え、前記良否判断手段が前記部品を不良品と判断すると、前記撮像手段は当該部品を少なくとも1回再撮像し、前記良否判断手段は再撮像画像に基づいて、当該部品が良品か不良品かを再判断し、前記良否判断手段が前記再判断を規定回数繰り返すまでに当該部品を良品と判断すると、前記装着手段は当該部品を前記基板に装着し、前記撮像手段が前記部品を再撮像する際は、前記部品保持移動機構が前記部品を移動させる方向または移動速度の少なくともいずれかが変更されるThe component mounting apparatus of the present invention includes an imaging means for imaging a component, a component holding and moving mechanism for holding a component and moving the held component in front of the imaging means, and a component mounting device based on an image taken by the imaging means. and a means for determining whether the three-dimensional shape of the component is a good product or a defective product that satisfies a predetermined condition; and a mounting means for mounting the component determined to be a good product on a board; When determining that the part is defective, the imaging means re-images the part at least once, and the quality determining means re-judges whether the part is good or defective based on the re-captured image, and determines whether the part is good or defective. If the determining means determines that the component is good by the time the rejudgment is repeated a predetermined number of times, the mounting means mounts the component on the board , and when the imaging means re-images the component, the component holding movement is performed. The direction and/or speed at which the mechanism moves the part is changed .

本発明の立体形状計測装置は、ワークを撮像する撮像手段と、ワークを保持し、保持したワークを前記撮像手段の前で移動させるワーク保持移動機構と、前記撮像手段によって撮像された撮像画像に基づいて、前記ワークの立体形状が所定の条件を満たす良品か不良品かを判断する良否判断手段と、を備え、前記良否判断手段が前記ワークを不良品と判断すると、前記撮像手段は当該ワークを少なくとも1回再撮像し、前記良否判断手段は再撮像画像に基づいて、当該ワークが良品か不良品かを再判断し、前記良否判断手段が当該ワークを不良品と判断しても前記再判断を規定回数繰り返していなければ、前記撮像手段は当該ワークを再び撮像し、前記良否判断手段は再び撮像された画像に基づいて当該ワークが良品か不良品かを再び判断し、前記撮像手段が前記ワークを再撮像する際は、前記ワーク保持移動機構が前記ワークを移動させる方向または移動速度の少なくともいずれかが変更されるThe three-dimensional shape measuring device of the present invention includes an imaging means for taking an image of a workpiece, a workpiece holding and moving mechanism that holds a workpiece and moves the held workpiece in front of the imaging means, and an image pickup means that captures an image taken by the imaging means. a quality determining means for determining whether the three-dimensional shape of the workpiece is a good product or a defective product that satisfies a predetermined condition based on the three-dimensional shape of the workpiece, and when the quality determination means determines that the workpiece is a defective product, the imaging means is re-imaged at least once, and the quality determining means re-determines whether the workpiece is a good product or a defective product based on the re-captured image. If the judgment has not been repeated a predetermined number of times, the imaging means takes an image of the workpiece again, the acceptability judgment means again judges whether the workpiece is good or defective based on the image taken again , and the imaging means When re-imaging the workpiece, at least one of the direction or movement speed in which the workpiece holding and moving mechanism moves the workpiece is changed .

本発明の立体形状計測方法は、ワークの立体形状の良否を判断する立体形状判断方法であって、撮像手段でワークを撮像し、前記撮像手段によって撮像された撮像画像に基づいて、前記ワークの立体形状が所定の条件を満たす良品か不良品かを判断し、前記ワークを不良品と判断すると、前記撮像手段で当該ワークを少なくとも1回再撮像し、前記撮像手段の再撮像画像に基づいて、当該ワークが良品か不良品かを再判断し、当該ワークを不良品と判断しても前記再判断を規定回数繰り返していなければ、前記撮像手段で当該ワークを再び撮像し、再び撮像された画像に基づいて当該ワークが良品か不良品かを再び判断し、前記撮像手段が前記ワークを再撮像する際は、前記ワークを移動させる方向または移動速度の少なくともいずれかが変更されるThe three-dimensional shape measuring method of the present invention is a three-dimensional shape determining method for determining whether the three-dimensional shape of a work is good or bad. It is determined whether the three-dimensional shape is a good product or a defective product that satisfies a predetermined condition, and when the workpiece is determined to be a defective product, the workpiece is re-imaged at least once by the imaging means, and based on the re-imaged image of the imaging means. , re-determine whether the workpiece is a good product or a defective product, and if the rejudgment is not repeated a specified number of times even if the workpiece is determined to be a defective product, the workpiece is imaged again by the imaging means, and the workpiece is imaged again. When it is determined again whether the workpiece is a good product or a defective product based on the image and the image capturing means re-images the workpiece, at least one of the direction or the moving speed of the workpiece is changed .

本発明によれば、部品の立体形状を適切に判断することができる。 According to the present invention, the three-dimensional shape of a component can be appropriately determined.

本発明の一実施の形態の部品実装装置の構成を示す平面図A plan view showing the configuration of a component mounting apparatus according to an embodiment of the present invention 本発明の一実施の形態の部品実装装置の構成説明図Configuration explanatory diagram of a component mounting apparatus according to an embodiment of the present invention 本発明の一実施の形態の部品実装装置によって製造される実装基板に(a)シールドケースを装着する前の斜視図(b)シールドケースを装着した後の斜視図(a) A perspective view before a shield case is attached to a mounting board manufactured by a component mounting apparatus according to an embodiment of the present invention (b) A perspective view after a shield case is attached 本発明の一実施の形態の部品実装装置によって基板に実装される(a)(b)シールドケースに設定された仮想交点の例の説明図(c)シールドケースの反り量の説明図(a) (b) An explanatory diagram of an example of a virtual intersection set in a shield case mounted on a board by a component mounting apparatus according to an embodiment of the present invention (c) An explanatory diagram of an amount of warpage of a shield case (a)(b)(c)本発明の一実施の形態の部品実装装置によって基板に実装されるシールドケースに設定された仮想交点の例の説明図(a) (b) (c) Explanatory diagrams of examples of virtual intersections set on a shield case mounted on a board by a component mounting apparatus according to an embodiment of the present invention 本発明の一実施の形態の部品実装装置の制御系の構成を示すブロック図A block diagram showing the configuration of a control system of a component mounting apparatus according to an embodiment of the present invention 本発明の一実施の形態の部品実装装置が備える(a)第1カメラの撮像画像の例を示す図(b)第2カメラの撮像画像の例を示す図(a) A diagram illustrating an example of an image captured by a first camera, and (b) a diagram illustrating an example of an image captured by a second camera, provided in a component mounting apparatus according to an embodiment of the present invention. 本発明の一実施の形態の立体形状判断方法のフロー図Flowchart of a three-dimensional shape determination method according to an embodiment of the present invention

以下に図面を用いて、本発明の一実施の形態を詳細に説明する。以下で述べる構成、形状等は説明のための例示であって、部品実装装置、立体形状判断装置、部品(ワーク)の仕様に応じ、適宜変更が可能である。以下では、全ての図面において対応する要素には同一符号を付し、重複する説明を省略する。図1、及び後述する一部では、水平面内で互いに直交する2軸方向として、基板搬送方向のX方向(図1における左右方向)、基板搬送方向に直交するY方向(図1における上下方向)が示される。図2、及び後述する一部では、水平面と直交する高さ方向としてZ方向(図2における上下方向)が示される。Z方向は、部品実装装置が水平面上に設置された場合の上下方向である。 An embodiment of the present invention will be described in detail below with reference to the drawings. The configuration, shape, etc. described below are examples for explanation, and can be changed as appropriate depending on the specifications of the component mounting device, the three-dimensional shape determining device, and the component (work). Hereinafter, corresponding elements in all drawings will be denoted by the same reference numerals, and redundant explanation will be omitted. In FIG. 1 and some parts described later, the two axes that are orthogonal to each other in the horizontal plane are the X direction of the substrate transport direction (left-right direction in FIG. 1), and the Y direction (vertical direction in FIG. 1) orthogonal to the substrate transport direction. is shown. In FIG. 2 and a portion to be described later, the Z direction (vertical direction in FIG. 2) is shown as the height direction perpendicular to the horizontal plane. The Z direction is the vertical direction when the component mounting apparatus is installed on a horizontal surface.

まず図1、2を参照して、部品実装装置1の構成を説明する。図1において、基台1aの中央には、基板搬送機構2がX方向に設置されている。基板搬送機構2は、上流側から搬入された基板3をX方向へ搬送し、以下に説明する実装ヘッドによる実装作業位置に位置決めして保持する。また、基板搬送機構2は、部品実装作業が完了した基板3を下流側に搬出する。 First, the configuration of the component mounting apparatus 1 will be explained with reference to FIGS. 1 and 2. In FIG. 1, a substrate transport mechanism 2 is installed in the center of the base 1a in the X direction. The board transport mechanism 2 transports the board 3 carried in from the upstream side in the X direction, and positions and holds the board 3 at a mounting work position by a mounting head, which will be described below. Further, the board transport mechanism 2 transports the board 3 on which the component mounting work has been completed to the downstream side.

基板搬送機構2の両側方には、それぞれ部品供給部4が設置されている。両方の部品供給部4には、複数のテープフィーダ5がX方向に並列に装着されている。テープフィーダ5は、部品Dを格納するポケットが形成されたキャリアテープを部品供給部4の外側から基板搬送機構2に向かう方向(テープ送り方向)にピッチ送りすることにより、実装ヘッドが部品をピックアップする部品取出し位置に部品を供給する。また、一方の部品供給部4には、部品Dを整列して保持するトレイ6を部品取出し位置に供給するトレイフィーダ7が装着されている。 Component supply units 4 are installed on both sides of the board transport mechanism 2, respectively. A plurality of tape feeders 5 are installed in both component supply units 4 in parallel in the X direction. The tape feeder 5 pitch-feeds a carrier tape in which a pocket for storing the component D is formed in a direction (tape feeding direction) from the outside of the component supply section 4 toward the board transport mechanism 2, so that the mounting head picks up the component. Components are supplied to the component extraction position. Further, one of the component supply sections 4 is equipped with a tray feeder 7 that supplies a tray 6 that holds the components D in alignment to a component take-out position.

図1において、基台1aの上面におけるX方向の両端部には、リニア駆動機構を備えたY軸テーブル8が配置されている。Y軸テーブル8には、同様にリニア機構を備えたビーム9がY方向に移動自在に結合されている。ビーム9には、実装ヘッド10がX方向に移動自在に装着されている。 In FIG. 1, a Y-axis table 8 equipped with a linear drive mechanism is arranged at both ends of the upper surface of the base 1a in the X direction. A beam 9 similarly equipped with a linear mechanism is coupled to the Y-axis table 8 so as to be movable in the Y direction. A mounting head 10 is attached to the beam 9 so as to be movable in the X direction.

図2において、実装ヘッド10は、昇降回転駆動機構を有する実装ユニット10aを備えている。実装ユニット10aの下端部には部品Dを真空吸着して保持する保持ノズル10bが装着されている。実装ユニット10aは、昇降回転駆動機構を駆動することにより、保持ノズル10bを昇降させる。また、実装ユニット10aは、昇降回転駆動機構を駆
動することにより、保持ノズル10bをZ軸回りにθ回転させる(矢印a)。保持ノズル10bには、保持する部品Dの大きさや形状などに応じてノズル径や形状などが異なる複数の種類が用意されており、基板3に実装する部品Dに適合する保持ノズル10bが実装ヘッド10に装着される。
In FIG. 2, the mounting head 10 includes a mounting unit 10a having an elevating and rotating drive mechanism. A holding nozzle 10b for holding the component D by vacuum suction is attached to the lower end of the mounting unit 10a. The mounting unit 10a moves the holding nozzle 10b up and down by driving the up/down rotation drive mechanism. Furthermore, the mounting unit 10a rotates the holding nozzle 10b by θ around the Z-axis by driving the vertical rotation drive mechanism (arrow a). Multiple types of holding nozzle 10b are available with different nozzle diameters and shapes depending on the size and shape of the component D to be held, and the holding nozzle 10b that is suitable for the component D to be mounted on the board 3 is the mounting head 10.

図1において、Y軸テーブル8およびビーム9は、実装ヘッド10を水平方向(X方向、Y方向)に移動させる移動機構を構成する。移動機構および実装ヘッド10は、部品供給部4に装着されているテープフィーダ5およびトレイフィーダ7の部品取出し位置に供給される部品Dを保持ノズル10bによってピックアップし、基板搬送機構2に保持された基板3の実装位置に移載する部品保持移動機構12である。部品実装作業において部品保持移動機構12は、部品供給部4の上方に移動し、保持ノズル10bで所定の部品Dをピックアップし、基板3の上方に移動し、保持ノズル10bが保持する部品Dを実装位置に装着する一連のターンを繰り返す。 In FIG. 1, the Y-axis table 8 and the beam 9 constitute a moving mechanism that moves the mounting head 10 in the horizontal direction (X direction, Y direction). The moving mechanism and mounting head 10 uses the holding nozzle 10b to pick up the component D supplied to the component take-out position of the tape feeder 5 and tray feeder 7 mounted on the component supply section 4, and the component D is held by the board transport mechanism 2. This is a component holding and moving mechanism 12 that transfers the component to the mounting position of the board 3. During component mounting work, the component holding and moving mechanism 12 moves above the component supply section 4, picks up a predetermined component D with the holding nozzle 10b, moves above the board 3, and picks up the component D held by the holding nozzle 10b. Repeat a series of turns to attach it to the mounting position.

図1において、ビーム9には、ビーム9の下面側に位置して実装ヘッド10とともに一体的に移動するヘッドカメラ13が装着されている。実装ヘッド10が移動することにより、ヘッドカメラ13は基板搬送機構2の実装作業位置に位置決めされた基板3の上方に移動して、基板3に設けられた基板マーク(図示せず)を撮像する。部品供給部4と基板搬送機構2との間には、部品認識ユニット14および部品廃棄部15が設置されている。 In FIG. 1, a head camera 13 is mounted on the beam 9 and is located on the lower surface side of the beam 9 and moves integrally with the mounting head 10. As the mounting head 10 moves, the head camera 13 moves above the board 3 positioned at the mounting work position of the board transport mechanism 2, and images a board mark (not shown) provided on the board 3. . A component recognition unit 14 and a component disposal section 15 are installed between the component supply section 4 and the board transport mechanism 2.

部品認識ユニット14は、部品供給部4から部品Dを取り出した実装ヘッド10が部品認識ユニット14の上方に位置した際に、保持ノズル10bに保持された部品Dを下方から撮像する。実装ヘッド10による部品Dの基板3への部品実装作業では、ヘッドカメラ13による基板3の認識結果と部品認識ユニット14による部品Dの認識結果とを加味して実装位置の補正が行われる。部品廃棄部15には、実装ヘッド10が部品供給部4からピックアップした部品Dのうち、部品Dの反り量などが所定の条件を満たさない部品Dが廃棄される。 The component recognition unit 14 images the component D held by the holding nozzle 10b from below when the mounting head 10 that has taken out the component D from the component supply section 4 is positioned above the component recognition unit 14. In the component mounting work of the component D on the board 3 by the mounting head 10, the mounting position is corrected by taking into consideration the recognition result of the board 3 by the head camera 13 and the recognition result of the component D by the component recognition unit 14. Among the components D picked up by the mounting head 10 from the component supply section 4, the components D whose warp amount or the like does not satisfy a predetermined condition are discarded in the component disposal section 15.

図1において、部品実装装置1の前面で作業者が作業する位置には、作業者が操作するタッチパネル16が設置されている。タッチパネル16は、その表示部に各種情報を表示し、また表示部に表示される操作ボタンなどを使って作業者がデータ入力や部品実装装置1の操作を行う。 In FIG. 1, a touch panel 16 that is operated by a worker is installed at a position where the worker works on the front side of the component mounting apparatus 1. The touch panel 16 displays various information on its display section, and allows an operator to input data and operate the component mounting apparatus 1 using operation buttons displayed on the display section.

次に図2を参照して、部品認識ユニット14の詳細について説明する。部品認識ユニット14は、X方向に並設された第1カメラ17aと第2カメラ17bを備えている。第1カメラ17aと第2カメラ17bの撮像軸はそれぞれ斜め上方を向いており、部品保持移動機構12が保持した部品Dが部品認識ユニット14の上方にある際に、同時に部品Dを撮像する。第1カメラ17aと第2カメラ17b(2台の撮像部)は、撮像した対象物の視差より部品認識ユニット14の上面14aからの高さHを計測するステレオカメラを構成する。 Next, details of the component recognition unit 14 will be explained with reference to FIG. 2. The component recognition unit 14 includes a first camera 17a and a second camera 17b arranged in parallel in the X direction. The imaging axes of the first camera 17a and the second camera 17b each face obliquely upward, and simultaneously image the component D held by the component holding and moving mechanism 12 when the component D is above the component recognition unit 14. The first camera 17a and the second camera 17b (two imaging units) constitute a stereo camera that measures the height H from the top surface 14a of the component recognition unit 14 based on the parallax of the imaged object.

図2の例では、第1カメラ17aと第2カメラ17bは、保持ノズル10bが保持する部品Dの下面までの高さHを計測している。すなわち、部品認識ユニット14は、並設された第1カメラ17aと第2カメラ17b(2台の撮像部)を有し、部品D(ワーク)を撮像する撮像手段である。部品保持移動機構12(ワーク保持移動機構)は、部品D(ワーク)を保持し、保持した部品Dを撮像手段(第1カメラ17a、第2カメラ17b)の前で並設された2台の撮像部が並ぶ方向(X方向)に移動させる(矢印b)。部品認識ユニット14(撮像手段)は、移動している部品Dを複数回撮像し、撮像した複数の撮像画像を部品実装装置1が備える制御装置30(図6)に送信する。なお、図2の例では2台の撮像部は部品Dを移動させる方向(X方向)に並設されているが、2台の撮像部は部品
Dを移動させる方向に交差する方向(Y方向)に並設してもよい。
In the example of FIG. 2, the first camera 17a and the second camera 17b measure the height H to the lower surface of the component D held by the holding nozzle 10b. That is, the component recognition unit 14 has a first camera 17a and a second camera 17b (two imaging units) arranged in parallel, and is an imaging means for imaging the component D (work). The component holding and moving mechanism 12 (workpiece holding and moving mechanism) holds a part D (workpiece) and moves the held part D to two cameras arranged in parallel in front of an imaging means (first camera 17a, second camera 17b). It is moved in the direction in which the imaging units are lined up (X direction) (arrow b). The component recognition unit 14 (imaging means) images the moving component D multiple times and transmits the multiple captured images to the control device 30 (FIG. 6) included in the component mounting apparatus 1. In the example of FIG. 2, the two imaging units are arranged in parallel in the direction in which the component D is moved (X direction), but the two imaging units are arranged in a direction that intersects the direction in which the component D is moved (the Y direction). ) may be installed in parallel.

図2において、部品認識ユニット14は、第1カメラ17aと第2カメラ17bの上方に第1照明部18を備えている。第1照明部18はLEDなどの光源を備えており、第1カメラ17aと第2カメラ17bが部品Dを撮像中に、斜め下方から部品Dを照明する。また、部品認識ユニット14は、第1カメラ17aと第2カメラ17bの間の下方に第2照明部19を備えている。第2照明部19はLEDなどの光源を備えており、第1カメラ17aと第2カメラ17bが部品Dを撮像中に、下方から部品Dを照明する。 In FIG. 2, the component recognition unit 14 includes a first illumination section 18 above a first camera 17a and a second camera 17b. The first illumination unit 18 includes a light source such as an LED, and illuminates the component D from diagonally below while the first camera 17a and the second camera 17b are imaging the component D. The component recognition unit 14 also includes a second illumination section 19 below between the first camera 17a and the second camera 17b. The second illumination unit 19 includes a light source such as an LED, and illuminates the component D from below while the first camera 17a and the second camera 17b are imaging the component D.

このように、部品認識ユニット14(撮像手段)は、撮像する部品Dを照明する照明部(第1照明部18、第2照明部19)を有している。第1照明部18および第2照明部19のいずれを点灯させるか、もしくは同時に点灯させるか、どれくらいの照度で点灯させるかなどの照明条件は、制御装置30によって制御される。 In this way, the component recognition unit 14 (imaging means) has an illumination section (first illumination section 18, second illumination section 19) that illuminates the component D to be imaged. Illumination conditions such as which of the first illumination section 18 and the second illumination section 19 to turn on, whether to turn on at the same time, and at what illuminance are controlled by the control device 30.

次に図3を参照して、部品実装装置1によって製造される実装基板の例を説明する。基板3は、絶縁体基材の表面または内部に導体の配線(図示省略)が形成されたプリント基板であり、基板3の表面には配線に接続された電極(図示省略)が形成されている。電極には印刷装置などによりクリームはんだが堆積されており、抵抗や容量などのチップ部品D1や集積回路部品D2の端子がクリームはんだを介して電極に接続されるように基板3に搭載されている。集積回路部品D2の上には、部品実装装置1によってシールドケース20が装着される。シールドケース20は、薄い金属で形成された壁面20aで集積回路部品D2を囲う構造をしており、集積回路部品D2から発生する電磁ノイズが周辺に伝搬しないようにシールドする機能を有している。 Next, with reference to FIG. 3, an example of a mounting board manufactured by the component mounting apparatus 1 will be described. The board 3 is a printed circuit board in which conductor wiring (not shown) is formed on the surface or inside of an insulating base material, and electrodes (not shown) connected to the wiring are formed on the surface of the board 3. . Cream solder is deposited on the electrodes by a printing device or the like, and the terminals of chip components D1 and integrated circuit components D2 such as resistors and capacitors are mounted on the substrate 3 so as to be connected to the electrodes via the cream solder. . A shield case 20 is mounted on the integrated circuit component D2 by the component mounting apparatus 1. The shield case 20 has a structure that surrounds the integrated circuit component D2 with a wall surface 20a formed of thin metal, and has a function of shielding electromagnetic noise generated from the integrated circuit component D2 from propagating to the surrounding area. .

図3(a)はシールドケース20を装着する前の、図3(b)はシールドケース20を装着した後の基板3を示している。部品実装装置1において、シールドケース20は基板3に装着される面を下に向けた状態でテープフィーダ5またはトレイフィーダ7から供給され、保持ノズル10bで保持されて基板3に装着される。シールドケース20の一部は、基板3上に形成された位置固定用のダミーの電極にクリームはんだを介して接続される。所定のチップ部品D1、集積回路部品D2、シールドケース20などが装着された基板3は、リフロー装置によってクリームはんだを融解させた後に硬化して、基板3の電極とチップ部品D1および集積回路部品D2の端子、シールドケース20がはんだ接合された実装基板となる。 3(a) shows the board 3 before the shield case 20 is attached, and FIG. 3(b) shows the board 3 after the shield case 20 is attached. In the component mounting apparatus 1, the shield case 20 is supplied from the tape feeder 5 or the tray feeder 7 with the surface to be mounted on the board 3 facing downward, and is mounted on the board 3 while being held by the holding nozzle 10b. A portion of the shield case 20 is connected to a position fixing dummy electrode formed on the substrate 3 via cream solder. The board 3 on which predetermined chip parts D1, integrated circuit parts D2, shield case 20, etc. are mounted is cured after melting the cream solder using a reflow device, and the electrodes of the board 3, the chip parts D1, and the integrated circuit parts D2 are cured. The terminal and the shield case 20 are soldered together to form a mounting board.

次に図4(a)、図4(b)を参照して、シールドケース21の一例について詳細に説明する。シールドケース21は、基板3上に実装された集積回路部品D2に装着されると、集積回路部品D2の4つの側面に位置してシールドする4つの壁面22~25を備えている。シールドケース21は、4つの壁面22~25の底面22a~25aが基板3の上面に接するように基板3に装着される。4つの底面22a~25aは、長方形の4つの辺上に位置するが長方形の4つの頂点の位置までは延伸しておらず、頂点付近が除去された形状をしている。 Next, an example of the shield case 21 will be described in detail with reference to FIGS. 4(a) and 4(b). When the shield case 21 is attached to the integrated circuit component D2 mounted on the substrate 3, it is provided with four wall surfaces 22 to 25 that are located on four sides of the integrated circuit component D2 and shield the integrated circuit component D2. The shield case 21 is attached to the substrate 3 so that the bottom surfaces 22a to 25a of the four wall surfaces 22 to 25 are in contact with the top surface of the substrate 3. The four bottom surfaces 22a to 25a are located on the four sides of the rectangle, but do not extend to the four vertices of the rectangle, and have a shape in which the vicinity of the vertices has been removed.

すなわち、底面22aの外側の縁辺22bと底面23aの外側の縁辺23bが交わる仮想交点P1には、壁面22も壁面23も存在しない。同様に、底面23aの外側の縁辺23bと底面24aの外側の縁辺24bが交わる仮想交点P2、底面24aの外側の縁辺24bと底面25aの外側の縁辺25bが交わる仮想交点P3、底面25aの外側の縁辺25bと底面22aの外側の縁辺22bが交わる仮想交点P4には、壁面22~25が存在しない。このように、シールドケース22(部品)が有する複数の縁辺22b~25bのうちの2つが交わる位置を仮想交点P1~P4と定義する。これらの仮想交点P1~P4は、基板3に装着された際に基板3に当接する位置にある。 That is, neither the wall surface 22 nor the wall surface 23 exists at the virtual intersection P1 where the outer edge 22b of the bottom surface 22a and the outer edge 23b of the bottom surface 23a intersect. Similarly, a virtual intersection P2 where the outer edge 23b of the bottom surface 23a intersects with the outer edge 24b of the bottom surface 24a, a virtual intersection P3 where the outer edge 24b of the bottom surface 24a and the outer edge 25b of the bottom surface 25a intersect, Wall surfaces 22 to 25 do not exist at the virtual intersection P4 where the edge 25b and the outer edge 22b of the bottom surface 22a intersect. In this way, the positions where two of the plurality of edges 22b to 25b of the shield case 22 (component) intersect are defined as virtual intersections P1 to P4. These virtual intersections P1 to P4 are at positions where they come into contact with the substrate 3 when it is mounted on the substrate 3.

基板3に装着されるシールドケース21は、装着不良を防止するため基板3の上面に接する4つの底面22a~25aの歪みであるシールドケース21の反りが所定より小さい必要がある。図4(b)はシールドケース21に反りがない理想の状態を示しており、図4(c)はシールドケース21に反りがあって基板3に装着できない状態を示している。基板3に装着する前のシールドケース21の反りは、保持ノズル10bが保持したシールドケース21の各底面22a~25aの相対的な高さ位置から算出することが可能である。しかし、図4(c)に示すシールドケース21の底面23aのように、反りがある場合には底面23aの高さの定義が困難となる。そこで、長方形の頂点に該当する4つの仮想交点P1~P4の高さから反り量が算出される。 In the shield case 21 mounted on the board 3, the warpage of the shield case 21, which is the distortion of the four bottom surfaces 22a to 25a in contact with the top surface of the board 3, must be smaller than a predetermined value in order to prevent poor mounting. 4(b) shows an ideal state in which the shield case 21 is not warped, and FIG. 4(c) shows a state in which the shield case 21 is warped and cannot be attached to the board 3. The warpage of the shield case 21 before being attached to the substrate 3 can be calculated from the relative height positions of the bottom surfaces 22a to 25a of the shield case 21 held by the holding nozzle 10b. However, when the bottom surface 23a of the shield case 21 shown in FIG. 4(c) is warped, it becomes difficult to define the height of the bottom surface 23a. Therefore, the amount of warpage is calculated from the heights of the four virtual intersections P1 to P4 corresponding to the vertices of the rectangle.

図4(b)において、シールドケース21を保持する保持ノズル10bの下面10cの高さ位置はシールドケース21の上面21aの高さ位置である。シールドケース21を保持した保持ノズル10bの下面10cからの仮想交点P1~P4の高さ位置は、シールドケース21の形状情報から算出することができる。反りがない理想的なシールドケース21の4つの仮想交点P1~P4の保持ノズル10bの下面10cからの相対的な高さ位置(以下、「相対高さ位置G」と称する。)は、相対高さ位置Gである。 In FIG. 4B, the height position of the lower surface 10c of the holding nozzle 10b that holds the shield case 21 is the height position of the upper surface 21a of the shield case 21. The height positions of the virtual intersections P1 to P4 from the lower surface 10c of the holding nozzle 10b holding the shield case 21 can be calculated from the shape information of the shield case 21. The relative height positions of the four virtual intersections P1 to P4 of the ideal shield case 21 without warping from the lower surface 10c of the holding nozzle 10b (hereinafter referred to as "relative height position G") are as follows: It is at position G.

図4(c)に示す反りがあるシールドケース21の仮想交点P1は相対高さ位置G1にあり、理想的な相対高さ位置Gからの差分が反り量ΔG1(相対高さ位置G-相対高さ位置G1)である。シールドケース21は、4つの仮想交点P1~P4の高さHから各仮想交点P1~P4の反り量ΔG1~ΔG4を算出し、いずれかの反り量ΔG1~ΔG4が所定の閾値を超えると反りが大きな不良品と判断される。または、4つの仮想交点P1~P4の高さHの最大値と最小値の差が所定の閾値を超えると不良品と判断するようにしてもよい。 The virtual intersection P1 of the warped shield case 21 shown in FIG. position G1). The shield case 21 calculates the amount of warpage ΔG1 to ΔG4 of each of the virtual intersections P1 to P4 from the height H of the four virtual intersections P1 to P4, and if any of the amounts of warp ΔG1 to ΔG4 exceeds a predetermined threshold value, the warpage occurs. It is judged to be a major defective product. Alternatively, if the difference between the maximum and minimum heights H of the four virtual intersections P1 to P4 exceeds a predetermined threshold, it may be determined that the product is defective.

または、4つの仮想交点P1~P4の水平方向の位置(XY座標)と高さH(Z座標)から4つの仮想交点P1~P4を含む曲面を算出し、曲面の曲率(理想的な平面からのずれ量)が所定の閾値を超えると不良品と判断してもよい。4つの仮想交点P1~P4を含む曲面を算出することで、保持ノズル10bがシールドケース21を保持した際の傾きの影響を排除することができる。また、4つの仮想交点P1~P4のうちの3つの位置(XYZ座標)、または2つの位置と保持ノズル10bの下面10cからの相対高さ位置Gから良品、不良品を判断してもよい。 Alternatively, a curved surface including the four virtual intersections P1 to P4 is calculated from the horizontal position (XY coordinates) and height H (Z coordinate) of the four virtual intersections P1 to P4, and the curvature of the curved surface (from the ideal plane If the amount of deviation) exceeds a predetermined threshold value, it may be determined that the product is defective. By calculating the curved surface including the four virtual intersections P1 to P4, it is possible to eliminate the influence of the inclination when the holding nozzle 10b holds the shield case 21. Furthermore, a good product or a defective product may be determined based on three positions (XYZ coordinates) of the four virtual intersections P1 to P4, or two positions and the relative height position G from the lower surface 10c of the holding nozzle 10b.

次に図5を参照して、シールドケース26~28に設定された仮想交点P5~P7の他の例について説明する。図5(a)において、シールドケース26の壁面26aは、シールドケース21の壁面22~25と異なりコーナで分断されておらず、曲面26bで接続されている。シールドケース26では、曲面26bを挟む壁面26aの底面の2つの縁辺26cと縁辺26dが交わる位置を仮想交点P5と定義する。図5(b)において、シールドケース27はコーナ付近には比較的大面積の底面27aを有しており、コーナには切り欠き27bが形成されている。シールドケース27では、切り欠き27bを挟む底面27aの2つの縁辺27cと縁辺27dが交わる位置を仮想交点P6と定義する。 Next, with reference to FIG. 5, another example of the virtual intersections P5 to P7 set in the shield cases 26 to 28 will be described. In FIG. 5(a), unlike the walls 22 to 25 of the shield case 21, the wall surfaces 26a of the shield case 26 are not divided at corners, but are connected at curved surfaces 26b. In the shield case 26, the position where the two edges 26c and 26d of the bottom surface of the wall surface 26a sandwiching the curved surface 26b intersect is defined as a virtual intersection P5. In FIG. 5(b), the shield case 27 has a relatively large bottom surface 27a near the corner, and a cutout 27b is formed at the corner. In the shield case 27, the position where the two edges 27c and 27d of the bottom surface 27a sandwiching the notch 27b intersect is defined as a virtual intersection P6.

図5(c)において、シールドケース28は、内側に凹んだ内側コーナ28aを有している。シールドケース28では、内側コーナ28aを挟む底面28bの2つの縁辺28cと縁辺28dが交わる位置を仮想交点P7と定義する。仮想交点P7は、他の仮想交点P1~P6と異なり、底面28bの中に位置している。 In FIG. 5(c), the shield case 28 has an inner corner 28a that is recessed inward. In the shield case 28, the position where the two edges 28c and 28d of the bottom surface 28b sandwiching the inner corner 28a intersect is defined as a virtual intersection P7. The virtual intersection P7 is located within the bottom surface 28b, unlike the other virtual intersections P1 to P6.

次に図6を参照して、部品実装装置1の制御系の構成について説明する。部品実装装置1が備える制御装置30には、基板搬送機構2、部品供給部4、部品保持移動機構12、
ヘッドカメラ13、部品認識ユニット14、タッチパネル16が接続されている。制御装置30は、仮想交点設定部31、仮想交点高さ算出部32、反り量算出部33、計測制御部34、実装制御部35、良否判断部36、記憶部40を備えている。記憶部40は記憶装置であり、実装データ41、部品データ42、仮想交点位置データ43、撮像画像データ44、仮想交点高さデータ45などを記憶する。
Next, with reference to FIG. 6, the configuration of the control system of the component mounting apparatus 1 will be described. The control device 30 included in the component mounting apparatus 1 includes a board transport mechanism 2, a component supply section 4, a component holding and moving mechanism 12,
A head camera 13, a component recognition unit 14, and a touch panel 16 are connected. The control device 30 includes a virtual intersection setting section 31, a virtual intersection height calculation section 32, a warpage amount calculation section 33, a measurement control section 34, a mounting control section 35, a quality determination section 36, and a storage section 40. The storage unit 40 is a storage device, and stores mounting data 41, component data 42, virtual intersection position data 43, captured image data 44, virtual intersection height data 45, and the like.

実装データ41には、シールドケース21(ワーク)を含む部品Dを基板3に装着する際に参照される部品Dの部品名(種類)、実装位置(XY座標)などが記憶されている。部品データ42には、部品名毎に部品Dの特性、サイズ、形状情報などが記憶されている。仮想交点設定部31(仮想交点設定手段)は、部品データ42に含まれるシールドケース21の形状情報に基づいて、シールドケース21(部品、ワーク)が有する複数の縁辺22b~25bのうちの2つが交わる位置を仮想交点P1~P4として設定する(図4参照)。設定された仮想交点P1~P4の位置は、仮想交点位置データ43として記憶部40に記憶される。 The mounting data 41 stores the component name (type), mounting position (XY coordinates), etc. of the component D that is referred to when mounting the component D including the shield case 21 (work) on the board 3. The component data 42 stores characteristics, size, shape information, etc. of the component D for each component name. The virtual intersection setting unit 31 (virtual intersection setting means) determines whether two of the plurality of edges 22b to 25b of the shield case 21 (component, workpiece) have The intersecting positions are set as virtual intersections P1 to P4 (see FIG. 4). The positions of the set virtual intersections P1 to P4 are stored in the storage unit 40 as virtual intersection position data 43.

図6において、計測制御部34は、部品保持移動機構12、部品認識ユニット14を制御して、部品保持移動機構12の保持ノズル10bが保持するシールドケース21(部品、ワーク)の立体形状計測を実行する。計測制御部34は、シールドケース21(ワーク)の立体形状を計測する際は、部品保持移動機構12(ワーク保持移動機構)に所定の角度(水平方向の回転角度)でシールドケース21を保持させ、保持したシールドケース21を部品認識ユニット14の第1カメラ17aと第2カメラ17b(2台の撮像部)の前で所定の方向と移動速度で移動させる(図2の矢印b)。 In FIG. 6, the measurement control unit 34 controls the component holding and moving mechanism 12 and the component recognition unit 14 to measure the three-dimensional shape of the shield case 21 (component, workpiece) held by the holding nozzle 10b of the component holding and moving mechanism 12. Execute. When measuring the three-dimensional shape of the shield case 21 (work), the measurement control unit 34 causes the component holding and moving mechanism 12 (work holding and moving mechanism) to hold the shield case 21 at a predetermined angle (horizontal rotation angle). , the held shield case 21 is moved in a predetermined direction and at a predetermined movement speed in front of the first camera 17a and second camera 17b (two imaging units) of the component recognition unit 14 (arrow b in FIG. 2).

計測制御部34は、第1カメラ17aと第2カメラ17bによって、移動しているシールドケース21を複数回撮像させる。また、計測制御部34は、撮像中に第1照明部18と第2照明部19を制御して、所定の照明条件でシールドケース21を照明させる。第1カメラ17aと第2カメラ17bが撮像した複数の撮像画像は、撮像画像データ44として記憶部40に記憶される。 The measurement control unit 34 causes the first camera 17a and the second camera 17b to image the moving shield case 21 multiple times. Furthermore, the measurement control unit 34 controls the first illumination unit 18 and the second illumination unit 19 during imaging to illuminate the shield case 21 under predetermined illumination conditions. A plurality of captured images captured by the first camera 17a and the second camera 17b are stored in the storage unit 40 as captured image data 44.

図6において、仮想交点高さ算出部32は、第1カメラ17aと第2カメラ17b(2台の撮像部)によって撮像された複数の撮像画像に基づいて、仮想交点P1~P4の水平方向の位置(XY座標)と仮想交点P1~P4の高さH(Z座標)を算出する。算出された仮想交点P1~P4の位置と高さHは、仮想交点高さデータ45として記憶部40に記憶される。 In FIG. 6, the virtual intersection height calculation unit 32 calculates the horizontal direction of the virtual intersections P1 to P4 based on a plurality of captured images captured by the first camera 17a and the second camera 17b (two imaging units). The position (XY coordinates) and the height H (Z coordinate) of the virtual intersections P1 to P4 are calculated. The calculated positions and heights H of the virtual intersections P1 to P4 are stored in the storage unit 40 as virtual intersection height data 45.

ここで図7を参照して、仮想交点高さ算出部32による仮想交点P1、仮想交点P4の水平方向の位置と高さHの算出の具体例について説明する。図7(a)は第1カメラ17aが撮像した撮像画像50を、図7(b)は第2カメラ17bが撮像した撮像画像51を示している。図7(a)と図7(b)は、保持ノズル10bが保持したシールドケース21の一部を第1カメラ17aと第2カメラ17bによって同時に撮像した撮像画像であり、シールドケース21の底面22aの全体と、底面23aおよび底面25aの一部が撮像されている。 Here, with reference to FIG. 7, a specific example of calculation of the horizontal position and height H of the virtual intersection P1 and the virtual intersection P4 by the virtual intersection height calculation unit 32 will be described. FIG. 7(a) shows a captured image 50 captured by the first camera 17a, and FIG. 7(b) shows a captured image 51 captured by the second camera 17b. 7(a) and 7(b) are captured images simultaneously captured by the first camera 17a and the second camera 17b of a part of the shield case 21 held by the holding nozzle 10b. , and a portion of the bottom surface 23a and the bottom surface 25a are imaged.

図7(a)において、仮想交点高さ算出部32は、シールドケース21の底面22a、底面23a、底面25aの画像を画像認識し、底面22aの縁辺22b、底面23aの縁辺23b、底面25aの縁辺25bを抽出する。次いで仮想交点高さ算出部32は、縁辺22bと縁辺23bを延長して交わる位置を仮想交点P1と決定する。また、仮想交点高さ算出部32は、縁辺22bと縁辺25bを延長して交わる位置を仮想交点P4と決定する。次いで仮想交点高さ算出部32は、決定した仮想交点P1と仮想交点P4の保持ノズル10bの中心からの位置を算出して仮想交点P1と仮想交点P4水平方向の位置(XY
座標)を決定する。
In FIG. 7A, the virtual intersection height calculation unit 32 recognizes the images of the bottom surface 22a, the bottom surface 23a, and the bottom surface 25a of the shield case 21, and calculates the edges 22b of the bottom surface 22a, the edges 23b of the bottom surface 23a, and the bottom surface 25a. The edge 25b is extracted. Next, the virtual intersection height calculation unit 32 determines the position where the edge 22b and the edge 23b extend and intersect as the virtual intersection P1. Further, the virtual intersection height calculation unit 32 determines the position where the edge 22b and the edge 25b extend and intersect as a virtual intersection P4. Next, the virtual intersection height calculation unit 32 calculates the positions of the determined virtual intersection P1 and virtual intersection P4 from the center of the holding nozzle 10b, and determines the horizontal position of the virtual intersection P1 and the virtual intersection P4 (XY
coordinates).

次いで仮想交点高さ算出部32は、第1カメラ17aが撮像した底面22a、底面23a、底面25a(図7(a))と第2カメラ17bが撮像した底面22a、底面23a、底面25a(図7(b))の視差より、底面22a、底面23a、底面25aの高さHをそれぞれ算出する。この例では、第1カメラ17aと第2カメラ17bが並ぶ方向(X方向)に直交する方向(Y方向)の成分が多い底面22aの視差に基づいて、底面22aの高さHが算出されている。ここでは、底面22aのうち仮想交点P1に近い位置の高さH1が12.3mm、仮想交点P4に近い位置の高さH4が12.5mmであったとする。 Next, the virtual intersection height calculation unit 32 calculates the bottom surface 22a, bottom surface 23a, and bottom surface 25a (FIG. 7(a)) imaged by the first camera 17a and the bottom surface 22a, bottom surface 23a, and bottom surface 25a (FIG. 7(a)) imaged by the second camera 17b. 7(b)), the heights H of the bottom surface 22a, the bottom surface 23a, and the bottom surface 25a are calculated, respectively. In this example, the height H of the bottom surface 22a is calculated based on the parallax of the bottom surface 22a, which has a large component in the direction (Y direction) perpendicular to the direction (X direction) in which the first camera 17a and the second camera 17b are lined up. There is. Here, it is assumed that the height H1 of the bottom surface 22a at a position close to the virtual intersection P1 is 12.3 mm, and the height H4 at a position close to the virtual intersection P4 is 12.5 mm.

次いで仮想交点高さ算出部32は、仮想交点P1の高さHを高さH1と同じ12.3mmと決定し、仮想交点P4の高さHを高さH4と同じ12.5mmと決定する。または仮想交点高さ算出部32は、シールドケース21の形状情報に基づいて、仮想交点P1と仮想交点P4の高さHを高さH1と高さH4から直線近似して、仮想交点P1の高さHを12.2mm、仮想交点P4の高さHを12.6mmと算出する。 Next, the virtual intersection height calculation unit 32 determines the height H of the virtual intersection P1 to be 12.3 mm, which is the same as the height H1, and determines the height H of the virtual intersection P4 to be 12.5 mm, which is the same as the height H4. Alternatively, the virtual intersection height calculation unit 32 linearly approximates the height H of the virtual intersection P1 and the virtual intersection P4 from the height H1 and the height H4 based on the shape information of the shield case 21, and calculates the height of the virtual intersection P1. The height H is calculated to be 12.2 mm, and the height H of the virtual intersection P4 is calculated to be 12.6 mm.

このように、仮想交点高さ算出部32は、仮想交点P1を構成する2つの縁辺22b、23bの水平方向の位置と、縁辺22bの高さから仮想交点P1の高さを算出する。また、仮想交点高さ算出部32は、仮想交点P4を構成する2つの縁辺22b、25bの水平方向の位置と、縁辺22bの高さから仮想交点P4の高さを算出する。すなわち、仮想交点高さ算出部32は、撮像画像50,51から認識した仮想交点P1(仮想交点P4)を構成する2つの縁辺22b、23b(22b、25b)の位置と、2つの縁辺22b、23b(22b、25b)の少なくともいずれかの高さから仮想交点P1の高さHを算出する。 In this way, the virtual intersection height calculation unit 32 calculates the height of the virtual intersection P1 from the horizontal position of the two edges 22b and 23b that constitute the virtual intersection P1 and the height of the edge 22b. Further, the virtual intersection height calculation unit 32 calculates the height of the virtual intersection P4 from the horizontal position of the two edges 22b and 25b that constitute the virtual intersection P4 and the height of the edge 22b. That is, the virtual intersection height calculation unit 32 calculates the positions of the two edges 22b, 23b (22b, 25b) constituting the virtual intersection P1 (virtual intersection P4) recognized from the captured images 50, 51, the two edges 22b, The height H of the virtual intersection P1 is calculated from the height of at least one of the points 23b (22b, 25b).

このように、並設された2台の撮像部(第1カメラ17a、第2カメラ17b)と、2台の撮像部によって撮像された撮像画像50,51に基づいて、仮想交点の高さを算出する仮想交点高さ算出部32は、仮想交点の高さを計測する高さ計測手段46を構成する。 In this way, the height of the virtual intersection is calculated based on the two imaging units (first camera 17a, second camera 17b) arranged in parallel and the captured images 50 and 51 captured by the two imaging units. The virtual intersection height calculating section 32 constitutes a height measuring means 46 that measures the height of the virtual intersection.

図6において、反り量算出部33(反り量算出手段)は、仮想交点高さデータ45に含まれる計測された仮想交点P1~P4の高さHに基づいて部品の反り量ΔG1~ΔG4を算出する。すなわち、反り量算出部33は、計測された仮想交点P1~P4の高さHに基づいてワーク(シールドケース21)の立体形状を算出する形状算出部である。 In FIG. 6, the warp amount calculation unit 33 (warp amount calculation means) calculates the warp amounts ΔG1 to ΔG4 of the component based on the measured heights H of the virtual intersections P1 to P4 included in the virtual intersection height data 45. do. That is, the warpage amount calculation unit 33 is a shape calculation unit that calculates the three-dimensional shape of the workpiece (shield case 21) based on the measured heights H of the virtual intersections P1 to P4.

良否判断部36は、算出された部品の反り量ΔG1~ΔG4に基づいて、部品(シールドケース21、ワーク)が良品か不良品かを判断する。例えば、良否判断部36は、反り量ΔG1~ΔG4が所定の閾値(所定値)以下の部品を良品と判断する。このように、良否判断部36は、撮像手段(部品認識ユニット14)の2台の撮像部(第1カメラ17a、第2カメラ17b)によって撮像された撮像画像50、51に基づいて、部品の立体形状が所定の条件を満たす良品か不良品かを判断する良否判断手段である。この場合の所定の条件は、部品の反り量ΔG1~ΔG4が閾値以下であることである。なお、良否判断部36は、撮像画像50、51から認識される反り量ΔG1~ΔG4の以外の条件に基づいて、部品の良否を判断するようにしてもよい。 The quality determining unit 36 determines whether the component (shield case 21, workpiece) is a good product or a defective product based on the calculated warpage amounts ΔG1 to ΔG4 of the component. For example, the quality determining unit 36 determines that a component whose warpage amount ΔG1 to ΔG4 is equal to or less than a predetermined threshold value (predetermined value) is a non-defective product. In this way, the quality determining unit 36 determines the quality of the component based on the captured images 50 and 51 captured by the two imaging units (first camera 17a, second camera 17b) of the imaging unit (component recognition unit 14). This is a quality determining means for determining whether the three-dimensional shape satisfies predetermined conditions and whether the product is good or defective. The predetermined condition in this case is that the amount of warpage ΔG1 to ΔG4 of the component is less than a threshold value. Note that the quality determining unit 36 may determine the quality of the component based on conditions other than the warpage amounts ΔG1 to ΔG4 recognized from the captured images 50 and 51.

実装制御部35は、部品供給部4、部品保持移動機構12を制御して、部品供給部4から取り出した部品(シールドケース21)を基板3の実装位置に装着させる。その際、実装制御部35は、良否判断部36によって良品と判断されたシールドケース21を基板3に装着する。すなわち、部品保持移動機構12と実装制御部35は、良品と判断された部品(シールドケース21)を基板に装着する装着手段である。 The mounting control section 35 controls the component supply section 4 and the component holding and moving mechanism 12 to mount the component (shield case 21) taken out from the component supply section 4 onto the mounting position of the board 3. At this time, the mounting control section 35 mounts the shield case 21 determined to be good by the quality determination section 36 onto the board 3 . That is, the component holding and moving mechanism 12 and the mounting control section 35 are mounting means for mounting a component (shield case 21) determined to be a good product onto a board.

計測制御部34は、良否判断部36がシールドケース21を不良品と判断すると、部品保持移動機構12と部品認識ユニット14(撮像手段)を制御して、そのシールドケース21を再撮像させる。良否判断部36は、再撮像された撮像画像(再撮像画像)に基づいて、シールドケース21が良品か不良品かを再判断する。すなわち、良否判断手段(良否判断部36)が部品(シールドケース21、ワーク)を不良品と判断すると、撮像手段は当該部品を少なくとも1回再撮像し、良否判断手段は再撮像画像に基づいて、当該部品が良品か不良品かを再判断する。 When the quality determining unit 36 determines that the shield case 21 is defective, the measurement control unit 34 controls the component holding and moving mechanism 12 and the component recognition unit 14 (imaging means) to image the shield case 21 again. The quality determining unit 36 re-determines whether the shield case 21 is a good product or a defective product based on the re-captured image (re-captured image). That is, when the quality determining means (quality determining unit 36) determines that a part (shield case 21, workpiece) is defective, the imaging means re-images the part at least once, and the quality determining means determines the part based on the re-captured image. , re-determine whether the part is a good product or a defective product.

再撮像の際に計測制御部34は、部品保持移動機構12と部品認識ユニット14の撮像条件を変更させる。例えば、第1照明部18および第2照明部19の照度やいずれの照明を使用するかなどの照明部の照明条件が変更される。または、部品保持移動機構12がシールドケース21を移動させる方向(右または左)や移動速度などの移動条件が変更される。または、部品保持移動機構12がシールドケース21を保持する姿勢(水平方向の回転角度)が変更される。例えば、シールドケース21を水平面内で5°回転させて再撮像する。 At the time of re-imaging, the measurement control unit 34 changes the imaging conditions of the component holding and moving mechanism 12 and the component recognition unit 14. For example, the illumination conditions of the illumination sections, such as the illuminance of the first illumination section 18 and the second illumination section 19 and which illumination is used, are changed. Alternatively, moving conditions such as the direction (right or left) in which the component holding and moving mechanism 12 moves the shield case 21 and the moving speed are changed. Alternatively, the attitude (rotation angle in the horizontal direction) in which the component holding and moving mechanism 12 holds the shield case 21 is changed. For example, the shield case 21 is rotated by 5 degrees in a horizontal plane and the image is taken again.

上記のように、ワーク(シールドケース21)を撮像する撮像手段(部品認識ユニット14)と、撮像手段によって撮像された撮像画像50、51に基づいて、ワークの立体形状が所定の条件を満たす良品か不良品かを判断する良否判断手段(良否判断部36)は、立体形状判断装置を構成する。立体形状判断装置において、良否判断手段がワークを不良品と判断すると、撮像手段は当該ワークを少なくとも1回再撮像し、良否判断手段は再撮像画像に基づいて、当該ワークが良品か不良品かを再判断する。 As described above, based on the imaging means (component recognition unit 14) that images the workpiece (shield case 21) and the captured images 50 and 51 taken by the imaging means, the three-dimensional shape of the workpiece satisfies predetermined conditions. The quality determining means (quality determining unit 36) that determines whether the product is defective or defective constitutes a three-dimensional shape determining device. In the three-dimensional shape determining device, when the quality determining means determines that the work is defective, the imaging means re-images the work at least once, and the quality determining means determines whether the work is good or defective based on the re-captured image. re-judge.

シールドケース21など薄い素材で形成されたワークは計測可能な箇所が狭く、立体形状の計測が困難で良否を誤判定することがある。また、コーナが複雑な形状のワークも、立体形状の計測が困難である。しかしながら、本実施の形態の立体形状判断装置(部品実装装置1)は、計測箇所を撮像手段で撮像し、良否判定が不明瞭な場合は撮像条件を変更して再撮像することで、部品の立体形状の誤判定を防止している。これによって、ワークの立体形状を適切に判断することができる。 A workpiece made of a thin material such as the shield case 21 has a narrow measurable area, making it difficult to measure its three-dimensional shape, which may result in erroneous determination of pass/fail. Furthermore, it is difficult to measure the three-dimensional shape of a workpiece with complicated corners. However, the three-dimensional shape determination apparatus (component mounting apparatus 1) of the present embodiment images the measurement location using an imaging means, and if the pass/fail determination is unclear, changes the imaging conditions and re-images the part. This prevents misjudgment of three-dimensional shapes. This allows the three-dimensional shape of the workpiece to be appropriately determined.

次に図8のフローに沿って、図4、図7に示すシールドケース21を例に、ワーク(シールドケース21)の立体形状の良否を判断する立体形状判断方法について説明する。まず、仮想交点設定部31は、ワークが有する複数の縁辺22b~25bのうちの2つが交わる位置を仮想交点P1~P4として設定する(ST1)(図4(a)参照)。次いで保持ノズル10bは、部品供給部4からシールドケース21を取り出して保持する(ST2)。計測制御部34は、シールドケース21を保持した保持ノズル10bを部品認識ユニット14の上方に移動させる。 Next, a three-dimensional shape determination method for determining whether the three-dimensional shape of the workpiece (shield case 21) is good or bad will be described along the flowchart of FIG. 8, using the shield case 21 shown in FIGS. 4 and 7 as an example. First, the virtual intersection setting unit 31 sets the positions where two of the plurality of edges 22b to 25b of the workpiece intersect as virtual intersections P1 to P4 (ST1) (see FIG. 4(a)). Next, the holding nozzle 10b takes out the shield case 21 from the component supply section 4 and holds it (ST2). The measurement control unit 34 moves the holding nozzle 10b holding the shield case 21 above the component recognition unit 14.

次いで部品認識ユニット14(撮像手段)の第1カメラ17aと第2カメラ17b(並設された2台の撮像部)によって、保持ノズル10bに所定の姿勢で保持されたシールドケース21(ワーク)を撮像する(ST3)。その際、所定の照明条件で部品認識ユニット14の照明部(第1照明部、第2照明部)によってシールドケース21を照明しながら、ワークの大きさに応じて第1カメラ17aと第2カメラ17bの前でワークを所定の移動条件(所定の方向、所定の移動速度)で移動させながら複数回に分けて撮像する。 Next, the shield case 21 (workpiece) held in a predetermined posture by the holding nozzle 10b is detected by the first camera 17a and second camera 17b (two imaging units arranged in parallel) of the component recognition unit 14 (imaging means). Capture an image (ST3). At that time, while illuminating the shield case 21 with the illumination parts (first illumination part, second illumination part) of the component recognition unit 14 under predetermined illumination conditions, the first camera 17a and the second camera are connected according to the size of the workpiece. While moving the workpiece under predetermined movement conditions (predetermined direction, predetermined moving speed) in front of the workpiece 17b, images are taken in multiple times.

図8において、次いで仮想交点高さ算出部32は、第1カメラ17aと第2カメラ17bによって撮像された複数の撮像画像50,51に基づいて、仮想交点P1~P4の高さHを算出する(ST4)(図7参照)。次いで反り量算出部33は、算出された仮想交点P1~P4の高さHに基づいてシールドケース21(ワーク)の形状(反り量ΔG1~ΔG4)を算出する(ST5)。次いで良否判断部36は、算出された反り量ΔG1~ΔG
4に基づいて、ワークが良品か不良品かを判断する(ST6)。すなわち、撮像手段(部品認識ユニット14)によって撮像された撮像画像に基づいて(ST3)、ワークの立体形状が所定の条件を満たす良品か不良品かを判断する(ST6)。
In FIG. 8, the virtual intersection height calculation unit 32 then calculates the height H of the virtual intersections P1 to P4 based on the plurality of captured images 50 and 51 captured by the first camera 17a and the second camera 17b. (ST4) (see Figure 7). Next, the warpage amount calculation unit 33 calculates the shape (the warpage amounts ΔG1 to ΔG4) of the shield case 21 (work) based on the calculated heights H of the virtual intersections P1 to P4 (ST5). Next, the quality judgment unit 36 calculates the calculated warpage amounts ΔG1 to ΔG.
4, it is determined whether the workpiece is a good product or a defective product (ST6). That is, based on the captured image captured by the imaging means (component recognition unit 14) (ST3), it is determined whether the three-dimensional shape of the workpiece satisfies predetermined conditions and is a good product or a defective product (ST6).

シールドケース21(ワーク)を良品と判断した場合(ST6においてYes)、装着手段(部品保持移動機構12、実装制御部35)は、そのシールドケース21を基板3に装着させる(ST7)。シールドケース21を不良品と判断した場合(ST6においてNo)、規定回数となるまで(ST8においてNo)、計測制御部34は、照明部の照明条件、ワークの移動条件、ワークの保持姿勢(水平方向の回転角度)の少なくともいずれかを変更し(ST9)、(ST3)に戻って撮像手段にワークを再撮像させ(ST3)、良品か不良品かを判断させる(ST4~ST6)。 If the shield case 21 (workpiece) is determined to be a good product (Yes in ST6), the mounting means (component holding and moving mechanism 12, mounting control section 35) mounts the shield case 21 on the board 3 (ST7). If the shield case 21 is determined to be a defective product (No in ST6), the measurement control unit 34 controls the lighting conditions of the lighting unit, the movement conditions of the workpiece, and the holding posture (horizontal) of the workpiece until the specified number of times is reached (No in ST8). (direction and rotation angle) (ST9), returns to (ST3), causes the imaging means to image the workpiece again (ST3), and determines whether it is a good product or a defective product (ST4 to ST6).

規定回数となると(ST8においてYes)、保持ノズル10bは保持しているシールドケース21を部品廃棄部15に廃棄して(ST10)、(ST2)に戻って次のシールドケース21を部品供給部4から取り出し、良品か不良品かが判断される(ST3~ST6)。このように、計測制御部34は、ワーク(シールドケース21)を不良品と判断すると(ST6においてNo)、撮像手段(部品認識ユニット14)で当該ワークを少なくとも1回再撮像し(ST3)、撮像手段の再撮像画像に基づいて、当該ワークが良品か不良品かを再判断する(ST6)。これによって、ワーク(シールドケース21、部品)の立体形状を適切に判断することができる。 When the predetermined number of times is reached (Yes in ST8), the holding nozzle 10b discards the shield case 21 it is holding to the component discard section 15 (ST10), returns to (ST2), and transfers the next shield case 21 to the component supply section 4. It is then determined whether the product is good or defective (ST3 to ST6). In this way, when the measurement control unit 34 determines that the workpiece (shield case 21) is a defective product (No in ST6), the measurement control unit 34 re-images the workpiece at least once with the imaging means (component recognition unit 14) (ST3), Based on the re-captured image of the imaging means, it is re-judged whether the workpiece is a good product or a defective product (ST6). Thereby, the three-dimensional shape of the workpiece (shield case 21, parts) can be appropriately determined.

上記説明したように、本実施の形態の部品実装装置1は、部品(シールドケース21、ワーク)を撮像する撮像手段(部品認識ユニット14)と、撮像手段によって撮像された撮像画像50、51に基づいて、部品の立体形状が所定の条件を満たす良品か不良品かを判断する良否判断手段(良否判断部36)と、良品と判断された部品を基板3に装着する装着手段(部品保持移動機構12、実装制御部35)と、を備えた。部品実装装置1は、良否判断手段が部品を不良品と判断すると、撮像手段は当該部品を少なくとも1回再撮像し、良否判断手段は再撮像画像に基づいて、当該部品が良品か不良品かを再判断する。これによって、部品(シールドケース21、ワーク)の立体形状を適切に判断することができる。 As described above, the component mounting apparatus 1 according to the present embodiment includes an imaging means (component recognition unit 14) that images a component (shield case 21, workpiece), and images 50 and 51 taken by the imaging means. based on the three-dimensional shape of the part (pass/fail determining section 36), which determines whether the three-dimensional shape of the component is a good or defective product that satisfies predetermined conditions; mechanism 12 and mounting control section 35). In the component mounting apparatus 1, when the quality determining means determines that a component is defective, the imaging means re-images the component at least once, and the quality determining means determines whether the component is a good product or a defective product based on the re-captured image. re-judge. Thereby, the three-dimensional shape of the parts (shield case 21, workpiece) can be appropriately determined.

本発明の部品実装装置および立体形状判断装置ならびに立体形状判断方法は、部品の立体形状を適切に判断することができるという効果を有し、部品を基板に実装する分野において有用である。 INDUSTRIAL APPLICATION The component mounting device, the three-dimensional shape determining device, and the three-dimensional shape determining method of the present invention have the effect of being able to appropriately determine the three-dimensional shape of a component, and are useful in the field of mounting components on a board.

1 部品実装装置
3 基板
12 部品保持移動機構(装着手段、ワーク保持移動機構)
14 部品認識ユニット(撮像手段)
17a 第1カメラ(撮像部)
17b 第2カメラ(撮像部)
18 第1照明部(照明部)
19 第2照明部(照明部)
20、21、26~28 シールドケース(部品、ワーク)
50、51 撮像画像
D 部品
ΔG1、ΔG2 反り量
1 Component mounting device 3 Board 12 Component holding and moving mechanism (mounting means, workpiece holding and moving mechanism)
14 Component recognition unit (imaging means)
17a First camera (imaging unit)
17b Second camera (imaging unit)
18 First lighting section (lighting section)
19 Second lighting section (lighting section)
20, 21, 26-28 Shield case (parts, work)
50, 51 Captured image D Part ΔG1, ΔG2 Amount of warpage

Claims (18)

部品を撮像する撮像手段と、
部品を保持し、保持した部品を前記撮像手段の前で移動させる部品保持移動機構と、
前記撮像手段によって撮像された撮像画像に基づいて、前記部品の立体形状が所定の条件を満たす良品か不良品かを判断する良否判断手段と、
良品と判断された前記部品を基板に装着する装着手段と、を備え、
前記良否判断手段が前記部品を不良品と判断すると、前記撮像手段は当該部品を少なくとも1回再撮像し、前記良否判断手段は再撮像画像に基づいて、当該部品が良品か不良品かを再判断し、
前記良否判断手段が前記再判断を規定回数繰り返すまでに当該部品を良品と判断すると、前記装着手段は当該部品を前記基板に装着し、
前記撮像手段が前記部品を再撮像する際は、前記部品保持移動機構が前記部品を移動させる方向または移動速度の少なくともいずれかが変更される、部品実装装置。
an imaging means for imaging the part;
a component holding and moving mechanism that holds a component and moves the held component in front of the imaging means;
quality determining means for determining whether the three-dimensional shape of the component satisfies a predetermined condition as a good product or a defective product based on a captured image captured by the image capturing device;
a mounting means for mounting the component determined to be good on a board;
When the quality determining means determines that the part is a defective product, the imaging means re-images the part at least once, and the quality determining means re-determines whether the part is a good product or a defective product based on the re-captured image. judge,
If the pass/fail determining means determines that the part is good by the time the re-judgment is repeated a prescribed number of times, the mounting means mounts the part on the board ;
In the component mounting apparatus, when the image capturing means re-images the component, at least one of a direction or a moving speed in which the component holding and moving mechanism moves the component is changed .
前記撮像手段は、並設された2台の撮像部を有し、
前記良否判断手段は、前記2台の撮像部によって撮像された撮像画像の視差に基づいて、前記部品が良品か不良品かを判断する、請求項1に記載の部品実装装置。
The imaging means has two imaging units arranged in parallel,
2. The component mounting apparatus according to claim 1, wherein the quality determining means determines whether the component is a good product or a defective product based on a parallax between captured images captured by the two imaging units.
前記撮像手段は、撮像する部品を照明する照明部を有し、
前記撮像手段が前記部品を再撮像する際は、前記照明部の照明条件が変更される、請求項1または2に記載の部品実装装置。
The imaging means has an illumination unit that illuminates the component to be imaged,
3. The component mounting apparatus according to claim 1, wherein illumination conditions of the illumination section are changed when the imaging means re-images the component.
前記撮像手段は、移動している前記部品を前記部品の大きさに応じて複数回撮像し、
前記良否判断手段は、撮像された複数の撮像画像に基づいて、前記部品が良品か不良品かを判断する、請求項1から3のいずれかに記載の部品実装装置。
The imaging means images the moving part multiple times depending on the size of the part,
4. The component mounting apparatus according to claim 1, wherein the quality determining means determines whether the component is a good product or a defective product based on a plurality of captured images.
部品を保持し、保持した部品を前記撮像手段の前に移動させる部品保持移動機構をさらに備え、
前記撮像手段が前記部品を再撮像する際は、前記部品保持移動機構が前記部品を保持する姿勢が変更される、請求項1からのいずれかに記載の部品実装装置。
further comprising a component holding and moving mechanism that holds a component and moves the held component in front of the imaging means,
5. The component mounting apparatus according to claim 1 , wherein when the imaging means re-images the component, the posture in which the component holding and moving mechanism holds the component is changed.
前記所定の条件は、前記部品の反り量が閾値以下であることである、請求項1からのいずれかに記載の部品実装装置。 6. The component mounting apparatus according to claim 1, wherein the predetermined condition is that the amount of warpage of the component is less than or equal to a threshold value. 前記部品はシールドケースである、請求項1からのいずれかに記載の部品実装装置。 7. The component mounting apparatus according to claim 1, wherein the component is a shield case. ワークを撮像する撮像手段と、
ワークを保持し、保持したワークを前記撮像手段の前で移動させるワーク保持移動機構と、
前記撮像手段によって撮像された撮像画像に基づいて、前記ワークの立体形状が所定の条件を満たす良品か不良品かを判断する良否判断手段と、を備え、
前記良否判断手段が前記ワークを不良品と判断すると、前記撮像手段は当該ワークを少なくとも1回再撮像し、前記良否判断手段は再撮像画像に基づいて、当該ワークが良品か不良品かを再判断し、
前記良否判断手段が当該ワークを不良品と判断しても前記再判断を規定回数繰り返していなければ、前記撮像手段は当該ワークを再び撮像し、前記良否判断手段は再び撮像された画像に基づいて当該ワークが良品か不良品かを再び判断し、
前記撮像手段が前記ワークを再撮像する際は、前記ワーク保持移動機構が前記ワークを移動させる方向または移動速度の少なくともいずれかが変更される、立体形状判断装置。
an imaging means for imaging the work;
a work holding and moving mechanism that holds a work and moves the held work in front of the imaging means;
and a quality determining means for determining whether the three-dimensional shape of the workpiece is a good product or a defective product that satisfies predetermined conditions based on the image taken by the imaging means,
When the quality determining means determines that the workpiece is a defective product, the imaging means re-images the workpiece at least once, and the quality determination means re-determines whether the workpiece is a good product or a defective product based on the re-captured image. judge,
Even if the quality determining means determines that the workpiece is defective, if the rejudgment has not been repeated a predetermined number of times, the imaging means images the workpiece again, and the quality determination means determines the quality of the workpiece based on the image taken again. Determine again whether the work is a good product or a defective product ,
A three-dimensional shape determining device, wherein at least one of a direction or a moving speed in which the workpiece holding and moving mechanism moves the workpiece is changed when the imaging means reimages the workpiece .
前記撮像手段は、並設された2台の撮像部を有し、
前記良否判断手段は、前記2台の撮像部によって撮像された撮像画像の視差に基づいて、前記ワークが良品か不良品かを判断する、請求項に記載の立体形状判断装置。
The imaging means has two imaging units arranged in parallel,
The three-dimensional shape determining device according to claim 8 , wherein the quality determining means determines whether the work is a good product or a defective product based on a parallax between captured images captured by the two imaging units.
前記撮像手段は、撮像するワークを照明する照明部を有し、
前記撮像手段が前記ワークを再撮像する際は、前記照明部の照明条件が変更される、請求項またはに記載の立体形状判断装置。
The imaging means includes an illumination unit that illuminates a workpiece to be imaged,
The three-dimensional shape determining device according to claim 8 or 9 , wherein the illumination conditions of the illumination section are changed when the imaging means re-images the workpiece.
前記撮像手段は、移動している前記ワークを前記ワークの大きさに応じて複数回撮像し、
前記良否判断手段は、撮像された複数の撮像画像に基づいて、前記ワークが良品か不良品かを判断する、請求項8から10のいずれかに記載の立体形状判断装置。
The imaging means images the moving workpiece multiple times depending on the size of the workpiece,
11. The three-dimensional shape determining device according to claim 8, wherein the quality determining means determines whether the workpiece is a good product or a defective product based on a plurality of captured images.
ワークを保持し、保持したワークを前記撮像手段の前に移動させるワーク保持移動機構をさらに備え、
前記撮像手段が前記ワークを再撮像する際は、前記ワーク保持移動機構が前記ワークを保持する姿勢が変更される、請求項から11のいずれかに記載の立体形状判断装置。
further comprising a work holding and moving mechanism that holds a work and moves the held work in front of the imaging means,
The three-dimensional shape determining device according to any one of claims 8 to 11 , wherein the posture in which the workpiece holding and moving mechanism holds the workpiece is changed when the imaging means reimages the workpiece.
前記所定の条件は、前記ワークの反り量が閾値以下であることである、請求項から12のいずれかに記載の立体形状判断装置。 13. The three-dimensional shape determining device according to claim 8 , wherein the predetermined condition is that the amount of warpage of the workpiece is less than or equal to a threshold value. ワークの立体形状の良否を判断する立体形状判断方法であって、
撮像手段でワークを撮像し、
前記撮像手段によって撮像された撮像画像に基づいて、前記ワークの立体形状が所定の条件を満たす良品か不良品かを判断し、
前記ワークを不良品と判断すると、
前記撮像手段で当該ワークを少なくとも1回再撮像し、
前記撮像手段の再撮像画像に基づいて、当該ワークが良品か不良品かを再判断し、
当該ワークを不良品と判断しても前記再判断を規定回数繰り返していなければ、前記撮像手段で当該ワークを再び撮像し、再び撮像された画像に基づいて当該ワークが良品か不良品かを再び判断し、
前記撮像手段が前記ワークを再撮像する際は、前記ワークを移動させる方向または移動速度の少なくともいずれかが変更される、立体形状判断方法。
A three-dimensional shape judgment method for determining whether the three-dimensional shape of a workpiece is good or bad,
Image the workpiece with an imaging means,
Determining whether the three-dimensional shape of the workpiece is a good product or a defective product that satisfies predetermined conditions based on the captured image captured by the imaging means,
If the workpiece is determined to be defective,
re-imaging the workpiece at least once with the imaging means;
re-judging whether the workpiece is a good product or a defective product based on the re-captured image of the imaging means;
Even if the workpiece is determined to be defective, if the re-judgment has not been repeated a predetermined number of times, the workpiece is imaged again by the imaging means, and based on the image taken again, it is determined again whether the workpiece is a good product or a defective product. judge ,
A method for determining a three-dimensional shape, wherein at least one of a direction or a moving speed of the workpiece is changed when the imaging means re-images the workpiece .
前記撮像手段は、並設された2台の撮像部を有し、
前記2台の撮像部によって撮像された撮像画像の視差に基づいて、前記ワークが良品か不良品かを判断する、請求項14に記載の立体形状判断方法。
The imaging means has two imaging units arranged in parallel,
15. The three-dimensional shape determining method according to claim 14 , wherein it is determined whether the workpiece is a good product or a defective product based on parallax between captured images captured by the two imaging units.
前記撮像手段は、撮像するワークを照明する照明部を有し、
前記撮像手段が前記ワークを再撮像する際は、前記照明部の照明条件が変更される、請求項14または15に記載の立体形状判断方法。
The imaging means includes an illumination unit that illuminates a workpiece to be imaged,
The three-dimensional shape determining method according to claim 14 or 15 , wherein the illumination conditions of the illumination unit are changed when the imaging means re-images the workpiece.
前記撮像手段の前で前記ワークを移動させながら前記撮像手段で前記ワークを前記ワークの大きさに応じて複数回撮像し、
前記撮像手段によって撮像された複数の撮像画像に基づいて、前記ワークが良品か不良品かを判断する、請求項14から16のいずれかに記載の立体形状判断方法。
While moving the workpiece in front of the imaging means, the imaging means images the workpiece a plurality of times depending on the size of the workpiece,
17. The three-dimensional shape determining method according to claim 14 , wherein it is determined whether the workpiece is a good product or a defective product based on a plurality of images taken by the imaging means.
前記撮像手段が前記ワークを再撮像する際は、前記ワークの姿勢が変更される、請求項14から17のいずれかに記載の立体形状判断方法。 18. The three-dimensional shape determining method according to claim 14 , wherein the posture of the workpiece is changed when the imaging means re-images the workpiece.
JP2019131529A 2019-07-17 2019-07-17 Component mounting device, 3D shape determination device, and 3D shape determination method Active JP7394283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131529A JP7394283B2 (en) 2019-07-17 2019-07-17 Component mounting device, 3D shape determination device, and 3D shape determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131529A JP7394283B2 (en) 2019-07-17 2019-07-17 Component mounting device, 3D shape determination device, and 3D shape determination method

Publications (2)

Publication Number Publication Date
JP2021018994A JP2021018994A (en) 2021-02-15
JP7394283B2 true JP7394283B2 (en) 2023-12-08

Family

ID=74563218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131529A Active JP7394283B2 (en) 2019-07-17 2019-07-17 Component mounting device, 3D shape determination device, and 3D shape determination method

Country Status (1)

Country Link
JP (1) JP7394283B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136904A (en) 1998-10-30 2000-05-16 Sanyo Electric Co Ltd Apparatus and method for recognition and processing of component in mounter
JP2008078399A (en) 2006-09-21 2008-04-03 Yamaha Motor Co Ltd Component recognition method, component recognition apparatus, surface mounting apparatus, and component inspection apparatus
JP2014225500A (en) 2013-05-15 2014-12-04 ヤマハ発動機株式会社 Determination device, surface mounting machine, and determination method
WO2018138921A1 (en) 2017-01-30 2018-08-02 株式会社Fuji Component mounting machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310753B2 (en) * 1994-01-21 2002-08-05 山形カシオ株式会社 Lead measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136904A (en) 1998-10-30 2000-05-16 Sanyo Electric Co Ltd Apparatus and method for recognition and processing of component in mounter
JP2008078399A (en) 2006-09-21 2008-04-03 Yamaha Motor Co Ltd Component recognition method, component recognition apparatus, surface mounting apparatus, and component inspection apparatus
JP2014225500A (en) 2013-05-15 2014-12-04 ヤマハ発動機株式会社 Determination device, surface mounting machine, and determination method
WO2018138921A1 (en) 2017-01-30 2018-08-02 株式会社Fuji Component mounting machine

Also Published As

Publication number Publication date
JP2021018994A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US6839960B2 (en) Method for mounting electronic parts on a board
US7555831B2 (en) Method of validating component feeder exchanges
JP4348343B2 (en) Component mounter
US8136219B2 (en) Electronic component mounter and mounting method
CN110622631B (en) Mounting order determination device, mounting order inspection device, mounting order determination method, and mounting order inspection method
JP4801558B2 (en) Mounting machine and component imaging method thereof
JP2015090925A (en) Electronic component mounting device
JP4998148B2 (en) Component mounting equipment
JP7394283B2 (en) Component mounting device, 3D shape determination device, and 3D shape determination method
JP7329727B2 (en) Component mounting device, three-dimensional shape measuring device, and three-dimensional shape measuring method
JP2020061492A (en) Mounting system, mounting method, and mounting program
JP7281614B2 (en) COMPONENT MOUNTING APPARATUS AND MOUNTING BOARD MANUFACTURING METHOD
JP2022170080A (en) Component mounter
JP4421281B2 (en) Component recognition method, component recognition device, surface mounter, component test device, and board inspection device
JP2005353750A (en) Maintenance and management apparatus for electronic component mounting apparatus
JP7417864B2 (en) Component mounting equipment and component warpage detection method
JP6752706B2 (en) Judgment device and surface mounter
JP2011086695A (en) Method for mounting connector
JPH1070397A (en) Electronic part mounting device
JP7297907B2 (en) Mounting machine
US11924976B2 (en) Work machine
JP7437654B2 (en) Component mounting equipment and lead terminal height measurement method
WO2023012981A1 (en) Component mounting system
WO2024111022A1 (en) Component appearance inspection device and component appearance inspection method
WO2019058475A1 (en) Shape data analogy determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7394283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151