WO2019058475A1 - Shape data analogy determination device - Google Patents

Shape data analogy determination device Download PDF

Info

Publication number
WO2019058475A1
WO2019058475A1 PCT/JP2017/034029 JP2017034029W WO2019058475A1 WO 2019058475 A1 WO2019058475 A1 WO 2019058475A1 JP 2017034029 W JP2017034029 W JP 2017034029W WO 2019058475 A1 WO2019058475 A1 WO 2019058475A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape data
local
local image
amount
image
Prior art date
Application number
PCT/JP2017/034029
Other languages
French (fr)
Japanese (ja)
Inventor
一也 小谷
杉山 健二
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2019542884A priority Critical patent/JP6837152B2/en
Priority to PCT/JP2017/034029 priority patent/WO2019058475A1/en
Publication of WO2019058475A1 publication Critical patent/WO2019058475A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This specification discloses a shape data similarity determination apparatus.
  • the component mounter is a device for mounting a supplied component at a designated position on a separately supplied substrate.
  • the camera picks up the suction posture of the component sucked by the nozzle from below the component, and performs positioning processing and inspection processing.
  • Shape data is used when performing positioning processing and inspection processing.
  • the shape data defines appearance characteristics such as the size of the entire part, the position of the electrode, and the size of the electrode. Shape data is created by extracting the part shape from drawings and the like with an editor and inputting numerical values, or by capturing a part absorbed by the nozzle of the part mounter with a camera and performing predetermined image processing (For example, Patent Document 1).
  • the figures included in the shape data may slightly differ depending on the creator of the shape data even if they are the same part, and the shape data of the same part is duplicated Had to exist.
  • the present disclosure has been made to solve the above-described problems, and its main object is to prevent redundant storage of shape data of the same part or mark.
  • the shape data similarity determination device of the present disclosure A local image acquisition unit for acquiring as a local image an image obtained by photographing a component mounted on a substrate by a component mounting machine or an image obtained by photographing a mark attached to the substrate; A first displacement amount acquisition unit that acquires a displacement amount between local shape data of the part or the mark and the local image; A second shift amount acquisition unit that acquires shift amounts between a plurality of global shape data stored in advance in a storage device and the local image; Similarity determination with the local shape data and each global shape data by comparing the local shape data with the local image and the amount of displacement between each global shape data and the local image Execution department, Is provided.
  • this shape data class ratio determination apparatus an image obtained by capturing a part mounted on a substrate by a component mounting machine or an image obtained by capturing a mark on a substrate is used as a local image. Then, by comparing the amount of deviation between the local shape data of the part or mark and the local image, and the amount of deviation between each global shape data and the local image, the similarity ratio judgment between the local shape data and each global shape data is determined. Do. That is, instead of simply comparing the local shape data with the global shape data, the amount of deviation between the local shape data and the local image is compared with the amount of deviation between the global shape data and the local image. Therefore, it is possible to accurately determine whether or not the shape data of the same part or mark is redundantly present, and hence it is possible to prevent redundant storage of the shape data of the same part or mark.
  • FIG. 2 is a perspective view showing a schematic configuration of a component mounter 30.
  • FIG. The flowchart of an analogy determination processing routine.
  • FIG. Explanatory drawing of the local image of the components P image
  • FIG. Explanatory drawing of the local image of the components P image
  • Explanatory drawing which shows an example of the local shape data of the components P.
  • FIG. Explanatory drawing which shows an example of global shape data.
  • FIG. Explanatory drawing which shows an example of global shape data.
  • FIG. 1 is a block diagram showing the electrical connection of the shape data category determination apparatus 10.
  • FIG. 2 is a perspective view showing a schematic configuration of the component mounter 30.
  • FIG. 3 is a perspective view of the reel 41. As shown in FIG. The left and right (X axis) direction, the front and back (Y axis) direction, and the top and bottom (Z axis) direction are as shown in FIGS. 2 and 3.
  • the shape data class ratio determination device 10 includes a CPU 12, a ROM 14, an HDD 16, a RAM 18, and the like, which are connected via a bus (not shown).
  • a known personal computer can be used as the shape data category determination device 10.
  • a display (display device) 20, a mouse 22, a keyboard 24, a camera 26, a storage device 80, and the like are connected to the shape data class ratio determination device 10.
  • the display 20 is a known output device, and the mouse 22 and the keyboard 24 are known input devices.
  • the camera 26 is the same as a part camera 48 of the component mounter 30 described later, and picks up an image of the component P placed on the component placement stand 28.
  • the component P is mounted on the substrate 32 by a component mounter 30, which will be described later, and is mounted on the component mounting table 28 such that the surface opposite to the surface adsorbed by the nozzle 64 faces the camera 26. Ru.
  • the storage device 80 stores a plurality of global shape data.
  • the shape data defines information such as the body size of the part P and the size and position of the electrode attached to the part P and the like.
  • Shape data may include tolerance and vision type. Tolerance is the dimensional tolerance, and vision type represents the type of image processing algorithm.
  • the shape data is used, for example, when the posture of the component P is obtained from an image of the component P suctioned by the nozzle 64 in the component mounter 30 described later by photographing with the part camera 48. An example of shape data is shown in FIG.
  • a cursor signal from the mouse 22, a character signal from the keyboard 24, an image signal from the camera 26, and the like are input to the shape data class ratio determination apparatus 10.
  • An image signal or the like to the display 20 is output from the shape data category determination device 10.
  • the shape data category determination device 10 reads out or updates the global shape data stored in the storage device 80.
  • the component P is mounted on the substrate 32 by the component mounter 30.
  • the component mounter 30 will be described.
  • the component mounter 30, as shown in FIG. 2, includes a component supply device 40, a substrate transfer device 45, an XY robot 50, a mounting head 60, a part camera 48, a mark camera 49, and a controller 70. ing.
  • a plurality of component supply devices 40 are provided on the front side of the component mounter 30 so as to be aligned in the left-right direction (X-axis direction).
  • the component supply device 40 is configured as a tape feeder which pulls out from the reel 41 the tape 42 containing the components P at predetermined intervals and feeds the tape 42 at a predetermined pitch.
  • the tape 42 wound around the reel 41 is formed with a plurality of recesses 42 a aligned along the longitudinal direction of the tape 42.
  • the component P is accommodated in each recess 42a. These parts P are protected by a film 43 covering the surface of the tape 42.
  • the tape 42 has sprocket holes 42b formed along the longitudinal direction.
  • the teeth of a sprocket (not shown) of the component supply device 40 are fitted into the sprocket holes 42b and rotated by a predetermined amount, whereby the tape 42 is fed at a predetermined pitch.
  • the part P which has reached the predetermined part supply position F is in a state in which the film 43 is peeled off.
  • the substrate transfer device 45 has a pair of conveyor belts 46 and 46 (only one of which is shown in FIG. 2) provided at intervals in the front and back direction and spanned in the left-right direction.
  • the substrate 32 is conveyed by the conveyor belts 46 and 46 in the arrow direction of the dashed dotted line in FIG. 2 and reaches a predetermined taking-in position, and is supported by a large number of support pins 47 erected on the back side.
  • the XY robot 50 includes an X-axis slider 52 and a Y-axis slider 54.
  • the X-axis slider 52 is movable along X-axis guide rails 51 provided on the front surface of the Y-axis slider 54 in the left-right direction (X-axis direction).
  • the Y-axis slider 54 is movable along Y-axis guide rails 53 provided in the front-rear direction (Y-axis direction).
  • the mounting head 60 is attached to the X-axis slider 52.
  • the mounting head 60 is provided with a nozzle 64 on its lower surface.
  • the nozzle 64 adsorbs the part P when the negative pressure is supplied, and releases the part P when the atmospheric pressure or the positive pressure is supplied.
  • the parts camera 48 is provided between the parts supply device 40 and the substrate transfer device 45.
  • the part camera 48 captures an image of the part P sucked by the nozzle 64 from below.
  • the mark camera 49 is attached to the lower surface of the X-axis slider 52.
  • the mark camera 49 picks up an image of the mark M attached to a predetermined position of the substrate 32 supported by the support pin 47.
  • the controller 70 is configured as a microprocessor centering on a CPU.
  • the controller 70 receives a position detection signal from the XY robot 50, an image signal from the part camera 48, an image signal from the mark camera 49, and the like. Further, from the controller 70, control signals to the component supply device 40, control signals to the substrate transfer device 45, control signals to the XY robot 50, control signals to the mounting head 60, control signals to the parts camera 48, marks Control signals and the like to the camera 49 are output.
  • the controller 70 controls each part of the component mounter 30 to produce the substrate 32 on which the plurality of components P are mounted, based on a production program received from a management device (not shown). Specifically, the controller 70 controls the XY robot 50 such that the nozzle 64 faces the component P fed to the component supply position F (see FIG. 3) by the component supply device 40. Subsequently, the controller 70 controls the pressure of the nozzle 64 so that the part P at the part supply position F is attracted to the nozzle 64.
  • the controller 70 controls the part camera 48 so as to pick up an image of the part P absorbed by the nozzle 64, and processes the obtained image of the part P with a frame obtained from shape data of the part P described later By doing this, the posture of the part P is recognized.
  • the controller 70 controls the XY robot 50 so that the part P is disposed immediately above the designated position of the substrate 32 in consideration of the posture of the part P, and the nozzle 64 of the nozzle 64 releases the part P. Control the pressure.
  • the controller 70 mounts a predetermined number and types of components P on the substrate 32 by repeatedly executing such component mounting processing.
  • a mounting line is formed by arranging a plurality of such component mounters 30 in the left-right direction. When the substrate 32 is transported from the uppermost stream component mounter 30 of one mounting line to the lowermost component mounter 30, all predetermined components P are mounted on the substrate 32. There is. A large number of such mounting lines are provided in a component mounting factory.
  • FIG. 4 is a flowchart of the similarity determination processing routine.
  • the component P as shown in FIG. 5, it has a rectangular body B, and on the surface opposite to the nozzle suction surface, four rectangular electrodes E1 to E4 are two vertically and horizontally. An example in which two are arranged will be described.
  • the CPU 12 When starting the analog ratio determination process routine, the CPU 12 first acquires a local image of the part P (step S100). Specifically, an image obtained by photographing the surface opposite to the nozzle suction surface of the component P placed on the component placement table 28 with the camera 26 is acquired as a local image.
  • the component P is mounted on the component mounting table 28 so as to match as much as possible the posture of the component P when the component mounter 30 sucks the nozzle 64.
  • the CPU 12 acquires local shape data of the part P (step S110).
  • the local shape data may be manually created by the operator from the local image of the display 20, or may be created by measuring the actual part P with a caliper, or the operator may be represented by the CAD data of the part P May be created manually, or the CPU 12 may automatically create it from a local image.
  • the operator manually creates a local image of the display 20 will be described.
  • the local image of the part P and the cross cursor 21 are displayed.
  • the operator uses the mouse 22 to adjust the vertical and horizontal lines of the cross cursor 21 so as to be as parallel as possible to the vertical and horizontal sides of the part P, and the center of the cross cursor 21 coincides with the center of the part P as closely as possible. Make adjustments (see FIG. 7). After the adjustment, the operator inputs that the alignment of the cross cursor 21 is finished through the mouse 22 or the keyboard 24. Then, the CPU 12 places the center of the cross cursor 21 (considered as the center of the local image of the part P) at the center of the screen of the display 20 and sets the rotation angle (tilt) of the local image of the part P to zero.
  • the local image is displayed on the display 20 (see FIG. 8).
  • the operator determines the area A0 after the stretchable rectangular area A0 (see FIG. 8) displayed on the display 20 matches the rectangular outline of the body B of the part P by operating the mouse 22. .
  • region A0 expands-contracts by predetermined minimum unit, it does not necessarily correspond exactly with the rectangular-shaped outline of the body B of the components P.
  • the operator operates the mouse 22 to make the stretchable rectangular area A1 displayed on the display 20 coincide with the rectangular outline of the electrode E1 of the part P, and then determines the area A1.
  • the operator performs the same operation on the electrodes E2 to E4 to determine the regions A2 to A4 (see FIG. 9).
  • the CPU 12 determines the size of the body B of the part P and the sizes and positions of the electrodes E1 to E4 based on the length of each side of the areas A0 to A4, and stores the size in the HDD 16 as local shape data.
  • the CPU 12 also adds tolerance or vision type to the local shape data by manual input by the operator or automatically.
  • An example of the local shape data thus obtained is shown in FIG.
  • the determined areas A0 to A4 are referred to as a frame FL of the part P (see FIGS. 9 and 11).
  • the frame FL can be created from the size and position information of the local shape data of FIG.
  • the CPU 12 calculates and stores the amount of deviation (X, Y, Q) between the frame FL obtained from the local shape data and the local image of the part P (step S120). Specifically, as shown in FIG. 11, the CPU 12 matches the frame FL of the part P as closely as possible with the local image (see FIG. 6) of the part P by a predetermined optimal matching method.
  • the predetermined optimum matching method is not particularly limited. For example, the center of the electrode E3 of the local image of the part P and the center of the small frame at the upper right of the frame FL coincide with each other and the rotation angle of the electrode E3 and the small frame There is a method of arranging so as to match the rotation angle of.
  • the CPU 12 recognizes, from the local image of the part P, the XY coordinates of the center position of the part P and the rotation angle (inclination to the horizontal line) of the part P. Further, the CPU 12 recognizes the XY coordinates of the center position of the frame FL and the rotation angle of the frame FL after performing the predetermined optimal matching method. Then, the CPU 12 calculates the shift amounts between the XY coordinates of the central position of the local image of the part P and the XY coordinates of the central position of the frame FL as X and Y, and the rotation angle of the local image of the part P and the rotation of the frame FL The amount of deviation from the corner is calculated as Q.
  • the amount of deviation (X, Y, Q) is (0.01, 0.02, 1).
  • the unit of X and Y is mm, and the unit of Q is degree (°). If the amount of deviation (X, Y, Q) falls within a predetermined allowable range, the CPU 12 stores the amount of deviation in the HDD 16 as the amount of deviation serving as a search key. On the other hand, if the amount of deviation (X, Y, Q) does not fall within the allowable range, the CPU 12 discards the amount of deviation and requests the operator to re-create local shape data. When the CPU 12 automatically creates local shape data from a local image, the amount of displacement (X, Y, Q) is substantially zero, and therefore always falls within the allowable range.
  • n represents the total number of global shape data stored in the storage device 80.
  • the CPU 12 calculates the amount of deviation (X, Y, Q) as in step S120.
  • two global shape data (FIGS. 12 and 14) will be described as an example.
  • the CPU 12 creates a frame F1 (see FIG. 13) from the information of the size and position of the global shape data in FIG.
  • the frame F1 is a local image of the part P by the same optimal matching method as described above (see FIG. 6). Match as much as possible.
  • the CPU 12 recognizes the XY coordinates of the center position of the frame F1 and the rotation angle of the frame F1 after performing the predetermined optimal matching method. Then, the CPU 12 calculates the shift amount between the XY coordinates of the central position of the local image of the part P and the XY coordinates of the central position of the frame F1 as X and Y, and the rotation angle of the local image of the part P and the rotation of the frame F1
  • the amount of deviation from the corner is calculated as Q.
  • the amount of deviation (X, Y, Q) is (0.02, 0.03, 2).
  • the CPU 12 stores the amount of deviation in the HDD 16 as one of search targets. Subsequently, the CPU 12 creates a frame F2 (see FIG. 15) from the information of the size and position of the global shape data in FIG. 14, and the frame F2 is a local image of the part P by the same optimal matching method as described above (FIG. 6). Match as much as possible.
  • the CPU 12 recognizes the XY coordinates of the center position of the frame F2 and the rotation angle of the frame F2 after performing the predetermined optimum matching method.
  • the CPU 12 calculates the shift amount between the XY coordinates of the central position of the local image of the part P and the XY coordinates of the central position of the frame F2 as X and Y, and the rotation angle of the local image of the part P and the rotation of the frame F2
  • the amount of deviation from the corner is calculated as Q.
  • the amount of deviation (X, Y, Q) is (0.19, 0.03, 2).
  • the CPU 12 stores the amount of deviation in the HDD 16 as one of search targets.
  • the CPU 12 compares the shift amount serving as the search key obtained in step S120 with the shift amount stored as the search target in step S130 to perform the analogy determination (step S140).
  • the CPU 12 compares each of the shift amounts of the plurality of search targets with the shift amount of the key.
  • the CPU 12 calculates the absolute value (.DELTA.X, .DELTA.Y, .DELTA.Q) of the difference between the two amounts of deviation, and the sum of .DELTA.X, .DELTA.Y, .DELTA.Q or the sum after weighting .DELTA.X, .DELTA.Y, .DELTA.Q is for overlap judgment Whether the local shape data and the global shape data are similar may be determined based on whether or not they are within the numerical range. In the example described above, it is determined that the frame F1 is similar and the frame F2 is dissimilar.
  • the CPU 12 displays the analogy determination result on the display 20 (step S150), and ends this routine.
  • the CPU 12 may display on the display 20 global shape data determined to be similar.
  • the global shape data determined to be similar may be displayed on the display 20 in descending order of the degree of matching. In this case, it may be determined that the smaller the sum of ⁇ X, ⁇ Y, ⁇ Q, the higher the degree of coincidence, or the sum after weighting ⁇ X, ⁇ Y, ⁇ Q is obtained, and the smaller the sum, the degree of coincidence is It may be determined to be high.
  • the CPU 12 may limit the number of global shape data displayed on the display 20 to a predetermined number or less.
  • the operator determines whether or not the part P is the same as the part of the global shape data, based on the result of the similarity determination displayed on the display 20. If the part is the same, the local shape data created this time is the same as the part P. It overwrites with global shape data of the judged part, and if it is not identical, newly created local shape data is added to global shape data.
  • the shape data class ratio determination device 10 of the present embodiment corresponds to the shape data class ratio determination device of the present disclosure, and the CPU 12 is a local image acquisition unit, a first shift amount acquisition unit, a second shift amount acquisition unit, and a ratio determination. It corresponds to the execution unit.
  • the local shape data and each global are compared by comparing the deviation between the local shape data of the part P and the local image and the deviation between each global shape data and the local image.
  • Perform analogy determination with shape data That is, instead of simply comparing the local shape data with the global shape data, the amount of deviation between the local shape data and the local image is compared with the amount of deviation between the global shape data and the local image. Therefore, it is possible to accurately determine whether or not shape data of the same part is redundantly present, and as a result, redundant storage of shape data of the same part can be prevented.
  • the deviation amount includes the deviation amount (X, Y) of the plane coordinates and the deviation amount (Q) of the rotation angle, it can be obtained relatively easily.
  • the CPU 12 determines whether the local shape data and the global shapes are different depending on whether the difference between the local shape data and the local image and the difference between the global shape data and the local image are within the overlap determination numerical range. It is determined whether or not the data is similar. Therefore, analog ratio determination can be performed relatively easily.
  • the CPU 12 displays global shape data similar to the local shape data on the display 20. Therefore, the operator can easily determine whether global shape data overlapping the current local shape data already exists in the storage device 80 by looking at such display contents. Such judgment can be made more easily by displaying in order from the one with the highest degree of coincidence, or by displaying the one with the highest degree of coincidence.
  • the CPU 12 calculates the amount of deviation (X, Y, Q) from the local image of the part P for all of the plurality of global shape data stored in the storage device 80 in step S130. , May be as follows. That is, the CPU 12 selects one of the plurality of pieces of global shape data stored in the storage device 80 that matches the predetermined characteristic portion of the local shape data, and selects the selected global shape data and the local image of the part P. The amount of deviation (X, Y, Q) of may be calculated. This makes it possible to increase the analogy determination speed because it suffices to determine the amount of deviation for the narrowed global shape data, as compared to the case of determining the amount of deviation for all global shape data.
  • the size of the body of the global shape data or the size and position of the electrode may fall within the tolerance of the size of the body of the component P or the size and position of the electrode, or the electrode
  • the number (the number of leads, the number of bumps, etc.) may be the same, the vision type may be the same, or these may be combined as appropriate.
  • an image obtained by imaging the part P placed on the part placement table 28 with the camera 26 is used as the local image of the part P, but the invention is not particularly limited thereto.
  • a local image of the component P an image of the component P captured by the nozzle 64 in the component mounter 30 may be used. Even in this case, the same effect as that of the above-described embodiment can be obtained.
  • the component P as shown in FIG. 5, one in which the rectangular electrodes E1 to E4 are provided on the back surface of the body is exemplified, but any component may be used.
  • it may be a component in which a lead protrudes from the body, or a component having a plurality of bumps on the back surface of the body.
  • the local image of the part P is used, but a local image of the mark M (see FIG. 2) of the substrate 32 may be used. Even in this case, the same effect as that of the above-described embodiment can be obtained.
  • the mark M is, for example, a circle, a triangle, or a square. In the case of a circle, the diameter may be used as the size, and in the case of a triangle or a square, the side length may be used as the size.
  • the shape data includes the size of the body and the size and position of the electrode, but may include other external features.
  • the position of the direction check mark S is included in the shape data It is also good. In this way, it is possible to distinguish between the bumped component P1 shown outside the brackets in FIG. 16 and the bumped component P1 shown in the brackets (where the direction check mark S is located in the lower right corner). In the bumped component P1 as shown in FIG.
  • the difference between the brightness of the bump without transfer agent and the brightness of the bump with transfer agent obtained from the images before and after dipping the bump in the transfer agent (flux etc.) It may be included in shape data.
  • heights of bodies, electrodes, and bumps obtained from three-dimensional data may be included in the shape data.
  • the operator checks the analogy determination result displayed on the display 20 to determine whether or not the part P of this time is the same as the part of the global shape data. Good. For example, if the absolute value ((.DELTA.X, .DELTA.Y, .DELTA.Q) of the difference between the amounts of deviation is substantially zero, the CPU 12 determines that the part to be searched is the same as the part P of this time and creates this time You may overwrite the saved local shape data with the global shape data of the search target part.
  • the shape data category determination apparatus of the present disclosure may be configured as follows.
  • the shift amount may include a shift amount of plane coordinates and a shift amount of a rotation angle. In this way, the amount of deviation between the shape data and the local image can be determined relatively easily.
  • the class ratio determination execution unit determines whether the difference between the local shape data and the local image and the difference between each global shape data and the local image are for overlap determination. Whether or not the local shape data and each global shape data are similar may be determined based on whether or not they are within the numerical range. In this way, analog ratio determination can be performed relatively easily.
  • the second shift amount acquisition unit selects one of the plurality of pieces of global shape data that matches a predetermined characteristic portion of the local shape data, and is selected. An amount of deviation between shape data and the local image may be acquired. By so doing, global shape data are narrowed down, so it is possible to increase the analogy determination speed.
  • the similarity determination execution unit may display the global shape data similar to the local shape data on a display device.
  • similar global shape data may be displayed on the display device in order from the one with the highest degree of coincidence, or the one with the highest degree of coincidence may be displayed on the display device.
  • the operator can easily determine whether global shape data overlapping the current local shape data already exists in the storage device by looking at such display contents.
  • the number of pieces of global shape data displayed on the display device may be limited to a predetermined number or less.
  • the present invention is applicable to various industries that perform work of mounting components on a substrate.
  • SYMBOLS 10 Shape data class ratio determination device, 12 CPU, 14 ROM, 16 HDD, 18 RAM, 20 display, 21 cross cursor, 22 mouse, 24 keyboard, 26 camera, 28 parts mounting base, 30 parts mounting machine, 32 boards, 40 parts Supplying device, 41 reel, 42 tape, 42a recessed portion, 42b sprocket hole, 43 film, 45 substrate transfer device, 46 conveyor belt, 47 support pin, 48 parts camera, 49 mark camera, 50 XY robot, 51 X axis guide rail, 52 X-axis slider 53 Y-axis guide rail 54 Y-axis slider 60 mounting head 64 nozzle 70 controller 80 storage device A0 to A4 area B body E1 to E4 electrode FL, F1, F2 Frame, M mark, P, P1 parts, S direction check labels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Image Analysis (AREA)

Abstract

A shape data analogy determination device according to the present disclosure is provided with: a local image acquisition unit which acquires, as a local image, either a captured image of a component that is to be mounted on a substrate by a component mounting machine, or a captured image of a mark attached to the substrate; a first deviation amount acquisition unit which acquires an amount of deviation between the local image and local shape data of the component or mark; a second deviation amount acquisition unit which acquires amounts of deviation between the local image and a plurality of sets of global shape data stored in advance in a storage device; and an analogy determination unit which determines an analogy between the local shape data and each set of global shape data by comparing the amount of deviation between the local shape data and the local image with the amount of deviation between each set of global shape data and the local image.

Description

シェイプデータ類比判定装置Shape data similar ratio judgment device
 本明細書は、シェイプデータ類比判定装置を開示する。 This specification discloses a shape data similarity determination apparatus.
 部品実装機は、供給された部品を、別途供給された基板の指定位置に搭載する装置である。部品を基板の指定位置へ搭載する際に、ノズルに吸着された部品の吸着姿勢を部品下方からカメラで撮像し、位置決め処理や検査処理を行う。位置決め処理や検査処理を行う際には、シェイプデータが用いられる。シェイプデータには、部品全体のサイズや電極の位置、電極のサイズなどの外見的な特徴が定義されている。シェイプデータは、図面等からエディタで部品形状を抽出して数値入力することにより作成したり、部品実装機のノズルに吸着された部品をカメラで撮像して所定の画像処理を行うことにより作成したりする(例えば特許文献1)。 The component mounter is a device for mounting a supplied component at a designated position on a separately supplied substrate. When mounting a component on a designated position of a substrate, the camera picks up the suction posture of the component sucked by the nozzle from below the component, and performs positioning processing and inspection processing. Shape data is used when performing positioning processing and inspection processing. The shape data defines appearance characteristics such as the size of the entire part, the position of the electrode, and the size of the electrode. Shape data is created by extracting the part shape from drawings and the like with an editor and inputting numerical values, or by capturing a part absorbed by the nozzle of the part mounter with a camera and performing predetermined image processing (For example, Patent Document 1).
特開2008-197772号公報JP, 2008-197772, A
 ところで、シェイプデータの作成方法は上述したようにいくつもあるため、同じ部品であってもシェイプデータの作成者によりシェイプデータに含まれる数値が微妙に異なることがあり、同じ部品のシェイプデータが重複して存在することがあった。 By the way, since there are many ways to create shape data as described above, the figures included in the shape data may slightly differ depending on the creator of the shape data even if they are the same part, and the shape data of the same part is duplicated Had to exist.
 本開示は、上述した課題を解決するためになされたものであり、同じ部品又はマークのシェイプデータが重複して保存されるのを防止することを主目的とする。 The present disclosure has been made to solve the above-described problems, and its main object is to prevent redundant storage of shape data of the same part or mark.
 本開示のシェイプデータ類比判定装置は、
 部品実装機によって基板に装着される部品を撮影した画像又は前記基板に付されたマークを撮影した画像をローカル画像として取得するローカル画像取得部と、
 前記部品又は前記マークのローカルシェイプデータと前記ローカル画像とのズレ量を取得する第1のズレ量取得部と、
 予め記憶装置に記憶されている複数のグローバルシェイプデータと前記ローカル画像とのズレ量を取得する第2のズレ量取得部と、
 前記ローカルシェイプデータと前記ローカル画像とのズレ量と、各グローバルシェイプデータと前記ローカル画像とのズレ量とを比較することにより、前記ローカルシェイプデータと各グローバルシェイプデータとの類比判定を行う類比判定実行部と、
 を備えたものである。
The shape data similarity determination device of the present disclosure
A local image acquisition unit for acquiring as a local image an image obtained by photographing a component mounted on a substrate by a component mounting machine or an image obtained by photographing a mark attached to the substrate;
A first displacement amount acquisition unit that acquires a displacement amount between local shape data of the part or the mark and the local image;
A second shift amount acquisition unit that acquires shift amounts between a plurality of global shape data stored in advance in a storage device and the local image;
Similarity determination with the local shape data and each global shape data by comparing the local shape data with the local image and the amount of displacement between each global shape data and the local image Execution department,
Is provided.
 このシェイプデータ類比判定装置では、部品実装機で基板に装着される部品を撮影した画像又は基板上のマークを撮影した画像をローカル画像とする。そして、その部品又はマークのローカルシェイプデータとローカル画像とのズレ量と、各グローバルシェイプデータとローカル画像とのズレ量とを比較することにより、ローカルシェイプデータと各グローバルシェイプデータとの類比判定を行う。つまり、単に、ローカルシェイプデータとグローバルシェイプデータとを直接比較するのではなく、ローカルシェイプデータとローカル画像とのズレ量と、グローバルシェイプデータとローカル画像とのズレ量とを比較する。そのため、同じ部品又はマークのシェイプデータが重複して存在するか否かを精度よく判定することができ、ひいては同じ部品又はマークのシェイプデータの重複保存を防止することができる。 In this shape data class ratio determination apparatus, an image obtained by capturing a part mounted on a substrate by a component mounting machine or an image obtained by capturing a mark on a substrate is used as a local image. Then, by comparing the amount of deviation between the local shape data of the part or mark and the local image, and the amount of deviation between each global shape data and the local image, the similarity ratio judgment between the local shape data and each global shape data is determined. Do. That is, instead of simply comparing the local shape data with the global shape data, the amount of deviation between the local shape data and the local image is compared with the amount of deviation between the global shape data and the local image. Therefore, it is possible to accurately determine whether or not the shape data of the same part or mark is redundantly present, and hence it is possible to prevent redundant storage of the shape data of the same part or mark.
シェイプデータ類比判定装置10の電気的な接続関係を示すブロック図。The block diagram which shows the electrical connection relation of the shape data class ratio determination apparatus 10. FIG. 部品実装機30の概略構成を示す斜視図。FIG. 2 is a perspective view showing a schematic configuration of a component mounter 30. リール41の斜視図。FIG. 類比判定処理ルーチンのフローチャート。The flowchart of an analogy determination processing routine. 部品Pのノズル吸着面とは反対側の面の正面図。The front view of the surface on the opposite side to the nozzle adsorption | suction surface of components P. FIG. カメラ26で撮影した部品Pのローカル画像の説明図。Explanatory drawing of the local image of the components P image | photographed with the camera 26. FIG. カメラ26で撮影した部品Pのローカル画像の説明図。Explanatory drawing of the local image of the components P image | photographed with the camera 26. FIG. 部品Pのローカル画像を領域A0で囲む操作の説明図。Explanatory drawing of operation which encloses the local image of components P by area | region A0. 部品Pのローカル画像を領域A0~A4で囲った状態を表す説明図。Explanatory drawing showing the state which enclosed the local image of the components P by area | region A0-A4. 部品Pのローカルシェイプデータの一例を示す説明図。Explanatory drawing which shows an example of the local shape data of the components P. FIG. 部品Pのローカル画像にフレームFLをフィットさせたときの説明図。Explanatory drawing when the frame FL is fitted to the local image of the components P. FIG. グローバルシェイプデータの一例を示す説明図。Explanatory drawing which shows an example of global shape data. 部品Pのローカル画像にフレームF1をフィットさせたときの説明図。Explanatory drawing when the frame F1 is fitted to the local image of the components P. FIG. グローバルシェイプデータの一例を示す説明図。Explanatory drawing which shows an example of global shape data. 部品Pのローカル画像にフレームF2をフィットさせたときの説明図。Explanatory drawing when fitting the flame | frame F2 to the local image of the components P. FIG. バンプ付き部品P1の正面図。The front view of components P1 with a bump.
 本開示のシェイプデータ類比判定装置の好適な実施形態について図面を参照しながら以下に説明する。図1はシェイプデータ類比判定装置10の電気的な接続関係を示すブロック図、図2は部品実装機30の概略構成を示す斜視図、図3はリール41の斜視図である。なお、左右(X軸)方向、前後(Y軸)方向、上下(Z軸)方向は図2及び図3に示したとおりである。 A preferred embodiment of the shape data category determination apparatus of the present disclosure will be described below with reference to the drawings. FIG. 1 is a block diagram showing the electrical connection of the shape data category determination apparatus 10. FIG. 2 is a perspective view showing a schematic configuration of the component mounter 30. FIG. 3 is a perspective view of the reel 41. As shown in FIG. The left and right (X axis) direction, the front and back (Y axis) direction, and the top and bottom (Z axis) direction are as shown in FIGS. 2 and 3.
 シェイプデータ類比判定装置10は、CPU12、ROM14、HDD16、RAM18などを備えており、これらは図示しないバスを介して接続されている。こうしたシェイプデータ類比判定装置10としては、例えば周知のパーソナルコンピュータを用いることができる。シェイプデータ類比判定装置10には、ディスプレイ(表示装置)20、マウス22、キーボード24、カメラ26、記憶装置80などが接続されている。ディスプレイ20は周知の出力装置、マウス22及びキーボード24は周知の入力装置である。カメラ26は、後述する部品実装機30のパーツカメラ48と同じものであり、部品載置台28に載せられた部品Pの画像を撮像する。部品Pは、後述する部品実装機30によって基板32に実装されるものであり、ノズル64によって吸着される面とは反対側の面がカメラ26に対向するように部品載置台28に載置される。記憶装置80は、複数のグローバルシェイプデータを記憶している。 The shape data class ratio determination device 10 includes a CPU 12, a ROM 14, an HDD 16, a RAM 18, and the like, which are connected via a bus (not shown). For example, a known personal computer can be used as the shape data category determination device 10. A display (display device) 20, a mouse 22, a keyboard 24, a camera 26, a storage device 80, and the like are connected to the shape data class ratio determination device 10. The display 20 is a known output device, and the mouse 22 and the keyboard 24 are known input devices. The camera 26 is the same as a part camera 48 of the component mounter 30 described later, and picks up an image of the component P placed on the component placement stand 28. The component P is mounted on the substrate 32 by a component mounter 30, which will be described later, and is mounted on the component mounting table 28 such that the surface opposite to the surface adsorbed by the nozzle 64 faces the camera 26. Ru. The storage device 80 stores a plurality of global shape data.
 シェイプデータのうち、部品実装工場全体あるいは部品実装会社全体で集中管理されているシェイプデータを「グローバルシェイプデータ」といい、個別に作成したシェイプデータを「ローカルシェイプデータ」という。シェイプデータは、部品Pのボディサイズ、その部品Pに付いている電極等のサイズ・位置などの情報を定義したものである。シェイプデータは、トレランスやビジョンタイプを含んでいてもよい。トレランスとは寸法の許容範囲であり、ビジョンタイプとは画像処理のアルゴリズムの種類を表す。シェイプデータは、例えば後述する部品実装機30においてノズル64に吸着された部品Pをパーツカメラ48で撮影したときの画像から部品Pの姿勢を求める際などに用いられる。シェイプデータの一例を図10に示す。 Among the shape data, the shape data centrally managed in the entire component mounting factory or the entire component mounting company is called "global shape data", and the individually created shape data is called "local shape data". The shape data defines information such as the body size of the part P and the size and position of the electrode attached to the part P and the like. Shape data may include tolerance and vision type. Tolerance is the dimensional tolerance, and vision type represents the type of image processing algorithm. The shape data is used, for example, when the posture of the component P is obtained from an image of the component P suctioned by the nozzle 64 in the component mounter 30 described later by photographing with the part camera 48. An example of shape data is shown in FIG.
 シェイプデータ類比判定装置10には、マウス22からのカーソル信号、キーボード24からのキャラクタ信号、カメラ26からの画像信号などが入力される。シェイプデータ類比判定装置10からは、ディスプレイ20への画像信号などが出力される。シェイプデータ類比判定装置10は、記憶装置80に記憶されたグローバルシェイプデータを読み出したり更新したりする。 A cursor signal from the mouse 22, a character signal from the keyboard 24, an image signal from the camera 26, and the like are input to the shape data class ratio determination apparatus 10. An image signal or the like to the display 20 is output from the shape data category determination device 10. The shape data category determination device 10 reads out or updates the global shape data stored in the storage device 80.
 上述したように、部品Pは部品実装機30によって基板32に装着される。ここで、部品実装機30について説明する。 As described above, the component P is mounted on the substrate 32 by the component mounter 30. Here, the component mounter 30 will be described.
 部品実装機30は、図2に示すように、部品供給装置40と、基板搬送装置45と、XYロボット50と、実装ヘッド60と、パーツカメラ48と、マークカメラ49と、コントローラ70とを備えている。 The component mounter 30, as shown in FIG. 2, includes a component supply device 40, a substrate transfer device 45, an XY robot 50, a mounting head 60, a part camera 48, a mark camera 49, and a controller 70. ing.
 部品供給装置40は、部品実装機30の前側に、左右方向(X軸方向)に並ぶように複数設けられている。この部品供給装置40は、図3に示すように、所定間隔毎に部品Pが収容されたテープ42をリール41から引き出して所定のピッチで送るテープフィーダとして構成されている。リール41に巻回されたテープ42には、複数の凹部42aがテープ42の長手方向に沿って並ぶように形成されている。各凹部42aには、部品Pが収容されている。これらの部品Pは、テープ42の表面を覆うフィルム43によって保護されている。テープ42は、長手方向に沿って形成されたスプロケット穴42bを有している。このスプロケット穴42bに部品供給装置40のスプロケット(図示せず)の歯が嵌まり込んで所定量回転することにより、テープ42は所定のピッチで送られる。予め定められた部品供給位置Fに至った部品Pは、フィルム43が剥がされた状態になる。 A plurality of component supply devices 40 are provided on the front side of the component mounter 30 so as to be aligned in the left-right direction (X-axis direction). As shown in FIG. 3, the component supply device 40 is configured as a tape feeder which pulls out from the reel 41 the tape 42 containing the components P at predetermined intervals and feeds the tape 42 at a predetermined pitch. The tape 42 wound around the reel 41 is formed with a plurality of recesses 42 a aligned along the longitudinal direction of the tape 42. The component P is accommodated in each recess 42a. These parts P are protected by a film 43 covering the surface of the tape 42. The tape 42 has sprocket holes 42b formed along the longitudinal direction. The teeth of a sprocket (not shown) of the component supply device 40 are fitted into the sprocket holes 42b and rotated by a predetermined amount, whereby the tape 42 is fed at a predetermined pitch. The part P which has reached the predetermined part supply position F is in a state in which the film 43 is peeled off.
 基板搬送装置45は、前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルト46,46(図2では一方のみ図示)を有している。基板32はこのコンベアベルト46,46により図2の一点鎖線の矢印方向に搬送されて所定の取込位置に到達すると、裏面側に多数立設された支持ピン47によって支持される。 The substrate transfer device 45 has a pair of conveyor belts 46 and 46 (only one of which is shown in FIG. 2) provided at intervals in the front and back direction and spanned in the left-right direction. The substrate 32 is conveyed by the conveyor belts 46 and 46 in the arrow direction of the dashed dotted line in FIG. 2 and reaches a predetermined taking-in position, and is supported by a large number of support pins 47 erected on the back side.
 XYロボット50は、X軸スライダ52と、Y軸スライダ54とを備えている。X軸スライダ52は、Y軸スライダ54の前面に左右方向(X軸方向)に設けられたX軸ガイドレール51,51に沿って移動可能である。Y軸スライダ54は、前後方向(Y軸方向)に設けられたY軸ガイドレール53,53に沿って移動可能である。 The XY robot 50 includes an X-axis slider 52 and a Y-axis slider 54. The X-axis slider 52 is movable along X-axis guide rails 51 provided on the front surface of the Y-axis slider 54 in the left-right direction (X-axis direction). The Y-axis slider 54 is movable along Y-axis guide rails 53 provided in the front-rear direction (Y-axis direction).
 実装ヘッド60は、X軸スライダ52に取り付けられている。実装ヘッド60は、その下面にノズル64を備えている。ノズル64は、負圧が供給されると部品Pを吸着し、大気圧又は正圧が供給されると部品Pを放す。 The mounting head 60 is attached to the X-axis slider 52. The mounting head 60 is provided with a nozzle 64 on its lower surface. The nozzle 64 adsorbs the part P when the negative pressure is supplied, and releases the part P when the atmospheric pressure or the positive pressure is supplied.
 パーツカメラ48は、部品供給装置40と基板搬送装置45との間に設けられている。パーツカメラ48は、ノズル64に吸着された部品Pを下方から撮像する。 The parts camera 48 is provided between the parts supply device 40 and the substrate transfer device 45. The part camera 48 captures an image of the part P sucked by the nozzle 64 from below.
 マークカメラ49は、X軸スライダ52の下面に取り付けられている。マークカメラ49は、支持ピン47によって支持された基板32の所定位置に付されたマークMを撮像する。 The mark camera 49 is attached to the lower surface of the X-axis slider 52. The mark camera 49 picks up an image of the mark M attached to a predetermined position of the substrate 32 supported by the support pin 47.
 コントローラ70は、CPUを中心とするマイクロプロセッサとして構成されている。コントローラ70には、XYロボット50からの位置検出信号、パーツカメラ48からの画像信号、マークカメラ49からの画像信号などが入力される。また、コントローラ70からは、部品供給装置40への制御信号や基板搬送装置45への制御信号、XYロボット50への制御信号、実装ヘッド60への制御信号、パーツカメラ48への制御信号、マークカメラ49への制御信号などが出力される。 The controller 70 is configured as a microprocessor centering on a CPU. The controller 70 receives a position detection signal from the XY robot 50, an image signal from the part camera 48, an image signal from the mark camera 49, and the like. Further, from the controller 70, control signals to the component supply device 40, control signals to the substrate transfer device 45, control signals to the XY robot 50, control signals to the mounting head 60, control signals to the parts camera 48, marks Control signals and the like to the camera 49 are output.
 次に、部品実装機30が部品実装処理を行うときの動作について説明する。コントローラ70は、図示しない管理装置から受信した生産プログラムに基づいて、部品実装機30の各部を制御して複数の部品Pが実装された基板32を生産する。具体的には、コントローラ70は、部品供給装置40によって部品供給位置F(図3参照)に送り出された部品Pにノズル64が対向するようにXYロボット50を制御する。続いて、コントローラ70は、部品供給位置Fの部品Pがノズル64に吸着されるようにノズル64の圧力を制御する。続いて、コントローラ70は、ノズル64に吸着された部品Pの画像を撮像するようにパーツカメラ48を制御し、得られた部品Pの画像を後述する部品Pのシェイプデータから得られるフレームで処理することにより部品Pの姿勢を認識する。続いて、コントローラ70は、部品Pの姿勢を考慮して部品Pが基板32の指定位置の直上に配置されるようにXYロボット50を制御し、ノズル64が部品Pを放すようにノズル64の圧力を制御する。コントローラ70は、こうした部品実装処理を繰り返し実行することにより、基板32上に予め定められた数、種類の部品Pを実装する。こうした部品実装機30を複数台、左右方向に並べることにより実装ラインが形成される。基板32が1つの実装ラインの最上流の部品実装機30から最下流の部品実装機30まで搬送されると、基板32上に、予め定められたすべての部品Pが実装されるようになっている。部品実装工場には、こうした実装ラインが多数設けられている。 Next, an operation when the component mounter 30 performs a component mounting process will be described. The controller 70 controls each part of the component mounter 30 to produce the substrate 32 on which the plurality of components P are mounted, based on a production program received from a management device (not shown). Specifically, the controller 70 controls the XY robot 50 such that the nozzle 64 faces the component P fed to the component supply position F (see FIG. 3) by the component supply device 40. Subsequently, the controller 70 controls the pressure of the nozzle 64 so that the part P at the part supply position F is attracted to the nozzle 64. Subsequently, the controller 70 controls the part camera 48 so as to pick up an image of the part P absorbed by the nozzle 64, and processes the obtained image of the part P with a frame obtained from shape data of the part P described later By doing this, the posture of the part P is recognized. Subsequently, the controller 70 controls the XY robot 50 so that the part P is disposed immediately above the designated position of the substrate 32 in consideration of the posture of the part P, and the nozzle 64 of the nozzle 64 releases the part P. Control the pressure. The controller 70 mounts a predetermined number and types of components P on the substrate 32 by repeatedly executing such component mounting processing. A mounting line is formed by arranging a plurality of such component mounters 30 in the left-right direction. When the substrate 32 is transported from the uppermost stream component mounter 30 of one mounting line to the lowermost component mounter 30, all predetermined components P are mounted on the substrate 32. There is. A large number of such mounting lines are provided in a component mounting factory.
 次に、シェイプデータ類比判定装置10が類比判定処理を行うときの動作について説明する。シェイプデータ類比判定装置10のCPU12は、類比判定処理ルーチンのプログラムをHDD16から読み出して実行する。図4は、類比判定処理ルーチンのフローチャートである。ここでは、部品Pとして、図5に示すように、長方形状のボディBを有し、ノズル吸着面とは反対側の面に4つの長方形状の電極E1~E4が縦に2つ、横に2つ配置されたものを例に挙げて説明する。 Next, an operation when the shape data class determination device 10 performs the class determination process will be described. The CPU 12 of the shape data class ratio determination apparatus 10 reads out the program of the class ratio determination processing routine from the HDD 16 and executes the program. FIG. 4 is a flowchart of the similarity determination processing routine. Here, as the component P, as shown in FIG. 5, it has a rectangular body B, and on the surface opposite to the nozzle suction surface, four rectangular electrodes E1 to E4 are two vertically and horizontally. An example in which two are arranged will be described.
 CPU12は、類比判定処理ルーチンを開始すると、まず、部品Pのローカル画像を取得する(ステップS100)。具体的には、部品載置台28に載置された部品Pのノズル吸着面とは反対側の面をカメラ26で撮影した画像をローカル画像として取得する。部品Pは、部品実装機30でノズル64に吸着されるときの部品Pの姿勢とできるだけ一致するように部品載置台28に載置される。 When starting the analog ratio determination process routine, the CPU 12 first acquires a local image of the part P (step S100). Specifically, an image obtained by photographing the surface opposite to the nozzle suction surface of the component P placed on the component placement table 28 with the camera 26 is acquired as a local image. The component P is mounted on the component mounting table 28 so as to match as much as possible the posture of the component P when the component mounter 30 sucks the nozzle 64.
 次に、CPU12は、部品Pのローカルシェイプデータを取得する(ステップS110)。ローカルシェイプデータは、オペレータがディスプレイ20のローカル画像から手動で作成してもよいし、オペレータが部品Pの実物をノギスで計測して作成してもよいし、オペレータが部品PのCADデータの数値を手入力することにより作成してもよいし、CPU12がローカル画像から自動的に作成してもよい。以下には、オペレータがディスプレイ20のローカル画像から手動で作成する場合について説明する。 Next, the CPU 12 acquires local shape data of the part P (step S110). The local shape data may be manually created by the operator from the local image of the display 20, or may be created by measuring the actual part P with a caliper, or the operator may be represented by the CAD data of the part P May be created manually, or the CPU 12 may automatically create it from a local image. Hereinafter, a case where the operator manually creates a local image of the display 20 will be described.
 ディスプレイ20には、図6に示すように、部品Pのローカル画像と十字カーソル21とが表示されている。オペレータは、マウス22を使って、十字カーソル21の縦線、横線が部品Pの縦辺、横辺とできるだけ平行になるように調整すると共に、十字カーソル21の中心が部品Pの中心とできるだけ一致するように調整する(図7参照)。調整後、オペレータは十字カーソル21の位置合わせが終了したことをマウス22又はキーボード24を介して入力する。すると、CPU12は、十字カーソル21の中心(部品Pのローカル画像の中心とみなす)をディスプレイ20の画面中央に配置すると共に部品Pのローカル画像の回転角(傾き)をゼロにして、部品Pのローカル画像をディスプレイ20に表示する(図8参照)。オペレータは、ディスプレイ20に表示される伸縮自在な四角形の領域A0(図8参照)を、マウス22を操作して部品PのボディBの長方形状の輪郭と一致させたあと、領域A0を確定する。なお、領域A0は、予め定められた最小単位ずつ伸縮するため、部品PのボディBの長方形状の輪郭と必ずしも正確に一致するとは限らない。続いて、オペレータは、ディスプレイ20に表示される伸縮自在な四角形の領域A1を、マウス22を操作して部品Pの電極E1の長方形状の輪郭と一致させたあと、領域A1を確定する。オペレータは、電極E2~E4についても同様の操作を行い、領域A2~A4を確定する(図9参照)。CPU12は、領域A0~A4の各辺の長さに基づいて部品PのボディBのサイズ、電極E1~E4のサイズ及び位置を決定し、ローカルシェイプデータとしてHDD16に記憶する。CPU12は、オペレータの手入力によって又は自動的に、トレランスやビジョンタイプについてもローカルシェイプデータに加える。こうして得られたローカルシェイプデータの一例を図10に示す。確定した領域A0~A4を部品PのフレームFLと称する(図9や図11参照)。フレームFLは、図10のローカルシェイプデータのサイズと位置の情報から作成することができる。 On the display 20, as shown in FIG. 6, the local image of the part P and the cross cursor 21 are displayed. The operator uses the mouse 22 to adjust the vertical and horizontal lines of the cross cursor 21 so as to be as parallel as possible to the vertical and horizontal sides of the part P, and the center of the cross cursor 21 coincides with the center of the part P as closely as possible. Make adjustments (see FIG. 7). After the adjustment, the operator inputs that the alignment of the cross cursor 21 is finished through the mouse 22 or the keyboard 24. Then, the CPU 12 places the center of the cross cursor 21 (considered as the center of the local image of the part P) at the center of the screen of the display 20 and sets the rotation angle (tilt) of the local image of the part P to zero. The local image is displayed on the display 20 (see FIG. 8). The operator determines the area A0 after the stretchable rectangular area A0 (see FIG. 8) displayed on the display 20 matches the rectangular outline of the body B of the part P by operating the mouse 22. . In addition, since area | region A0 expands-contracts by predetermined minimum unit, it does not necessarily correspond exactly with the rectangular-shaped outline of the body B of the components P. FIG. Subsequently, the operator operates the mouse 22 to make the stretchable rectangular area A1 displayed on the display 20 coincide with the rectangular outline of the electrode E1 of the part P, and then determines the area A1. The operator performs the same operation on the electrodes E2 to E4 to determine the regions A2 to A4 (see FIG. 9). The CPU 12 determines the size of the body B of the part P and the sizes and positions of the electrodes E1 to E4 based on the length of each side of the areas A0 to A4, and stores the size in the HDD 16 as local shape data. The CPU 12 also adds tolerance or vision type to the local shape data by manual input by the operator or automatically. An example of the local shape data thus obtained is shown in FIG. The determined areas A0 to A4 are referred to as a frame FL of the part P (see FIGS. 9 and 11). The frame FL can be created from the size and position information of the local shape data of FIG.
 次に、CPU12は、ローカルシェイプデータから得られるフレームFLと部品Pのローカル画像とのズレ量(X,Y,Q)を算出し保存する(ステップS120)。具体的には、CPU12は、図11に示すように、部品PのフレームFLを、所定の最適マッチング手法により部品Pのローカル画像(図6参照)とできるだけ一致させる。所定の最適マッチング手法は、特に限定するものではないが、例えば部品Pのローカル画像の電極E3の中心とフレームFLの右上の小フレームの中心とが一致すると共に電極E3の回転角とその小フレームの回転角とが一致するように配置する手法などが挙げられる。CPU12は、部品Pのローカル画像から、部品Pの中心位置のXY座標と部品Pの回転角(水平線に対する傾き)を認識する。また、CPU12は、所定の最適マッチング手法を行った後のフレームFLの中心位置のXY座標とフレームFLの回転角を認識する。そして、CPU12は、部品Pのローカル画像の中心位置のXY座標とフレームFLの中心位置のXY座標とのズレ量をX,Yとして算出し、部品Pのローカル画像の回転角とフレームFLの回転角とのズレ量をQとして算出する。ここでは、ズレ量(X,Y,Q)が(0.01,0.02,1)だったとする。X,Yの単位はmm、Qの単位はdegree(°)である。CPU12は、ズレ量(X,Y,Q)が予め定めた許容範囲内に入るならば、そのズレ量を検索キーとなるズレ量としてHDD16に保存する。一方、CPU12は、ズレ量(X,Y,Q)が許容範囲内に入らなかったならば、そのズレ量を破棄してオペレータにローカルシェイプデータの再作成を要求する。なお、CPU12がローカル画像から自動的にローカルシェイプデータを作成した場合には、ズレ量(X,Y,Q)は実質的にゼロになるため、常に許容範囲内に入る。 Next, the CPU 12 calculates and stores the amount of deviation (X, Y, Q) between the frame FL obtained from the local shape data and the local image of the part P (step S120). Specifically, as shown in FIG. 11, the CPU 12 matches the frame FL of the part P as closely as possible with the local image (see FIG. 6) of the part P by a predetermined optimal matching method. The predetermined optimum matching method is not particularly limited. For example, the center of the electrode E3 of the local image of the part P and the center of the small frame at the upper right of the frame FL coincide with each other and the rotation angle of the electrode E3 and the small frame There is a method of arranging so as to match the rotation angle of. The CPU 12 recognizes, from the local image of the part P, the XY coordinates of the center position of the part P and the rotation angle (inclination to the horizontal line) of the part P. Further, the CPU 12 recognizes the XY coordinates of the center position of the frame FL and the rotation angle of the frame FL after performing the predetermined optimal matching method. Then, the CPU 12 calculates the shift amounts between the XY coordinates of the central position of the local image of the part P and the XY coordinates of the central position of the frame FL as X and Y, and the rotation angle of the local image of the part P and the rotation of the frame FL The amount of deviation from the corner is calculated as Q. Here, it is assumed that the amount of deviation (X, Y, Q) is (0.01, 0.02, 1). The unit of X and Y is mm, and the unit of Q is degree (°). If the amount of deviation (X, Y, Q) falls within a predetermined allowable range, the CPU 12 stores the amount of deviation in the HDD 16 as the amount of deviation serving as a search key. On the other hand, if the amount of deviation (X, Y, Q) does not fall within the allowable range, the CPU 12 discards the amount of deviation and requests the operator to re-create local shape data. When the CPU 12 automatically creates local shape data from a local image, the amount of displacement (X, Y, Q) is substantially zero, and therefore always falls within the allowable range.
 次に、CPU12は、記憶装置80に記憶された複数のグローバルシェイプデータを1つずつ読み出し、各グローバルシェイプデータから得られるフレームFk(k=1,2,…,n)と部品Pのローカル画像とのズレ量(X,Y,Q)を算出し保存する(ステップS130)。nは記憶装置80に記憶されているグローバルシェイプデータの総数を表す。具体的には、CPU12は、ステップS120と同様にしてズレ量(X,Y,Q)を算出する。ここでは、2つのグローバルシェイプデータ(図12及び図14)を例に挙げて説明する。まず、CPU12は、図12のグローバルシェイプデータのサイズと位置の情報からフレームF1(図13参照)を作成し、そのフレームF1を、先ほどと同じ最適マッチング手法により部品Pのローカル画像(図6参照)とできるだけ一致させる。CPU12は、所定の最適マッチング手法を行った後のフレームF1の中心位置のXY座標とフレームF1の回転角を認識する。そして、CPU12は、部品Pのローカル画像の中心位置のXY座標とフレームF1の中心位置のXY座標とのズレ量をX,Yとして算出し、部品Pのローカル画像の回転角とフレームF1の回転角とのズレ量をQとして算出する。ここでは、ズレ量(X,Y,Q)が(0.02,0.03,2)だったとする。そして、CPU12は、そのズレ量を検索対象の一つとしてHDD16に保存する。続いて、CPU12は、図14のグローバルシェイプデータのサイズと位置の情報からフレームF2(図15参照)を作成し、そのフレームF2を、先ほどと同じ最適マッチング手法により部品Pのローカル画像(図6参照)とできるだけ一致させる。CPU12は、所定の最適マッチング手法を行った後のフレームF2の中心位置のXY座標とフレームF2の回転角を認識する。そして、CPU12は、部品Pのローカル画像の中心位置のXY座標とフレームF2の中心位置のXY座標とのズレ量をX,Yとして算出し、部品Pのローカル画像の回転角とフレームF2の回転角とのズレ量をQとして算出する。ここでは、ズレ量(X,Y,Q)が(0.19,0.03,2)だったとする。そして、CPU12は、そのズレ量を検索対象の一つとしてHDD16に保存する。 Next, the CPU 12 reads out a plurality of global shape data stored in the storage device 80 one by one, and a frame Fk (k = 1, 2,..., N) obtained from each global shape data and the local image of the part P And the difference amount (X, Y, Q) from the above are calculated and stored (step S130). n represents the total number of global shape data stored in the storage device 80. Specifically, the CPU 12 calculates the amount of deviation (X, Y, Q) as in step S120. Here, two global shape data (FIGS. 12 and 14) will be described as an example. First, the CPU 12 creates a frame F1 (see FIG. 13) from the information of the size and position of the global shape data in FIG. 12, and the frame F1 is a local image of the part P by the same optimal matching method as described above (see FIG. 6). Match as much as possible. The CPU 12 recognizes the XY coordinates of the center position of the frame F1 and the rotation angle of the frame F1 after performing the predetermined optimal matching method. Then, the CPU 12 calculates the shift amount between the XY coordinates of the central position of the local image of the part P and the XY coordinates of the central position of the frame F1 as X and Y, and the rotation angle of the local image of the part P and the rotation of the frame F1 The amount of deviation from the corner is calculated as Q. Here, it is assumed that the amount of deviation (X, Y, Q) is (0.02, 0.03, 2). Then, the CPU 12 stores the amount of deviation in the HDD 16 as one of search targets. Subsequently, the CPU 12 creates a frame F2 (see FIG. 15) from the information of the size and position of the global shape data in FIG. 14, and the frame F2 is a local image of the part P by the same optimal matching method as described above (FIG. 6). Match as much as possible. The CPU 12 recognizes the XY coordinates of the center position of the frame F2 and the rotation angle of the frame F2 after performing the predetermined optimum matching method. Then, the CPU 12 calculates the shift amount between the XY coordinates of the central position of the local image of the part P and the XY coordinates of the central position of the frame F2 as X and Y, and the rotation angle of the local image of the part P and the rotation of the frame F2 The amount of deviation from the corner is calculated as Q. Here, it is assumed that the amount of deviation (X, Y, Q) is (0.19, 0.03, 2). Then, the CPU 12 stores the amount of deviation in the HDD 16 as one of search targets.
 次に、CPU12は、ステップS120で得られた検索キーとなるズレ量と、ステップS130で検索対象として保存されたズレ量とを比較することにより、類比判定を行う(ステップS140)。検索対象のズレ量は、通常、複数存在する。そのため、CPU12は、複数の検索対象のズレ量の各々とキーのズレ量とを比較する。例えば、CPU12は、両者のズレ量の差の絶対値(ΔX,ΔY,ΔQ)を算出し、ΔX,ΔY,ΔQの和又はΔX,ΔY,ΔQに重み付けを行ったあとの和が重複判定用数値範囲内か否かによってローカルシェイプデータとグローバルシェイプデータとが類似しているか否かを判定してもよい。上述した例では、フレームF1は類似、フレームF2は非類似と判定される。 Next, the CPU 12 compares the shift amount serving as the search key obtained in step S120 with the shift amount stored as the search target in step S130 to perform the analogy determination (step S140). Usually, there are a plurality of search target shift amounts. Therefore, the CPU 12 compares each of the shift amounts of the plurality of search targets with the shift amount of the key. For example, the CPU 12 calculates the absolute value (.DELTA.X, .DELTA.Y, .DELTA.Q) of the difference between the two amounts of deviation, and the sum of .DELTA.X, .DELTA.Y, .DELTA.Q or the sum after weighting .DELTA.X, .DELTA.Y, .DELTA.Q is for overlap judgment Whether the local shape data and the global shape data are similar may be determined based on whether or not they are within the numerical range. In the example described above, it is determined that the frame F1 is similar and the frame F2 is dissimilar.
 次に、CPU12は、類比判定結果をディスプレイ20に表示し(ステップS150)、このルーチンを終了する。具体的には、CPU12は、類似していると判定されたグローバルシェイプデータをディスプレイ20に表示してもよい。あるいは、類似していると判定されたグローバルシェイプデータのうち、一致度の高いものから順にディスプレイ20に表示してもよい。その場合、ΔX,ΔY,ΔQの和が小さいものほど一致度が高いと判定してもよいし、ΔX,ΔY,ΔQに重み付けを行ったあとの和を求め、その和が小さいほど一致度が高いと判定してもよい。また、CPU12は、ディスプレイ20に表示するグローバルシェイプデータの数を所定数以内に制限してもよい。 Next, the CPU 12 displays the analogy determination result on the display 20 (step S150), and ends this routine. Specifically, the CPU 12 may display on the display 20 global shape data determined to be similar. Alternatively, the global shape data determined to be similar may be displayed on the display 20 in descending order of the degree of matching. In this case, it may be determined that the smaller the sum of ΔX, ΔY, ΔQ, the higher the degree of coincidence, or the sum after weighting ΔX, ΔY, ΔQ is obtained, and the smaller the sum, the degree of coincidence is It may be determined to be high. In addition, the CPU 12 may limit the number of global shape data displayed on the display 20 to a predetermined number or less.
 オペレータは、ディスプレイ20に表示された類比判定結果をみて、部品Pがグローバルシェイプデータの部品と同一か否かを判定し、同一だったならば、今回作成したローカルシェイプデータを部品Pと同一と判定した部品のグローバルシェイプデータで上書きし、同一でなかったならば、今回作成したローカルシェイプデータをグローバルシェイプデータに新たに追加する。 The operator determines whether or not the part P is the same as the part of the global shape data, based on the result of the similarity determination displayed on the display 20. If the part is the same, the local shape data created this time is the same as the part P. It overwrites with global shape data of the judged part, and if it is not identical, newly created local shape data is added to global shape data.
 なお、本実施形態のシェイプデータ類比判定装置10が本開示のシェイプデータ類比判定装置に相当し、CPU12がローカル画像取得部、第1のズレ量取得部、第2のズレ量取得部及び類比判定実行部に相当する。 The shape data class ratio determination device 10 of the present embodiment corresponds to the shape data class ratio determination device of the present disclosure, and the CPU 12 is a local image acquisition unit, a first shift amount acquisition unit, a second shift amount acquisition unit, and a ratio determination. It corresponds to the execution unit.
 以上説明したシェイプデータ類比判定装置10では、部品Pのローカルシェイプデータとローカル画像とのズレ量と、各グローバルシェイプデータとローカル画像とのズレ量とを比較することにより、ローカルシェイプデータと各グローバルシェイプデータとの類比判定を行う。つまり、単に、ローカルシェイプデータとグローバルシェイプデータとを直接比較するのではなく、ローカルシェイプデータとローカル画像とのズレ量と、グローバルシェイプデータとローカル画像とのズレ量とを比較する。そのため、同じ部品のシェイプデータが重複して存在するか否かを精度よく判定することができ、ひいては同じ部品のシェイプデータの重複保存を防止することができる。 In the shape data category determination apparatus 10 described above, the local shape data and each global are compared by comparing the deviation between the local shape data of the part P and the local image and the deviation between each global shape data and the local image. Perform analogy determination with shape data. That is, instead of simply comparing the local shape data with the global shape data, the amount of deviation between the local shape data and the local image is compared with the amount of deviation between the global shape data and the local image. Therefore, it is possible to accurately determine whether or not shape data of the same part is redundantly present, and as a result, redundant storage of shape data of the same part can be prevented.
 また、ズレ量は、平面座標のズレ量(X,Y)及び回転角のズレ量(Q)を含むものであるため、比較的簡単に求めることができる。 Further, since the deviation amount includes the deviation amount (X, Y) of the plane coordinates and the deviation amount (Q) of the rotation angle, it can be obtained relatively easily.
 更に、CPU12は、ローカルシェイプデータとローカル画像とのズレ量と、各グローバルシェープデータとローカル画像とのズレ量との差が重複判定用数値範囲内か否かによって、ローカルシェイプデータと各グローバルシェイプデータとが類似しているか否かを判定する。そのため、類比判定を比較的簡単に行うことができる。 Furthermore, the CPU 12 determines whether the local shape data and the global shapes are different depending on whether the difference between the local shape data and the local image and the difference between the global shape data and the local image are within the overlap determination numerical range. It is determined whether or not the data is similar. Therefore, analog ratio determination can be performed relatively easily.
 更にまた、CPU12は、ローカルシェイプデータと類似しているグローバルシェイプデータをディスプレイ20に表示する。そのため、オペレータは、こうした表示内容を見ることにより、今回のローカルシェイプデータと重複するグローバルシェイプデータが既に記憶装置80に存在するか否かの判断を容易に行うことができる。特に、一致度の高いものから順に表示されたり、最も一致度の高いものが表示されるようにすれば、こうした判断をより容易に行うことができる。 Furthermore, the CPU 12 displays global shape data similar to the local shape data on the display 20. Therefore, the operator can easily determine whether global shape data overlapping the current local shape data already exists in the storage device 80 by looking at such display contents. Such judgment can be made more easily by displaying in order from the one with the highest degree of coincidence, or by displaying the one with the highest degree of coincidence.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It is needless to say that the present invention is not limited to the above-mentioned embodiment at all, and can be implemented in various modes within the technical scope of the present invention.
 例えば、上述した実施形態では、CPU12は、ステップS130で、記憶装置80に記憶された複数のグローバルシェイプデータのすべてについて部品Pのローカル画像とのズレ量(X,Y,Q)を算出したが、以下のようにしてもよい。すなわち、CPU12は、記憶装置80に記憶された複数のグローバルシェイプデータの中から、ローカルシェイプデータの所定の特徴部分と一致するものを選出し、選出されたグローバルシェイプデータと部品Pのローカル画像とのズレ量(X,Y,Q)を算出してもよい。こうすれば、すべてのグローバルシェイプデータについてズレ量を求める場合に比べて、絞り込まれたグローバルシェイプデータについてズレ量を求めればよいため、類比判定速度を上げることが可能となる。所定の特徴部分と一致するものとしては、例えば、グローバルシェイプデータのボディのサイズや電極のサイズ・位置が部品Pのボディのサイズや電極のサイズ・位置のトレランスに入るものとしてもよいし、電極数(リード数やバンプ数などでもよい)が同じものとしてもよいし、ビジョンタイプが同じものとしてもよいし、これらを適宜組み合わせてもよい。 For example, in the embodiment described above, the CPU 12 calculates the amount of deviation (X, Y, Q) from the local image of the part P for all of the plurality of global shape data stored in the storage device 80 in step S130. , May be as follows. That is, the CPU 12 selects one of the plurality of pieces of global shape data stored in the storage device 80 that matches the predetermined characteristic portion of the local shape data, and selects the selected global shape data and the local image of the part P. The amount of deviation (X, Y, Q) of may be calculated. This makes it possible to increase the analogy determination speed because it suffices to determine the amount of deviation for the narrowed global shape data, as compared to the case of determining the amount of deviation for all global shape data. For example, the size of the body of the global shape data or the size and position of the electrode may fall within the tolerance of the size of the body of the component P or the size and position of the electrode, or the electrode The number (the number of leads, the number of bumps, etc.) may be the same, the vision type may be the same, or these may be combined as appropriate.
 上述した実施形態では、部品Pのローカル画像として、部品載置台28に載せられた部品Pをカメラ26によって撮像した画像を用いたが、特にこれに限定されない。例えば、部品Pのローカル画像として、部品実装機30においてノズル64に吸着された部品Pをパーツカメラ48が撮像した画像を用いてもよい。このようにしても、上述した実施形態と同様の効果が得られる。 In the embodiment described above, an image obtained by imaging the part P placed on the part placement table 28 with the camera 26 is used as the local image of the part P, but the invention is not particularly limited thereto. For example, as a local image of the component P, an image of the component P captured by the nozzle 64 in the component mounter 30 may be used. Even in this case, the same effect as that of the above-described embodiment can be obtained.
 上述した実施形態では、部品Pとして、図5に示すように長方形状の電極E1~E4がボディの裏面に設けられているものを例示したが、特にどのような部品であっても構わない。例えば、ボディからリードが突出している部品であってもよいし、ボディの裏面に複数のバンプを有する部品であってもよい。 In the above-described embodiment, as the component P, as shown in FIG. 5, one in which the rectangular electrodes E1 to E4 are provided on the back surface of the body is exemplified, but any component may be used. For example, it may be a component in which a lead protrudes from the body, or a component having a plurality of bumps on the back surface of the body.
 上述した実施形態では、部品Pのローカル画像を用いたが、基板32のマークM(図2参照)のローカル画像を用いてもよい。このようにしても、上述した実施形態と同様の効果が得られる。なお、マークMとしては、円形、三角形、四角形などがある。円形の場合にはサイズとして直径を用い、三角形や四角形の場合にはサイズとして辺の長さを用いればよい。 In the embodiment described above, the local image of the part P is used, but a local image of the mark M (see FIG. 2) of the substrate 32 may be used. Even in this case, the same effect as that of the above-described embodiment can be obtained. The mark M is, for example, a circle, a triangle, or a square. In the case of a circle, the diameter may be used as the size, and in the case of a triangle or a square, the side length may be used as the size.
 上述した実施形態では、シェイプデータは、ボディのサイズや電極のサイズ・位置を含むものとしたが、その他の外形的特徴を含めてもよい。例えば、図16に示すように、4回回転対称のバンプ付き部品P1の四つの角の一つに方向チェック標識Sを備えている場合には、方向チェック標識Sの位置をシェイプデータに含めてもよい。こうすれば、図16のカッコ外に示したバンプ付き部品P1とカッコ内に示したバンプ付き部品P1(方向チェック標識Sが右下角に位置するもの)とを区別することができる。また、図16に示すようなバンプ付き部品P1において、転写剤(フラックスなど)にバンプをディップする前後の画像から得られる転写剤なしのバンプの明るさと転写剤ありのバンプの明るさとの差をシェイプデータに含めてもよい。また、三次元データから得られるボディや電極、バンプの高さをシェイプデータに含めてもよい。 In the above-described embodiment, the shape data includes the size of the body and the size and position of the electrode, but may include other external features. For example, as shown in FIG. 16, when the direction check mark S is provided at one of the four corners of the four-fold rotationally symmetrical bumped component P1, the position of the direction check mark S is included in the shape data It is also good. In this way, it is possible to distinguish between the bumped component P1 shown outside the brackets in FIG. 16 and the bumped component P1 shown in the brackets (where the direction check mark S is located in the lower right corner). In the bumped component P1 as shown in FIG. 16, the difference between the brightness of the bump without transfer agent and the brightness of the bump with transfer agent obtained from the images before and after dipping the bump in the transfer agent (flux etc.) It may be included in shape data. In addition, heights of bodies, electrodes, and bumps obtained from three-dimensional data may be included in the shape data.
 上述した実施形態では、オペレータがディスプレイ20に表示された類比判定結果をみて、今回の部品Pがグローバルシェイプデータの部品と同一か否かを判定したが、この判定をCPU12が行うようにしてもよい。例えば、CPU12は、ズレ量の差の絶対値((ΔX,ΔY,ΔQ)が実質的にゼロだったならば、その検索対象の部品は今回の部品Pと同一であると判定し、今回作成したローカルシェイプデータをその検索対象の部品のグローバルシェイプデータで上書き保存してもよい。 In the embodiment described above, the operator checks the analogy determination result displayed on the display 20 to determine whether or not the part P of this time is the same as the part of the global shape data. Good. For example, if the absolute value ((.DELTA.X, .DELTA.Y, .DELTA.Q) of the difference between the amounts of deviation is substantially zero, the CPU 12 determines that the part to be searched is the same as the part P of this time and creates this time You may overwrite the saved local shape data with the global shape data of the search target part.
 本開示のシェイプデータ類比判定装置は、以下のように構成してもよい。 The shape data category determination apparatus of the present disclosure may be configured as follows.
 本開示のシェイプデータ類比判定装置において、前記ズレ量は、平面座標のズレ量及び回転角のズレ量を含むようにしてもよい。こうすれば、シェイプデータとローカル画像とのズレ量を比較的簡単に求めることができる。 In the shape data category determination apparatus of the present disclosure, the shift amount may include a shift amount of plane coordinates and a shift amount of a rotation angle. In this way, the amount of deviation between the shape data and the local image can be determined relatively easily.
 本開示のシェイプデータ類比判定装置において、前記類比判定実行部は、前記ローカルシェイプデータと前記ローカル画像とのズレ量と、各グローバルシェープデータと前記ローカル画像とのズレ量との差が重複判定用数値範囲内か否かによって、前記ローカルシェイプデータと各グローバルシェイプデータとが類似しているか否かを判定してもよい。こうすれば、類比判定を比較的簡単に行うことができる。 In the shape data class ratio determination apparatus of the present disclosure, the class ratio determination execution unit determines whether the difference between the local shape data and the local image and the difference between each global shape data and the local image are for overlap determination. Whether or not the local shape data and each global shape data are similar may be determined based on whether or not they are within the numerical range. In this way, analog ratio determination can be performed relatively easily.
 本開示のシェイプデータ類比判定装置において、前記第2のズレ量取得部は、前記複数のグローバルシェイプデータの中から前記ローカルシェイプデータの所定の特徴部分と一致するものを選出し、選出されたグローバルシェイプデータと前記ローカル画像とのズレ量を取得してもよい。こうすれば、グローバルシェイプデータが絞り込まれるため、類比判定速度を上げることが可能となる。 In the shape data similarity determination apparatus according to the present disclosure, the second shift amount acquisition unit selects one of the plurality of pieces of global shape data that matches a predetermined characteristic portion of the local shape data, and is selected. An amount of deviation between shape data and the local image may be acquired. By so doing, global shape data are narrowed down, so it is possible to increase the analogy determination speed.
 本開示のシェイプデータ類比判定装置において、前記類比判定実行部は、前記ローカルシェイプデータと類似している前記グローバルシェイプデータを表示装置に表示してもよい。その場合、類似しているグローバルシェイプデータを一致度の高いものから順に表示装置に表示してもよいし、最も一致度の高いものを表示装置に表示してもよい。いずれにしても、オペレータは、こうした表示内容を見ることにより、今回のローカルシェイプデータと重複するグローバルシェイプデータが既に記憶装置に存在するか否かを容易に判断することができる。なお、表示装置に表示するグローバルシェイプデータの数を所定数以内に制限してもよい。 In the shape data similarity determination apparatus of the present disclosure, the similarity determination execution unit may display the global shape data similar to the local shape data on a display device. In that case, similar global shape data may be displayed on the display device in order from the one with the highest degree of coincidence, or the one with the highest degree of coincidence may be displayed on the display device. In any case, the operator can easily determine whether global shape data overlapping the current local shape data already exists in the storage device by looking at such display contents. The number of pieces of global shape data displayed on the display device may be limited to a predetermined number or less.
 本発明は、部品を基板上に実装する作業を行う各種産業に利用可能である。 The present invention is applicable to various industries that perform work of mounting components on a substrate.
10 シェイプデータ類比判定装置、12 CPU、14 ROM、16 HDD、18 RAM、20 ディスプレイ、21 十字カーソル、22 マウス、24 キーボード、26 カメラ、28 部品載置台、30 部品実装機、32 基板、40 部品供給装置、41 リール、42 テープ、42a 凹部、42b スプロケット穴、43 フィルム、45 基板搬送装置、46 コンベアベルト、47 支持ピン、48 パーツカメラ、49 マークカメラ、50 XYロボット、51 X軸ガイドレール、52 X軸スライダ、53 Y軸ガイドレール、54 Y軸スライダ、60 実装ヘッド、64 ノズル、70 コントローラ、80 記憶装置、A0~A4 領域、B ボディ、E1~E4 電極、FL,F1,F2 フレーム、M マーク、P,P1 部品、S 方向チェック標識。 DESCRIPTION OF SYMBOLS 10 Shape data class ratio determination device, 12 CPU, 14 ROM, 16 HDD, 18 RAM, 20 display, 21 cross cursor, 22 mouse, 24 keyboard, 26 camera, 28 parts mounting base, 30 parts mounting machine, 32 boards, 40 parts Supplying device, 41 reel, 42 tape, 42a recessed portion, 42b sprocket hole, 43 film, 45 substrate transfer device, 46 conveyor belt, 47 support pin, 48 parts camera, 49 mark camera, 50 XY robot, 51 X axis guide rail, 52 X-axis slider 53 Y-axis guide rail 54 Y-axis slider 60 mounting head 64 nozzle 70 controller 80 storage device A0 to A4 area B body E1 to E4 electrode FL, F1, F2 Frame, M mark, P, P1 parts, S direction check labels.

Claims (6)

  1.  部品実装機によって基板に装着される部品を撮影した画像又は前記基板に付されたマークを撮影した画像をローカル画像として取得するローカル画像取得部と、
     前記部品又は前記マークのローカルシェイプデータと前記ローカル画像とのズレ量を取得する第1のズレ量取得部と、
     予め記憶装置に記憶されている複数のグローバルシェイプデータと前記ローカル画像とのズレ量を取得する第2のズレ量取得部と、
     前記ローカルシェイプデータと前記ローカル画像とのズレ量と、各グローバルシェイプデータと前記ローカル画像とのズレ量とを比較することにより、前記ローカルシェイプデータと各グローバルシェイプデータとの類比判定を行う類比判定実行部と、
     を備えたシェイプデータ類比判定装置。
    A local image acquisition unit for acquiring as a local image an image obtained by photographing a component mounted on a substrate by a component mounting machine or an image obtained by photographing a mark attached to the substrate;
    A first displacement amount acquisition unit that acquires a displacement amount between local shape data of the part or the mark and the local image;
    A second shift amount acquisition unit that acquires shift amounts between a plurality of global shape data stored in advance in a storage device and the local image;
    Similarity determination with the local shape data and each global shape data by comparing the local shape data with the local image and the amount of displacement between each global shape data and the local image Execution department,
    Shape data similarity judgment device equipped with.
  2.  前記ズレ量は、平面座標のズレ量及び回転角のズレ量を含む、
     請求項1に記載のシェイプデータ類比判定装置。
    The amount of deviation includes the amount of deviation of plane coordinates and the amount of deviation of rotation angle.
    The shape data analogy determination apparatus according to claim 1.
  3.  前記類比判定実行部は、前記ローカルシェイプデータと前記ローカル画像とのズレ量と、各グローバルシェープデータと前記ローカル画像とのズレ量との差が重複判定用数値範囲内か否かによって、前記ローカルシェイプデータと各グローバルシェイプデータとが類似しているか否かを判定する、
     請求項1又は2に記載のシェイプデータ類比判定装置。
    The analogy determination execution unit determines whether the difference between the local shape data and the local image and the difference between the global shape data and the local image are within the overlap determination numerical range. Determine if the shape data and each global shape data are similar,
    The shape data analogy determination apparatus according to claim 1 or 2.
  4.  前記第2のズレ量取得部は、前記複数のグローバルシェイプデータの中から前記ローカルシェイプデータの所定の特徴部分と一致するものを選出し、選出されたグローバルシェイプデータと前記ローカル画像とのズレ量を取得する、
     請求項1~3のいずれか1項に記載のシェイプデータ類比判定装置。
    The second shift amount acquisition unit selects one of the plurality of global shape data that matches the predetermined characteristic portion of the local shape data, and shifts the amount between the selected global shape data and the local image. To get
    The shape data similar ratio judging device according to any one of claims 1 to 3.
  5.  前記類比判定実行部は、前記ローカルシェイプデータと類似している前記グローバルシェイプデータを表示装置に表示する、
     請求項1~4のいずれか1項に記載のシェイプデータ類比判定装置。
    The analogy determination execution unit displays the global shape data similar to the local shape data on a display device.
    The shape data similar ratio judging device according to any one of claims 1 to 4.
  6.  前記類比判定実行部は、前記ローカルシェイプデータと類似している前記グローバルシェイプデータを、一致度の高いものから順に前記表示装置に表示するか又は最も一致度の高いものを前記表示装置に表示する、
     請求項5に記載のシェイプデータ類比判定装置。
    The analogy determination execution unit displays the global shape data similar to the local shape data in order from the one with the highest degree of coincidence on the display device or displays the one with the highest degree of coincidence on the display device ,
    The shape data analogy determination apparatus according to claim 5.
PCT/JP2017/034029 2017-09-21 2017-09-21 Shape data analogy determination device WO2019058475A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019542884A JP6837152B2 (en) 2017-09-21 2017-09-21 Shape data analogy judgment device
PCT/JP2017/034029 WO2019058475A1 (en) 2017-09-21 2017-09-21 Shape data analogy determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034029 WO2019058475A1 (en) 2017-09-21 2017-09-21 Shape data analogy determination device

Publications (1)

Publication Number Publication Date
WO2019058475A1 true WO2019058475A1 (en) 2019-03-28

Family

ID=65811221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034029 WO2019058475A1 (en) 2017-09-21 2017-09-21 Shape data analogy determination device

Country Status (2)

Country Link
JP (1) JP6837152B2 (en)
WO (1) WO2019058475A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021144971A1 (en) * 2020-01-17 2021-07-22

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250609A (en) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd Visual inspection method of circuit mounting board
JP2014021921A (en) * 2012-07-23 2014-02-03 Toshiba Tec Corp Recognition dictionary processing device and recognition dictionary processing program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250609A (en) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd Visual inspection method of circuit mounting board
JP2014021921A (en) * 2012-07-23 2014-02-03 Toshiba Tec Corp Recognition dictionary processing device and recognition dictionary processing program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021144971A1 (en) * 2020-01-17 2021-07-22
WO2021144971A1 (en) * 2020-01-17 2021-07-22 株式会社Fuji Inspection device and inspection method
JP7425091B2 (en) 2020-01-17 2024-01-30 株式会社Fuji Inspection equipment and inspection method

Also Published As

Publication number Publication date
JP6837152B2 (en) 2021-03-03
JPWO2019058475A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6411028B2 (en) Management device
JP2000031693A (en) Electronic component sucking part teaching apparatus
JP6571116B2 (en) Inspection support device
EP2931014B1 (en) Apparatus and method for generating mounting data, and substrate manufacturing system
JP6472873B2 (en) Parts inspection machine and parts placement machine
JP2005101586A (en) Apparatus for correcting electronic component suction position in electronic component mounting machine
WO2017081773A1 (en) Image processing device and image processing method for base plate
WO2019058475A1 (en) Shape data analogy determination device
WO2018142492A1 (en) Coordinate data generation device and coordinate data generation method
WO2018207313A1 (en) Information processing device, three-dimensional mounting-related device, mounting system, and information processing method
JP2007287838A (en) Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
JP7117507B2 (en) Component mounting method and component mounting device
JPWO2017072908A1 (en) Board position search device and component mounting machine
JP6407433B2 (en) Model data creation device, model data creation method, mounting reference point determination device, mounting reference point determination method
JP6621639B2 (en) Image processing apparatus for substrates
US11216151B2 (en) Information processing device and information processing method
JP7358639B2 (en) Component mounting system
WO2019009095A1 (en) Component mounting device and program for mounting component
JP7185761B2 (en) Arithmetic unit
JP6884494B2 (en) Parts transfer device, parts transfer method and component mounting device
JP6556200B2 (en) Electronic component mounting apparatus and substrate manufacturing method
JP6903823B2 (en) Image processing method and component mounting machine
JP2013219226A (en) Component mounting apparatus
JP2018037501A (en) Component mounting system and data feedback method in component mounting system
JP2024024767A (en) Component mounting device and component suction state inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926226

Country of ref document: EP

Kind code of ref document: A1