JP7275193B2 - 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム - Google Patents
筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム Download PDFInfo
- Publication number
- JP7275193B2 JP7275193B2 JP2021076780A JP2021076780A JP7275193B2 JP 7275193 B2 JP7275193 B2 JP 7275193B2 JP 2021076780 A JP2021076780 A JP 2021076780A JP 2021076780 A JP2021076780 A JP 2021076780A JP 7275193 B2 JP7275193 B2 JP 7275193B2
- Authority
- JP
- Japan
- Prior art keywords
- exosomes
- mir
- cdc
- cells
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/34—Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
- C12N2310/141—MicroRNAs, miRNAs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/31—Combination therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/32—Special delivery means, e.g. tissue-specific
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Dermatology (AREA)
- Virology (AREA)
- Marine Sciences & Fisheries (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Neurology (AREA)
- Urology & Nephrology (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
Description
CDCの培養
心室中隔の右心室面からの心内膜生検は、死亡した組織ドナーの健常心臓から得られる。心筋球由来細胞は、以前に記載されているように誘導した。Makkar et al.,(2012)."Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction(CADUCEUS):a prospective,randomised phase 1 trial."Lancet 379,895-904(2012)(これは、参照により本明細書に全体的に組み込まれる)を参照のこと。
培地の馴化およびエキソソームの精製
4継代のCDCから、エキソソームを採取する。正常ヒト真皮線維芽細胞(NHDF)(対照として有益な利益を提供しない対照として以前に利用されていた細胞)から、エキソソームを単離することもできる。
エキソソームRNAの分解エキソソームペレットを2mlのPBSに懸濁することによって、エキソソームRNA分解を実施する。1つのサンプルに、100mlのTriton X-100(Sigma Aldrich)を追加して、5%のtriton濃度を達成する。0.4mg/ml RNase A処理によって、エキソソームを37℃で10分間処理する。0.1mg/mlプロテイナーゼKによって、サンプルを37℃で20分間さらに処理する。マイクロRNA単離キットを使用して、サンプルからRNAを精製する。Nanodropを使用して、RNAレベルを測定する。
エキソソームペレットの質量分析
消化のために、フィルタ支援サンプル調製(FASP)法を使用して、タンパク質を調製する。Qubitfluorometerを使用して、濃度を測定する。トリプシンを1:40の酵素対基質比で追加し、37℃のヒートブロック上で、サンプルを一晩インキュベートする。デバイスを遠心分離し、ろ液を回収した。消化したペプチドを、C18 stop-and-go extraction(STAGE)チップを使用して脱塩する。強陰イオン交換STAGEチップクロマトグラフィーによって、ペプチドを分画する。C18 STAGEチップからペプチドを溶出し、乾燥させる。液体クロマトグラフィータンデム質量分析を用いて、各画分を分析する。サンプルを内径2cm×100mmのトラップカラムにロードする。分析カラムは、プルドチップエミッターを備える内径13cm×75mmの溶融シリカである。データ依存的な取得によって、400~1,400m/zのフルスキャンで上位15のイオンからタンデム質量スペクトルを取得するように、質量分析計をプログラミングする。msconvertを使用して、質量分析計のRAWデータファイルをMGF形式に変換する。X!Hunterを使用して、その時点においてGPMで利用可能な最新のスペクトルライブラリーに対して、MGFファイルをサーチする。また、ネイティブスコアリングアルゴリズムおよびk-スコアスコアリングアルゴリズムの両方を使用するX!!Tandemを使用して、OMSSAによって、MGFファイルをサーチする。タンパク質は、X!!Tandemでは0.01以下のペプチドE値スコア、OMSSAでは0.01以下、0.001以下、ならびにX!Hunterサーチでは0.5以上のシータ値、ならびにX!!TandemおよびX!Hunterでは0.0001以下のタンパク質E値スコアを有する1つ以上のユニークなペプチドを有することが必要である。
筋細胞の単離、血管新生アッセイ エキソソーム適用の効果を立証する研究のために、様々な細胞型を使用することができる。例えば、1~2日齢のSprague Dawley仔ラットから新生ラット心筋細胞(NRCM)を単離し、単層培養することができる。別の有用な供給源は、血管新生をアッセイするために成長因子欠乏マトリゲル(BD Biosciences)上にプレーティングされたヒト臍静脈静脈内皮細胞を含む。
インビトロ心筋細胞アッセイ、エキソソーム処理
本発明者らは、1.5×104個のNRCMをフィブロネクチンコーティング8チャンバースライドにプレーティングした。5日後に、培地を、それぞれ3.5×108個または2×108個のCDCまたはNHDFエキソソームを含有する新たな新鮮培地と交換する。次いで、細胞を、4%パラホルムアルデヒドによって4℃で30分間固定する。チャンバーを冷PBSで3回洗浄し、次いで、ブロッキングし、Dako/0.1%サポニン(Invitrogen)によって37℃で1時間透過処理する。細胞を、ウサギ抗Ki-67(1:100)一次抗体およびマウス抗a-サルコメアアクチニン(Abeam)と共にインキュベートする(一晩、4℃)。次いで、細胞をPBSで3回洗浄し、TUNEL染色溶液中、ヤギ抗マウス(Cy5)およびヤギ抗ウサギ(FITC)と共に37℃で1時間インキュベートする。次いで、スライドをPBSで3回洗浄し、1:8,000 40,6-ジアミジノ-2-フェニルインドール染色溶液で染色し、Prolong退色防止溶液(Invitrogen)を使用してマウントする。共焦点顕微鏡法を使用して、スライドをイメージングした。
心筋細胞ストレスアッセイ
第1の傷害モデルは、フィブロネクチンコーティング12ウェルプレート上に単層でプレーティングし、40nMのmiR-146aまたは模倣物のいずれかで24時間処理したNRCMの使用を含むことができる。次いで、培地を交換し、細胞をPBSで3回洗浄した。次いで、過酸化水素(無血清培地中100mM H2O2、2時間)または塩化コバルト(無血清培地中5mMCoCl2、2時間)を使用して、細胞にストレス負荷する。細胞をPBSで洗浄し、暗条件下、20mMカルセインPBS溶液によって37℃で20分間処理することによって、生存率を測定する。Soft Max Pro 5 Plate Reader(Molecular Devices)を使用して、蛍光を読み取る。1ウェル当たりのデータは、9回の連続測定の平均である。
CDCにおけるエキソソーム阻害
T175フラスコ中で、CDCをコンフルエンスまで成長させる。インビトロ研究では、20mM GW4869(Sigma Aldrich)の無血清培地、または等量のDMSOを含有する無血清培地中で、CDCを15日間馴化した。心筋細胞ストレスのインビトロトランスウェルインサートアッセイでは、20mM GW4869(Sigma Aldrich)または5mMスピロエポキシド(Santa Cruz Biotechnology)でCDCを12時間処理することができる。CDCをPBSで3回洗浄し、無血清培地と交換する。処理したCDCを含有するインサートを、心筋細胞を含有する6ウェルプレートに追加する。インビボ研究では、20mM GW4869または等量のDMSOでCDCを12時間処理する。注射前に、CDCフラスコをPBSで2回洗浄し、トリプシン処理し、カウントする;動物1匹当たり105個のCDCを注射した。
急性および慢性心筋梗塞モデル
3カ月齢の雄性重症複合免疫不全(SCID)beigeマウスをイソフルランで麻酔する。外科的準備の後に、側方開胸のために、2cmの垂直切開を鎖骨中線に入れる。7-0シルクを使用して、左前下行を結紮した。エキソソーム、マイクロRNA、CDCまたは培地対照を、動物の2つの梗塞周辺部位に、40ml/注射の容量で注射する。
組織学
MIの4週間後に、動物を屠殺する。心臓を採取し、横切断をMI縫合の少し上に入れる。次いで、先端部分を、最適切断温度溶液中のベースモールド/包埋リングブロックに包埋する。冷2-メチルブタンに浸漬することによって、ブロックを急速凍結する。心臓を厚さ5mMで切片化する。
マッソントリクローム染色
心臓1つ当たり合計4個の切片を含有する2つのスライドを、マッソントリクローム染色を使用して染色する。簡潔に言えば、ブアン溶液中で、切片を一晩処理する。次いで、スライドを流水下で10分間リンスし、ワイゲルトヘマトキシリンで5分間染色する。その後、スライドをリンスし、スカーレット酸フクシンで5分間染色し、再びリンスする。次いで、リンタングステン/リンモリブデン、アニリンブルーおよび2%酢酸で、スライドをそれぞれ5分間さらに染色する。次いで、スライドをリンスし、乾燥し、DPXマウント媒体を使用してマウントした。
形態計測
Image Jソフトウェアを使用して、心臓切片の形態計測分析を実施した。簡潔に言えば、染色切片の2D画像を青色、赤色および緑色のチャネルに分割する(青色のみを使用した)。各切片における青色の面積および強度を測定して梗塞サイズを計算することによって、梗塞サイズを立証することができる。心臓1つ当たり分析した4個の切片の梗塞率を平均化することによって、生存心筋量および梗塞量の割合を計算した。梗塞組織または生存組織の生成物、平均マウス心臓の高さ(3mm)および心臓組織の比重(1.05g/ml)として、梗塞量および生存心筋量を計算した。梗塞の最薄面積を測定することによって、梗塞壁厚を計算する。有意な肥大および有害なリモデリングが起こったMIの慢性モデルでは、組織における心筋細胞の生成量に基づいて、各心臓の生存心筋量を調整することができる。
CDCエキソソームは、血管新生を増強し、心筋細胞の生存および増殖を促進する 培養ヒトCDC(または、治療的に不活性な対照として正常ヒト真皮線維芽細胞(NHDF))によって15日間馴化した無血清培地から、エキソソームを単離する(オンラインで入手可能な図7)。培地を定期的に交換しなかったにもかかわらず、馴化期間の終了までに、ほとんどのCDCが依然として生存していた(図7Bおよび7C)。精製エキソソームペレットは、RNAが豊富であった(図1A)。本発明者らは、5%tritonの存在下でペレットをRNaseAに曝露し(図1B)、プロテイナーゼKを追加して、RNAを遮蔽し得るタンパク質複合体を解離させることによって、RNAがエキソソーム内に存在することを確認した。質量分析により、保存されているエキソソーム生合成タンパク質(CD63を含む)(図1C)の存在を確認し、本発明者らは、エキソソームの収量を定量するためにこれを使用した(図1D)。透過型電子顕微鏡により、ほとんどのエキソソームは直径30~90nmであることが明らかになったが、血管細胞由来エキソソームの報告と一致して、より小さな粒子およびより大きな粒子も存在していた(図1Eおよび1F)。インビトロアッセイにより、血管新生、心筋細胞増殖およびアポトーシスに対するCDCエキソソームの主な効果が明らかになった。
CDCエキソソームは、MI後に心機能を改善し、構造的利益を付与し、生存心筋量を増加させる CDCは、動物およびヒトの両方において、梗塞心筋における機能的改善および再生を刺激することが公知であるが、CDC由来エキソソームがこれらのプロセスを再現することができるか、またはこれらのプロセスに不可欠であるかは、本技術の主な重要事項である。確立された前臨床モデルにおける治療有効性を評価するために、本発明者らは、免疫不全マウスにおいて急性MIを誘発し、次いで、CDCエキソソーム、NHDFエキソソームまたは無血清培地をMI境界領域に注射した。
エキソソーム分泌の阻害はCDCの利益を減少させる
エキソソームがCDC移植の治療効果を媒介するのであれば、エキソソーム分泌の阻害は、前記利益を遮断すると論理的に予想される。この考えを試験するために、本発明者らは、GW4869(エキソソーム放出を防止する中性スフィンゴミエリナーゼの可逆的阻害剤)でCDCを処理した。GW4869への曝露は、エキソソーム産生を用量依存的に遮断し(図3A)、20mM(明らかな短期的細胞毒性害を伴わない用量;例えば、増殖の障害はない;図3B)で完全に抑制した。
CDCエキソソームは、MI病理において重要な役割を果たすmiR-146aが豊富である
CDCエキソソームの治療利益の根拠を調査するために、本発明者らは、88個の最も良く定義されたマイクロRNAのPCRマイクロアレイを使用して、それらのマイクロRNAレパートリーをNHDFエキソソームのものと比較した。2つの細胞型のマイクロRNA含量は、劇的に異なっていた。2つの群では、43個のマイクロRNAが差次的に存在していた;これらの中で、miR-146aは、CDCエキソソームにおいて最も豊富であった(NHDFエキソソームよりも262倍多かった;図4A、4Bおよび11)。さらに、CDCエキソソームを注射した動物由来のMI後心臓では、NHDFエキソソームを注射したものと比較して、miR-146aの組織レベルが増加していたが(図4C)、これは、CDCエキソソームがmiR-146a輸送を介して作用し得るという考えを説得力のあるものにする。miR-146a模倣物への新生ラット心筋細胞の曝露は、心筋細胞生存率を増加させ、酸化ストレスから保護した(図4Dおよび12A)。全トランスクリプトームマイクロアレイにより、Irak1およびTraf6(これら2つは、miR-146aの公知の標的であるTLR-NFkB線のシグナル伝達メディエーターである)のダウンレギュレーションが明らかになった(図4E)。本発明の経路分析により、細胞生存、細胞周期、細胞組織化および形態に関与する経路の変化(これらはすべて、虚血傷害に関連し(図11D)、基礎転写因子Mycとの関連性を共有する(図11E))が示された。心筋傷害におけるmiR-146aの生物学的役割を証明するために、本発明者らは、miR-146aノックアウト(146aKO)マウスにおいて急性MIを誘発し、それらと、同系統の野生型マウス(WT)、およびMI時にmiR-146a模倣物の注射によって「レスキューされる」146aKOマウス(146aKO-R)とを比較した。
異なるマウス系統間におけるベースライン駆出率の差異
本発明者らは、これらの動物の著しく高いベースライン駆出率を観察した。この差異は、ノックアウトに使用したマウス系統(C57BL6)のバックグラウンドの差異に起因すると推測された。本稿におけるすべての他の実験において、使用したマウスの系統は、SCID-Beigeである。SCID-Beigeマウスは、成熟B細胞およびT細胞ならびにナチュラルキラー(NK)細胞を欠く。傷害に対するそれらの反応が異なるので、免疫能力のこの基本的差異は、ベースライン測定値の違いの主な原因である可能性が高い。SCID-Beigeマウスは、ヒト細胞(これは、CDCおよびエキソソームの供給源である)に対して許容性であるので、本稿の実験のほとんどにおいて、本発明者は、SCID-Beigeマウスを選択した。しかしながら、146aKOマウスの適切な対照は、BL6バックグラウンドと同じバックグラウンド系統の野生型であった。これは、以前に立証されている。系統は、心筋梗塞後の創傷治癒の重要な決定因子であることが以前に示されている。
免疫浸潤に対するmiR-146aの効果
炎症性免疫応答の軽減は、それを必ずしも完全に無効化するわけではない。マクロファージを含む先天性免疫細胞は、再生を促進する役割を果たすことが示されている。さらに、本発明者らの研究室の未発表データは、マクロファージ輸送はCDC処理によって影響を受けないが、CDCで処理したマクロファージは、M1(炎症促進性)から抗炎症性および治癒促進性の表現型M2に切り替わることを示している。
考察
心筋球由来細胞は、ヒト梗塞心臓の治療的再生を誘導することが示されている。伝統的に不可逆的であると考えられていた傷害の形態では、CDCは、瘢痕の縮小および新たな機能的心筋の成長をもたらした。同様の効果は、動物モデルにおいて確認されている。本明細書では、本発明者らは、エキソソームがCDC誘導性治療的再生を再現すること、およびエキソソーム産生の阻害がCDCの利益を損なうことを示す。エキソソームは、パラクリン機構を介して細胞挙動を変化させる能力を有するマイクロRNAを含有する(図6B)。これらの中で、本発明者らは、CDCエキソソームでは、miR-146aが特に豊富であると同定した。単独で投与した場合、miR-146aは、CDCおよびCDCエキソソームの顕著な利益の全部ではないが一部を再現する(図3)。同様に、miR-146a欠乏エキソソームは、miR-146aが存在する場合よりも弱いが、心筋細胞アポトーシスを依然として抑制することができた(図5A)。MIの慢性モデル(瘢痕が永続的である)におけるmiR-146aによる心臓の処理は、治療的再生の特徴である生存心筋量の増加を再現するが、CDCエキソソームの2つの重要で有益な効果(瘢痕量の減少および全体的な機能の改善)を模倣することができない:恐らくはmiR-146aによって誘発される血管新生は不十分であるので、生存心筋の増加は、機能を高めるために十分ではない。本発明者らは、miR-146aが、CDCエキソソームの効果の媒介において部分的に重要な役割を果たすが、単独で包括的な治療効果を与えるには十分ではないと結論付ける。レパートリーにおける他のマイクロRNAは、miR-146aと同義的なまたはおそらくは相乗的な効果を発揮し得る。例えば、miR-22(CDCエキソソームにおいて非常に豊富な別のマイクロRNA)は、心臓ストレスに対する適応反応に重要であることが示されている。同様に、miR-24(CDCエキソソームにおいても確認されている)は、フリン(線維化促進性TGF-bシグナル伝達経路のメンバー)をターゲティングすることによって、心臓線維化を調節する;MIのモデルにおけるmiR-24の過剰発現は、心筋瘢痕形成を減少させた。CDCエキソソームの利益に関するメディエーターとしてのこれらのマイクロRNAの潜在的な役割は単独で、またはmiR-146aと組み合わせて研究中である。CDCエキソソーム内の活性成分の精査は有益であるが、ナノ小胞の解体は、治療的観点から非生産的であり得る。CDCエキソソームは本来的に細胞透過性であり、それらの脂質二重層コートは、粒子が細胞間を往復する際の分解からペイロードを保護するので、インタクトな粒子それ自体が、疾患適用に適切なものであり得る。
統計分析
すべての結果は、平均±SEMとして示されている;交互脈の結果は、平均±SDとして示されている。それぞれコルモゴロフ・スミルノフ検定およびレーベン検定を使用して、データセットの正規性および等分散性を試験した。両方とも確認された場合、t検定または分散分析とそれに続くボンフェローニ事後検定を、統計的有意性の決定に使用した;正規性または等分散性のいずれかが保証されなかった場合、ノンパラメトリック検定(ウイルコクソン検定またはクラスカル・ワリス検定とそれに続くダン事後検定)を適用した(SPSS II,SPSS Inc.,Chicago,Illinois)。検出力分析について、予備データは利用不可能であった。初期パイロットプロジェクトとして1群当たり動物4匹のサンプルサイズで、実験を計画した。パイロットプロジェクトの結果から、本発明者らは、その後の研究を行うことができた。本研究は、記載されているように、臨床前報告基準に準拠していた。
心エコー検査
Vevo 770イメージングシステム(VisualSonics,Toronto,Canada)を使用して、1回目のCDC/CDCエキソソーム(CDC-XO)注射2日前(ベースライン)および3週間後、2カ月後および3カ月後に、ならびに2回目のCDC/CDC-XO注射3週間後、2カ月後および3カ月後に、心エコー検査研究を実施した。同じイメージングシステムを使用して、ベースライン(2日前)およびmiR148a模倣物注射3週間後に、心エコー検査研究を実施した。全身浅麻酔の誘導後に、最大LV径のレベルで、心臓をイメージングした。Visual Sonicsバージョン1.3.8ソフトウェアを用いて、2次元長軸像から、LV駆出率(LVEF)を測定した。左心室(LV)拡張末期および収縮末期容積の変化:1回目および2回目のCDCまたはCDC-XO移植は、プラセボと比べて、少なくとも6カ月間にわたるmdxマウスにおけるLV拡張末期(LV EDV)および収縮末期(LV ESV)容積の持続的改善をもたらした。miR-148aの送達は、LV EDVおよびLV ESVを部分的に改善した(図27)。心筋球由来細胞(CDC)、CDCエキソソーム(CDC-XO)およびmiR-148投与後のLV拡張末期(LV EDV)および収縮末期(LV ESV)容積。CDCおよびCDC-XO移植は、プラセボと比べて、mdxマウスにおいて、1回目および2回目(3カ月間隔)の両方の注射後に3カ月間にわたるLV EDVおよびLV ESVの持続的改善をもたらした。miR148注射3週間後に、LV EDVおよびLV ESVは部分的に改善した。データは、平均±SEMである;各群でn=12。#Mdx+ビヒクルとの対比で、P<0.05。
トレッドミル運動試験
CDC/ビヒクル注射3週間後からExer-3/6オープントレッドミル(Columbus Instruments,Columbus,OH)を用いて、運動能力を週1回評価した(術前1週間にmdxマウスのサブセットにおいて測定した運動能力は、術後3週間にMdx+ビヒクル群において測定したものと同等であった;データは示さず)。順応期間(10m/分で20分間)後、トレッドミル運動中は、マウスが疲労するまで、平均速度の段階的な増加(1m/分)を2分間ごとに適用した(ショッカーで10秒間超過ごす;トレッドミル中は、マウスがトラックに留まるのを支援するために、軽く押し続けた)。続いて、マウスをケージに戻し、総距離を記録した。週1回の運動を3カ月間行った後に、死亡率の評価のために、CDC/ビヒクルmdxマウスを、野生型年齢適合性マウスと一緒に追跡した。トレッドミルプロトコールは、American Physiological Society3のガイドラインに準拠していた。
CDCの増殖
記載されているように2、野生型系統適合マウス心臓(C57BL/10ScSnJ野生型マウス心臓)から、マウスCDCを増殖させた。簡潔に言えば、心室組織を約1mmの外植片に細分化し、部分的に酵素消化し、接着性(フィブロネクチンコーティング)培養皿にプレーティングした。これらの外植片が自発的に産生した増殖細胞(外植片由来細胞)を、コンフルエント後に採取し、懸濁培養液にプレーティング(ポリ-D-リジンコーティングディッシュ上に細胞105個/mL)して、三次元心筋球の自己集合を可能にした、続いて、心筋球を接着性培養皿上に再プレーティングしてCDCを得、これを、すべての実験において1継代目で使用した。
リアルタイムポリメラーゼ連鎖反応によるCDC生着の評価
CDC注射1週間後、2週間後および3週間後に、定量的ポリメラーゼ連鎖反応(PCR)を実施して、細胞生着を評価した。TaqManアッセイ(Applied Biosystems,Foster City,CA)を使用して、Y染色体上に位置するSRY遺伝子を生着マーカーとして検出することを可能にするために、雄性CDCを注射した。全マウス心臓を採取し、計量し、ホモジナイズした。注射したCDCから単離したゲノムDNAの複数の希釈物を用いて、標準曲線を作成した。対照として非注射マウス心臓由来の等量のゲノムDNAで、すべてのサンプルをスパイクした。各反応では、50ngのゲノムDNAを使用した。リアルタイムPCRを3回反復で実施した。標準曲線から生着を定量した。1週間の時点のCDCの生着率は約8%であり、2週間の時点では1%未満であった。3週間で、生存CDCを検出することができなかった(図28)。移植1週間後、2週間後および3週間後のCDCの生着率。1週間の時点のCDCの生着率は約8%であり、2週間の時点では1%超であった。3週間で、生存CDCを検出することができなかった(各時点でn=3)。
CDC注射後の心筋細胞増殖および心臓コラーゲン含量
各心臓の先端部、中央部および基底部由来のパラフィン包埋切片を、マッソントリクローム染色ならびにKi67およびaurora Bに対する抗体による免疫染色に使用した。コラーゲンIA1およびコラーゲンIIIA1の心筋存在量を、ウエスタンブロット分析によって測定した(図29)。mdxマウスにおけるCDC処理による心筋形成および線維化の減少。mdxマウスにおけるCDC注射3週間後の心筋形成の増強(AおよびB)ならびに心筋線維化(C)およびコラーゲン含量(D)の減少。代表的な免疫組織化学的画像およびプールデータ(AおよびB:Ki67[A]およびAurora B[B]について染色したCTL[野生型]、ビヒクルおよびCDC処理[Mdx+CDC]mdxマウス心臓;n=4~6/群)。矢印は、Ki67 + (A)およびAurora B + (B)心筋細胞を指す。心臓コラーゲンIAおよびIIIAを示す代表的なマッソントリクローム画像(C)ならびにウエスタンブロットおよびプールデータ(D)。データは、平均±SEMである;Mdx+ビヒクルおよびCTL(対照)との対比で、P<0.05;#Mdx+CDCおよびCTL(対照)との対比で、P<0.05。スケールバー:10μm(A)。
エキソソーム
低酸素状態(2%O2、デフォルト状態)または正常酸素状態(20%O2、単にエキソソームのRNA含量を比較する研究のため)において、ヒトCDC(CDC-XO)[または対照として正常ヒト真皮線維芽細胞(NHDF)]によって一晩(24時間)馴化した無血清培地から、エキソソームを単離した。300g(10分間)および10,000g(30分間)の連続遠心分離ならびに0.22ミクロンフィルタによるろ過の後に、超遠心分離(100,000g、1時間)を使用して、馴化培地からエキソソームを単離した。単離したエキソソームを、RNA抽出および続いてRNA配列決定に供し(図30)[低酸素馴化培地から単離したCDCエキソソームにおけるマイクロRNAの倍率変化。低酸素条件下(2%O 2 )と、正常酸素馴化培地から単離したCDCエキソソームと比較の比較;10倍超かつ20倍未満の倍率変化が含まれていた。エキソソームから抽出した低分子RNAのmiRNA配列ライブラリー調製のために、NEBNext Small RNA Library Prep kit(New England BioLabs,Ipswich,MA)を使用した。miRNeasy Serum/Plasma Kit(QIAGEN,Germantown,MD)を使用して、エキソソームからRNAを抽出した。]、またはPBSに再懸濁し(インビボおよびインビトロ実験の場合)、それぞれマイクロBCAタンパク質アッセイキット(Life technologies、Grand Island、NY)およびNanosight粒子カウンターを使用して、エキソソームとタンパク質との比を測定した(図31)[超遠心分離によって単離したエキソソームを、ナノ粒子追跡によって分析した。NanoSight NS300システム(NanoSight Ltd,UK)を使用してビデオを収集し、NTAソフトウェア(バージョン2.3)を使用して分析した(最小予想粒子サイズ、最小トラック長およびぼかしの設定はすべて、自動に設定した)。カメラシャッタースピードを30.01ミリ秒に固定し、カメラゲインを500に設定した。カメラ感度および検出閾値をそれぞれほぼ最大(15または16)および最小(3または4)に設定して、小粒子を表示させた。24~27℃の範囲で、周囲温度を手動で記録した。各サンプルについて、記録間に10秒間の遅延を入れた60秒間のビデオを5回記録して、5つのリプリケートヒストグラムを作製し、これを平均化した。サイズ/濃度を示す代表的な5つのリプリケートヒストグラム。5回反復で計算した平均濃度の標準誤差は、右のグラフにおいて赤色で示されている。]。予備的用量反応研究により、低酸素CDC由来タンパク質1g当たり2×107個および1×109個のエキソソームが、インビボおよびインビトロ実験のための有効用量であることが判明した。NHDFエキソソームを適用した実験では、同様の濃度のエキソソームを使用した。記載されているように、超遠心分離またはExoquickキット(SBI,Mountain View,CA)によって単離したエキソソームを使用して、予備的パイロットインビボ実験を実施して、2つの単離方法で同様の結果を得た。
CDC、CDCエキソソームおよびmiR-148の注射
CDC移植のプロセスを最適化するために、予備的用量反応実験を実施したところ、虚血マウスモデルおよび非虚血マウスモデルにおける先の用量範囲実験と一致して、1回目の注射では1×105個の細胞および2回目の注射(1回目の注射3カ月後)では1×104個の細胞が、有効用量であることが判明した。合計で細胞1×105個/40μLリン酸緩衝生理食塩水(PBS;1回目の注射)または細胞1×104/40μL PBS(2回目の注射)またはPBSのみを、記載されている4点間で等分して左心室(LV)心筋に注射した。LVを3つの領域(基底、中間および先端)に視覚的に分け、基底領域に1回注射し、中央領域に2回注射し、先端領域に1回注射した。CDC(Mdx+CDC、n=12)またはビヒクル[プラセボ:Mdx+ビヒクル(PBS)、n=12](3カ月間隔)を10カ月齢のCDC/mdxおよびビヒクル/mdxマウスにそれぞれ2回注射した。開胸術中に、281/2ゲージ針によって、注射を行った。動物が全身麻酔(デクスメデトミジン(0.5mg/kg)/ケタミン(75mg/kg);IP;術前に1回)中に、すべての外科手術を行った。心筋へのCDCエキソソームおよびmiR-148の注射のために、同様のプロトコールを使用したmiR-148a模倣物(hsa-miR-148a-3p、2μg;Sigma-Aldrich,St.Louis,MO)をRNAiMAXトランスフェクション試薬(life technologies,Grand Island,NY)と総容量40μl、室温で30分間混合し、上記のように心臓1つ当たり4点に注射した。
組織学
1回目のCDC/CDC-XO注射3週間後(CTL:n=4;Mdx+ビヒクル:n=6;Mdx+CDC/Mdx+CDC-XO:それぞれn=6)または3カ月後(CTL:n=4;Mdx+ビヒクル:n=6;Mdx+CDC/Mdx+CDC-XO:n=6)およびmiR-148注射3週間後(n=6)に、マウスを屠殺した。組織学のために、各心臓の先端部、中央部および基底部由来のパラフィン包埋切片を使用した。線維化の評価のために、マッソントリクローム染色(HT15 Trichrome Stain[Masson] Kit;Sigma-Aldrich,St.Louis,MO)を実施した。それぞれマウスCD3、CD20およびCD68に対する抗体による免疫染色によって、T細胞、B細胞およびマクロファージを評価し、各心臓の先端領域(3個の切片;50μm間隔)、中央領域(4個の切片;50μm間隔)および基底領域(3個の切片;50μm間隔)から無作為に選択した10個の各切片から細胞を10視野(倍率20倍)でカウントして、各心臓における平均細胞数を計算した。活性なサイクリングおよび増殖(Ki67+およびAurora B+)心筋細胞を同様にカウントし、記載されているように、Ki67+およびAurora B+心筋細胞の数を強拡大視野(HPF)当たりの心筋細胞の総数で割ったものとして、サイクリング画分および増殖画分をそれぞれ表した。各心臓について、測定結果を平均化した。免疫蛍光染色:低pH緩衝液(DAKO,Carpinteria,CA)中で熱誘導性エピトープ回復を行い、続いて、1%サポニン(Sigma,St.Louis,MO;3%サポニンを含有するタンパク質ブロッキング溶液をKi67の免疫蛍光染色に適用した)を含有するタンパク質ブロッキング溶液(DAKO,Carpinteria,CA)で2時間透過処理/ブロッキングした。続いて、各心臓の先端部、中央部および基底部由来の5μm切片の免疫蛍光染色のために、一次抗体のタンパク質ブロッキング溶液を4℃で一晩適用した。PBSで3回洗浄(各10分間)した後に、Alexa Fluor二次抗体(Life Technologies,Grand Island,NY)を検出に使用した。Leica TCS SP5 X共焦点顕微鏡システムによって、画像を撮影した。マウス Ki-67(SP6;1:50;Thermo Fisher Scientific,Fremont,CA)、WGA(コムギ胚芽凝集素;1:200;Life Technologies,Grand Island,NY)、Nrf2(C20;1:50;Santa Cruz Biotechnology,Santa Cruz,CA)、aurora B(1:250;BD Biosciences,San Jose,CA)に対する抗体を使用して、免疫蛍光染色を行った。免疫ペルオキシダーゼ染色:Ventana Medical System(Tuscon,AZ;CD68)およびCell Marque(Rocklin,CA;CD3,CD20)の予め希釈されているウサギモノクローナル抗体を使用して、CD3、CD20およびCD68の免疫組織化学的検出を5μm切片で実施した。高pH ER2緩衝液(Leica Biosystems,Buffalo Grove,IL)中でオンボード熱誘導性エピトープ回復法を使用して、Leica Bond-Max Ventana自動スライド染色機(Chicago,IL)によって、染色を行った。Dako Envision+ウサギ検出システムおよびDako DAB(Carpinteria,CA)を使用して、染色を可視化した。続いて、メイヤーヘマトキシリンでスライドを1分間対比染色し、カバーガラスで覆った。電子顕微鏡法:1mm2の立方体を2%グルタルアルデヒドに浸漬することによって、各心臓由来の後壁の先端部(1つの立方体)、中央部(右側サブ部分、中央サブ部分および左側サブ部分から3つの立方体)および基底部(右側サブ部分、中央サブ部分および左側サブ部分から3つの立方体)(CTL:n=3;Mdx+ビヒクル:n=3;Mdx+CDC:n=3)を固定し、オスミウムで後固定し、エポンに包埋した。切片を銀厚で切断し、酢酸ウラニルおよびクエン酸鉛で染色し、AMTデジタルカメラシステムを備えるJEOL 1010を用いて観察した。
ウエスタンブロット
ウエスタンブロットを実施して、Nrf2シグナル伝達[Nrf2、リン酸化Nrf2(Nrf2-ps40)およびNrf2下流遺伝子産物:ヘムオキシゲナーゼ-1(HO-1)、カタラーゼ、スーパーオキシドジスムターゼ-2(SOD-2)、およびグルタミン酸-システインリガーゼ(GCLC)の触媒サブユニット]、Nrf2リン酸化[リン酸化Akt(Akt-p308)]、酸化的リン酸化[CI(NDUFB8サブユニット)、CII(SDHBサブユニット)、CIV(MTCOlサブユニット)、CIII(UQCRC2サブユニット)およびCV(ATPSAサブユニット)]、ミトコンドリア生合成(PGC-1)、マイトファジー(PINK1)、炎症(NF-κΒおよびMCP-1)および線維化(コラーゲンIA1およびコラーゲンIIIA1)に寄与する標的タンパク質の心筋存在量を比較した。ウエスタンブロッティング(WB)によって、マロンジアルデヒドタンパク質付加物(酸化ストレスのマーカー)の心筋密度も測定した。各心臓の先端部、中央部および基底部由来のサンプル(各1mm厚の横断面)を混合し、ホモジナイズし、製造業者の説明書(CelLytic NuCLEAR Extraction Kit,Sigma-Aldrich,St.Louis,MO)にしたがって、核画分および細胞質画分を抽出した。呼吸測定のセクションに記載されているように、新鮮な全心臓(CTL:n=3;Mdx+ビヒクル:n=8;Mdx+CDC:n=8)からミトコンドリアを抽出した。WB分析のための細胞質抽出物、核抽出物およびミトコンドリア抽出物を-80℃で保存した。マイクロBCAタンパク質アッセイキット(Life technologies,Grand Island,NY)によって、抽出物中のタンパク質濃度を決定した。以下の抗体を使用してウエスタンブロット分析によって、細胞質画分、核画分およびミトコンドリア画分の標的タンパク質を測定した:マウスNrf2、HO-1、カタラーゼ、SOD-2、GCLC、コラーゲンIA1およびコラーゲンIIIA1ならびにPGC-1に対する抗体は、Santa Cruz Biotechnology(Santa Cruz,CA)から購入し、リン酸化Nrf2(Nrf2-ps40;Biorbyt,San Francisco,CA)、呼吸鎖サブユニット(全OXPHOS齧歯類WB抗体カクテル抗体)、マロンジアルデヒド、クエン酸シンターゼおよびTBP(Abeam,Cambridge,MA)、AktおよびAkt-pT308、ΙκΒ-α、ρ-ΙκΒ-α(Cell Signaling Technology,Denver,CO)、PINK1、MCP-1およびNF-κΒ p65(Sigma-Aldrich,St.Louis,MO)抗体は、引用されている供給業者から購入した。核(TBP)、細胞質ゾルおよびミトコンドリア(クエン酸シンターゼ)標的タンパク質のハウスキーピングタンパク質の測定のために、TBP(TATA結合タンパク質)およびクエン酸シンターゼに対する抗体を使用した。ウエスタンブロット法:簡潔に言えば、8、10および4~12%Bis-Trisゲル(Life technologies,Grand Island,NY)上で、20μgのタンパク質を含有するアリコートを120Vで2時間分画し、PVDF膜(Life technologies,Grand Island,NY)に転写した。ブロッキング緩衝液(1×TBS、0.05%Tween-20および5%脱脂乳)中で膜を1時間インキュベートし、次いで、表1に記載されている最適希釈で所定の抗体を含有する同じ緩衝液中で一晩インキュベートした。
ミトコンドリアDNA
製造業者の説明書(NovaQUANT(商標)Mouse Mitochondrial to Nuclear Ratio kit,EMD Millipore,Billerica,MA)にしたがってPCRフォーマットを使用して、ミトコンドリアDNAと核DNAとの比を測定するために、全心臓組織から抽出したDNA(QIAamp DNA Mini Kit,QIAGEN,Germantown,MD)を使用した。
呼吸測定
イソフルラン麻酔後に、頚部脱臼によってマウスを屠殺した。心臓を直ぐに摘出し、PBSでリンスし、1mLの氷冷HES緩衝液(250mMスクロース、1mM EDTA、10mM HEPES、pH7.4)中でポリトロンによってホモジナイズした。溶解物を4℃、1000gで5分間スピンダウンして、破砕されていない細胞および大きな残屑を除去した。次いで、上清を4℃、7000gで10分間スピンダウンして、粗細胞質ゾルからミトコンドリアが豊富な画分を分離した。ペレットを1mLのHES緩衝液(WBのための溶解緩衝液の一部)に再懸濁した。タンパク質の定量を実施し、HES緩衝液で調整して、50μLの緩衝液中に10μgのタンパク質を含有するサンプルを得、これを24ウェルSeahorse細胞培養プレートにロードし、これを4℃、2000gで20分間スピンダウンして、プレート表面へのミトコンドリア接着を可能にした。次いで、Seahorse XF24ミトコンドリアストレス試験の前に、450μL MAS緩衝液(70mMスクロース、220mMマンニトール、5mM KH2PO4、5mM MgCl2、1mM EGTA、0.2%脂肪酸不含BSA、pH7.4)を追加した。5mM/5mMピルビン酸/リンゴ酸および0.25mM ADPを使用し、続いて、1μMオリゴマイシン、1μM FCCP、1μMアンチマイシン、500nMロテノンの混合物を使用して、ミトコンドリアの酸化的リン酸化を刺激した。サンプル溶解物中でクエン酸シンターゼ活性を測定して、試験のためにロードした実際のミトコンドリアの量について正規化した。記載されているように、Seahorse(商標)XF96 Extracellular Flux分析器を使用して、正常およびヒトデュシェンヌiPs細胞由来心筋細胞に対するSeahorse呼吸測定を実施した。
細胞内Ca2+の記録
5μMの蛍光カルシウム感受性色素Cal-520(AAT Bioquest,Sunnyvale,CA)をiPS由来心筋細胞に30分間ロードし、チャンバベースの両側に配置した2本の白金線(約1cmの間隔)を介して20Vの振幅と共に0.2ミリ秒二乗の電圧パルスを送達するIon-Optix Myopacer(IonOptix Corp)を使用して、周波数1Hzの電場刺激によってペーシングした。本発明者らは、Leica TCS-SP5-II(Leica Microsystems Inc.;Wetzlar,Germany)のxytモード(2D)を使用して、細胞内Ca2+をイメージングした。488nmレーザーでCal520を励起し、視野サイズに応じて36~7ミリ秒/フレームのスキャン速度で、10倍対物レンズ(Leica:N PLAN 10×/0.25)を用いて、その発光(>505nm)を収集した。Ca2+濃度に比例する蛍光強度(F)を、ベースライン蛍光F0(F/F0)に対して正規化した。ソフトウェアClampfit(ver.10.2,Molecular Devices,Inc.)を用いて、ピーク到達時間およびCa2+トランジェント振幅(F/F0)を分析した。各群における心拍間隔の交互脈を、1Hzペーシングの5~10秒間隔で計算した。ペーシング中に各細胞の各トランジェント振幅(各群でn=細胞10個)を測定し、平均および標準偏差を計算し、群間で比較した。
mdxマウスにおけるCDC移植によって改善された機能、生存および抗酸化経路
mdxマウスにおける第1用量および第2用量(より低用量)のCDCの心筋内注射は、プラセボと比べて、少なくとも6カ月間にわたる(駆出率[EF]によって表される)左心室機能および容積の持続的改善をもたらした(図23Aおよび27)。EFにおけるCDC誘導性改善は、生存CDCがmdx心臓において検出不可能であった時点(CDC送達の3週間後;図28)を超えて持続した。EFの改善に加えて、CDC注射は、歩行機能を増強した(図23B)。年齢適合野生型マウス(CTL)および10カ月齢のmdxマウス(心機能の評価について研究したmdxマウスとは異なる)を、CDCまたはビヒクル投与の3週間後から、高強度トレッドミル運動に週1回供した。CDC処理mdxマウスは、ビヒクル処理mdxマウスと比べて、それを測定した3カ月間にわたって、最大運動能力の実質的な増加を示した;2つの群では、生存も異なっていた(図23C)。約23カ月齢までに、ビヒクル処理mdxマウスはすべて死亡したのに対して、CDC処理mdxマウスの50%超は依然として生存していた(図23C)。CDCの注射は、Nrf2抗酸化経路の活性化および下流遺伝子産物のアップレギュレーションをもたらした(図23E)。同時に、酸化ストレスが軽減した(図23F)。細胞質では、Nrf2は通常、そのリプレッサー分子Keap1への結合を介して隔離される。酸化ストレス(およびAktなどのプロテインキナーゼによるNrf2リン酸化)は、Nrf2-Keap1複合体の解離を引き起こし、その結果、Nrf2の核移行および抗酸化酵素の転写活性化が起こる。mdx心臓では、(酸化ストレスに応じて予想どおり)リン酸化Aktならびに細胞質および核Nrf2のレベルが高かった;CDC処理は、それらのタンパク質レベルをさらに増加させた(図23E)。結果として、CDC処理mdx心臓では、下流エフェクターのヘムオキシゲナーゼ-1(HO-1)、カタラーゼ、スーパーオキシドジスムターゼ-2(SOD-2)、およびグルタミン酸-システインリガーゼ(GCLC)の触媒サブユニットがアップレギュレートされ(図23E)、マロンジアルデヒド付加物(脂肪酸過酸化最終生成物;図23F)が著しく減少していた。組織学的分析により、線維化は、典型的なビヒクル処理mdx心臓では広範であったが、CDC処理mdx心臓では非常に少なかった(年齢適合野生型[WT]対照と同程度)ことが明らかになった。同様に、ウエスタンブロット分析により、CDC処理は、処理3週間後のmdx心臓組織におけるコラーゲンIおよびIIIの蓄積を大きく回復させたことが示された(図29)。
mdxマウス心臓におけるCDC移植によって軽減されたミトコンドリア機能不全および炎症
筋ジストロフィー関連心不全では、ミトコンドリアの構造および機能が異常である。mdx心臓では、CDC注射3週間後に、ミトコンドリア完全性が改善した:CDCは、ミトコンドリア超微細構造を回復させ(図24A)、ミトコンドリアDNAコピー数を増加させ(ミトコンドリア数ではない;図24BおよびC)、呼吸鎖サブユニットのレベルを増大させ(図24D)、単離したmdxミトコンドリアの不十分な呼吸能を正常化した(図24E)。
CDC分泌エキソソームは、mdxマウスにおいてCDCの利益を再現する。
CDCによって分泌されたエキソソーム(CDCエキソソーム)は、心筋梗塞のマウスモデルにおいてCDCの機能的および構造的利益を模倣する。DMDのmdxマウスモデルでは、同様に、CDCの機能的、抗線維化および心筋形成利益は、低酸素CDCによって馴化した培地から単離したエキソソームの投与によって再現される。2回反復用量のヒトCDCエキソソームの心筋内注射(3カ月間隔)は、ビヒクル処理マウスと比べて、mdxマウスにおいてEFの持続的改善をもたらした(図25Aおよび図27)。一方、CDCエキソソーム注射mdx心臓では、サイクリング(Ki67+、図25C1)および増殖(aurora B+、図25C2)心筋細胞の数の顕著な増加と共に、コラーゲンIおよびIIIの量が減少していた(図25B)。
ヒトデシェンヌ心筋細胞におけるCDCエキソソーム、およびmdxマウスにおけるmiR-148a。デュシェンヌヒトiPS由来心筋細胞(DMD CM)は、mdxマウス心臓においても見られる多くの表現型の欠陥を示す。酸素消費速度(OCR)の減少(これは、mdx心臓のミトコンドリアにおいて観察されたものを思い起こさせる(図24E))および異常なカルシウムサイクリングが、報告されている欠陥である21。1週間前にCDCエキソソームでDMD CMをプライミングするとOCRが正常化したが、正常ヒト真皮線維芽細胞(NHDFエキソソーム)由来エキソソームによるプライミングは効果がなかった。1Hzのバーストペーシング中の心拍間隔のカルシウムトランジェントの変化(催不整脈性の尺度)は、CDCエキソソームでDMD CMをプライミングすることによって同様に抑制された(図26AおよびB)。低酸素CDCおよび正常酸素CDCから単離したCDCエキソソームのマイクロRNA(miR)含量の比較により、miR発現の差異(図26C)、および低酸素におけるmiR-148aの顕著な増大が明らかになった。本発明者らのCDCエキソソームを低酸素下で成長させたことを考慮して、本発明者らは、miR-148a投与の効果を試験した。miR-148a模倣物の心筋内注射3週間後では、miR-148aによってEF率は部分的に回復し、NFκBは抑制されたが、リン酸化Aktレベルは減少した(図26DおよびE)。リン酸化Aktの変化は、CDC注射で見られるものと逆方向であるが(図23E)、これは、miR-148aが、CDCおよびCDCエキソソームの効果の全部ではないが一部を模倣することを示している。
考察
DMD患者では、心疾患は、骨格筋症の診断後10年以上現れない可能性があるが、心筋症は、それが明白になったら急速に進行する。連続心臓磁気共鳴イメージング研究により、線維化は、最初は心臓のごく一部に限定されることが多いが、その後は迅速かつ無情に拡大することが明らかになった23。結果は、全体的な心機能の障害および早期死亡である。DMD心筋症の進行を停止させ、予防しまたは遅延させる有効な処理はない。CDCが、DMDにおいて有益であり得る再生効果を発揮することを認識して、本発明者は、早期のDMD心筋症においてCDC注射の効果を試験した。本発明者らは、CDCが、ポンプ機能を改善し、運動能力を増加させ、生存を増強しながら、mdx心臓において線維化および炎症を軽減することを発見した。CDCの顕著な利益は、CDCエキソソームによって再現された。本発明者の知見は、CDCが、(限定されないが)miR-148aを含む遺伝的シグナルを積載したエキソソームを分泌することによって作用するという仮説を裏付けている。これらのエキソソームは周囲の心筋に取り込まれ、DMD心筋症の基礎となる複数の病態生理学的経路をアンタゴナイズする。一連の効果は相乗的である:酸化ストレス、炎症および線維化は鈍化する一方、心筋形成およびミトコンドリア機能は増大する。CDCおよびそれらのエキソソームは進行を防ぐだけではなく、DMD心筋症の中心的な機能障害を実際に回復させるという点で、この結果は注目に値する。ジストロフィンをターゲティングせずに、死亡率および運動能力の大きな改善が起こるが、これは、DMD治療が非常に有効であるために、根本的な遺伝的原因の修正が不要であるという考えを証明している。CDCが既に先進臨床試験中であることを考慮して、本発明者の結果は、DMD心筋症を有する患者においてCDCの臨床試験を開始することを支持する。実際、本知見に基づいて、HOPE-デュシェンヌ試験は、DMDに続発する心不全の被験体において、多血管冠動脈内注入によって投与した同種異系CDCの安全性および忍容性を直ぐ調査するであろう。
Claims (10)
- 筋ジストロフィーに続発する心不全の処置方法に用いられる組成物であって、
筋ジストロフィーに続発する心不全の処置を必要とする被験体の処置のための治療上有効用量の心筋球由来細胞(cardiosphere-derived cells;CDC)を含み、前記被験体の前記処置が、左心室機能の改善をもたらす、組成物。 - 心筋球由来細胞を含む前記組成物が、単回用量で提供され、心筋球由来細胞を含む前記組成物の前記用量が1×105個~1×109個の心筋球由来細胞を含む、請求項1に記載の組成物。
- 心筋球由来細胞を含む前記組成物が、単回用量で提供され、心筋球由来細胞を含む前記組成物の前記用量が1×107個~1×109個の心筋球由来細胞を含む、請求項1に記載の組成物。
- 心筋球由来細胞を含む前記組成物の前記用量が前記被験体の処置のために前記被験体に複数回投与されるように構成される、請求項2又は3に記載の組成物。
- 心筋球由来細胞を含む前記組成物が、前記被験体へ静脈内送達されるように構成される、請求項1~4のいずれかに記載の組成物。
- 前記被験体の前記処置が、さらに、線維化の減少、炎症の減少、ミトコンドリア機能の増加および/または心筋形成の増加のうちの1つ以上をもたらす、請求項1~5のいずれかに記載の組成物。
- 前記線維化の減少が、コラーゲン蓄積の減少を含む、請求項6に記載の組成物。
- 前記炎症の減少が、細胞質核因子(赤血球由来2)様2(Nrf2)の増加、脂肪酸過酸化最終生成物の減少、炎症細胞の数の減少、および/または抗酸化物質の発現のアップレギュレートを含む、請求項6に記載の組成物。
- 前記抗酸化物質が、ヘムオキシゲナーゼ-1(HO-1)、カタラーゼ、スーパーオキシドジスムターゼ-2(SOD-2)およびグルタミン酸-システインリガーゼ触媒(GCLC)サブユニットを含む、請求項8に記載の組成物。
- 前記ミトコンドリア機能の増加が、ミトコンドリア超微細構造の増加および/またはミトコンドリア生合成の増加を含む、請求項6に記載の組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023038837A JP2023075258A (ja) | 2014-10-03 | 2023-03-13 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462059308P | 2014-10-03 | 2014-10-03 | |
US62/059,308 | 2014-10-03 | ||
PCT/US2015/053853 WO2016054591A1 (en) | 2014-10-03 | 2015-10-02 | Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy |
JP2017518059A JP6878274B2 (ja) | 2014-10-03 | 2015-10-02 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017518059A Division JP6878274B2 (ja) | 2014-10-03 | 2015-10-02 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023038837A Division JP2023075258A (ja) | 2014-10-03 | 2023-03-13 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022017178A JP2022017178A (ja) | 2022-01-25 |
JP7275193B2 true JP7275193B2 (ja) | 2023-05-17 |
Family
ID=55631661
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017518059A Active JP6878274B2 (ja) | 2014-10-03 | 2015-10-02 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
JP2021076780A Active JP7275193B2 (ja) | 2014-10-03 | 2021-04-28 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
JP2023038837A Pending JP2023075258A (ja) | 2014-10-03 | 2023-03-13 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017518059A Active JP6878274B2 (ja) | 2014-10-03 | 2015-10-02 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023038837A Pending JP2023075258A (ja) | 2014-10-03 | 2023-03-13 | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Country Status (6)
Country | Link |
---|---|
US (2) | US11357799B2 (ja) |
EP (1) | EP3200808B1 (ja) |
JP (3) | JP6878274B2 (ja) |
AU (2) | AU2015327812B2 (ja) |
CA (1) | CA2962444C (ja) |
WO (1) | WO2016054591A1 (ja) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11660317B2 (en) | 2004-11-08 | 2023-05-30 | The Johns Hopkins University | Compositions comprising cardiosphere-derived cells for use in cell therapy |
US11286463B2 (en) | 2012-03-08 | 2022-03-29 | Advanced ReGen Medical Technologies, LLC | Reprogramming of aged adult stem cells |
EP3563859B1 (en) | 2012-08-13 | 2021-10-13 | Cedars-Sinai Medical Center | Cardiosphere-derived exosomes for tissue regeneration |
WO2015095794A1 (en) | 2013-12-20 | 2015-06-25 | Advanced ReGen Medical Technologies, LLC | Compositions for cellular restoration and methods of making and using same |
US10772911B2 (en) | 2013-12-20 | 2020-09-15 | Advanced ReGen Medical Technologies, LLC | Cell free compositions for cellular restoration and methods of making and using same |
JP6878274B2 (ja) * | 2014-10-03 | 2021-05-26 | シーダーズ−サイナイ・メディカル・センターCedars−Sinai Medical Center | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
EP3204117A4 (en) * | 2014-10-06 | 2018-05-09 | Cedars-Sinai Medical Center | Polarization of macrophages to a healing phenotype by cardiosphere-derived cells and by the exosomes secreted by such cells |
WO2017123662A1 (en) | 2016-01-11 | 2017-07-20 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction |
TW201739458A (zh) | 2016-04-29 | 2017-11-16 | 先進再生醫療科技有限責任公司 | 微型rna(microrna)組合物及其製造及使用方法 |
WO2017210652A1 (en) | 2016-06-03 | 2017-12-07 | Cedars-Sinai Medical Center | Cdc-derived exosomes for treatment of ventricular tachyarrythmias |
US11541078B2 (en) | 2016-09-20 | 2023-01-03 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders |
EP3525801A1 (en) * | 2016-10-13 | 2019-08-21 | VBC Holdings LLC | Medical uses of exosomes |
US20190382850A1 (en) * | 2017-01-27 | 2019-12-19 | Memorial Sloan-Kettering Cancer Center | Method for identifying mitochondrial dna in extracellular vesicles and treatment of mtdna-related disorders and cancer |
US11759482B2 (en) | 2017-04-19 | 2023-09-19 | Cedars-Sinai Medical Center | Methods and compositions for treating skeletal muscular dystrophy |
EP3661526B1 (en) * | 2017-08-04 | 2023-07-12 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and their extracellular vesicles for treatment and prevention of cancer |
EP3675871A4 (en) * | 2017-08-31 | 2021-10-27 | Tel HaShomer Medical Research Infrastructure and Services Ltd. | COMPOSITIONS AND METHODS OF TREATMENT OF FIBROTIC DISEASES |
US11660355B2 (en) | 2017-12-20 | 2023-05-30 | Cedars-Sinai Medical Center | Engineered extracellular vesicles for enhanced tissue delivery |
WO2019143847A1 (en) | 2018-01-18 | 2019-07-25 | Advanced ReGen Medical Technologies, LLC | Therapeutic compositions and methods of making and using the same |
EP3598978B1 (en) | 2018-07-26 | 2024-05-29 | EXOFIX S.r.l. | Fibroadipogenic progenitor-derived exosomes for regeneration of dystrophic muscles |
EP4003322A4 (en) * | 2019-07-26 | 2023-11-15 | Mayo Foundation for Medical Education and Research | ANTIOXIDANT AND ANTIVIRAL COMPOSITIONS AND METHODS |
US20230047313A1 (en) * | 2019-12-16 | 2023-02-16 | Children`S Medical Center Corporation | Treating heart disease in muscular dystrophy patients |
WO2022106889A1 (en) * | 2020-11-18 | 2022-05-27 | Fujifilm Corporation | Generation of secretome-containing compositions, and methods of using and analyzing the same |
WO2024025893A2 (en) * | 2022-07-26 | 2024-02-01 | Mayo Foundation For Medical Education And Research | Compositions and methods for treating peripheral vascular disease |
CN116473512B (zh) * | 2023-03-22 | 2024-05-03 | 上海交通大学 | 一种动物循环系统中外泌体的监测装置及监测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014028493A2 (en) | 2012-08-13 | 2014-02-20 | Cedars-Sinai Medical Center | Exosomes and micro-ribonucleic acids for tissue regeneration |
JP6878274B2 (ja) | 2014-10-03 | 2021-05-26 | シーダーズ−サイナイ・メディカル・センターCedars−Sinai Medical Center | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Family Cites Families (347)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3470876A (en) | 1966-09-28 | 1969-10-07 | John Barchilon | Dirigible catheter |
US4106488A (en) | 1974-08-20 | 1978-08-15 | Robert Thomas Gordon | Cancer treatment method |
US3964468A (en) | 1975-05-30 | 1976-06-22 | The Board Of Trustees Of Leland Stanford Junior University | Bioptome |
US4659839A (en) | 1984-10-10 | 1987-04-21 | Mallinckrodt, Inc. | Coupling agents for radiolabeled antibody fragments |
GB8711614D0 (en) | 1987-05-16 | 1987-06-24 | Medical Res Council | Proteins |
US4960134A (en) | 1988-11-18 | 1990-10-02 | Webster Wilton W Jr | Steerable catheter |
US5175004A (en) | 1988-12-27 | 1992-12-29 | Matsumura Kenneth N | Propagatable, new combinant cells for cellular replacement therapy |
US4921482A (en) | 1989-01-09 | 1990-05-01 | Hammerslag Julius G | Steerable angioplasty device |
US5052402A (en) | 1989-01-31 | 1991-10-01 | C.R. Bard, Inc. | Disposable biopsy forceps |
US5104787A (en) | 1990-03-05 | 1992-04-14 | Lindstrom Richard L | Method for apparatus for a defined serumfree medical solution useful for corneal preservation |
US6326198B1 (en) | 1990-06-14 | 2001-12-04 | Regents Of The University Of Michigan | Methods and compositions for the ex vivo replication of stem cells, for the optimization of hematopoietic progenitor cell cultures, and for increasing the metabolism, GM-CSF secretion and/or IL-6 secretion of human stromal cells |
US5401629A (en) | 1990-08-07 | 1995-03-28 | The Salk Institute Biotechnology/Industrial Associates, Inc. | Assay methods and compositions useful for measuring the transduction of an intracellular signal |
ATE123957T1 (de) | 1990-12-07 | 1995-07-15 | Ruesch Willy Ag | Medizinisches instrument mit lenkbarer spitze. |
US5329923A (en) | 1991-02-15 | 1994-07-19 | Lundquist Ingemar H | Torquable catheter |
US5228441A (en) | 1991-02-15 | 1993-07-20 | Lundquist Ingemar H | Torquable catheter and method |
US5315996A (en) | 1991-02-15 | 1994-05-31 | Lundquist Ingemar H | Torquable catheter and method |
US5454787A (en) | 1991-02-15 | 1995-10-03 | Lundquist; Ingemar H. | Torquable tubular assembly and torquable catheter utilizing the same |
AU660444B2 (en) | 1991-02-15 | 1995-06-29 | Ingemar H. Lundquist | Torquable catheter and method |
US5981165A (en) | 1991-07-08 | 1999-11-09 | Neurospheres Holdings Ltd. | In vitro induction of dopaminergic cells |
US5287857A (en) | 1992-06-22 | 1994-02-22 | David Mann | Apparatus and method for obtaining an arterial biopsy |
US5243167A (en) | 1992-09-16 | 1993-09-07 | Ingemar H. Lundquist | Apparatus and method for manufacturing a slotted torque tube |
US5334145A (en) | 1992-09-16 | 1994-08-02 | Lundquist Ingemar H | Torquable catheter |
US5383852A (en) | 1992-12-04 | 1995-01-24 | C. R. Bard, Inc. | Catheter with independent proximal and distal control |
US5368564A (en) | 1992-12-23 | 1994-11-29 | Angeion Corporation | Steerable catheter |
US5492825A (en) | 1993-08-06 | 1996-02-20 | The Regents Of The University Of California | Mammalian inward rectifier potassium channel cDNA, IRK1, corresponding vectors, and transformed cells |
US5616568A (en) | 1993-11-30 | 1997-04-01 | The Research Foundation Of State University Of New York | Functionalized derivatives of hyaluronic acid |
US5454827A (en) | 1994-05-24 | 1995-10-03 | Aust; Gilbert M. | Surgical instrument |
US5840502A (en) | 1994-08-31 | 1998-11-24 | Activated Cell Therapy, Inc. | Methods for enriching specific cell-types by density gradient centrifugation |
US5702905A (en) | 1994-09-28 | 1997-12-30 | Spectral Diagnostics | Monoclonal antibody to human ventricular myosin light chains |
US5872109A (en) | 1995-02-07 | 1999-02-16 | Shiseido Company, Ltd. | Anti-inflammatory agent |
US5551427A (en) | 1995-02-13 | 1996-09-03 | Altman; Peter A. | Implantable device for the effective elimination of cardiac arrhythmogenic sites |
US5715832A (en) | 1995-02-28 | 1998-02-10 | Boston Scientific Corporation | Deflectable biopsy catheter |
US5925567A (en) | 1995-05-19 | 1999-07-20 | T. Breeders, Inc. | Selective expansion of target cell populations |
US5702433A (en) | 1995-06-27 | 1997-12-30 | Arrow International Investment Corp. | Kink-resistant steerable catheter assembly for microwave ablation |
ATE365808T1 (de) | 1995-07-28 | 2007-07-15 | Marie Curie Cancer Care | Transportproteine und deren verwendungen |
FR2739621B1 (fr) | 1995-10-05 | 1997-12-05 | Centre Nat Rech Scient | Peptides utilisables comme vecteurs pour l'adressage intracellulaire de molecules actives |
JP4283891B2 (ja) | 1995-11-17 | 2009-06-24 | 旭化成株式会社 | 分化抑制ポリペプチド |
US5762069A (en) | 1995-12-29 | 1998-06-09 | Akos Biomedical, Inc. | Multiple sample biopsy forceps |
US5856155A (en) | 1996-02-23 | 1999-01-05 | The Johns Hopkins University School Of Medicine | Compounds and related methods for modulating potassium ion channels and assays for such compounds |
US6132390A (en) | 1996-02-28 | 2000-10-17 | Eupalamus Llc | Handle for manipulation of a stylet used for deflecting a tip of a lead or catheter |
US5824031A (en) | 1996-02-28 | 1998-10-20 | Cardio Source | Apparatus and method for deflecting a tip of a lead or catheter |
US5782743A (en) | 1996-05-06 | 1998-07-21 | Russell; John J. | Magnetic medical treatment device |
GB9615726D0 (en) | 1996-07-26 | 1996-09-04 | Medical Res Council | Anti-viral agent 11 |
US5955275A (en) | 1997-02-14 | 1999-09-21 | Arcaris, Inc. | Methods for identifying nucleic acid sequences encoding agents that affect cellular phenotypes |
US6017735A (en) | 1997-01-23 | 2000-01-25 | Marie Curie Cancer Care | Materials and methods for intracellular transport and their uses |
US6086582A (en) | 1997-03-13 | 2000-07-11 | Altman; Peter A. | Cardiac drug delivery system |
US6443949B2 (en) | 1997-03-13 | 2002-09-03 | Biocardia, Inc. | Method of drug delivery to interstitial regions of the myocardium |
US6547787B1 (en) | 1997-03-13 | 2003-04-15 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
US6416510B1 (en) | 1997-03-13 | 2002-07-09 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
US6511477B2 (en) | 1997-03-13 | 2003-01-28 | Biocardia, Inc. | Method of drug delivery to interstitial regions of the myocardium |
EP1027033B1 (en) | 1997-05-14 | 2009-07-22 | The University Of British Columbia | High efficiency encapsulation of nucleic acids in lipid vesicles |
US6099832A (en) | 1997-05-28 | 2000-08-08 | Genzyme Corporation | Transplants for myocardial scars |
US5899914A (en) | 1997-06-11 | 1999-05-04 | Endius Incorporated | Surgical instrument |
US5851212A (en) | 1997-06-11 | 1998-12-22 | Endius Incorporated | Surgical instrument |
US6004295A (en) | 1997-06-26 | 1999-12-21 | An-Go-Gen Inc. | Catheters |
CA2296704C (en) | 1997-07-14 | 2010-10-19 | Osiris Therapeutics, Inc. | Cardiac muscle regeneration using mesenchymal stem cells |
US7514074B2 (en) | 1997-07-14 | 2009-04-07 | Osiris Therapeutics, Inc. | Cardiac muscle regeneration using mesenchymal stem cells |
GB9718609D0 (en) | 1997-09-02 | 1997-11-05 | Imp College Innovations Ltd | Fusion protein |
US6123699A (en) | 1997-09-05 | 2000-09-26 | Cordis Webster, Inc. | Omni-directional steerable catheter |
US7037648B1 (en) | 1997-11-07 | 2006-05-02 | John Hopkins University | Somatic transfer of modified genes to predict drug effects |
US5938603A (en) | 1997-12-01 | 1999-08-17 | Cordis Webster, Inc. | Steerable catheter with electromagnetic sensor |
US6203487B1 (en) | 1997-12-31 | 2001-03-20 | Thomas Jefferson University | Use of magnetic particles in the focal delivery of cells |
JP4535468B2 (ja) | 1998-02-05 | 2010-09-01 | バイオセンス・ウエブスター・インコーポレーテツド | 心臓内薬物送達 |
EP1064356A2 (en) | 1998-03-23 | 2001-01-03 | ZymoGenetics, Inc. | Cardiac-derived stem cells |
DE29825182U1 (de) | 1998-04-02 | 2005-12-22 | Vossen, Franz | Vorrichtung zum Entfernen von Ausbrechteilen aus einem Werkstoffbogen o.dgl. |
US6296630B1 (en) | 1998-04-08 | 2001-10-02 | Biocardia, Inc. | Device and method to slow or stop the heart temporarily |
US20010044619A1 (en) | 1998-04-08 | 2001-11-22 | Peter A. Altman | Cardiac drug delivery system and method for use |
US6171610B1 (en) | 1998-04-24 | 2001-01-09 | University Of Massachusetts | Guided development and support of hydrogel-cell compositions |
US6165164A (en) | 1999-03-29 | 2000-12-26 | Cordis Corporation | Catheter for injecting therapeutic and diagnostic agents |
US6540725B1 (en) | 1998-06-04 | 2003-04-01 | Biosense Webster, Inc. | Injection catheter with controllably extendable injection needle |
DE19833476B4 (de) | 1998-07-24 | 2005-08-25 | Huss, Ralf, Dr. | Genetisch modifizierte CD34-Negative, adhärent wachsende hämatopoetische Stammzellen und deren Verwendung in der Gentherapie |
US6102887A (en) | 1998-08-11 | 2000-08-15 | Biocardia, Inc. | Catheter drug delivery system and method for use |
US6074408A (en) | 1998-10-13 | 2000-06-13 | Freeman; Kenneth V. | Modular medical instrument and method of using same |
US6153582A (en) | 1998-11-05 | 2000-11-28 | Bausch & Lomb Surgical, Inc. | Defined serumfree medical solution for ophthalmology |
US6572611B1 (en) | 1998-11-23 | 2003-06-03 | C. R. Bard, Inc. | Intracardiac grasp catheter |
KR20020013480A (ko) | 1998-12-04 | 2002-02-20 | 추후기재 | 사람 뇌의 내피세포 및 성장배지 및 원시 cd34+cd38-골수 간세포의 증가방법 |
US6193763B1 (en) | 1998-12-17 | 2001-02-27 | Robert A. Mackin | Apparatus and method for contemporaneous treatment and fluoroscopic mapping of body tissue |
AUPP785098A0 (en) | 1998-12-21 | 1999-01-21 | Victor Chang Cardiac Research Institute, The | Treatment of heart disease |
US6783510B1 (en) | 1999-07-08 | 2004-08-31 | C.R. Bard, Inc. | Steerable catheter |
WO2001010482A1 (en) | 1999-08-05 | 2001-02-15 | Biocardia, Inc. | A system and method for delivering thermally sensitive and reverse-thermal gelation matrials |
US7015037B1 (en) | 1999-08-05 | 2006-03-21 | Regents Of The University Of Minnesota | Multiponent adult stem cells and methods for isolation |
SE9903185D0 (sv) | 1999-09-08 | 1999-09-08 | Europ I Of Science Ab | Terapeutisk metod och anordning baserad på magnetism |
US20030161817A1 (en) | 2001-03-28 | 2003-08-28 | Young Henry E. | Pluripotent embryonic-like stem cells, compositions, methods and uses thereof |
WO2001021767A2 (en) | 1999-09-24 | 2001-03-29 | Morphogen Pharmaceuticals, Inc. | Pluripotent embryonic-like stem cells, compositions, methods and uses thereof |
US6716242B1 (en) | 1999-10-13 | 2004-04-06 | Peter A. Altman | Pulmonary vein stent and method for use |
CA2403279A1 (en) | 1999-10-13 | 2001-04-19 | Biocardia, Inc. | Pulmonary vein arrhythmia diagnostic device and method for use |
US6224587B1 (en) | 1999-11-22 | 2001-05-01 | C.R. Bard, Inc. | Steerable catheter |
AU4305101A (en) | 1999-11-22 | 2001-06-04 | Research Foundation Of The State University Of New York, The | Magnetic nanoparticles for selective therapy |
AU778929B2 (en) | 1999-12-06 | 2004-12-23 | General Hospital Corporation, The | Pancreatic stem cells and their use in transplantation |
WO2001048151A1 (fr) | 1999-12-28 | 2001-07-05 | Kyowa Hakko Kogyo Co., Ltd. | Cellules pouvant induire une differenciation dans des cellules du muscle cardiaque |
KR20030032912A (ko) | 2000-01-14 | 2003-04-26 | 베쓰 이스라엘 디코니스 메디칼 센터 | 심장세포-특이적 인핸서 인자 및 이의 용도 |
US6530944B2 (en) | 2000-02-08 | 2003-03-11 | Rice University | Optically-active nanoparticles for use in therapeutic and diagnostic methods |
US6585716B2 (en) | 2000-04-05 | 2003-07-01 | Biocardia, Inc. | Method of treating the heart |
US6478776B1 (en) | 2000-04-05 | 2002-11-12 | Biocardia, Inc. | Implant delivery catheter system and methods for its use |
US20040087016A1 (en) | 2000-05-12 | 2004-05-06 | University Of Utah Research Foundation | Compositions and methods for cell dedifferentiation and tissue regeneration |
EP1301228B1 (en) | 2000-07-13 | 2008-07-23 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
WO2002013760A2 (en) | 2000-07-31 | 2002-02-21 | New York Medical College | Methods and compositions for the repair and/or regeneration of damaged myocardium |
WO2002009650A2 (en) | 2000-07-31 | 2002-02-07 | New York Medical College | Methods and compositions for the repair and/or regeneration of damaged myocardium |
US7547674B2 (en) | 2001-06-06 | 2009-06-16 | New York Medical College | Methods and compositions for the repair and/or regeneration of damaged myocardium |
US7862810B2 (en) | 2000-07-31 | 2011-01-04 | New York Medical College | Methods and compositions for the repair and/or regeneration of damaged myocardium |
CA2421584C (en) | 2000-09-06 | 2013-12-31 | Johns Hopkins University | Gene therapy for cardiac arrythmias |
US6569105B1 (en) | 2000-09-14 | 2003-05-27 | Syntheon, Llc | Rotatable and deflectable biopsy forceps |
FR2814752A1 (fr) | 2000-10-02 | 2002-04-05 | Chru Lille | Procede d'obtention in vitro de cellules insulino- secretrices de mammifere et leurs utilisations |
US6511471B2 (en) | 2000-12-22 | 2003-01-28 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
EP2336299A1 (en) | 2001-02-14 | 2011-06-22 | Anthrogenesis Corporation | Post-partum mammalian placenta, its use and placental stem cells therefrom |
EP1372916A2 (en) | 2001-03-21 | 2004-01-02 | Vitrox APS | Method and housing for performing operations on a material |
WO2003016507A2 (en) | 2001-03-23 | 2003-02-27 | Regents Of The University Of California | Generation of multipotent central nervous system stem cells |
EP1409510A4 (en) | 2001-04-27 | 2004-09-08 | Univ Johns Hopkins | BIOLOGICAL HEART PACEMAKER |
US7026121B1 (en) | 2001-06-08 | 2006-04-11 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing and monitoring transplant rejection |
US6905827B2 (en) | 2001-06-08 | 2005-06-14 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing or monitoring auto immune and chronic inflammatory diseases |
WO2003052925A1 (en) | 2001-06-29 | 2003-06-26 | Xanoptix, Inc. | Bicmos ac filter circuit |
CA2351156A1 (en) | 2001-07-04 | 2003-01-04 | Peter W. Zandstra | A bioprocess for the generation of pluripotent cell derived cells and tissues |
US6796963B2 (en) | 2001-07-10 | 2004-09-28 | Myocardial Therapeutics, Inc. | Flexible tissue injection catheters with controlled depth penetration |
WO2003006950A2 (en) | 2001-07-12 | 2003-01-23 | Geron Corporation | Cells of the cardiomyocyte lineage produced from human pluripotent stem cells |
WO2003008535A2 (en) | 2001-07-20 | 2003-01-30 | Technion Research And Development Foundation Ltd. | Methods of generating human cardiac cells and tissues and uses thereof |
US7731648B2 (en) | 2001-07-25 | 2010-06-08 | Aduro Biotech | Magnetic nanoscale particle compositions, and therapeutic methods related thereto |
US7074175B2 (en) | 2001-07-25 | 2006-07-11 | Erik Schroeder Handy | Thermotherapy via targeted delivery of nanoscale magnetic particles |
WO2003018780A1 (en) | 2001-08-27 | 2003-03-06 | Advanced Cell Technology, Inc. | De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies |
US6805860B1 (en) | 2001-09-30 | 2004-10-19 | Eckhard Alt | Method of transluminal application of myogenic cells for repair or replacement of heart tissue |
US7452532B2 (en) | 2001-09-30 | 2008-11-18 | Scicotec Gmbh | Transluminal application of adult stem cells for body organ tissue repair |
US20030082153A1 (en) | 2001-10-22 | 2003-05-01 | The Government Of The United States Of America | Stem cells that transform to beating cardiomyocytes |
WO2003049783A2 (en) | 2001-11-05 | 2003-06-19 | Medgenics, Inc. | Device and methods for harvesting tissue samples of known geometry |
DE10162353A1 (de) | 2001-12-18 | 2003-07-03 | Roehm Gmbh | Extrusionsdüse für Folien oder Platten mit seitlicher Schmelzeeinspeisung |
US20040014209A1 (en) | 2002-01-23 | 2004-01-22 | Lassar Andrew B. | Compositions and methods for modulating cell differentiation |
GB0202149D0 (en) | 2002-01-30 | 2002-03-20 | Univ Edinburgh | Pluripotency determining factors and uses thereof |
TWI288779B (en) | 2002-03-28 | 2007-10-21 | Blasticon Biotech Forschung | Dedifferentiated, programmable stem cells of monocytic origin, and their production and use |
US6866117B2 (en) | 2002-04-05 | 2005-03-15 | Wing Enterprises, Inc. | Light weight ladder systems and methods |
US7840261B2 (en) | 2002-06-05 | 2010-11-23 | Biocardia, Inc. | Catheter systems and methods for placing bi-ventricular pacing leads |
ES2449017T3 (es) | 2002-06-21 | 2014-03-17 | The University Of Utah Research Foundation | Compuestos reticulados, y métodos de preparación y uso de los mismos |
US20040018174A1 (en) | 2002-07-23 | 2004-01-29 | Boston Scientific Corporation | Cell therapy for regeneration |
CA2494040A1 (en) | 2002-07-29 | 2004-02-05 | Es Cell International Pte Ltd. | Multi-step method for the differentiation of insulin positive, glucose |
US20040126879A1 (en) | 2002-08-29 | 2004-07-01 | Baylor College Of Medicine | Heart derived cells for cardiac repair |
CA2505251A1 (en) | 2002-11-05 | 2004-05-27 | Brigham And Women's Hospital, Inc. | Mesenchymal stem cells and methods of use thereof |
US7794702B2 (en) | 2003-01-15 | 2010-09-14 | The Trustees Of Columbia University In The City Of New York | Mesenchymal stem cells as a vehicle for ion channel transfer in syncytial structures |
WO2004070013A2 (en) | 2003-01-31 | 2004-08-19 | The Regents Of The University Of California | Use of islet 1 as a marker for isolating or generating stem cells |
DE10331439B3 (de) | 2003-07-10 | 2005-02-03 | Micromod Partikeltechnologie Gmbh | Magnetische Nanopartikel mit verbesserten Magneteigenschaften |
EP2287314A1 (en) | 2003-03-04 | 2011-02-23 | Intercell AG | Streptococcus pyogenes antigens |
US7837631B2 (en) | 2003-03-14 | 2010-11-23 | Boston Scientific Scimed Inc. | Biopsy forceps with removable jaw segments |
US20060041182A1 (en) | 2003-04-16 | 2006-02-23 | Forbes Zachary G | Magnetically-controllable delivery system for therapeutic agents |
US20040214182A1 (en) | 2003-04-25 | 2004-10-28 | Vinod Sharma | Genetic modification of targeted regions of the cardiac conduction system |
US7329638B2 (en) | 2003-04-30 | 2008-02-12 | The Regents Of The University Of Michigan | Drug delivery compositions |
US20060025713A1 (en) | 2003-05-12 | 2006-02-02 | Alex Rosengart | Magnetic particle-based therapy |
CA2431425A1 (en) | 2003-06-05 | 2004-12-05 | Angiogene, Inc. | Epas1 gene transfer to improve cell therapy |
GB0313259D0 (en) | 2003-06-09 | 2003-07-16 | Consejo Superior Investigacion | Magnetic nanoparticles |
ES2265199B1 (es) | 2003-06-12 | 2008-02-01 | Cellerix, S.L. | Celulas madre adultas multipotentes procedentes de condrocitos desdiferenciados y sus aplicaciones. |
EP1638460A4 (en) | 2003-06-12 | 2010-05-05 | Univ Minnesota | RANGING CELLS ON TARGET TISSUE OR ORGANS |
PL1641914T3 (pl) | 2003-06-27 | 2017-01-31 | DePuy Synthes Products, Inc. | Komórki pochodzące z poporodowej tkanki łożyska oraz sposoby uzyskiwania i zastosowania tych komórek |
EP2360240A1 (en) | 2003-06-30 | 2011-08-24 | Eisai R&D Management Co., Ltd. | A method for forming a chondroid tissue |
US20060205071A1 (en) | 2003-07-17 | 2006-09-14 | Gamida-Cell Ltd. | Methods for ex-vivo expanding stem/progenitor cells |
ITRM20030376A1 (it) | 2003-07-31 | 2005-02-01 | Univ Roma | Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia. |
US20080213812A1 (en) | 2003-09-29 | 2008-09-04 | Andrews William H | Methods and compositions for modulating telomerase reverse transcriptase (TERT) expression |
JP2005110565A (ja) | 2003-10-07 | 2005-04-28 | Nobuya Yamanaka | 分化多能性維持剤 |
US7280863B2 (en) | 2003-10-20 | 2007-10-09 | Magnetecs, Inc. | System and method for radar-assisted catheter guidance and control |
CN1537646A (zh) | 2003-10-22 | 2004-10-20 | 高春平 | 肿瘤局部综合治疗方法和装置 |
US20050090732A1 (en) | 2003-10-28 | 2005-04-28 | Triton Biosystems, Inc. | Therapy via targeted delivery of nanoscale particles |
WO2005047524A2 (en) | 2003-11-10 | 2005-05-26 | The Scripps Research Institute | Compositions and methods for inducing cell dedifferentiation |
GB0329310D0 (en) | 2003-12-18 | 2004-01-21 | Univ Keele | Method |
US7625581B2 (en) | 2003-12-19 | 2009-12-01 | Ethicon, Inc. | Tissue scaffolds for use in muscoloskeletal repairs |
WO2005065282A2 (en) | 2003-12-31 | 2005-07-21 | The Regents Of The University Of California | Remote magnetically induced treatment of cancer |
US20080274998A1 (en) | 2004-02-17 | 2008-11-06 | Yeda Research And Development Co. Ltd. | Disaccharide Molecules and Derivatives Thereof and Methods of Using Same |
US20050260748A1 (en) | 2004-02-27 | 2005-11-24 | Michigan State University | Adult stem cells and uses thereof |
US20050214938A1 (en) | 2004-03-26 | 2005-09-29 | Gold Joseph D | Cardiac bodies: clusters of spontaneously contracting cells for regenerating cardiac function |
WO2005095652A2 (en) | 2004-03-31 | 2005-10-13 | Georgetown University | Pnmt as a novel marker for progenitor cells |
WO2005110395A1 (en) | 2004-05-19 | 2005-11-24 | University Of South Carolina | System and device for magnetic drug targeting with magnetic drug carrier particles |
US7259011B2 (en) | 2004-05-20 | 2007-08-21 | Paul Lucas | Pluripotent adult stem cells |
JP2006006125A (ja) | 2004-06-22 | 2006-01-12 | Nipro Corp | 骨髄単核細胞の調製方法及び細胞調製装置 |
WO2006004910A2 (en) | 2004-06-28 | 2006-01-12 | Transtarget Inc. | Improved bispecific antibodies |
CA2572065A1 (en) | 2004-07-01 | 2006-01-19 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Immunosuppressive exosomes |
WO2006014156A1 (en) | 2004-07-02 | 2006-02-09 | Macropore Biosurgery, Inc. | Systems and methods for isolating and using clinically safe adipose derived regenerative cells |
US20070196918A1 (en) | 2004-07-15 | 2007-08-23 | Sayre Chauncey B | Reprogramming of adult human testicular stem cells to pluripotent germ-line stem cells |
WO2006017428A2 (en) | 2004-08-03 | 2006-02-16 | Becton, Dickinson And Company | Use of magnetic material to direct isolation of compounds and fractionation of multipart samples |
ES2313805B1 (es) | 2004-10-04 | 2009-12-23 | Cellerix, S.L. | Identificacion y aislamiento de celulas multipotentes de tejido mesenquimal no osteocondral. |
US8431397B2 (en) | 2004-09-14 | 2013-04-30 | The Trustees Of Columbia University In The City Of New York | Differentiation of human mesenchymal stem cells to cardiac progenitor cells that promote cardiac repair |
US20060234375A1 (en) | 2004-09-30 | 2006-10-19 | Doronin Sergey V | Use of human stem cells and/or factors they produce to promote adult mammalian cardiac repair through cardiomyocyte cell division |
CA2583473A1 (en) | 2004-10-05 | 2007-04-04 | University Of Georgia Research Foundation, Inc. | Neuronal progenitors from feeder-free human embryonic stem cell culture |
FR2877571B1 (fr) | 2004-11-05 | 2007-04-13 | Nanobiotix Sarl | Nanoparticules pourvues d'un element de ciblage intracellulaire, preparation et utilisations |
US11660317B2 (en) | 2004-11-08 | 2023-05-30 | The Johns Hopkins University | Compositions comprising cardiosphere-derived cells for use in cell therapy |
US20080267921A1 (en) | 2004-11-08 | 2008-10-30 | Johns Hopkins University | Cardiac Stem Cells |
US7402151B2 (en) | 2004-12-17 | 2008-07-22 | Biocardia, Inc. | Steerable guide catheters and methods for their use |
EP1674128A1 (en) | 2004-12-22 | 2006-06-28 | Steinbeis-Transferzentrum für Herz-Kreislaufforschung | Magnetic pole matrices useful for tissue engineering and treatment of disease |
US7850960B2 (en) | 2004-12-30 | 2010-12-14 | University Of Washington | Methods for regulation of stem cells |
AU2006208241B2 (en) | 2005-01-25 | 2011-08-04 | Five Prime Therapeutics, Inc. | Compositions and methods for treating cardiac conditions |
WO2006093276A1 (ja) | 2005-03-04 | 2006-09-08 | Kyoto University | 心臓組織由来の多能性幹細胞 |
EP2399991B1 (en) | 2005-04-12 | 2017-09-27 | Mesoblast, Inc. | Isolation of adult multipotential cells by tissue non-specific alkaline phosphatase |
DE102005016873A1 (de) | 2005-04-12 | 2006-10-19 | Magforce Nanotechnologies Ag | Nanopartikel-Wirstoff-Konjugate |
US7846393B2 (en) | 2005-04-21 | 2010-12-07 | California Institute Of Technology | Membrane filter for capturing circulating tumor cells |
GB0508110D0 (en) | 2005-04-22 | 2005-06-01 | Univ Keele | Gene delivery |
WO2006118914A2 (en) | 2005-04-29 | 2006-11-09 | Children's Medical Center Corporation | Methods of increasing proliferation of adult mammalian cardiomyocytes through p38 map kinase inhibition |
US20070003528A1 (en) | 2005-06-29 | 2007-01-04 | Paul Consigny | Intracoronary device and method of use thereof |
US20070014869A1 (en) | 2005-07-15 | 2007-01-18 | Cormatrix Cardiovascular, Inc. | Compositions for reconstruction, replacement or repair of intracardiac tissue |
CA2659945C (en) | 2005-08-03 | 2014-12-16 | Advanced Cell Technology, Inc. | Improved methods of reprogramming animal somatic cells |
US20070048383A1 (en) | 2005-08-25 | 2007-03-01 | Helmus Michael N | Self-assembled endovascular structures |
US20070054397A1 (en) | 2005-08-26 | 2007-03-08 | Harald Ott | Adult cardiac uncommitted progenitor cells |
EP1931783A1 (en) | 2005-09-09 | 2008-06-18 | The Trustees of Columbia University in the City of New York | Chimeric hcn channels |
EP1934334A1 (en) | 2005-10-13 | 2008-06-25 | Anthrogenesis Corporation | Production of oligodendrocytes from placenta-derived stem cells |
US7736346B2 (en) | 2005-10-18 | 2010-06-15 | Biocardia, Inc. | Bio-interventional therapeutic treatments for cardiovascular diseases |
KR101239051B1 (ko) | 2005-10-21 | 2013-03-04 | 추가이 세이야쿠 가부시키가이샤 | 심장질환 치료제 |
CN100355454C (zh) | 2005-10-25 | 2007-12-19 | 南京工业大学 | 磁热疗用纳米磁粉-抗人肝癌单抗HAb18靶向药物 |
CN100509059C (zh) | 2005-10-25 | 2009-07-08 | 南京工业大学 | 磁热疗用纳米磁粉-抗cea抗体靶向药物 |
US8574571B2 (en) | 2005-10-25 | 2013-11-05 | Womens & Childrens Health Research Institute | Methods and compositions for modulating wound repair |
EP3418297B1 (en) | 2005-12-13 | 2023-04-05 | Kyoto University | Nuclear reprogramming factor |
WO2007133812A2 (en) | 2005-12-30 | 2007-11-22 | Philadelphia Health & Education Corporation, D/B/A Drexel University College Of Medicine | Improved carriers for delivery of nucleic acid agents to cells and tissues |
US7875451B2 (en) | 2006-01-19 | 2011-01-25 | The University Of Washington | Formulation to improve survival of transplanted cells |
US7869854B2 (en) | 2006-02-23 | 2011-01-11 | Magnetecs, Inc. | Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation |
EP2004237A1 (en) | 2006-04-03 | 2008-12-24 | Keele University | Targeted therapy |
US20080138416A1 (en) | 2006-06-13 | 2008-06-12 | Fmc Biopolymer As | Method and systems for using biopolymer-based beads and hydrogels |
US8568286B2 (en) | 2006-06-14 | 2013-10-29 | Cardiac Pacemakers, Inc. | Methods to position therapeutic agents using a magnetic field |
US9149564B2 (en) | 2006-06-23 | 2015-10-06 | The Regents Of The University Of California | Articles comprising large-surface-area bio-compatible materials and methods for making and using them |
CN101511875A (zh) | 2006-07-11 | 2009-08-19 | 犹他大学研究基金会 | 硫醇化的大分子及其制备方法和应用 |
CA2662795A1 (en) | 2006-09-05 | 2008-03-13 | Columbus Nanoworks, Inc. | Magnetic particles and methods of making and using the same |
AU2007299748A1 (en) | 2006-09-19 | 2008-03-27 | Asuragen, Inc. | miR-15, miR-26, miR -31,miR -145, miR-147, miR-188, miR-215, miR-216 miR-331, mmu-miR-292-3p regulated genes and pathways as targets for therapeutic intervention |
WO2008040027A2 (en) | 2006-09-28 | 2008-04-03 | The Regents Of The University Of California | Directed differentiation and maturation of stem cell-derived cardiomyocytes |
JP2010505427A (ja) | 2006-10-09 | 2010-02-25 | ジュリアス−マキシミリアンズ−ユニベルシタット ワーズブルグ | 心疾患の診断及び治療用マイクロRNA(miRNA) |
NZ595854A (en) | 2006-10-23 | 2013-04-26 | Anthrogenesis Corp | Methods and compositions for treatment of bone defects with placental cell populations (ELOVL2, ST3GAL6, STGALNAC5, SLC12A8) |
US7787949B2 (en) | 2006-10-30 | 2010-08-31 | Medtronic, Inc. | Biological pacemaker compositions and systems incorporating interstitial cells of Cajal |
US8017389B2 (en) | 2006-11-07 | 2011-09-13 | Keck Graduate Institute | Enriched stem cell and progenitor cell populations, and methods of producing and using such populations |
KR101240487B1 (ko) | 2006-11-09 | 2013-03-08 | 더 존스 홉킨스 유니버시티 | 성체 포유동물 심근세포의 심장 줄기 세포로의 역분화 |
US8076305B2 (en) | 2006-11-30 | 2011-12-13 | Medtronic, Inc. | Biological pacemakers including mutated hyperpolarization-activated cyclic nucleotide-gated (HCN) channels |
KR100830889B1 (ko) | 2006-12-18 | 2008-05-21 | 주식회사 케이티 | 세툭시맵이 결합된 나노 입자 및 이의 제조 방법 |
DE102007008650B4 (de) | 2007-02-20 | 2012-06-06 | Charité - Universitätsmedizin Berlin | Zellen zur Therapie des Herzens |
CA2684242C (en) | 2007-03-23 | 2019-11-12 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
EP2145000A4 (en) | 2007-04-07 | 2010-05-05 | Whitehead Biomedical Inst | REPROGRAMMING SOMATIC CELLS |
US8496926B2 (en) | 2007-04-16 | 2013-07-30 | Biocardia, Inc. | Treatment for chronic myocardial infarction |
US9205112B2 (en) | 2007-04-23 | 2015-12-08 | Creative Medical Health, Inc. | Combination treatment of cardiovascular disease |
US20080297287A1 (en) | 2007-05-30 | 2008-12-04 | Magnetecs, Inc. | Magnetic linear actuator for deployable catheter tools |
FI20075417A0 (fi) | 2007-06-05 | 2007-06-05 | Marjo-Riitta Suuronen | Koostumuksia ja menetelmiä alkion kantasolujen kasvatukseen |
US20120282229A1 (en) | 2007-08-01 | 2012-11-08 | Christian Kannemeier | Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state |
US20090136582A1 (en) | 2007-08-03 | 2009-05-28 | Albrecht Ralph M | Colloidal magnetic nanobioparticles for cytotoxicity and drug delivery |
WO2009023510A1 (en) | 2007-08-09 | 2009-02-19 | Boston Scientific Scimed, Inc. | Catheter devices for myocardial injections or other uses |
US20090081276A1 (en) | 2007-08-13 | 2009-03-26 | Eben Alsberg | Bioresorbable implant composition |
US20090081170A1 (en) | 2007-09-13 | 2009-03-26 | Paul Riley | Cardiac progenitor cells |
US8541185B2 (en) | 2007-09-24 | 2013-09-24 | Technion Research & Development Foundation Limited | Method of predicting responsiveness to autologous adoptive cell transfer therapy |
JP5496675B2 (ja) | 2007-10-10 | 2014-05-21 | 国立大学法人京都大学 | 細胞移植療法に用いられる心疾患治療薬 |
US20100233216A1 (en) | 2007-10-15 | 2010-09-16 | Vincenzo Cantaluppi | Use of microvesicles (mvs) for preparing a medicament having adjuvant activity on endothelial cell transplantation, particularly in the treatment of diabetes by pancreatic islet transplantation, and related method |
WO2009058818A2 (en) | 2007-10-29 | 2009-05-07 | The Board Of Regents Of The University Of Texas System | Compositions comprising a micro-rna and methods of their use in regulating cardiac remodeling |
DE102007052114B4 (de) | 2007-10-30 | 2011-01-05 | T2Cure Gmbh | Verfahren zur Modulation der Funktion, des Wachstums oder der Differenzierung einer Zelle |
US8617877B2 (en) | 2007-11-02 | 2013-12-31 | The Johns Hopkins University | Cardiac stem cell and myocyte secreted paracrine factors |
AU2008323719B2 (en) | 2007-11-09 | 2013-04-04 | New York Medical College | Methods for the repair and/or regeneration of damaged myocardium using variants of hepatocyte growth factor |
JP5654352B2 (ja) | 2007-11-09 | 2015-01-14 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | miR−15ファミリーのマイクロRNAによる心筋細胞生存及び心臓修復の調節 |
WO2009067644A1 (en) | 2007-11-21 | 2009-05-28 | University Of Miami | Compositions, systems and methods for obtaining and expanding insulin-producing cells |
WO2009070282A1 (en) | 2007-11-26 | 2009-06-04 | Stc.Unm | Active nanoparticles and method of using |
US20090180998A1 (en) | 2007-11-30 | 2009-07-16 | Piero Anversa | Methods of isolating non-senescent cardiac stem cells and uses thereof |
US20090162329A1 (en) | 2007-11-30 | 2009-06-25 | Piero Anversa | Compositions comprising hdac inhibitors and methods of their use in restoring stem cell function and preventing heart failure |
EP2225362A1 (en) | 2007-11-30 | 2010-09-08 | New York Medical College | Methods of reducing transplant rejection and cardiac allograft vasculopathy by implanting autologous stem cells |
AU2008334058B2 (en) | 2007-11-30 | 2014-07-10 | New York Medical College | Compositions comprising vascular and myocyte progenitor cells and methods of their use |
US8512696B2 (en) | 2007-11-30 | 2013-08-20 | Autologous, Llc | Methods of isolating non-senescent cardiac stem cells and uses thereof |
WO2009079592A2 (en) | 2007-12-17 | 2009-06-25 | California Institute Of Technology | Modulating immune system development and function through microrna mir-146 |
US7750027B2 (en) | 2008-01-18 | 2010-07-06 | Oxagen Limited | Compounds having CRTH2 antagonist activity |
US7999025B2 (en) | 2008-01-28 | 2011-08-16 | University Of Utah Research Foundation | Asymmetrically-functionalized nanoparticles organized on one-dimensional chains |
WO2009100137A2 (en) | 2008-02-04 | 2009-08-13 | University Of Miami | Magnetic cells for localizing delivery and tissue repair |
SI2254586T1 (sl) | 2008-02-22 | 2015-07-31 | Agency For Science, Technology And Research (A*Star) | Delci mezenhimske matične celice |
WO2009103818A1 (en) | 2008-02-22 | 2009-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for obtaining progenitor cells and uses thereof in the treatment of tissue or organ damage |
WO2009120702A2 (en) | 2008-03-25 | 2009-10-01 | Emory University | Elemental iron nanoparticles |
WO2009136283A2 (en) | 2008-05-08 | 2009-11-12 | Coretherapix Slu | Multipotent adult stem cell population |
US20110177054A1 (en) | 2008-06-06 | 2011-07-21 | Derrick Gibbings | Use of endo-lysosomal system and secreted vesicles (exosome-like) in treatments and diagnostics based on small rna and experimental study of small rna |
US8193161B2 (en) | 2008-06-09 | 2012-06-05 | New York Medical College | Compositions comprising cardiac stem cells overexpressing specific micrornas and methods of their use in repairing damaged myocardium |
CN102056591B (zh) | 2008-06-11 | 2013-12-11 | 刘彦仿 | 脂质体药剂及其制备方法和用途 |
EP2304035A2 (en) | 2008-06-13 | 2011-04-06 | Life & Brain GmbH | Fusion protein and use thereof |
US20110225661A1 (en) | 2008-06-26 | 2011-09-15 | Spectrum Health Innovations, LLC | Method for treating and preventing radiation damage using genetically modified mesenchymal stem cells |
US20130309304A1 (en) | 2008-08-05 | 2013-11-21 | Bernardo Nadal-Ginard | Compounds and methods |
GB0814302D0 (en) | 2008-08-05 | 2008-10-01 | Coretherapix Slu | Compounds and methods |
US20120034157A1 (en) | 2010-08-03 | 2012-02-09 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Artificial cells |
US8172831B2 (en) | 2008-09-02 | 2012-05-08 | Abbott Cardiovascular Systems Inc. | Catheter configured for incremental rotation |
US20110300111A1 (en) | 2008-11-20 | 2011-12-08 | Cedars-Sinai Medical Center | Generation of induced pluripotent stem cells without the use of viral vectors |
US20120046242A1 (en) | 2008-12-24 | 2012-02-23 | Massachusetts Institute Of Technology | Molecular activators of the wnt/beta-catenin pathway |
WO2010083466A1 (en) | 2009-01-16 | 2010-07-22 | Cedars-Sinai Medical Center | Methods and compositions for cardiac tissue regeneration |
EP2228444A1 (en) | 2009-03-09 | 2010-09-15 | Julius-Maximilians-Universität Würzburg | microRNA for diagnostic and therapeutic purposes in cardiovascular diseases |
WO2010118059A1 (en) | 2009-04-06 | 2010-10-14 | Capricor, Inc. | Systems and methods for cardiac tissue repair |
MX2011011556A (es) | 2009-04-29 | 2012-04-30 | Nutrition Physiology Company Llc | Inhibición del crecimiento patogénico en materias vegetales usando microorganismos que producen ácido láctico. |
CA2763156A1 (en) | 2009-05-20 | 2010-11-25 | Board Of Regents, The University Of Texas System | Identification of micro-rnas involved in post-myocardial infarction remodeling and heart failure |
CN102596177B (zh) | 2009-07-01 | 2014-05-28 | 阿昂梅迪克斯公司 | 来源于有核哺乳动物细胞的微囊泡及其应用 |
EP2467159A1 (en) | 2009-08-20 | 2012-06-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Vla-4 as a biomarker for prognosis and target for therapy in duchenne muscular dystrophy |
US8609617B2 (en) | 2009-09-04 | 2013-12-17 | University Of Miami | KLF family members regulate intrinsic axon regeneration ability |
DK2475372T4 (da) | 2009-09-10 | 2020-11-30 | Velin Pharma As | Fremgangsmåde til fremstilling af micro-RNA og dets terapeutiske anvendelse |
US20150010640A1 (en) | 2009-10-27 | 2015-01-08 | Cedars-Sinai Medical Center | Bi-functional compositions for targeting cells to diseased tissues and methods of using same |
CN102686264A (zh) | 2009-10-27 | 2012-09-19 | 雪松-西奈医疗中心 | 用于具有增强的细胞滞留的靶向细胞递送的外部磁力 |
US9095629B2 (en) | 2009-10-30 | 2015-08-04 | Northwestern University | Magnetic nanostructures as theranostic agents |
JP2011101162A (ja) | 2009-11-05 | 2011-05-19 | Renesas Electronics Corp | データ処理装置及び通信システム |
EP2498797A4 (en) | 2009-11-09 | 2013-12-25 | Brigham & Womens Hospital | TREATMENT OF CARDIOPATHY |
DK2498796T3 (en) | 2009-11-09 | 2018-03-05 | Aal Scient Inc | HEART DISEASE TREATMENT |
WO2011062244A1 (ja) | 2009-11-18 | 2011-05-26 | Kuroda Masahiko | キャリア、その製造方法およびその用途 |
EP2327781A1 (en) | 2009-11-27 | 2011-06-01 | RWTH Aachen | Micro-RNA and tissue repair |
US20110135577A1 (en) | 2009-12-03 | 2011-06-09 | National Taiwan University | Superparamagnetic nanoparticles IN MEDICAL THERAPEUTICS and manufacturing method THEREOF |
JP2013514372A (ja) | 2009-12-15 | 2013-04-25 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | 虚血および虚血−再灌流傷害におけるマイクロrna調節 |
WO2011082038A2 (en) | 2009-12-31 | 2011-07-07 | Fate Therapeutics, Inc. | Improved reprogramming compositions |
EP2371370A1 (en) | 2010-04-01 | 2011-10-05 | Johann Wolfgang Goethe-Universität Frankfurt am Main | Antagonists of miRNA-29 expression and their use in the prevention and treatment of aortic aneurysms and atherosclerotic plaque destabilization |
US9821009B2 (en) | 2010-04-13 | 2017-11-21 | Jiangsu Mingma Biotech Co., Ltd. | Method for modulating microRNA content in living beings and the use thereof |
JP5988961B2 (ja) | 2010-04-28 | 2016-09-07 | ザ ジェイ. デヴィッド グラッドストーン インスティテューツ | 心筋細胞を発生させるための方法 |
US9845457B2 (en) | 2010-04-30 | 2017-12-19 | Cedars-Sinai Medical Center | Maintenance of genomic stability in cultured stem cells |
US9249392B2 (en) | 2010-04-30 | 2016-02-02 | Cedars-Sinai Medical Center | Methods and compositions for maintaining genomic stability in cultured stem cells |
EP2385120A1 (en) | 2010-05-04 | 2011-11-09 | Justus-Liebig- Universitat Giessen | Use of anti-miRNA antisense oligonucleotides for the treatment of pulmonary hypertension |
KR102428776B1 (ko) | 2010-05-12 | 2022-08-04 | 인리젠 | 생물활성 신장 세포 |
EP2579898B1 (en) | 2010-06-10 | 2019-01-09 | Midatech Ltd. | Peptide-carrying nanoparticles |
US8980279B2 (en) | 2010-07-26 | 2015-03-17 | Qu Biologics | Personalized site-specific immunomodulation |
EP3530741B1 (en) | 2010-08-06 | 2021-04-07 | The General Hospital Corporation D/B/A Massachusetts General Hospital | System and apparatus for cell treatment |
WO2012020308A2 (en) | 2010-08-13 | 2012-02-16 | The University Court Of The University Of Glasgow | Cellular and molecular therapies |
US20120093885A1 (en) | 2010-10-18 | 2012-04-19 | Northwestern University | Therapeutic vesicles |
EP2446929A1 (en) | 2010-10-27 | 2012-05-02 | Johann Wolfgang Goethe-Universität Frankfurt am Main | Microvesicles derived from atheroprotective endothelial cells for the treatment and prevention of atherosclerotic diseases |
US9248144B2 (en) | 2010-11-11 | 2016-02-02 | University Of Miami | Compositions, kits and methods for treatment of cardiovascular, immunological and inflammatory diseases |
SG183579A1 (en) | 2011-02-11 | 2012-09-27 | Agency Science Tech & Res | Methods of detecting therapeutic exosomes |
CN109432126B (zh) | 2011-03-11 | 2022-06-14 | 儿童医学中心公司 | 与间充质干细胞外来体相关的方法和组合物 |
US8871731B2 (en) | 2011-03-16 | 2014-10-28 | Migagen Therapeutics, Inc. | Micro-RNA for the regulation of cardiac apoptosis and contractile function |
EP2691512B1 (en) | 2011-03-29 | 2019-05-01 | Asterias Biotherapeutics, Inc. | Enriched populations of cardiomyocyte lineage cells from pluripotent stem cells |
WO2012149557A1 (en) | 2011-04-28 | 2012-11-01 | New York University | miR-33 INHIBITORS AND USES THEREOF TO DECREASE INFLAMMATION |
WO2012162741A1 (en) | 2011-06-01 | 2012-12-06 | Monash University | Enrichment of cardiomyocytes |
EP2535412A1 (en) | 2011-06-17 | 2012-12-19 | Universitat Pompeu-Fabra | New treatment for muscular dystrophies |
EP2549399A1 (en) | 2011-07-19 | 2013-01-23 | Koninklijke Philips Electronics N.V. | Assessment of Wnt pathway activity using probabilistic modeling of target gene expression |
US8802144B2 (en) | 2011-08-25 | 2014-08-12 | Wisconsin Alumni Research Foundation | 3-dimensional cardiac fibroblast derived extracellular matrix |
WO2013048734A1 (en) | 2011-09-28 | 2013-04-04 | Tufts Medical Center, Inc. | Treatment and prevention of cardiovascular disease with cell derived lipid vesicles, microvesicles and exosomes |
US20130280205A1 (en) | 2012-01-13 | 2013-10-24 | Georgia Regents University | Activators of SGK-1 for Use as Cardioprotective Agents |
KR101389850B1 (ko) | 2012-05-04 | 2014-04-29 | 이화여자대학교 산학협력단 | 심장전구세포의 배양방법 및 그 용도 |
WO2013170170A2 (en) | 2012-05-10 | 2013-11-14 | Board Of Regents Of The University Of Nebraska | Compositions and methods for gene therapy |
WO2013184527A1 (en) | 2012-06-05 | 2013-12-12 | Capricor, Inc. | Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy |
EP2687219A1 (en) | 2012-07-18 | 2014-01-22 | Universität Duisburg-Essen | Use of preparations comprising exosomes derived from mesenchymal stem cells (MSCs) in the prevention and therapy of inflammatory conditions |
CA2879322A1 (en) | 2012-07-19 | 2014-01-23 | Reneuron Limited | Stem cell microparticles |
US9492484B2 (en) | 2012-09-27 | 2016-11-15 | The Regents Of The University Of California | Cardiosphere derived cell population and methods of use |
WO2014066545A1 (en) | 2012-10-26 | 2014-05-01 | Cedars-Sinai Medical Center | Therapeutic cells depleted of specific subpopulations of cells for use in tissue repair of regeneration |
WO2014114465A1 (en) | 2013-01-24 | 2014-07-31 | Bernardo Nadal-Ginard | Modulation of cardiac stem-progenitor cell differentiation, assays and uses thereof |
CA2904671C (en) | 2013-03-13 | 2022-08-30 | University Of Cincinnati | Treatment of a diastolic cardiac dysfunction with a trpv2 receptor agonist |
US20140275976A1 (en) | 2013-03-15 | 2014-09-18 | Adventist Health System/Sunbelt, Inc. | Global Ventricular Cardiac Diastolic Function Evaluation System and Associated Methods |
ES2724549T3 (es) | 2013-10-18 | 2019-09-12 | Inst Nat Sante Rech Med | ARN pequeños derivados de RNY como biomarcadores para trastornos relacionados con la aterosclerosis |
US11377639B2 (en) | 2013-11-15 | 2022-07-05 | Wisconsin Alumni Research Foundation | Lineage reprogramming to induced cardiac progenitor cells (iCPC) by defined factors |
DK3076949T3 (da) | 2013-12-04 | 2019-11-25 | Univ Texas | Fremgangsmåde til isolering af kræftcelle-afledte eksosomer |
HUE051159T2 (hu) | 2013-12-20 | 2021-03-01 | Univ Lausanne | Hosszú, nem kódoló RNS-ek diagnosztikai, prognosztikai és terápiás alkalmazásai szívbetegségekre és regeneráló gyógyszerhez |
EP3102191A1 (en) | 2014-02-05 | 2016-12-14 | Stc.Unm | Exosomes as a therapeutic for cancer |
US20150328263A1 (en) | 2014-05-14 | 2015-11-19 | University Of Maryland, Baltimore | Cardiac stem cells for cardiac repair |
EP3204117A4 (en) | 2014-10-06 | 2018-05-09 | Cedars-Sinai Medical Center | Polarization of macrophages to a healing phenotype by cardiosphere-derived cells and by the exosomes secreted by such cells |
WO2016090183A1 (en) | 2014-12-03 | 2016-06-09 | Capricor Therapeutics, Inc. | Processes for producing stable exosome formulations |
US10131878B2 (en) | 2015-04-06 | 2018-11-20 | Wisconsin Alumni Research Foundation | Methods for epicardial differentiation of human pluripotent stem cells |
KR101818560B1 (ko) | 2015-05-18 | 2018-01-16 | 가톨릭관동대학교기술지주 주식회사 | 줄기세포 유래 미세소포체를 포함하는 부정맥 예방 또는 치료용 약제학적 조성물 |
US10624849B2 (en) | 2015-09-28 | 2020-04-21 | Northwestern University | Targeted extracellular vesicles comprising membrane proteins with engineered glycosylation sites |
WO2017123662A1 (en) | 2016-01-11 | 2017-07-20 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction |
WO2017147594A1 (en) | 2016-02-26 | 2017-08-31 | Yale University | COMPOSITIONS AND METHODS OF USING piRNAS IN CANCER DIAGNOSTICS AND THERAPEUTICS |
EP3429557A4 (en) | 2016-03-14 | 2020-02-26 | Capricor, Inc. | METHOD FOR TREATING EYE INFLAMMATION AND CHEMICAL INJURIES OF THE EYE WITH EXTRA-CELLULAR VESICLES |
WO2017173034A1 (en) | 2016-03-30 | 2017-10-05 | The University Of North Carolina At Chapel Hill | Biological agent-exosome compositions and uses thereof |
WO2017210652A1 (en) | 2016-06-03 | 2017-12-07 | Cedars-Sinai Medical Center | Cdc-derived exosomes for treatment of ventricular tachyarrythmias |
US11541078B2 (en) | 2016-09-20 | 2023-01-03 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders |
US11759482B2 (en) | 2017-04-19 | 2023-09-19 | Cedars-Sinai Medical Center | Methods and compositions for treating skeletal muscular dystrophy |
HUE048369T2 (hu) | 2017-07-17 | 2020-07-28 | Univ Masarykova | Diagnosztikai eljárás végbélrák kimutatására |
EP3661526B1 (en) | 2017-08-04 | 2023-07-12 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and their extracellular vesicles for treatment and prevention of cancer |
US11667916B2 (en) | 2017-09-08 | 2023-06-06 | Korea University Research And Business Foundation | Composition for preventing or treating liver fibrosis, containing exosome or exosome-derived ribonucleic acid |
US11660355B2 (en) | 2017-12-20 | 2023-05-30 | Cedars-Sinai Medical Center | Engineered extracellular vesicles for enhanced tissue delivery |
US20210032598A1 (en) | 2018-01-30 | 2021-02-04 | Capricor, Inc. | Activation-induced tissue-effector cells suitable for cell therapy and extracelluar vesicles derived therefrom |
US20210207145A1 (en) | 2018-02-05 | 2021-07-08 | Cedars-Sinai Medical Center | Methods for therapeutic use of exosomes and y-rnas |
EP3965800A4 (en) | 2019-05-08 | 2023-02-15 | Cedars-Sinai Medical Center | THERAPEUTIC ACTIVE CELLS AND EXOSOMES |
WO2021178514A1 (en) | 2020-03-04 | 2021-09-10 | Cedars-Sinai Medical Center | Cardiosphere-derived cells, exosomes derived therefrom, and methods of using same to treat volumetric muscle loss |
US20230141499A1 (en) | 2020-03-20 | 2023-05-11 | Cedars-Sinai Medical Center | Cardiosphere-derived cell (cdc) therapy for the treatment of viral infections |
-
2015
- 2015-10-02 JP JP2017518059A patent/JP6878274B2/ja active Active
- 2015-10-02 AU AU2015327812A patent/AU2015327812B2/en active Active
- 2015-10-02 EP EP15846113.7A patent/EP3200808B1/en active Active
- 2015-10-02 WO PCT/US2015/053853 patent/WO2016054591A1/en active Application Filing
- 2015-10-02 US US15/516,658 patent/US11357799B2/en active Active
- 2015-10-02 CA CA2962444A patent/CA2962444C/en active Active
-
2021
- 2021-04-28 JP JP2021076780A patent/JP7275193B2/ja active Active
- 2021-06-02 AU AU2021203597A patent/AU2021203597B2/en active Active
- 2021-11-17 US US17/528,822 patent/US20220072062A1/en active Pending
-
2023
- 2023-03-13 JP JP2023038837A patent/JP2023075258A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014028493A2 (en) | 2012-08-13 | 2014-02-20 | Cedars-Sinai Medical Center | Exosomes and micro-ribonucleic acids for tissue regeneration |
JP6878274B2 (ja) | 2014-10-03 | 2021-05-26 | シーダーズ−サイナイ・メディカル・センターCedars−Sinai Medical Center | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム |
Non-Patent Citations (6)
Title |
---|
Circulation Research,2014年12月,Vol.115,pp.e90-e91 24248 |
Stem Cell Reports,2014年05月,Vol.2,pp.606-619 |
Trends in Glycoscience and Glycotechnology,2011年,Vol.23, No.132,pp.194-196 |
医学のあゆみ,2011年,Vol.239, No.14,pp.1440-1444 |
日本内科学会雑誌,2014年02月,Vol.103, No.2,pp.277-284 |
難病と在宅ケア,2013年,Vol.19, No.8,pp.55-57 |
Also Published As
Publication number | Publication date |
---|---|
EP3200808A1 (en) | 2017-08-09 |
EP3200808B1 (en) | 2024-07-31 |
AU2015327812B2 (en) | 2021-04-15 |
CA2962444C (en) | 2023-09-05 |
EP3200808A4 (en) | 2018-05-16 |
CA2962444A1 (en) | 2016-04-07 |
AU2021203597A1 (en) | 2021-07-01 |
JP6878274B2 (ja) | 2021-05-26 |
US20170290860A1 (en) | 2017-10-12 |
JP2022017178A (ja) | 2022-01-25 |
US20220072062A1 (en) | 2022-03-10 |
WO2016054591A1 (en) | 2016-04-07 |
US11357799B2 (en) | 2022-06-14 |
AU2021203597B2 (en) | 2024-05-02 |
JP2017530158A (ja) | 2017-10-12 |
AU2015327812A1 (en) | 2017-04-27 |
JP2023075258A (ja) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7275193B2 (ja) | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム | |
Zhang et al. | Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury | |
US20170304368A1 (en) | Polarization of macrophages to a healing phenotype by cardiosphere-derived cells and by the exosomes secreted by such cells | |
US20230381243A1 (en) | Methods and compositions for treating skeletal muscular dystrophy | |
US20220218757A1 (en) | Therapeutically active cells and exosomes | |
CN111182890A (zh) | 用于治疗大疱性表皮松解症的方法和组合物 | |
WO2016196822A1 (en) | Urodele exosomes as therapeutic agents | |
Jeyaraman et al. | Current understanding of MSC-derived exosomes in the management of knee osteoarthritis | |
WO2021195154A1 (en) | Isolation and purification of exosomes for regenerative medicine | |
US20210238552A1 (en) | Extracellular vesicles loaded with an exogenous molecule | |
Wang et al. | Compounding engineered mesenchymal stem cell-derived exosomes: A potential rescue strategy for retinal degeneration | |
Zhou et al. | MSC-exosomes in regenerative medicine | |
Liang et al. | Simultaneous ischemic regions targeting and BBB crossing strategy to harness extracellular vesicles for therapeutic delivery in ischemic stroke | |
US20150297686A1 (en) | Tissue regeneration promoting agent | |
Gopal et al. | Extracellular vesicle mimetics engineered from mesenchymal stem cells and curcumin promote fibrosis regression in a mouse model of thioacetamide-induced liver fibrosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230502 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7275193 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |