JP7251323B2 - 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法 - Google Patents

感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法 Download PDF

Info

Publication number
JP7251323B2
JP7251323B2 JP2019102940A JP2019102940A JP7251323B2 JP 7251323 B2 JP7251323 B2 JP 7251323B2 JP 2019102940 A JP2019102940 A JP 2019102940A JP 2019102940 A JP2019102940 A JP 2019102940A JP 7251323 B2 JP7251323 B2 JP 7251323B2
Authority
JP
Japan
Prior art keywords
photosensitive resin
resin composition
component
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019102940A
Other languages
English (en)
Other versions
JP2020197603A (ja
Inventor
弥生 澤田
紀大 阿部
彰宏 中村
彩 桃崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2019102940A priority Critical patent/JP7251323B2/ja
Publication of JP2020197603A publication Critical patent/JP2020197603A/ja
Application granted granted Critical
Publication of JP7251323B2 publication Critical patent/JP7251323B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Description

本開示は、感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法に関する。
近年、電子機器の小型化、軽量化及び多機能化といった高性能化に伴い、多層プリント配線板は、回路層数の増加、配線の微細化による高密度化が進んでいる。なかでも、半導体チップが搭載されるBGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)等の半導体パッケージ基板の高密度化は著しく、配線の微細化に加え、絶縁膜の薄膜化及び層間接続用のビア(「ビアホール」とも称する。)のさらなる小径化が求められている。
プリント配線板の製造方法としては、層間絶縁層と導体回路層を順次積層して形成するビルドアップ方式(例えば、特許文献1参照)による多層プリント配線板の製造方法が主に採用されており、多層プリント配線板の製造方法では、回路の微細化に伴い、回路をめっきにより形成する、セミアディティブ工法が主流となっている。
従来のセミアディティブ工法では、例えば、(1)導体回路上に熱硬化性樹脂フィルムをラミネートし、該熱硬化性樹脂フィルムを加熱によって硬化させて「層間絶縁層」を形成し、(2)次に、層間接続用のビアをレーザ加工により形成し、アルカリ過マンガン酸処理等によってデスミア処理及び粗化処理を行い、(3)その後、基板に無電解銅めっき処理を施し、レジストを用いてパターン形成後、電解銅めっきを行うことにより、銅の回路層を形成し、(4)次いで、レジスト剥離をし、無電解層のフラッシュエッチングを行うことにより、銅の回路が形成されていた。
既述のように、従来の熱硬化性樹脂フィルムを硬化して形成された層間絶縁層にビアを形成する方法は、主にレーザ加工が採用されている。しかし、ビアホールの小型化が進む中、レーザ加工機を用いたレーザ照射によるビアホールの形成は限界に達している。さらに、レーザ加工機によるビアの形成では、それぞれのビアホールを一つずつ形成する必要があり、高密度化によって多数のビアを設ける必要がある場合、ビアの形成に多大な時間を要し、製造効率が悪くなる、という問題が生じるようになっている。
このような状況下、多数のビアを一括で形成可能な方法として、(A)酸変性ビニル基含有エポキシ樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機充填材、及び(E)シラン化合物を含有し、前記(D)無機充填材の含有量が10~80質量%である感光性樹脂組成物を用いたフォトリソグラフィー法によって、複数の小径ビアを一括で形成する方法が提案されている(例えば、特許文献2参照)。
特開平7-304931号公報 特開2017-116652号公報
特許文献2に記載の発明は、層間絶縁層又は表面保護層の材料として、従来の熱硬化性樹脂組成物の代わりに感光性樹脂組成物を用いることに起因するめっき銅との接着強度の低下の抑制を課題の1つとし、さらに、ビアの解像性、シリコン素材の基板及びチップ部品との密着性も課題とし、これらを解決したとしている。しかしながら、配線の微細化に加え、絶縁膜の薄膜化及び層間接続用のビアホールの小径化が進む中、ビアの解像性、めっき銅との接着強度及び絶縁信頼性への要求性能はより厳しくなっており、これらの性能にはさらなる改善の余地がある。
また、層間絶縁層の材料として、従来のソルダーレジストの材料である感光性樹脂組成物等を転用することも考えられる。しかし、層間絶縁層にはソルダーレジストには不要であった特性、例えば、上記のビアの解像性、めっき銅との接着強度及び絶縁信頼性の他、複数回の加熱に耐え得る高い耐熱性も求められるため、層間絶縁層としての実用に耐えられるか否かは不明であり、安易に転用できるものではない。
本発明は、上記のような問題点を解決するためになされたものであり、ビアの解像性、めっき銅との接着強度及び絶縁信頼性に優れた感光性樹脂組成物、フォトビア形成用感光性樹脂組成物及び層間絶縁層用感光性樹脂組成物を提供することを目的とするものである。また、前記感光性樹脂組成物からなる感光性樹脂フィルム及び層間絶縁層用感光性樹脂フィルムを提供すること、プリント配線板及び半導体パッケージを提供すること、並びに前記プリント配線板の製造方法を提供することを目的とするものである。
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、下記の発明により解決できることを見出した。すなわち本発明は、下記の感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法を提供するものである。
1.(A)エチレン性不飽和基を有する光重合性化合物、(B)無機充填剤及び(C)光重合開始剤を含有し、該(B)無機充填剤が(B1)アミノシラン処理無機充填剤及び(B2)ビニルシラン処理無機充填剤を含有し、該(B1)アミノシラン処理無機充填剤と該(B2)ビニルシラン処理無機充填剤との合計量に対する該(B1)アミノシラン処理無機充填剤の割合が、0.5~45質量%である、感光性樹脂組成物。
2.前記(A)エチレン性不飽和基を有する光重合性化合物が、(A1)エチレン性不飽和基とともに酸性置換基を有する光重合性化合物を含む、上記1に記載の感光性樹脂組成物。
3.さらに、(D)熱硬化性樹脂を含む上記1又は2に記載の感光性樹脂組成物。
4.さらに、(E)エラストマを含む上記1~3のいずれか1に記載の感光性樹脂組成物。
5.前記(A)エチレン性不飽和基を有する光重合性化合物の含有量が、樹脂成分全量基準で、5~60質量%である上記1~4いずれか1に記載の感光性樹脂組成物。
6.前記(B)無機充填剤の含有量が、固形分全量基準で、5~80質量%である上記1~5のいずれか1に記載の感光性樹脂組成物。
7.フォトビア形成に用いられる上記1~6のいずれか1に記載の感光性樹脂組成物。
8.層間絶縁層の形成に用いられる上記1~6のいずれか1に記載の感光性樹脂組成物。
9.上記1~6のいずれか1に記載の感光性樹脂組成物からなる感光性樹脂フィルム。
10.層間絶縁層の形成に用いられる上記9に記載の感光性樹脂フィルム。
11.上記1~6のいずれか1に記載の感光性樹脂組成物を用いて形成される層間絶縁層を備える多層プリント配線板。
12.上記10に記載の感光性樹脂フィルムを用いて形成される層間絶縁層を備える多層プリント配線板。
13.上記11又は12に記載の多層プリント配線板に半導体素子を搭載してなる半導体パッケージ。
14.下記工程(1)~(4)を順に有する多層プリント配線板の製造方法。
工程(1):上記9に記載の感光性樹脂フィルムを、回路基板の片面又は両面にラミネートする工程。
工程(2):前記工程(1)でラミネートされた感光性樹脂フィルムに対して露光及び現像することによりビアを有する層間絶縁層を形成する工程。
工程(3):前記ビア及び前記層間絶縁層を粗化処理する工程。
工程(4):前記層間絶縁層上に回路パターンを形成する工程。
本発明によれば、ビアの解像性、めっき銅との接着強度及び絶縁信頼性に優れた感光性樹脂組成物、該感光性樹脂組成物からなる感光性樹脂フィルム、該感光性樹脂組成物又は感光性樹脂フィルムを用いた多層プリント配線板及び該多層プリント配線板を用いた半導体パッケージを提供することができる。
また、より小径で解像度の高いビアを有し、層間絶縁層とめっき銅との接着強度が高く、かつ絶縁信頼性に優れた多層プリント配線板を効率良く製造する方法を提供することができる。
本実施形態の感光性樹脂組成物の硬化物を表面保護膜及び層間絶縁膜の少なくとも一方として用いる多層プリント配線板の製造工程の一態様を示す模式図である。
[感光性樹脂組成物]
本発明の一実施形態に係る(以下、単に「本実施形態」と称することがある。)の感光性樹脂組成物は、(A)エチレン性不飽和基を有する光重合性化合物、(B)無機充填剤及び(C)光重合開始剤を含有し、該(B)無機充填剤が(B1)アミノシラン処理無機充填剤及び(B2)ビニルシラン処理無機充填剤を含有し、該(B1)アミノシラン処理無機充填剤と該(B2)ビニルシラン処理無機充填剤との合計量に対する該(B1)アミノシラン処理無機充填剤の割合が、0.5~45質量%である樹脂組成物である。
なお、本明細書において、上記成分はそれぞれ、(A)成分、(B)成分、(C)成分、(B1)成分、(B2)成分等と称することがあり、その他の成分についても同様の略し方をすることがある。「樹脂成分」とは、上記(A)成分、(C)成分等であり、上記(B)無機充填材は含まれないことを意味し、「固形分」とは、感光性樹脂組成物に含まれる水及び溶媒等の揮発する物質を除いた不揮発分のことであり、該樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、また25℃付近の室温で液状、水飴状及びワックス状のものも含む。
本明細書において、数値範囲について、「~」にかかる上限及び下限の数値は任意に組み合わせすることができる数値であり、上限及び下限の数値として実施例に示される数値を用いることも可能である。また、感光性樹脂組成物中の上記各成分の含有量について、各成分に該当する物質が複数種存在する場合、特に断らない限り、該物質を合計した含有量を意味する。
本実施形態の感光性樹脂組成物は、フォトリソグラフィーによるビア形成(「フォトビア形成」とも称する。)に適しているため、本発明はフォトビア形成用感光性樹脂組成物も提供する。また、該感光性樹脂組成物はビアの解像性、めっき銅との接着強度及び絶縁信頼性に優れており、多層プリント配線板の層間絶縁層の形成に適しているため、本発明は層間絶縁層用感光性樹脂組成物も提供する。本明細書において感光性樹脂組成物という場合には、フォトビア形成用感光性樹脂組成物及び層間絶縁層用感光性樹脂組成物も含まれている。
以下、本実施形態の感光性樹脂組成物が含有し得る各成分について詳述する。
<(A)エチレン性不飽和基を有する光重合性化合物>
本実施形態の感光性樹脂組成物は、(A)成分としてエチレン性不飽和基を有する光重合性化合物を含む。(A)成分が有するエチレン性不飽和基としては、例えば、ビニル基、アリル基、プロパルギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリロイル基等の光重合性を示す官能基が挙げられる。これらの光重合性を示す官能基の中でも、ビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、(メタ)アクリロイル基が好ましい。(A)成分は、エチレン性不飽和基を有することにより、光重合性を発現する化合物であり、本実施形態の感光性樹脂組成物に光重合性を付与する成分である。
エチレン性不飽和基を有する光重合性化合物としては、ビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、(Ai)1つの重合可能なエチレン性不飽和基を有する一官能ビニルモノマー、(Aii)2つの重合可能なエチレン性不飽和基を有する二官能ビニルモノマー及び(Aiii)少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーから選ばれる少なくとも1種を含む態様が好ましく、前記(Aiii)成分を含む態様がより好ましい。(Ai)~(Aiii)成分としては、分子量が1,000以下のものが好ましい。
((Ai)一官能ビニルモノマー)
前記1つの重合可能なエチレン性不飽和基を有する一官能ビニルモノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル等が挙げられる。該(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、(メタ)アクリル酸ヒドロキシルエチルエステル等が挙げられる。(Ai)成分は、単独で、又は複数種を併用してもよい。
((Aii)二官能ビニルモノマー)
前記2つの重合可能なエチレン性不飽和基を有する二官能ビニルモノマーとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシポリプロポキシフェニル)プロパン、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート等が挙げられる。(Aii)成分は、単独で、又は複数種を併用してもよい。
((Aiii)多官能ビニルモノマー)
前記少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート等のトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物;テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等のテトラメチロールメタン由来の骨格を有する(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物;ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物;ジトリメチロールプロパンテトラ(メタ)アクリレート等のジトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物;ジグリセリン由来の骨格を有する(メタ)アクリレート化合物などが挙げられる。
これらの中でも、特にビアの解像性の向上の観点から、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物が好ましく、ジペンタエリスリトールペンタ(メタ)アクリレートがより好ましい。(Aiii)成分は、単独で、又は複数種を併用してもよい。
ここで、前記「~由来の骨格を有する(メタ)アクリレート化合物」(ただし、「~」は化合物名である。)とは、化合物「~」と(メタ)アクリル酸とのエステル化物を意味し、当該エステル化物には、アルキレンオキシ基で変性された化合物も包含される。
((A1)エチレン性不飽和基とともに酸性置換基を有する光重合性化合物)
エチレン性不飽和基を有する光重合性化合物は、アルカリ現像を可能とし、かつビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、(A1)エチレン性不飽和基とともに酸性置換基を有する光重合性化合物を含む態様も好ましい。ここで、酸性置換基としては、例えばカルボキシル基、スルホン酸基、フェノール性水酸基等が挙げられ、アルカリ現像を可能とし、かつビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、中でもカルボキシル基が好ましい。
(A1)成分としては、アルカリ現像を可能とし、かつビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、(a1)エポキシ樹脂を(a2)ビニル基含有有機酸で変性した化合物(以下、「(A’)成分」と称することがある。)に、(a3)飽和基又は不飽和基含有多塩基酸無水物を反応させてなる、(A1-1)酸変性ビニル基含有エポキシ樹脂誘導体を使用することができる。
-(a1)エポキシ樹脂-
(a1)エポキシ樹脂としては、2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、アルカリ現像を可能とし、かつビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
また、エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに次に分類される。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール系エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のビスフェノール系ノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等の、上記ビスフェノール系ノボラック型エポキシ樹脂以外のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフタレン型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;脂環式エポキシ樹脂;脂肪族鎖状エポキシ樹脂;ゴム変性エポキシ樹脂などに分類される。
これらの中でも、(a1)エポキシ樹脂としては、アルカリ現像を可能とし、かつビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、ビスフェノール系ノボラック型エポキシ樹脂が好ましく、ビスフェノールFノボラック型エポキシ樹脂がより好ましい。また、(a1)エポキシ樹脂は、単独で、又は複数種を併用してもよい。
(a1)エポキシ樹脂としては、より具体的には、下記一般式(1)で表される構造単位を有するエポキシ樹脂であることも好ましい。
Figure 0007251323000001
一般式(1)中、R11は水素原子又はメチル基を示し、Y11は各々独立に水素原子又はグリシジル基を示す。複数のR11は各々同一でもよいし、異なっていてもよい。複数のY11のうちの少なくとも一方はグリシジル基を示す。
11は、ビアの解像性及びめっき銅との接着強度の観点から、いずれも水素原子であることが好ましい。また、これと同様の観点から、Y11は、いずれもグリシジル基であることが好ましい。
一般式(1)で表される構造単位を有する(a1)エポキシ樹脂中の該構造単位の構造単位数は、1以上の数であり、好ましくは10~100、より好ましくは15~80、さらに好ましくは15~70である。構造単位数が上記範囲内であると、接着強度、耐熱性及び絶縁性が向上する傾向にある。
一般式(1)において、R11がいずれも水素原子であり、Y11がいずれもグリシジル基のものは、EXA-7376シリーズ(DIC株式会社製、商品名)として、また、R11がいずれもメチル基であり、Y11がいずれもグリシジル基のものは、EPON SU8シリーズ(三菱ケミカル株式会社製、商品名)として商業的に入手可能である。
-(a2)ビニル基含有有機酸-
(a2)ビニル基含有有機酸としては、特に制限されるものではないが、例えば、ビニル基含有モノカルボン酸が好ましく挙げられる。ビニル基含有モノカルボン酸としては、例えば、アクリル酸、アクリル酸の二量体、メタクリル酸、β-フルフリルアクリル酸、β-スチリルアクリル酸、桂皮酸、クロトン酸、α-シアノ桂皮酸等のアクリル酸誘導体;水酸基含有(メタ)アクリレートと二塩基酸無水物との反応生成物である半エステル化合物;ビニル基含有モノグリシジルエーテル又はビニル基含有モノグリシジルエステルと二塩基酸無水物との反応生成物である半エステル化合物;などが挙げられる。
上記の半エステル化合物は、例えば、水酸基含有(メタ)アクリレート、ビニル基含有モノグリシジルエーテル又はビニル基含有モノグリシジルエステルと二塩基酸無水物とを等モル比で反応させることで得られる。(a2)成分は、単独で、又は複数種を併用してもよい。
(a2)成分の一例として挙げた上記の半エステル化合物の合成にあたり、使用し得る水酸基含有(メタ)アクリレート、ビニル基含有モノグリシジルエーテル及びビニル基含有モノグリシジルエステルとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。
上記の半エステル化合物の合成に用いられる二塩基酸無水物としては、飽和基を含有するものであってもよいし、不飽和基を含有するものであってもよい。二塩基酸無水物としては、例えば、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が挙げられる。
上記(a1)成分と上記(a2)成分との反応において、(a1)成分のエポキシ基1当量に対して、(a2)成分が0.6~1.05当量となる比率で反応させることが好ましく、0.8~1.0当量となる比率で反応させてもよい。このような比率で反応させることで、光重合性が向上する、すなわち光感度が大きくなり、ビアの解像性が向上する傾向にある。
上記(a1)成分と上記(a2)成分は、有機溶剤中で反応させることができる。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン系有機溶媒;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素系有機溶媒;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル系有機溶媒;酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル系有機溶媒;オクタン、デカン等の脂肪族炭化水素系有機溶媒;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系有機溶剤などが挙げられる。
さらに、上記(a1)成分と上記(a2)成分との反応を促進させるために触媒を用いることが好ましい。触媒としては、例えば、トリエチルアミン、ベンジルメチルアミン等のアミン系触媒;メチルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド等の第四級アンモニウム塩触媒;トリフェニルホスフィン等のホスフィン系触媒などが挙げられる。中でも、ホスフィン系触媒が好ましく、トリフェニルホスフィンがより好ましい。
触媒の使用量は、上記(a1)成分と上記(a2)成分との合計100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.05~5質量部、さらに好ましくは0.1~2質量部である。前記の使用量であれば、前記(a1)成分と前記(a2)成分との反応が促進される傾向にある。
また、反応中の重合を防止する目的で、重合禁止剤を用いることが好ましい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等が挙げられる。
重合禁止剤を使用する場合、その使用量は、感光性樹脂組成物の貯蔵安定性を向上させる観点から、上記(a1)成分と上記(a2)成分との合計100質量部に対して、好ましくは0.01~1質量部、より好ましくは0.02~0.8質量部、さらに好ましくは0.05~0.5質量部である。
上記(a1)成分と上記(a2)成分との反応温度は、生産性の観点から、好ましくは60~150℃、より好ましくは80~120℃、さらに好ましくは90~110℃である。
上記(a1)成分と上記(a2)成分とを反応させてなる(A’)成分は、(a1)成分のエポキシ基と(a2)成分のカルボキシル基との開環付加反応により形成される水酸基を有するものになっていると推察される。
-(a3)多塩基酸無水物-
(a3)成分としては、飽和基を含有するものであってもよいし、不飽和基を含有するものであってもよい。(a3)成分としては、例えば、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が挙げられる。これらの中でも、ビアの解像性の観点から、テトラヒドロ無水フタル酸が好ましい。
上記で得られた(A’)成分に、さらに飽和又は不飽和基含有の(a3)成分を反応させることにより、(A’)成分の水酸基((a1)成分中に元来存在する水酸基も含む。)と(a3)成分の酸無水物基とが半エステル化された、エチレン性不飽和基とともに酸性置換基を有する光重合性化合物である(A1-1)酸変性ビニル基含有エポキシ樹脂誘導体が生成していると推察される。
上記(A’)成分と上記(a3)成分との反応において、例えば、(A’)成分中の水酸基1当量に対して、(a3)成分を0.1~1.0当量反応させることで、(A1-1)酸変性ビニル基含有エポキシ樹脂誘導体の酸価を調整することができる。
(A1-1)酸変性ビニル基含有エポキシ樹脂誘導体の酸価は、好ましくは30~150mgKOH/g、より好ましくは40~120mgKOH/g、さらに好ましくは50~100mgKOH/gである。酸価が30mgKOH/g以上であると感光性樹脂組成物の希アルカリ溶液への溶解性が向上し、150mgKOH/g以下であると硬化膜の電気特性が向上する傾向にある。
上記(A’)成分と上記(a3)成分との反応温度は、生産性の観点から、好ましくは50~150℃、より好ましくは60~120℃、さらに好ましくは70~100℃である。
(A1-1)酸変性ビニル基含有エポキシ樹脂誘導体としては、市販品を使用してもよく、市販品としては、例えば、CCR-1218H、CCR-1159H、CCR-1222H、PCR-1050、TCR-1335H、ZAR-1035、ZAR-2001H、UXE-3024、ZFR-1185、ZCR-1569H、ZXR-1807、ZCR-6000、ZCR-8000(以上、日本化薬株式会社製、商品名)、UE-9000、UE-EXP-2810PM、UE-EXP-3045(以上、DIC株式会社製、商品名)等が挙げられる。
(A1)成分としては、スチレン-無水マレイン酸共重合体のヒドロキシエチル(メタ)アクリレート変性物等の(A1-2)スチレン-マレイン酸系樹脂を使用することもできる。この場合、上記(A1-1)成分と共に、上記(A1-2)成分を併用することもできる。(A1-2)成分は、単独で、又は複数種を併用してもよい。
また、(A1)成分としては、上記(a1)エポキシ樹脂を(a2)ビニル基含有有機酸で変性した化合物、すなわち(A’)成分と、イソシアネート化合物とを反応させて得られる、(A1-3)エポキシ系ポリウレタン樹脂を使用することもできる。(A1-3)成分は、単独で、又は複数種を併用してもよい。
((A1)エチレン性不飽和基とともに酸性置換基を有する光重合性化合物の分子量)
(A1)成分の重量平均分子量(Mw)は、好ましくは3,000~30,000、より好ましくは4,000~25,000、さらに好ましくは5,000~18,000である。この範囲内であると、めっき銅との接着強度、耐熱性及び絶縁信頼性が向上する。特に、上記(A1-1)酸変性ビニル基含有エポキシ樹脂誘導体の重量平均分子量(Mw)が上記範囲であることが好ましい。ここで、本明細書において、重量平均分子量は実施例に記載の方法により測定された値である。
((A)成分の含有量)
(A)成分の含有量は、特に制限されるものではないが、ビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上、更には耐熱性、電気特性及び耐薬品性の観点から、感光性樹脂組成物の樹脂成分全量基準で、好ましくは5~60質量%、より好ましくは10~55質量%、さらに好ましくは15~45質量%である。
(A)成分としては、特に制限されるものではないが、ビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、上記(A1)成分と上記(Aiii)成分とを併用することが好ましい。この場合、前記(A1)成分と前記(Aiii)成分の含有割合[(A1)/(Aiii)](質量比)は、好ましくは2~20、より好ましくは3~15、さらに好ましくは4~12である。
<(B)無機充填剤>
本実施形態の感光性樹脂組成物は、(B)無機充填剤として、(B1)アミノシラン処理無機充填剤及び(B2)ビニルシラン処理無機充填剤を含有する。(B)成分として種類の異なる表面処理がされた(B1)成分及び(B2)成分を併用することにより、特に優れためっき銅との接着強度及び絶縁信頼性が得られる。アミノシラン処理された無機充填剤は、特に(A)成分、また任意で含まれる(D)熱硬化性樹脂等の樹脂成分との密着性に優れることから、(A)成分と樹脂成分との界面が少なくなることで、感光性樹脂組成物の硬化物への水分の浸透、イオン成分の移動が抑制され、優れた絶縁信頼性が得られることになると考えられる。また、ビニルシラン処理された無機充填剤は、上記樹脂成分との密着性がアミノシラン処理された無機充填剤に比べて弱く、ビアホール形成時に該ビアホール内壁に残存する樹脂残渣(「スミア」とも称される。)を銅めっきの前に除去するデスミア処理の際に脱落するため、層間絶縁層の表面に凹凸形状が発現し、該凹凸形状によるアンカー効果により優れためっき銅との接着強度が得られるものと考えられる。このように、本実施形態の感光性樹脂組成物は、相対的に樹脂成分との密着性が強い(B1)成分と、密着性が弱い(B2)成分と、を併用することで、優れためっき銅との接着強度及び絶縁信頼性を両立した、ともいえる。また、ビニルシラン、アミノシラン処理されていることにより、無機充填剤の凝集の抑制効果も得られ、感光性樹脂組成物中の無機充填剤の分散性が向上するため、上記の(B1)成分及び(B2)成分の使用効果がより効率的に得られることとなる。
ビニルシラン、アミノシランにより表面処理される無機充填剤としては、例えば、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、酸化タンタル(Ta)、ジルコニア(ZrO)、窒化ケイ素(Si)、チタン酸バリウム(BaO・TiO)、炭酸バリウム(BaCO)、炭酸マグネシウム(MgCO)、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、チタン酸鉛(PbO・TiO)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga)、スピネル(MgO・Al)、ムライト(3Al・2SiO)、コーディエライト(2MgO・2Al/5SiO)、タルク(3MgO・4SiO・HO)、チタン酸アルミニウム(TiO・Al)、イットリア含有ジルコニア(Y・ZrO)、ケイ酸バリウム(BaO・8SiO)、窒化ホウ素(BN)、炭酸カルシウム(CaCO)、硫酸バリウム(BaSO)、硫酸カルシウム(CaSO)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO)、ハイドロタルサイト、雲母、焼成カオリン、カーボン(C)等が挙げられる。中でも、耐熱性及び低熱膨張化の観点からはシリカが好ましい。
これらの無機充填剤は、単独で、又は複数種を併用してもよい。すなわち、例えば(B1)成分としてアミノシランで表面処理されたシリカを単独で用いてもよいし、アミノシランで表面処理されたシリカ及びアミノシランで表面処理されたアルミナを併用してもよく、(B2)成分も同様である。
アミノシランとしては、アミノシランカップリング剤が好ましく挙げられる。ビニルシランカップリング剤としては、より具体的には、少なくとも1個のアミノ基及び/又はアミノ基に由来する窒素原子と、1個のケイ素原子とを有するシランカップリング剤が好ましく挙げられ、1個のアミノ基と1個のケイ素原子とを有するシランカップリング剤がより好ましい。このようなアミノシランカップリング剤としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-3-〔4-(3-アミノプロポキシ)ブトキシ〕プロピル-3-アミノプロピルトリメトキシシラン等が挙げられる。
本実施形態においては、アミノシランカップリング剤として、市販品を用いてもよい。市販品のアミノシランカップリング剤としては、例えば「KBM-903」(アミノプロピルトリメトキシシラン)、「KBE-903」(アミノプロピルトリエトキシシラン)、「KBM-602」(3-(2-アミノエチルアミノ)プロピルメチルジメトキシシラン)、「KBM-603」(3-(2-アミノエチルアミノ)プロピルトリメトキシシラン)、「KBM-573」(N-フェニル-γ-アミノプロピルトリメトキシシラン)、「KBE-9103」(3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン)(以上、信越化学工業株式会社製、商品名)等が挙げられる。
ビニルシランとしては、例えばビニル基を有するビニルシランカップリング剤が好ましく挙げられる。ビニルシランカップリング剤としては、より具体的には、少なくとも1個のビニル基と1個のケイ素原子とを有するシランカップリング剤が好ましく挙げられ、1個のビニル基と1個のケイ素原子とを有するシランカップリング剤がより好ましい。このようなビニルシランカップリング剤としては、下記一般式(II)で表されるものが挙げられる。
Figure 0007251323000002
一般式(2)中、R22及びR23は、各々独立に炭素数1~12のアルキル基を示し、R21は、単結合又は炭素数1~12のアルキレン基を示し、n21は、1~3の整数を示す。n21が1のとき、複数のR23は、各々同一であっても異なっていてもよく、n21が2又は3のとき、複数のR22は、各々同一であっても異なっていてもよい。
22及びR23のアルキル基としては、炭素数1~8のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、炭素数1~3のアルキル基がさらに好ましい。また、直鎖状、分岐状、環状のいずれであってもよく、直鎖状、分岐状が好ましく、直鎖状がより好ましい。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等の各種プロピル基(以下、「各種」とは直鎖状、分岐状、環状のもの、及びこれらの異性体を含むことを示す。)、各種ブチル基、各種ペンチル基、各種ヘキシル基等が挙げられ、中でもメチル基又はエチル基が好ましい。
本実施形態においては、ビニルシランカップリング剤として、市販品を用いてもよい。市販品のビニルシランカップリング剤としては、例えば、「KBM-1003」(ビニルトリメトキシシラン)、「KBE-1003」(ビニルトリエトキシシラン)(以上、信越化学工業株式会社製、商品名)等が挙げられる。
(B)無機充填剤の平均粒径は、ビアの解像性の観点から、好ましくは0.01~5μm、より好ましくは0.03~3μm、さらに好ましくは0.05~2μmである。(B)成分は、最大粒子径が5μm以下で分散されることが望ましく、最大粒子径が2μm以下で分散されることがより望ましく、最大粒子径が1.5μm以下で分散されることがさらに望ましい。最大粒子径が5μmを超えると、解像性、絶縁信頼性が損なわれる傾向にある。本明細書において、(B)無機充填剤の平均粒径は、感光性樹脂組成物中に分散した状態での無機充填材の平均粒径であり、以下のように測定して得られる値とする。
まず、感光性樹脂組成物をメチルエチルケトンで1,000倍に希釈(又は溶解)させた後、サブミクロン粒子アナライザ(ベックマン・コールター株式会社製、商品名:N5)を用いて、国際標準規格ISO13321に準拠して、屈折率1.38で、溶剤中に分散した粒子を測定し、粒度分布における積算値50%(体積基準)での粒子径を体積平均粒子径とし、これを無機充填剤の平均粒径とする。また、キャリアフィルム上に設けられる感光性樹脂フィルム及び層間絶縁層に含まれる(B)成分についても、上述のように溶剤を用いて1,000倍(体積比)に希釈(又は溶解)をした後、上記サブミクロン粒子アナライザを用いることにより測定できる。
((B)成分の含有量)
(B1)成分及び(B2)成分の合計量に対する(B1)成分の割合は、0.5~45質量%であることを要する。(B1)成分の割合が45質量%を超えると、めっき銅との接着強度(ピール強度)が著しく低下する。優れためっき銅との接着強度及び絶縁信頼性をバランスよく両立する観点から、好ましくは1~30質量%、より好ましくは2~20質量%、さらに好ましくは3~10質量%である。
(B)成分の含有量は、(B1)成分の割合が上記範囲内であれば特に制限されるものではないが、ビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、感光性樹脂組成物の固形分全量基準で、好ましくは5~80質量%、より好ましくは15~60質量%、さらに好ましくは25~55質量%である。
(B)無機充填剤中の(B1)成分及び(B2)成分の合計含有量は、めっき銅との接着強度及び絶縁信頼性の観点から、好ましくは50質量%以上、より好ましくは75質量%以上、さらに好ましくは95質量%以上、よりさらに好ましくは100質量%である。すなわち、(B)無機充填剤としては、(B1)成分及び(B2)成分以外の無機充填剤を含んでもよく、無機充填剤としては、上記ビニルシラン、アミノシランにより表面処理される無機充填剤として例示したものから適宜選択して用いればよく、(B)無機充填剤の全てが(B1)成分、(B2)成分のいずれかであることが特に好ましい。
<(C)光重合開始剤>
本実施形態の感光性樹脂組成物は、(C)光重合開始剤を含む。(C)光重合開始剤を含まないと、優れたビアの解像性、優れためっき銅との接着強度及び絶縁信頼性が得られない。本実施形態で用いられる(C)成分としては、上記(A)成分を重合させることができるものであれば、特に制限はなく、通常用いられる光重合開始剤から適宜選択することができる。
(C)成分の光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン系光重合開始剤;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン系光重合開始剤;2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン系光重合開始剤;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン系光重合開始剤;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール系光重合開始剤;ベンゾフェノン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、ミヒラーズケトン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン系光重合開始剤;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン系光重合開始剤;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド類;1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)、1-フェニル-1,2-プロパンジオン-2-[O-(エトキシカルボニル)オキシム]等のオキシムエステル系光重合開始剤などが挙げられる。これらの中でも、アセトフェノン系光重合開始剤、チオキサントン系光重合開始剤が好ましく、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2,4-ジエチルチオキサントンがより好ましい。アセトフェノン系光重合開始剤は、揮発しにくく、アウトガスとして発生しにくいという利点があり、チオキサントン系光重合開始剤は、可視光域でも光硬化が可能という利点がある。
(C)成分は、単独で、又は複数種を併用してもよく、複数種を併用する場合、アセトフェノン系光重合開始剤とチオキサントン系光重合開始剤とを併用することが好ましく、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノンと2,4-ジエチルチオキサントンとを併用することがより好ましい。
((C)成分の含有量)
(C)成分の含有量は、特に制限されるものではないが、感光性樹脂組成物の樹脂成分全量基準で、好ましくは0.2~15質量%、より好ましくは0.4~5質量%、さらに好ましくは0.5~1.5質量%である。(C)成分の含有量が0.2質量%以上であると、感光性樹脂組成物を用いて形成される層間絶縁層において、露光される部位が現像中に溶出するおそれを低減することとなり、15質量%以下であると、耐熱性が向上する傾向にある。
<(C’)光重合開始助剤>
本実施形態の感光性樹脂組成物は、上記の(C)成分とともに(C’)光重合開始助剤を含有してもよい。(C’)光重合開始助剤としては、例えば、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の第三級アミン系光重合開始助剤などが挙げられる。(C’)成分は、単独で、又は複数種を併用してもよい。
本実施形態の感光性樹脂組成物が(C’)成分を含有する場合、その含有量は、感光性樹脂組成物の樹脂成分全量基準で、好ましくは0.01~20質量%、より好ましくは0.2~5質量%、さらに好ましくは0.3~2質量%である。なお、本実施形態の感光性樹脂組成物は該(C’)成分を含有していなくてもよい。
<(D)熱硬化性樹脂>
本実施形態の感光性樹脂組成物は、上記(A)成分~(C)成分に加えて、さらに(D)熱硬化性樹脂を含むことができる。(D)熱硬化性樹脂を含むことにより、めっき銅との接着強度及び絶縁信頼性の向上に加えて、耐熱性が向上する。
熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂及びメラミン樹脂等が挙げられる。また、特にこれらに制限されず、公知の熱硬化性樹脂を使用できる。これらの熱硬化性樹脂は、単独で、又は複数種を併用して用いることができる。
中でも、エポキシ樹脂が好ましい。エポキシ樹脂は、前記(A)成分に相当するものは含まれず、その点で、(D)熱硬化性樹脂として用いられるエポキシ樹脂は、エチレン性不飽和基を有さないものといえる。また、当該条件を満たした上でエポキシ基を有する物質は、(D)成分に包含される。
(D)成分のエポキシ樹脂としては、2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
また、エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記各々のタイプのエポキシ樹脂において、さらに次に分類される。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール系エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のビスフェノール系ノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等の、前記ビスフェノール系ノボラック型エポキシ樹脂以外のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフタレン型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;脂肪族鎖状エポキシ樹脂;ゴム変性エポキシ樹脂;などに分類される。
中でも、めっき銅との接着強度及び絶縁信頼性の向上、さらには耐熱性の向上の観点から、ビスフェノール系エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましく、ビスフェノールF型エポキシ樹脂がより好ましい。
これらのエポキシ樹脂は市販品を使用することもでき、例えば、ビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社製「エピコート828EL」、「YL980」)、ビスフェノールF型エポキシ樹脂(三菱ケミカル株式会社製「jER806H」、「YL983U」)、ナフタレン型エポキシ樹脂(DIC株式会社製「HP4032D」、「HP4710」)、ナフタレン骨格含有多官能エポキシ樹脂(日本化薬株式会社製「NC7000」)、ナフトール型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製「ESN-475V」)、ビフェニル構造を有するエポキシ樹脂(日本化薬株式会社製「NC3000H」、「NC3500」)、三菱ケミカル株式会社製「YX4000HK」、「YL6121」)、アントラセン型エポキシ樹脂(三菱ケミカル株式会社製「YX8800」)、グリセロール型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製「ZX1542」)、ナフチレンエーテル型エポキシ樹脂(DIC株式会社製「EXA7311-G4」)等が挙げられる。
(D)熱硬化性樹脂のエポキシ樹脂としては、上記例示した樹脂以外にも、エポキシ変性ポリブタジエンを使用することができる。また、(D)成分のエポキシ樹脂としては、室温で固体状の芳香族系エポキシ樹脂と室温で液状のエポキシ樹脂とを併用することが好ましく、この観点から、好ましいものとして例示した上記のエポキシ樹脂(室温で固体状の芳香族系エポキシ樹脂)と、エポキシ変性ポリブタジエン(室温で液状のエポキシ樹脂)とを併用する態様が好ましい。この場合、併用する両者の含有比率(室温で固体状の芳香族系エポキシ樹脂/室温で液状のエポキシ樹脂)は、質量比で、好ましくは100/5~60/40、より好ましくは90/10~70/30である。
上記エポキシ変性ポリブタジエンは、分子末端に水酸基を有するものが好ましく、分子両末端に水酸基を有することがより好ましく、分子両末端にのみ水酸基を有することがさらに好ましい。また、前記エポキシ変性ポリブタジエンが有する水酸基の数は1つ以上であれば特に制限はないが、好ましくは1~5、より好ましくは1又は2、さらに好ましくは2である。
前記エポキシ変性ポリブタジエンは、めっき銅との接着強度、耐熱性、熱膨張係数及び柔軟性の観点から、下記一般式(3)で表されるエポキシ変性ポリブタジエンであることが好ましい。
Figure 0007251323000003

(上記一般式(3)中、n31、n32及びn33は各々、丸括弧内の構造単位の比率を表しており、n31は0.05~0.40、n32は0.02~0.30、n33は0.30~0.80であり、さらに、n31+n32+n33=1.00、かつ(n31+n33)>n32を満たす。y31は、角括弧内の構造単位の数を表し、10~250の整数である。)
前記一般式(3)中の各構造単位の結合順序は順不同である。つまり、左に示された構造単位と、中心に示された構造単位と、右に示された構造単位とは、入れ違っていてもよく、各々(a)と、(b)と、(c)とで表すと、-[(a)-(b)-(c)]-[(a)-(b)-(c)-]-、-[(a)-(c)-(b)]-[(a)-(c)-(b)-]-、-[(b)-(a)-(c)]-[(b)-(a)-(c)-]-、-[(a)-(b)-(c)]-[(c)-(b)-(a)-]-、-[(a)-(b)-(a)]-[(c)-(b)-(c)-]-、-[(c)-(b)-(c)]-[(b)-(a)-(a)-]-など、種々の結合順序があり得る。
めっき銅との接着強度に加えて、耐熱性、熱膨張係数及び柔軟性の向上の観点から、n31は好ましくは0.10~0.30、n32は好ましくは0.10~0.30、n33は好ましくは0.40~0.80である。また、これと同様の観点から、y31は好ましくは5~500の整数である。
前記一般式(3)において、n31=0.20、n32=0.20、n33=0.60、及びy31=10~250の整数となるエポキシ化ポリブタジエンの市販品としては、「エポリード(登録商標)PB3600」(株式会社ダイセル製)等が挙げられる。
((D)成分の含有量)
(D)成分の含有量は、特に制限されるものではないが、感光性樹脂組成物の樹脂成分全量基準で、好ましくは5~70質量%であり、より好ましくは5~40質量%であり、さらに好ましくは7~30質量%、特に好ましくは10~20質量%である。(D)成分の含有量が5質量%以上であると、感光性樹脂組成物の十分な架橋が得られ、めっき銅との接着強度に加えて、耐熱性、絶縁信頼性が向上し、一方、70質量%以下であると、ビアの解像性が良好となる傾向にある。
<(E)エラストマ>
本実施形態の感光性樹脂組成物は、上記(A)成分~(C)成分に加えて、さらに(E)エラストマを含むことができる。(E)エラストマを含むことにより、ビアの解像性、めっき銅との接着強度及び絶縁信頼性が向上する。また、(E)成分によって、上記(A)成分の硬化収縮による、硬化物内部の歪み(内部応力)に起因した、可とう性及びめっき銅との接着強度の低下を抑制する効果が得られる。
エラストマとしては、例えば、スチレン系エラストマ、オレフィン系エラストマ、ポリエステル系エラストマ、ウレタン系エラストマ、ポリアミド系エラストマ、アクリル系エラストマ、シリコーン系エラストマ等が挙げられ、これらから選ばれる少なくとも一種を使用することが好ましい。これらのエラストマは、ハードセグメント成分とソフトセグメント成分から成り立っており、前者が耐熱性及び強度に寄与し、後者が柔軟性及び強靭性に寄与する傾向にある。
(E)成分としては、上記の例示したエラストマの中でも、めっき銅との接着強度の向上、さらには樹脂成分との相容性、溶解性の向上の観点から、オレフィン系エラストマ、ポリエステル系エラストマ及びウレタン系エラストマから選ばれる少なくとも一種を含むことが好ましく、ウレタン系エラストマを含むことがより好ましい。また、(E)成分がオレフィン系エラストマ、ポリエステル系エラストマ及びウレタン系エラストマから選ばれる少なくとも一種であることがさらに好ましく、ウレタン系エラストマであることが特に好ましい。
(スチレン系エラストマ)
スチレン系エラストマとしては、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー等が挙げられる。
スチレン系エラストマとしては、数平均分子量が1,000~50,000のものが好ましく、3,000~20,000のものがより好ましい。
スチレン系エラストマとしては市販品を使用してもよく、市販品としては、例えば、タフプレン、ソルプレンT、アサプレンT、タフテック(以上、旭化成株式会社製、「タフプレン」、「アサプレン」及び「タフテック」は登録商標)、エラストマーAR(アロン化成株式会社製)、クレイトンG、過リフレックス(以上、シェルジャパン株式会社製)、JSR-TR、TSR-SIS、ダイナロン(以上、JSR株式会社製)、デンカSTR(デンカ株式会社製)、クインタック(日本ゼオン株式会社製、「クインタック」は登録商標)、TPE-SBシリーズ(住友化学株式会社製)、ラバロン(三菱ケミカル株式会社製、「ラバロン」は登録商標)、セプトン、ハイブラー(以上、株式会社クラレ製、「セプトン」及び「ハイブラー」は登録商標)、スミフレックス(住友ベークライト株式会社製)、レオストマー、アクティマー(以上、リケンテクノス株式会社製、「レオストマー」及び「アクティマー」は登録商標)等が挙げられる。
(オレフィン系エラストマ)
オレフィン系エラストマとしては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-ペンテン等の炭素数2~20のα-オレフィンの重合体又は共重合体等が挙げられる。オレフィン系エラストマは、分子末端に水酸基を有するものであってもよく、分子末端に水酸基を有するものであることが好ましい。
オレフィン系エラストマとしては、例えば、ポリエチレン、ポリブタジエン、水酸基含有ポリブタジエン、水酸基含有ポリイソプロピレン、エチレン-プロピレン共重合体(EPR)、エチレン-プロピレン-ジエン共重合体(EPDM)等が挙げられる。また、前記炭素数2~20のα-オレフィンと、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネン、ブタジエン、イソプレン等の炭素数2~20の非共役ジエンとの共重合体等も挙げられる。さらには、ブタジエン-アクニロニトリル共重合体にメタクリル酸を共重合したカルボキシ変性NBR等も挙げられる。
オレフィン系エラストマとしては、数平均分子量が1,000~5,000のものが好ましく、1,500~3,500のものがより好ましい。
オレフィン系エラストマとしては市販品を使用してもよく、市販品としては、例えば、ミラストマ(三井化学株式会社製、商品名)、EXACT(エクソンモービル社製、商品名)、ENGAGE(ザ・ダウ・ケミカル・カンパニー製、商品名)、Poly ip、Poly bd(出光興産株式会社、商品名)、水添スチレン-ブタジエンラバー“DYNABON HSBR”(JSR株式会社製、商品名)、ブタジエン-アクリロニトリル共重合体“NBRシリーズ”(JSR株式会社製、商品名)、両末端カルボキシル基変性ブタジエン-アクリロニトリル共重合体の“XERシリーズ”(JSR株式会社製、商品名)、ポリブタジエンを部分的にエポキシ化したエポキシ化ポリブダジエンのBF-1000(日本曹達株式会社製、商品名)、PB-4700、PB-3600(株式会社ダイセル製、商品名)等が挙げられる。
(ポリエステル系エラストマ)
ポリエステル系エラストマとしては、ジカルボン酸又はその誘導体及びジオール化合物又はその誘導体を重縮合して得られるものが挙げられる。
上記ジカルボン酸の具体例としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;前記芳香族ジカルボン酸の芳香環の水素原子がメチル基、エチル基、フェニル基等で置換された芳香族ジカルボン酸;アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸などの脂環式ジカルボン酸;などが挙げられる。ジカルボン酸としては、ビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、天然物由来のダイマー酸を使用することも好ましい。ジカルボン酸は、単独で、又は複数種を併用してもよい。
上記ジオール化合物の具体例としては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール等の脂肪族ジオール;1,4-シクロヘキサンジオール等の脂環式ジオール;などが挙げられる。ジオール化合物は、単独で、又は複数種を併用してもよい。
ポリエステル系エラストマとしては、数平均分子量が900~30,000のものが好ましく、1,000~25,000のものがより好ましく、5,000~15,000のものがさらに好ましい。
ポリエステル系エラストマとしては市販品を使用してもよく、市販品としては、例えば、ハイトレル(東レ・デュポン株式会社製、「ハイトレル」は登録商標)、ペルプレン(東洋紡績株式会社製、「ペルプレン」は登録商標)、エスペル(日立化成株式会社製、「エスペル」は登録商標)等が挙げられる。
(ウレタン系エラストマ)
ウレタン系エラストマとしては、例えば、短鎖ジオールとジイソシアネートとからなるハードセグメントと、高分子(長鎖)ジオールとジイソシアネートとからなるソフトセグメントとを含有するもの等が挙げられる。
高分子(長鎖)ジオールとしては、ポリプロピレングリコール、ポリテトラメチレンオキサイド、ポリ(1,4-ブチレンアジペート)、ポリ(エチレン-1,4-ブチレンアジペート)、ポリカプロラクトン、ポリ(1,6-ヘキシレンカーボネート)、ポリ(1,6-へキシレン-ネオペンチレンアジペート)等が挙げられる。高分子(長鎖)ジオールの数平均分子量は、500~10,000が好ましい。
短鎖ジオールとしては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ビスフェノールA等が挙げられる。短鎖ジオールの数平均分子量は、48~500が好ましい。
ウレタン系エラストマとしては、数平均分子量が1,000~25,000のものが好ましく、1,500~20,000のものがより好ましく、2,000~15,000のものがさらに好ましい。
ウレタン系エラストマとしては市販品を使用してもよく、市販品としては、例えば、PANDEX T-2185、T-2983N(以上、DIC株式会社製)、ミラクトランシリーズ(日本ミラクトラン株式会社製、「ミラクトラン」は登録商標)、ヒタロイドシリーズ(日立化成株式会社製、「ヒタロイド」は登録商標)等が挙げられる。
(ポリアミド系エラストマ)
ポリアミド系エラストマとしては、例えば、ポリアミドをハードセグメント成分、ポリブタジエン、ブタジエン-アクリロニトリル共重合体、スチレン-ブタジエン共重合体、ポリイソプレン、エチレンプロピレン共重合体、ポリエーテル、ポリエステル、ポリブタジエン、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリウレタン、シリコーンゴム等をソフトセグメント成分としたブロック共重合体が挙げられる。
ポリアミド系エラストマとしては、数平均分子量が1,000~50,000のものが好ましく、2,000~30,000のものがより好ましい。
ポリアミド系エラストマとしては市販品を使用してもよく、市販品としては、例えば、UBEポリアミドエラストマー(宇部興産株式会社製)、ダイアミド(ダイセル・エボニック株式会社製、「ダイアミド」は登録商標)、PEBAX(東レ株式会社製)、グリロンELY(エムスケミー・ジャパン株式会社製、「グリロン」は登録商標)、ノバミッド(三菱ケミカル株式会社製)、グリラックス(東洋紡績株式会社製、「グリラックス」は登録商標)等が挙げられる。
(アクリル系エラストマ)
アクリル系エラストマとしては、例えば、アクリル酸エステルを主成分とする原料モノマーの重合体が挙げられる。アクリル酸エステルとしては、エチルアクリレート、ブチルアクリレート、メトキシエチルアクリレート、エトキシエチルアクリレート等が好適に挙げられる。また、架橋点モノマーとして、グリシジルメタクリレート、アリルグリシジルエーテル等を共重合させたものであってもよく、さらに、アクリロニトリル、エチレン等を共重合させたものであってもよい。具体的には、アクリロニトリル-ブチルアクリレート共重合体、アクリロニトリル-ブチルアクリレート-エチルアクリレート共重合体、アクリロニトリル-ブチルアクリレート-グリシジルメタクリレート共重合体等が挙げられる。
アクリル系エラストマとしては、数平均分子量が1,000~50,000のものが好ましく、2,000~30,000のものがより好ましい。
(シリコーン系エラストマ)
シリコーン系エラストマは、オルガノポリシロキサンを主成分とするエラストマであり、例えば、ポリジメチルシロキサン系エラストマ、ポリメチルフェニルシロキサン系エラストマ、ポリジフェニルシロキサン系エラストマ等に分類される。
シリコーン系エラストマとしては、数平均分子量が1,000~50,000のものが好ましく、2,000~30,000のものがより好ましい。
シリコーン系エラストマとしては市販品を使用してもよく、市販品としては、例えば、KEシリーズ(信越化学工業株式会社製)、SEシリーズ、CYシリーズ及びSHシリーズ(以上、東レ・ダウコーニング株式会社製)が挙げられる。
(その他のエラストマ)
また、(E)成分としては、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、キシレン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、テトラフルオロエチレン樹脂、ポリアクリロニトリル樹脂、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性ポリアクリロニトリルからなる群から選択される少なくとも1種を含む態様も好ましい。
((E)成分の含有量)
本実施形態の感光性樹脂組成物における(E)成分の含有量は、感光性樹脂組成物の樹脂成分全量基準で好ましくは2~30質量%であり、より好ましくは2~20質量%、さらに好ましくは3~15質量%、よりさらに好ましくは5~15質量%、特に好ましくは8~13質量%である。(E)成分の含有量が2質量%以上であると、めっき銅との接着強度及び絶縁信頼性が向上し、30質量%以下であると、ビアの解像性、めっき銅との接着強度及び絶縁信頼性が向上する傾向になる。
<(F)熱重合開始剤>
本実施形態の感光性樹脂組成物は、上記(A)成分~(C)成分に加えて、さらに(F)熱重合開始剤を含むことができる。(F)熱重合開始剤を含むことにより、ビアの解像性、めっき銅との接着強度及び絶縁信頼性が向上する。
熱重合開始剤としては、特に制限されるものではないが、例えば、ジイソプロピルベンゼンハイドロパーオキサイド「パークミルP」(商品名、日油株式会社製(以下同じ))、クメンハイドロパーオキサイド「パークミルH」、t-ブチルハイドロパーオキサイド「パーブチルH」等のハイドロパーオキサイド類;α,α-ビス(t-ブチルペルオキシ-m-イソプロピル)ベンゼン「パーブチルP」、ジクミルパーオキサイド「パークミルD」、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン「パーヘキサ25B」、t-ブチルクミルパーオキサイド「パーブチルC」、ジ-t-ブチルパーオキサイド「パーブチルD」、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3「パーヘキシン25B」、t-ブチルパーオキシ-2-エチルヘキサノエート「パーブチルO」等のジアルキルパーオキサシド類;ケトンパーオキサイド類;n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレレート「パーヘキサV」等のパーオキシケタール類;ジアシルパーオキサイド類;パーオキシジカーボネート類;パーオキシエステル類等の有機過酸化物;2,2’-アゾビスイソブチルニトリル、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物;などが挙げられる。これらの中でも、光重合性を阻害しないで、且つ感光性樹脂組成物の物性及び特性を向上する効果が大きいという観点から、ジアルキルパーオキサシド類が好ましく、2,5-ジメチル-2,5-ビス(t-ビチルパーオキシ)ヘキシン-3がより好ましい。
熱重合開始剤は、単独で、又は複数種を併用してもよい。
((F)成分の含有量)
本実施形態の感光性樹脂組成物が(E)成分を含有する場合、その含有量は、特に制限されるものではないが、ビアの解像性、めっき銅との接着強度及び絶縁信頼性の向上の観点から、感光性樹脂組成物の樹脂成分全量基準で、好ましくは0.01~5質量%、より好ましくは0.02~3質量%、さらに好ましくは0.03~2質量%である
<(G)顔料>
本実施形態の感光性樹脂組成物は、感光性の調整、また導体パターンを隠蔽する等の外観向上のため、所望の色に応じて(G)成分として顔料を含有してもよい。(G)成分としては、所望の色を発色する着色剤を適宜選択して用いればよく、例えば、フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の公知の着色剤が好ましく挙げられる。
((G)成分の含有量)
本実施形態の感光性樹脂組成物が(G)成分を含有する場合、その含有量は、製造装置を識別しやすくし、また導体パターンをより隠蔽させる観点から、感光性樹脂組成物の固形分全量基準で、好ましくは0.01~5質量%、より好ましくは0.03~3質量%、さらに好ましくは0.05~2質量%である。
<(H)エポキシ樹脂硬化剤>
本実施形態の感光性樹脂組成物は、さらに、得られる絶縁層の耐熱性、密着性、耐薬品性等の諸特性をさらに向上させる目的で、(H)エポキシ樹脂硬化剤を含有してもよい。
(G)成分の具体例としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体系エポキシ樹脂硬化剤;アセトグアナミン、ベンゾグアナミン等のグアナミン系エポキシ樹脂硬化剤;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン系エポキシ樹脂硬化剤;これらの有機酸塩及び/又はエポキシアダクト;三フッ化ホウ素のアミン錯体;エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体系エポキシ樹脂硬化剤;トリメチルアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、m-アミノフェノール等の第三級アミン系エポキシ樹脂硬化剤;ポリビニルフェノール、ポリビニルフェノール臭素化物、フェノールノボラック、アルキルフェノールノボラック等のポリフェノール系エポキシ樹脂硬化剤;トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン系エポキシ樹脂硬化剤;トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスニウムクロライド等のホスホニウム塩系エポキシ樹脂硬化剤;ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の第四級アンモニウム塩系エポキシ樹脂硬化剤;上記の多塩基酸無水物;ジフェニルヨードニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェートなどが挙げられる。
((H)成分の含有量)
本実施形態の感光性樹脂組成物が(H)成分を含有する場合、その含有量は、感光性樹脂組成物の樹脂成分全量基準で、0.01~10質量%、より好ましくは0.02~5質量%、さらに好ましくは0.03~3質量%である。
<希釈剤>
本実施形態の感光性樹脂組成物には、必要に応じて希釈剤を使用することができる。希釈剤としては、例えば、有機溶剤等が使用できる。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン系有機溶剤;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素系有機溶剤;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル系有機溶剤;酢酸エチル、酢酸ブチル、プロピレングリコールモノエチルエーテルアセテート、ブチルセロソルブアセテート、カルビトールアセテート等のエステル系有機溶剤;オクタン、デカン等の脂肪族炭化水素系有機溶剤;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系有機溶剤などが挙げられる。希釈剤は、単独で、又は複数種を併用してもよい。
(希釈剤の含有量)
希釈剤の含有量は、感光性樹脂組成物中の固形分全量の濃度が好ましくは50~90質量%、より好ましくは60~80質量%、さらに好ましくは65~75質量%となるように適宜選択すればよい。希釈剤の使用量をこのように調整することで、感光性樹脂組成物の塗布性が向上し、より高精細なパターンの形成を容易に行うことが可能となる。
<その他の添加剤>
本実施形態の感光性樹脂組成物には、必要に応じて、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等の重合禁止剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系消泡剤、フッ素系消泡剤、ビニル樹脂系消泡剤等の消泡剤;シランカップリング剤;などの公知慣用の各種添加剤を含有させることができる。さらに、臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アンチモン化合物及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等の難燃剤を含有させることができる。
本実施形態の感光性樹脂組成物は、各成分をロールミル、ビーズミル等で混練及び混合することにより得ることができる。
ここで、本実施形態の感光性樹脂組成物は、液状として使用してもよいし、フィルム状として使用してもよい。
液状として使用する場合、本実施形態の感光性樹脂組成物の塗布方法は特に制限はないが、例えば、印刷法、スピンコート法、スプレーコート法、ジェットディスペンス法、インクジェット法、浸漬塗布法等の各種塗布方法が挙げられる。これらの中でも、感光層をより容易に形成する観点から、印刷法、スピンコート法から適宜選択すればよい。
また、フィルム状として用いる場合は、例えば、後述する感光性樹脂フィルムの形態で用いることができ、この場合はラミネーター等を用いてキャリアフィルム上に積層することで所望の厚みの感光層を形成することができる。なお、フィルム状として使用する方が、多層プリント配線板の製造効率が高くなるために好ましい。
[感光性樹脂フィルム]
本実施形態の感光性樹脂フィルムは、本実施形態の感光性樹脂組成物からなるものであり、例えば、層間絶縁層となる感光層の形成に好適に用いられるものである。実施形態の感光性樹脂フィルムは、キャリアフィルム上に感光性樹脂フィルムが設けられている態様であってもよい。
感光性樹脂フィルム(感光層)の厚み(乾燥後の厚み)は、特に制限されるものではないが、多層プリント配線板の薄型化の観点から、好ましくは1~100μm、より好ましくは1~50μm、さらに好ましくは5~40μmである。
本実施形態の感光性樹脂フィルムは、例えば、キャリアフィルム上に、本実施形態の感光性樹脂組成物を、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の公知の塗工装置で塗布及び乾燥することにより、後に層間絶縁層となる感光層を形成することで得られる。
キャリアフィルムとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィンなどが挙げられる。キャリアフィルムの厚みは、5~100μmの範囲から適宜選択すればよいが、好ましくは5~60μm、より好ましくは15~45μmである。
また、本実施形態の感光性樹脂フィルムは、感光層の面のうち、キャリアフィルムと接する面とは反対側の面に保護フィルムを設けることもできる。保護フィルムとしては、例えば、ポリエチレン、ポリプロピレン等の重合体フィルムなどを用いることができる。また、上述するキャリアフィルムと同様の重合体フィルムを用いてもよく、異なる重合体フィルムを用いてもよい。
感光性樹脂組成物を塗布して形成される塗膜の乾燥は、熱風乾燥、遠赤外線、又は、近赤外線を用いた乾燥機等を用いることができる。乾燥温度としては、好ましくは60~150℃、より好ましくは70~120℃、さらに好ましくは80~100℃である。また、乾燥時間としては、好ましくは1~60分、より好ましくは2~30分、さらに好ましくは5~20分である。乾燥後における感光性樹脂フィルム中の残存希釈剤の含有量は、多層プリント配線板の製造工程において希釈剤が拡散するのを避ける観点から、3質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましい。
本実施形態の感光性樹脂フィルムは、ビアの解像性、めっき銅との接着強度及び絶縁信頼性に優れているため、多層プリント配線板の層間絶縁層として適している。つまり、本実施形態の感光性樹脂フィルムは、層間絶縁層の形成用として好適に用いられる、層間絶縁層用感光性樹脂フィルムとして好適である。なお、層間絶縁層用感光性樹脂フィルムは、一般的に、層間絶縁フィルムと称されることもある。
[多層プリント配線板及びその製造方法]
本実施形態の多層プリント配線板は、上記の本実施形態の感光性樹脂組成物(層間絶縁層用感光性樹脂フィルム)を用いて形成される層間絶縁層を備えるものである。本実施形態の多層プリント配線板は、本実施形態の感光性樹脂組成物を用いた層間絶縁層を形成する工程を有していればその製造方法には特に制限はなく、例えば、以下の本実施形態の多層プリント配線板の製造方法により容易に製造することができる。
本実施形態の感光性樹脂フィルム(層間絶縁層用感光性樹脂フィルム)を用いて、多層プリント配線板を製造する方法について、適宜図1を参照しながら説明する。
多層プリント配線板100Aは、例えば、下記工程(1)~(4)を含む製造方法により製造することができる。
工程(1):本実施形態の感光性樹脂フィルムを、回路基板の片面又は両面にラミネートする工程(以下、「ラミネート工程(1)」とも称する。)。
工程(2):工程(1)でラミネートされた感光性樹脂フィルムに対して露光及び現像することによって、ビアを有する層間絶縁層を形成する工程(以下、「ラミネート工程(2)」とも称する。)。
工程(3):前記ビア及び前記層間絶縁層を粗化処理する工程(以下、「粗化処理工程(3)」とも称する。)。
工程(4):前記層間絶縁層上に回路パターンを形成する工程(以下、「回路パターン形成工程(4)」とも称する。)。
(ラミネート工程(1))
ラミネート工程(1)は、例えば真空ラミネーターを用いて、本実施形態の感光性樹脂フィルム(層間絶縁層用感光性樹脂フィルム)を回路基板(回路パターン102を有する基板101)の片面又は両面にラミネートする工程である。真空ラミネーターとしては、ニチゴー・モートン株式会社製のバキュームアップリケーター、株式会社名機製作所製の真空加圧式ラミネーター、株式会社日立製作所製のロール式ドライコーター、日立化成エレクトロニクス株式会社製の真空ラミネーター等が挙げられる。
感光性樹脂フィルムに保護フィルムが設けられている場合には、保護フィルムを剥離又は除去した後、感光性樹脂フィルムが回路基板と接するように、加圧及び加熱しながら回路基板に圧着してラミネートすることができる。
該ラミネートは、例えば、感光性樹脂フィルム及び回路基板を必要に応じて予備加熱してから、圧着温度70~130℃、圧着圧力0.1~1.0MPa、空気圧20mmHg(26.7hPa)以下の減圧下で実施することができるが、特にこの条件に制限されるものではない。また、ラミネートの方法は、バッチ式であっても、ロールでの連続式であってもよい。
最後に、回路基板にラミネートされた感光性樹脂フィルム(以下、感光層と称することがある。)を室温付近に冷却し、層間絶縁層103とする。キャリアフィルムをここで剥離してもよいし、後述するように露光後に剥離してもよい。
(フォトビア形成工程(2))
フォトビア形成工程(2)では、回路基板にラミネートされた感光性樹脂フィルムの少なくとも一部に対して露光し、次いで現像を行う。露光によって、活性光線が照射された部分が光硬化してパターンが形成される。露光方法に特に制限はなく、例えば、アートワークと呼ばれるネガ又はポジマスクパターンを介して活性光線を画像状に照射する方法(マスク露光法)を採用してもよいし、LDI(Laser Direct Imaging)露光法、DLP(Digital Light Processing)露光法等の直接描画露光法により、活性光線を画像状に照射する方法を採用してもよい。
活性光線の光源としては、公知の光源を用いることができる。光源としては、具体的には、カーボンアーク灯、水銀蒸気アーク灯、高圧水銀灯、キセノンランプ、アルゴンレーザ等のガスレーザ;YAGレーザ等の固体レーザ;半導体レーザ等の紫外線又は可視光線を有効に放射するもの;などが挙げられる。露光量は、使用する光源及び感光層の厚み等によって適宜選定されるが、例えば高圧水銀灯からの紫外線照射の場合、感光層の厚み1~100μmでは、通常、10~1,000mJ/cm程度が好ましく、15~500mJ/cmがより好ましい。
現像においては、前記感光層の未硬化部分が基板上から除去されることで、光硬化した硬化物からなる層間絶縁層が基板上に形成される。
感光層上にキャリアフィルムが存在している場合には、該キャリアフィルムを除去してから、未露光部分の除去(現像)を行う。現像方法には、ウェット現像とドライ現像があり、いずれを採用してもよいが、ウェット現像が広く用いられており、本実施形態においてもウェット現像を採用できる。
ウェット現像の場合、感光性樹脂組成物に対応した現像液を用いて、公知の現像方法により現像する。現像方法としては、ディップ方式、バトル方式、スプレー方式、ブラッシング、スラッピング、スクラッピング、揺動浸漬等を用いた方法が挙げられる。中でも、解像性向上の観点からは、スプレー方式が好ましく、スプレー方式の中でも高圧スプレー方式がより好ましい。現像は、1種の方法で実施すればよいが、2種以上の方法を組み合わせて実施してもよい。
現像液の構成は、感光性樹脂組成物の構成に応じて適宜選択すればよい。例えば、アルカリ性水溶液、水系現像液及び有機溶剤系現像液が挙げられ、これらの中でもアルカリ性水溶液が好ましい。
フォトビア形成工程(2)では、露光及び現像をした後、0.2~10J/cm程度(好ましくは0.5~5J/cm)の露光量のポストUVキュア、及び60~250℃程度(好ましくは120~200℃)の温度のポスト熱キュアを必要に応じて行うことにより、層間絶縁層をさらに硬化させてもよく、また、そうすることが好ましい。
以上のようにして、ビア104を有する層間絶縁層が形成される。ビアの形状に特に制限はなく、断面形状で説明すると、例えば、四角形、逆台形(上辺が下辺より長い)等が挙げられ、正面(ビア底が見える方向)から見た形状で説明すると、円形、四角形等が挙げられる。本実施形態におけるフォトリソ法によるビアの形成では、断面形状が逆台形(上辺が下辺より長い)のビアを形成することができ、この場合、めっき銅のビア壁面への付き回り性が高くなるために好ましい。
本工程によって形成されるビアのサイズ(直径)は、40μm未満にすることができ、さらには、35μm以下又は30μm以下にすることも可能であり、レーザ加工によって作製するビアのサイズよりも小径化することができる。本工程によって形成されるビアのサイズ(直径)の下限値に特に制限はないが、15μm以上であってもよいし、20μm以上であってもよい。
ただし、本工程によって形成されるビアのサイズ(直径)は40μm未満に限定されるものではなく、例えば、15~300μmの範囲で任意に選択できる。
(粗化処理工程(3))
粗化処理工程(3)では、ビア及び層間絶縁層の表面を粗化液により粗化処理を行う。なお、前記フォトビア形成工程(2)においてスミアが発生した場合には、該スミアを前記粗化液によって除去してもよい。粗化処理と、スミアの除去は同時に行うことができる。
前記粗化液としては、クロム/硫酸粗化液、アルカリ過マンガン酸粗化液(例えば、過マンガン酸ナトリウム粗化液等)、フッ化ナトリウム/クロム/硫酸粗化液等が挙げられる。
粗化処理により、ビア及び層間絶縁層の表面に凹凸のアンカーが形成する。
(回路パターン形成工程(4))
回路パターン形成工程(4)は、前記粗化処理工程(3)の後に、前記層間絶縁層上に回路パターンを形成する工程である。
回路パターンの形成は微細配線形成の観点から、セミアディティブプロセスにより実施することが好ましい。セミアディティブプロセスにより回路パターンの形成と共にビアの導通が行われる。
セミアディティブプロセスにおいては、まず、前記粗化処理工程(3)後のビア底、ビア壁面及び層間絶縁層の表面全体にパラジウム触媒等を用いた上で無電解銅めっき処理を施してシード層105を形成する。該シード層は電解銅めっきを施すための給電層を形成するためのものであり、好ましくは0.1~2.0μm程度の厚みで形成される。該シード層の厚みが0.1μm以上であれば、電解銅めっき時の接続信頼性が低下するのを抑制できる傾向にあり、2.0μm以下であれば、配線間のシード層をフラッシュエッチする際のエッチング量を大きくする必要がなく、エッチングの際に配線に与えるダメージを抑えられる傾向にある。
前記無電解銅めっき処理は、銅イオンと還元剤の反応により、ビア及び層間絶縁層の表面に金属銅が析出することで行われる。
前記無電解めっき処理方法及び前記電解めっき処理方法は公知の方法でよく、特に限定されるものではないが、無電解めっき処理工程の触媒は、好ましくはパラジウム-スズ混合触媒であり、該触媒の1次粒子径は好ましくは10nm以下である。また、無電解めっき処理工程のめっき組成としては、次亜リン酸を還元剤として含有することが好ましい。
無電解銅めっき液としては市販品を使用することができ、市販品としては、例えば、アトテックジャパン株式会社製の「MSK-DK」、上村工業株式会社製「スルカップ(登録商標)PEA ver.4」等が挙げられる。
上記無電解銅めっき処理を施した後、無電解銅めっき上に、ロールラミネーターにてドライフィルムレジストを熱圧着する。ドライフィルムレジストの厚みは電気銅めっき後の配線高さよりも高くしなければならず、この観点から、5~30μmの厚みのドライフィルムレジストが好ましい。ドライフィルムレジストとしては、日立化成株式会社製の「フォテック」シリーズ等が用いられる。
ドライフィルムレジストの熱圧着後、例えば、所望の配線パターンが描画されたマスクを通してドライフィルムレジストの露光を行う。露光は、前記感光性樹脂フィルムにビアを形成する際に使用し得るものと同様の装置及び光源で行うことができる。露光後、ドライフィルムレジスト上のキャリアフィルムを剥離し、アルカリ水溶液を用いて現像を行い、未露光部分を除去し、レジストパターン106を形成する。この後、必要に応じてプラズマなどを用いてドライフィルムレジストの現像残渣を除去する作業を行ってもよい。
現像の後、電気銅めっきを行うことにより、銅の回路層107の形成及びビアフィリングを行う。
電気銅めっき後、アルカリ水溶液又はアミン系剥離剤を用いてドライフィルムレジストの剥離を行う。ドライフィルムレジストの剥離後、配線間のシード層の除去(フラッシュエッチング)を行う。フラッシュエッチングは、硫酸と過酸化水素等の酸性溶液と酸化性溶液とを用いて行われる。具体的には株式会社JCU製の「SAC」、三菱ガス化学株式会社製の「CPE-800」等が挙げられる。フラッシュエッチング後、必要に応じて配線間の部分に付着したパラジウム等の除去を行う。パラジウムの除去は、好ましくは、硝酸、塩酸等の酸性溶液を用いて行うことができる。
上記ドライフィルムレジストの剥離後又はフラッシュエッチング工程の後、好ましくはポストベーク処理を行う。ポストベーク処理は、未反応の熱硬化成分を十分に熱硬化し、さらにそれによってめっき銅との接着強度、絶縁信頼性、さらには硬化特性を向上させる。熱硬化条件は樹脂組成物の種類等によっても異なるが、硬化温度が150~240℃、硬化時間が15~100分であることが好ましい。ポストベーク処理により、一通りのフォトビア法によるプリント配線板の製造工程が完成するが、必要な層間絶縁層の数に応じて、本プロセスを繰り返して基板を製造する。そして、最外層には好ましくはソルダーレジスト層108を形成する。
[半導体パッケージ]
本実施形態の半導体パッケージは、上記の本実施形態の多層プリント配線板には導体素子を搭載してなるものである。本実施形態の半導体パッケージは、例えば、上記の本実施形態の多層プリント配線板の所定の位置に、半導体チップ、メモリ等の半導体素子を搭載し、封止樹脂等によって半導体素子を封止することによって製造できる。
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、各例で得られた感光性樹脂組成物は、以下に示す方法により特性を評価した。
1.ビアの解像性の評価
(1)評価用積層体の作製
12μm厚の銅箔をガラスエポキシ基材に積層したプリント配線板用基板(日立化成株式会社製、商品名「MCL-E-679」)の銅箔表面を、粗化前処理液(メック株式会社製、商品名「CZ-8100」)で処理した後、水洗及び乾燥して、粗化前処理済のプリント配線板用基板を得た。次に、各実施例及び比較例で製造したキャリアフィルム及び保護フィルム付き感光性樹脂フィルムから保護フィルムを剥離除去し、露出した感光性樹脂フィルムを、上記粗化前処理済のプリント配線板用基板の銅箔と当接するように載置した後、プレス式真空ラミネーター(株式会社名機製作所製、商品名「MVLP-500」)を用いて、ラミネート処理を施した。なお、ラミネートの条件は、プレス熱板温度70℃、真空引き時間20秒、ラミネートプレス時間30秒、気圧4kPa以下、圧着圧力0.4MPaとした。ラミネート処理後、室温で1時間以上放置して、プリント配線板用基板の銅箔表面上に、感光性樹脂フィルム及びキャリアフィルムがこの順に積層された評価用積層体を得た。
(2)感光性樹脂フィルムの感度測定
上記で得た評価用積層体のキャリアフィルムを剥離及び除去してから41段ステップタブレットを配置し、超高圧水銀ランプを光源としたダイレクトイメージング露光装置「DXP-3512」(株式会社オーク製作所製)を用いて露光を行った。露光パターンは、直径φ30~100μmまでのドットが格子状に配列したパターンを用いた。
露光後、室温で30分間放置した後、30℃の1質量%炭酸ナトリウム水溶液を用いて、未露光部の感光性樹脂組成物を60秒間スプレー現像した。現像後、41段ステップタブレットの光沢残存ステップ段数が8.0となる露光エネルギー量を感光性樹脂フィルムの感度(単位;mJ/cm)とした。この感度で露光したパターンを用いて、下記評価基準に従って感光性樹脂フィルムに設けたビアの解像性の評価を行った。
(3)解像性の評価
解像性の評価は、前記(2)で測定した感光性樹脂フィルムの感度、つまりステップ段数が8.0となる露光エネルギー量で露光し、次いでスプレー現像した後に、光学顕微鏡を用いてビアパターンを観察して評価した。ドットパターンのφ50μmビア部分の開口に関し、以下の基準で評価した。ビアが開口している「A」の判定が優れたビアの解像性を有していることを示し、一部でも開口していなければ、すなわち「C」及び「D」の判定であれば不合格である。
A:ドットパターンのφ50μmビア部分が開口している。
C:ドットパターンのφ50μmビア部分が開口していない。
2.めっき銅との接着強度(ピール強度)の評価
(1)評価用積層体の作製及び感光性樹脂フィルムの感度測定
前記[1.解像性の評価]の(1)及び(2)の手順において、使用した露光機を、超高圧水銀ランプを光源とした平行光露光機(株式会社オーク製作所製、商品名「EXM-1201」)に変更したこと以外は前記[1.ビアの解像性の評価]の(1)及び(2)の手順と同様に操作を行い、光沢残存ステップ段数が8.0となる露光エネルギー量を求め、これを感光性樹脂フィルムの感度(単位;mJ/cm)とした。
(2)露光工程及び現像工程
次に、評価用積層体のキャリアフィルムを剥離除去し、表出した感光性樹脂フィルムの表面を、上記で求めた露光エネルギー量で全面露光を行い、感光性樹脂フィルムが硬化してなる絶縁層を形成した。露光後から室温で30分間放置した後、30℃の1質量%炭酸ナトリウム水溶液で60秒間スプレー現像した。
(3)ポストキュア処理
続いて、高圧水銀灯ランプ照射タイプのUVコンベア装置(株式会社オーク製作所製)で、露光量が2J/cmとなるコンベア速度でポストUVキュアを行い、さらに、熱風循環式乾燥機(株式会社二葉科学製)を用いて、170℃で1時間ポスト熱キュアを行った。
(4)粗化処理
上記ポストキュア処理後の評価用積層体を、膨潤液「スウェリングディップセキュリガントP」を用いて70℃で5分間処理し、次いで、粗化液「ドージングセキュリガントP500J」を用いて70℃で10分間処理し、さらに、中和液「リダクションコンディショナーセキュリガントP500」を用いて40℃で5分間処理して、粗化処理を行った。なお、膨潤液、粗化液及び中和液はいずれもアトテックジャパン株式会社製のものを用いた。
(5)めっき処理
上記粗化処理後の評価用積層体に対して、無電解めっき液「プリガントMSK-DK」(アトテックジャパン株式会社製)を用いて、無電解めっき処理を30℃で20分間を行い、次いで、電気めっき液「カパラシドHL」(アトテックジャパン株式会社製)を用いて、電気めっき処理を24℃、2A/dmで1時間行って、絶縁層上にめっき銅層を形成して、めっき銅との接着強度測定用の評価基板を作製した。なお、めっき処理によって形成するめっき銅の厚みは25μmとした。
(6)めっき銅との接着強度(ピール強度)の測定
めっき銅との接着強度の測定は、JIS C6481(1996年)に準拠して、23℃にて垂直引き剥がし強さを測定した。めっき銅との接着強度は、0.40kN/m以上であれば良好と判定した。
3.絶縁信頼性(HAST耐性)の評価
厚み18μmの銅箔をガラスエポキシ基材に積層したプリント配線板用基板(日立化成株式会社製、商品名:MCL-E-700G(R))、セミアディブ配線形成用ビルドアップ材(日立化成株式会社製、商品名「AS-Z6」)を用いて、ライン/スペースが12μm/12μmのくし型電極を作製し、これを評価基板とした。
この評価基板上に、上記「1.ビアの解像性の評価」と同様にして感光性樹脂フィルムからなる層間絶縁層を形成し、その後、上記「2.めっき銅との接着強度(ピール強度)の評価」と同様にめっき銅を形成した。その後、エッチングにより直径6mmの電極を形成した。次いで、130℃、85%RH、6V条件下に200時間晒した。その後、抵抗値を測定して、抵抗値が10-6Ω以下となった時間を銅マイグレーションの発生時間とし、下記評価基準に従って層間の絶縁信頼性(HAST耐性)を評価した。
A:200時間経過時に銅マイグレーションの発生がない。
B:銅マイグレーション発生時間が100時間以上、200時間未満。
C:銅マイグレーション発生時間が100時間未満。
<合成例1>(A1-1)酸変性ビニル基含有エポキシ誘導体の合成
ビスフェノールFノボラック型エポキシ樹脂(上記一般式(I)において、Yがグリシジル基、Rが水素原子である構造単位を含有するビスフェノールFノボラック型エポキシ樹脂、(a1)成分に該当)350質量部、アクリル酸((a2)成分に該当)70質量部、メチルハイドロキノン0.5質量部、カルビトールアセテート120質量部を仕込み、90℃に加熱して攪拌することにより反応させ、混合物を完全に溶解した。
次に、得られた溶液を60℃に冷却し、トリフェニルホスフィン2質量部を加え、100℃に加熱して、溶液の酸価が1mgKOH/gになるまで反応させた。反応後の溶液に、テトラヒドロ無水フタル酸((a3)成分に該当)98質量部とカルビトールアセテート85質量部とを加え、80℃に加熱して、6時間反応させた。
その後、室温まで冷却し、固形分濃度が73質量%の酸変性ビスフェノールFノボラック型エポキシアクリレート((A1-1)成分に該当)を得た。
<重量平均分子量の測定方法>
重量平均分子量は、下記のGPC測定装置及び測定条件で測定し、標準ポリスチレンの検量線を使用して換算した値を重量平均分子量とした。また、検量線の作成は、標準ポリスチレンとして5サンプルセット(「PStQuick MP-H」及び「PStQuick B」、東ソー株式会社製)を用いた。
(GPC測定装置)
GPC装置:高速GPC装置「HCL-8320GPC」、検出器は示差屈折計又はUV、東ソー株式会社製
カラム :カラムTSKgel SuperMultipore HZ-H(カラム長さ:15cm、カラム内径:4.6mm)、東ソー株式会社製
(測定条件)
溶媒 :テトラヒドロフラン(THF)
測定温度 :40℃
流量 :0.35ml/分
試料濃度 :10mg/THF5ml
注入量 :20μl
<実施例1~3、比較例1~3>
(感光性樹脂組成物の調製)
表1に示す配合組成に従って組成物を配合し、3本ロールミルで混練して感光性樹脂組成物を調製した。各例において、適宜、カルビトールアセテートを加えて濃度を調整し、固形分濃度が60質量%の感光性樹脂組成物を得た。
(感光性樹脂フィルムの作製)
厚み25μmのポリエチレンテレフタレートフィルム(G2-16、帝人株式会社製、商品名)をキャリアフィルムとし、該キャリアフィルム上に、各例で調製した感光性樹脂組成物を、乾燥後の膜厚が25μmとなるように塗布し、熱風対流式乾燥機を用いて100℃で10分間乾燥し、感光性樹脂フィルム(感光層)を形成した。続いて、該感光性樹脂フィルム(感光層)のキャリアフィルムと接している側とは反対側の表面上に、二軸延伸ポリプロピレンフィルム(MA-411、王子エフテックス株式会社製、商品名)を保護フィルムとして貼り合わせ、キャリアフィルム及び保護フィルムを貼り合わせた感光性樹脂フィルムを作製した。
作製した感光性樹脂フィルムを用いて、上記方法に従って各評価を行った。評価結果を表1に示す。
Figure 0007251323000004
各例で使用した各成分は以下の通りである。
(A)成分:エチレン性不飽和基を有する光重合性化合物
・酸変性ビスフェノールFノボラック型エポキシアクリレート:上記合成例1で得られた酸変性ビニル基含有エポキシ誘導体((A1-1)成分に該当)を用いた。
・ジペンタエリスリトールペンタアクリレート((Aiii)成分に該当)
(B)成分:無機充填剤
・(B1)アミノシラン処理無機充填剤:シリカ粒子(平均粒径:0.5μm)の表面をアミノシラン「KBE-903」(信越化学工業株式会社製、商品名)で表面処理したものである。
・(B2)ビニルシラン処理無機充填剤:シリカ粒子(平均粒径:0.5μm)の表面をビニルシラン「KBE-1003」(信越化学工業株式会社製、商品名)で表面処理したものである。
(C)成分:光重合開始剤
・アセトフェノン系光重合開始剤:2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン
・チオキサントン系光重合開始剤:2,4-ジエチルチオキサントン
(D)成分:熱硬化性樹脂
・ビスフェノールF型エポキシ樹脂:「jER807」(三菱ケミカル株式会社製、商品名)
・ビフェニル型エポキシ樹脂:「NC3000H」(日本化薬株式会社製、商品名)
・エポキシ化ポリブタジエン:「PB3600」(ダイセル化学株式会社製、商品名)
(E)成分:エラストマ
・ポリエステル:「テスラック(登録商標)2505-63」(日立化成株式会社製、商品名)
本実施形態の感光性樹脂組成物は、ビアの解像性、めっき銅との接着強度及び絶縁信頼性に優れたものであることが確認された。一方、(B1)アミノシラン処理無機充填剤を含まない比較例1の組成物は絶縁信頼性が低下し、(B1)アミノシラン処理無機充填剤の割合が45質量%を超える比較例2の組成物は特にめっき銅との接着強度が低下し、また(B2)ビニルシラン処理無機充填剤を含まない比較例3の組成物はビアの解像性、めっき銅との接着強度、および絶縁信頼性が不十分であった。
100A 多層プリント配線板
102 回路パターン
103 層間絶縁層
104 ビア(ビアホール)
105 シード層
106 レジストパターン
107 銅の回路層
108 ソルダーレジスト層

Claims (14)

  1. (A)エチレン性不飽和基を有する光重合性化合物、(B)無機充填剤及び(C)光重合開始剤を含有し、該(B)無機充填剤が(B1)アミノシラン処理無機充填剤及び(B2)ビニルシラン処理無機充填剤を含有し、該(B1)アミノシラン処理無機充填剤と該(B2)ビニルシラン処理無機充填剤との合計量に対する該(B1)アミノシラン処理無機充填剤の割合が、0.5~45質量%である、感光性樹脂組成物。
  2. 前記(A)エチレン性不飽和基を有する光重合性化合物が、(A1)エチレン性不飽和基とともに酸性置換基を有する光重合性化合物を含む、請求項1に記載の感光性樹脂組成物。
  3. さらに、(D)熱硬化性樹脂を含む請求項1又は2に記載の感光性樹脂組成物。
  4. さらに、(E)エラストマを含む請求項1~3のいずれか1項に記載の感光性樹脂組成物。
  5. 前記(A)エチレン性不飽和基を有する光重合性化合物の含有量が、樹脂成分全量基準で、5~60質量%である請求項1~4のいずれか1項に記載の感光性樹脂組成物。
  6. 前記(B)無機充填剤の含有量が、固形分全量基準で、5~80質量%である請求項1~5のいずれか1項に記載の感光性樹脂組成物。
  7. フォトビア形成に用いられる請求項1~6のいずれか1項に記載の感光性樹脂組成物。
  8. 層間絶縁層の形成に用いられる請求項1~6のいずれか1項に記載の感光性樹脂組成物。
  9. 請求項1~6のいずれか1項に記載の感光性樹脂組成物からなる感光性樹脂フィルム。
  10. 層間絶縁層の形成に用いられる請求項9に記載の感光性樹脂フィルム。
  11. 請求項1~6のいずれか1項に記載の感光性樹脂組成物を用いて形成される層間絶縁層を備える多層プリント配線板。
  12. 請求項10に記載の感光性樹脂フィルムを用いて形成される層間絶縁層を備える多層プリント配線板。
  13. 請求項11又は12に記載の多層プリント配線板に半導体素子を搭載してなる半導体パッケージ。
  14. 下記工程(1)~(4)を順に有する多層プリント配線板の製造方法。
    工程(1):請求項9に記載の感光性樹脂フィルムを、回路基板の片面又は両面にラミネートする工程。
    工程(2):前記工程(1)でラミネートされた感光性樹脂フィルムに対して露光及び現像することによりビアを有する層間絶縁層を形成する工程。
    工程(3):前記ビア及び前記層間絶縁層を粗化処理する工程。
    工程(4):前記層間絶縁層上に回路パターンを形成する工程。
JP2019102940A 2019-05-31 2019-05-31 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法 Active JP7251323B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102940A JP7251323B2 (ja) 2019-05-31 2019-05-31 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102940A JP7251323B2 (ja) 2019-05-31 2019-05-31 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法

Publications (2)

Publication Number Publication Date
JP2020197603A JP2020197603A (ja) 2020-12-10
JP7251323B2 true JP7251323B2 (ja) 2023-04-04

Family

ID=73649091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102940A Active JP7251323B2 (ja) 2019-05-31 2019-05-31 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法

Country Status (1)

Country Link
JP (1) JP7251323B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405803B2 (ja) * 2021-08-27 2023-12-26 株式会社タムラ製作所 感光性樹脂組成物、感光性樹脂組成物の光硬化物及び感光性樹脂組成物を塗布したプリント配線板
WO2023139682A1 (ja) * 2022-01-19 2023-07-27 株式会社レゾナック 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159138A1 (en) 2008-12-24 2010-06-24 Byung Geol Kim Resist solution and method of forming pattern using the same
JP2011164270A (ja) 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd 光硬化性樹脂組成物、ドライフィルム、硬化物及びプリント配線板
JP2015125710A (ja) 2013-12-27 2015-07-06 東洋インキScホールディングス株式会社 黒色組成物、黒色塗膜、および積層体
US20170052446A1 (en) 2015-08-19 2017-02-23 Chi Mei Corporation Photosensitive resin composition and application thereof
JP2017116652A (ja) 2015-12-22 2017-06-29 日立化成株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
WO2017122460A1 (ja) 2016-01-13 2017-07-20 太陽インキ製造株式会社 ドライフィルムおよびプリント配線板
WO2018225441A1 (ja) 2017-06-09 2018-12-13 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106163A (ja) * 1994-10-04 1996-04-23 Hitachi Chem Co Ltd 着色画像形成材料、これを用いた感光液、感光性エレメント、カラーフィルターの製造法及びカラーフィルター
JPH08122517A (ja) * 1994-10-20 1996-05-17 Hitachi Chem Co Ltd カラーフィルターの製造法及びカラーフィルター
JPH10133370A (ja) * 1996-11-01 1998-05-22 Mitsubishi Chem Corp カラーフィルター用レジスト組成物及びカラーフィルター
JP2012073601A (ja) * 2010-08-31 2012-04-12 Fujifilm Corp 感光性組成物、並びに、感光性フィルム、永久パターン、永久パターン形成方法、及びプリント基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159138A1 (en) 2008-12-24 2010-06-24 Byung Geol Kim Resist solution and method of forming pattern using the same
JP2011164270A (ja) 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd 光硬化性樹脂組成物、ドライフィルム、硬化物及びプリント配線板
JP2015125710A (ja) 2013-12-27 2015-07-06 東洋インキScホールディングス株式会社 黒色組成物、黒色塗膜、および積層体
US20170052446A1 (en) 2015-08-19 2017-02-23 Chi Mei Corporation Photosensitive resin composition and application thereof
JP2017116652A (ja) 2015-12-22 2017-06-29 日立化成株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
WO2017122460A1 (ja) 2016-01-13 2017-07-20 太陽インキ製造株式会社 ドライフィルムおよびプリント配線板
WO2018225441A1 (ja) 2017-06-09 2018-12-13 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板

Also Published As

Publication number Publication date
JP2020197603A (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
JP7461406B2 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
CN113597580B (zh) 感光性树脂组合物、感光性树脂膜、多层印刷配线板和半导体封装体、以及多层印刷配线板的制造方法
JP7567969B2 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法
JP2021032916A (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
CN113632004B (zh) 感光性树脂组合物、感光性树脂膜、多层印刷配线板和半导体封装体、以及多层印刷配线板的制造方法
JP7251323B2 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板、半導体パッケージ、及び多層プリント配線板の製造方法
WO2020241595A1 (ja) 感光性樹脂組成物、感光性樹脂フィルム、プリント配線板及び半導体パッケージ、並びにプリント配線板の製造方法
JP7476899B2 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
JP2018163207A (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
WO2022030045A1 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
WO2022107380A1 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
JP7497608B2 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
JP7255285B2 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法及び感光性樹脂組成物の製造方法
WO2023031986A1 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
JP2024040191A (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
WO2024185060A1 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
TW202436376A (zh) 感光性樹脂組成物、感光性樹脂薄膜、多層印刷線路板及半導體封裝體、以及多層印刷線路板的製造方法
JP2021179522A (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
JP2022024857A (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
JP2023040905A (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
JP2021179521A (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R151 Written notification of patent or utility model registration

Ref document number: 7251323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350