JP7247316B2 - 半導体装置、表示システム、電子機器 - Google Patents

半導体装置、表示システム、電子機器 Download PDF

Info

Publication number
JP7247316B2
JP7247316B2 JP2021214067A JP2021214067A JP7247316B2 JP 7247316 B2 JP7247316 B2 JP 7247316B2 JP 2021214067 A JP2021214067 A JP 2021214067A JP 2021214067 A JP2021214067 A JP 2021214067A JP 7247316 B2 JP7247316 B2 JP 7247316B2
Authority
JP
Japan
Prior art keywords
circuit
data
transistor
display
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021214067A
Other languages
English (en)
Other versions
JP2022058453A (ja
Inventor
義元 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022058453A publication Critical patent/JP2022058453A/ja
Application granted granted Critical
Publication of JP7247316B2 publication Critical patent/JP7247316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0294Details of sampling or holding circuits arranged for use in a driver for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Description

本発明の一態様は、半導体装置、表示システム及び電子機器に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明
の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、
表示システム、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそ
れらの製造方法、を一例として挙げることができる。
また、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装
置全般を指す。トランジスタ、半導体回路、演算装置、記憶装置等は半導体装置の一態様
である。また、撮像装置、電気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等
を含む)、及び電子機器は半導体装置を有している場合がある。
液晶表示装置や発光表示装置に代表されるフラットパネルディスプレイは、映像の表示に
広く用いられている。これらの表示装置に用いられているトランジスタとしては主にシリ
コン半導体などが用いられているが、近年、シリコン半導体に代わって、半導体特性を示
す金属酸化物をトランジスタに用いる技術が注目されている。例えば特許文献1、2には
、半導体層に、酸化亜鉛、又はIn-Ga-Zn系酸化物を用いたトランジスタを、表示
装置の画素に用いる技術が開示されている。
特開2007-96055号公報 特開2007-123861号公報
本発明の一態様は、新規な半導体装置又は表示システムの提供を課題とする。又は、本発
明の一態様は、消費電力が低い半導体装置又は表示システムの提供を課題とする。又は、
本発明の一態様は、視認性が良好な映像の表示を可能とする半導体装置又は表示システム
の提供を課題とする。
なお、本発明の一態様は、必ずしも上記の課題の全てを解決する必要はなく、少なくとも
一の課題を解決できるものであればよい。また、上記の課題の記載は、他の課題の存在を
妨げるものではない。これら以外の課題は、明細書、特許請求の範囲、図面などの記載か
ら、自ずと明らかとなるものであり、明細書、特許請求の範囲、図面などの記載から、こ
れら以外の課題を抽出することが可能である。
本発明の一態様に係る半導体装置は、電源回路、画像処理回路、記憶装置、およびコント
ローラを含む信号生成部と、表示部と、を有し、電源回路は、表示部に設けられた発光素
子に供給される電位を生成する機能を有し、画像処理回路は、画像データに画像処理を行
う機能を有し、記憶装置は、第1のパラメータと、第2のパラメータと、を格納する機能
を有し、コントローラは、表示部に表示される映像の表示状況に応じて、記憶装置に格納
された第1のパラメータ及び第2のパラメータを変更する機能を有し、電源回路は、記憶
装置から出力される第1のパラメータを用いて、電位を生成する機能を有し、画像処理回
路は、記憶装置から出力される第2のパラメータを用いて、画像処理を行う機能を有する
半導体装置である。
また、本発明の一態様に係る半導体装置において、記憶装置は、第1のレジスタ部と、第
2のレジスタ部と、を有し、第2のレジスタ部には、第1のパラメータに対応する第1の
データと、第2のパラメータに対応する第2のデータと、が順次入力され、第2のレジス
タ部は、第1のデータ及び第2のデータを、第1のレジスタ部に一括で転送する機能を有
し、第1のレジスタ部は、電源回路への第1のデータの出力と、画像処理回路への第2の
データの出力と、を同時に行う機能を有していてもよい。
また、本発明の一態様に係る半導体装置において、第2のレジスタ部は、トランジスタと
、容量素子と、を有し、トランジスタのソース又はドレインの一方は、容量素子と電気的
に接続され、トランジスタは、チャネル形成領域に金属酸化物を有していてもよい。
また、本発明の一態様に係る半導体装置において、画像処理回路は、調光回路、調色回路
、及びガンマ補正回路を用いて、画像処理を行う機能を有し、第2のパラメータは、調光
回路、調色回路、及びガンマ補正回路で用いられてもよい。
また、本発明の一態様に係る半導体装置において、第1のパラメータ及び第2のパラメー
タの変更は、外光の強度、表示部に表示される映像の内容、又はユーザーによる設定の少
なくとも一つに基づいてそれぞれ行われてもよい。
また、本発明の他の一態様は、上記の半導体装置を用いた表示システムであって、表示部
は、第1の画素を有する第1の表示ユニットと、第2の画素を有する第2の表示ユニット
と、を有し、第1の画素は、発光素子を有し、第2の画素は、反射型の液晶素子を有する
表示システムである。
また、本発明の他の一態様は、上記の表示システムと、ホストと、を有し、ホストは、信
号生成部の動作を制御する機能を有するプロセッサによって構成されている電子機器であ
る。
本発明の一態様により、新規な半導体装置又は表示システムを提供することができる。又
は、本発明の一態様により、消費電力が低い半導体装置又は表示システムを提供すること
ができる。又は、本発明の一態様により、視認性が良好な映像の表示を可能とする半導体
装置又は表示システムを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一
態様は、必ずしも、これらの効果の全てを有する必要はない。これら以外の効果は、明細
書、特許請求の範囲、図面などの記載から、自ずと明らかとなるものであり、明細書、特
許請求の範囲、図面などの記載から、これら以外の効果を抽出することが可能である。
表示システムの構成例を示す図。 フローチャート。 補正の例を示す図。 電源回路の構成例を示す図。 記憶装置の構成例を示す図。 記憶装置の構成例を示す図。 記憶装置の構成例を示す図。 タイミングチャート。 画素の構成例を示す図。 画素の構成例を示す図。 画素の構成例を示す図。 画素部及び駆動回路の構成例を示す図。 タイミングチャート。 タイミングチャート。 表示システムの構成例を示す図。 表示部の構成例を示す図。 画素部の構成例を示す図。 スイッチ回路の構成例を示す図。 表示システムの構成例を示す図。 タイミングコントローラの動作例を示す図。 記憶装置の構成例を示す図。 表示装置の構成例を示す図。 表示装置の構成例を示す図。 表示装置の構成例を示す図。 表示モジュールの構成例を示す図。 トランジスタの構成例を示す図。 エネルギーバンド構造を示す図。 電子機器の構成例を示す図。
以下、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下
の実施の形態における説明に限定されず、本発明の趣旨及びその範囲から逸脱することな
くその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。した
がって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、本発明の一態様には、半導体装置、記憶装置、表示装置、撮像装置、RF(Rad
io Frequency)タグなど、あらゆる装置がその範疇に含まれる。また、表示
装置には、液晶表示装置、有機発光素子に代表される発光素子を各画素に備えた発光装置
、電子ペーパー、DMD(Digital Micromirror Device)、
PDP(Plasma Display Panel)、FED(Field Emis
sion Display)などが、その範疇に含まれる。
また、本明細書等において、金属酸化物(metal oxide)とは、広い表現での
金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を
含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともい
う)などに分類される。例えば、トランジスタのチャネル形成領域に金属酸化物を用いた
場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅
作用、整流作用、及びスイッチング作用の少なくとも1つを有する場合、当該金属酸化物
を、金属酸化物半導体(metal oxide semiconductor)、略し
てOSと呼ぶことができる。以下、チャネル形成領域に金属酸化物を含むトランジスタを
、OSトランジスタとも表記する。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxi
de)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(met
al oxynitride)と呼称してもよい。金属酸化物の詳細については後述する
また、本明細書等において、XとYとが接続されている、と明示的に記載されている場合
は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合
と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。
したがって、所定の接続関係、例えば、図又は文章に示された接続関係に限定されず、図
又は文章に示された接続関係以外のものも、図又は文章に記載されているものとする。こ
こで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、
など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であ
り、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量
素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに
、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが
可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイ
ッチは、オン状態、又は、オフ状態になり、電流を流すか流さないかを制御する機能を有
している。又は、スイッチは、電流を流す経路を選択して切り替える機能を有している。
なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場
合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能
とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変
換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電
源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)
、電圧源、電流源、切り替え回路、増幅回路(信号振幅又は電流量などを大きく出来る回
路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回
路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である
。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号が
Yへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYと
が機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYと
が電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYと
が電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで
接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの
間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている
場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)と
が、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示
的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合
と同様な内容が、本明細書等に開示されているものとする。
また、異なる図面間で同じ符号が付されている構成要素は、特に説明がない限り、同じも
のを表す。
また、図面上は独立している構成要素同士が電気的に接続しているように図示されている
場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある
。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電
極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気
的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合
も、その範疇に含める。
(実施の形態1)
本実施の形態では、本発明の一態様に係る半導体装置及び表示システムについて説明する
<表示システムの構成例>
図1に、表示システム10の構成例を示す。表示システム10は、外部から入力されたデ
ータに基づいて映像を表示するための信号(以下、映像信号ともいう)を生成し、当該映
像信号に基づいて映像を表示する機能を有する。表示システム10は、表示部11、信号
生成部12を有する。
表示部11は、信号生成部12から入力される映像信号(信号SD)に基づいて、映像を
表示する機能を有する。具体的には、表示部11は複数の発光素子LEを有する。複数の
発光素子LEがそれぞれ所定の輝度で発光する、すなわち所定の階調を表示することによ
り、表示部11に映像が表示される。
表示部11に設けられる発光素子LEの例としては、例えばOLED(Organic
Light Emitting Diode)、LED(Light Emitting
Diode)、QLED(Quantum-dot Light Emitting
Diode)、半導体レーザなどの、自発光性の発光素子が挙げられる。
発光素子LEは、一対の電極を有する。発光素子LEの一方の電極には電位Va、他方の
電極には電位Vc(<Va)が、信号生成部12から供給される。一対の電極間に電圧V
a-Vcが印加されることにより、発光素子LEに電流が流れ、発光素子LEが発光する
。また、信号SDに基づいて発光素子LEに流れる電流量が制御されることにより、発光
素子LEは所定の階調で表示を行う。
なお、発光素子LEに流れる電流量は、トランジスタを用いて制御することができる。例
えば、トランジスタのソース又はドレインの一方を発光素子LEの一方の電極と接続し、
トランジスタのソース又はドレインの他方と、発光素子LEの他方の電極と、の間に電圧
Va-Vcを印加する構成とし、トランジスタのゲートに信号SDに対応する電位を印加
することにより、信号SDに対応する電流を発光素子LEに供給することができる。また
、このとき、トランジスタは飽和領域で動作させることが好ましい。
信号生成部12は、表示部11に表示される映像に対応するデータID(以下、画像デー
タともいう)に基づいて映像信号を生成し、信号SDとして表示部11に出力する機能を
有する。信号生成部12は、コントローラ20、画像処理回路30、駆動回路40、電源
回路50、記憶回路60を有する。なお、信号生成部12は半導体装置によって構成する
ことができ、半導体装置と呼ぶこともできる。また、信号生成部12に含まれる回路は、
1つの集積回路に集約することができる。この場合、信号生成部12を集積回路と呼ぶこ
ともできる。
コントローラ20は、信号生成部12に含まれる各種回路の動作を制御する機能を有する
。具体的には、コントローラ20は、画像処理回路30、記憶回路60などの動作を制御
するための制御信号を生成する機能を有する。
画像処理回路30は、画像データとして入力されたデータIDに画像処理を行う機能を有
する。具体的には、画像処理回路30は、データIDに対して各種の補正処理を施すこと
により、データIDを補正する機能を有する。画像処理回路30によって補正された画像
データは、データID´として駆動回路40に出力される。画像処理回路30において行
われる補正処理の例としては、表示部11に表示される映像の明るさを調整する処理(調
光処理)、表示部11に表示される映像の色調を調整する処理(調色処理)、ガンマ補正
などが挙げられる。
駆動回路40は、画像処理回路30から入力されたデータID´に基づいて映像信号を生
成する機能を有する。具体的には、駆動回路40は、駆動回路40と表示部11とのデー
タ送信規格、例えば、LVDS、MIPI、eDPなどに従って、信号SDを生成する機
能を有する。駆動回路40によって生成された信号SDは表示部11に出力され、信号S
Dによって発光素子LEの発光が制御される。
また、データID´がデジタルデータとして駆動回路40に入力される場合、駆動回路4
0は、デジタルアナログ(D/A)変換回路を用いてデータID´をアナログ信号に変換
する機能を有していてもよい。また、駆動回路40は、アナログバッファなどを用いて、
アナログ信号を増幅する機能を有していてもよい。
電源回路50は、発光素子LEに供給される電位を生成する機能を有する。具体的には、
電源回路50は、記憶回路60から入力されたデータに基づいて電位Va、Vcを生成し
、これらの電位を発光素子LEに供給する機能を有する。例えば、電位Vaは発光素子L
Eのアノードに供給され、電位Vcは発光素子LEのカソードに供給される。
記憶回路60は、信号生成部12の動作に用いられるデータを格納する機能を有し、レジ
スタとして用いられる。具体的には、記憶回路60は、コントローラ20による各種処理
に用いられるデータ、画像処理回路30による画像処理に用いられるパラメータ、電源回
路50による電位Va、Vcの生成に用いられるパラメータなどを格納する機能を有する
画像処理に用いられるパラメータは、データPiとして記憶回路60から画像処理回路3
0に出力される。そして、画像処理回路30はデータPiに基づいてデータIDの画像処
理を行う。また、電位Va、Vcの生成に用いられるパラメータは、データPvとして記
憶回路60から電源回路50に出力される。そして、電源回路50はデータPvに基づい
て電位Va、Vcの生成を行う。従って、記憶回路60に格納されたパラメータを変更す
ることにより、画像処理回路30による画像処理の内容、及び電源回路50によって生成
される電位Va、Vcを制御することができる。
発光素子LEの一対の電極間の電圧Va-Vcは、信号SDによって指定され得る全ての
階調を発光素子LEが表示することが可能となる値に設定する必要がある。すなわち電位
Va、Vcは、発光素子LEが、映像の表示に用いられる可能性のある輝度のうち、最も
高い輝度で発光することが可能となるような値に設定される。そして、映像の表示に用い
られる発光素子LEの輝度は、外光の強度、映像の内容(例えば、背景、写真、動画など
)、映像を視認するユーザーによる設定など、映像が表示されるときの状況(以下、「表
示状況」ともいう)によって異なる。そのため、電位Va、Vcを特定の固定値に設定す
る場合は、あらゆる表示状況下において発光素子LEが最大の階調を表示できるように設
定する必要がある。この場合、実際には映像の表示に滅多に用いられない高い輝度を得る
ための電位Va、Vcが、発光素子LEに供給し続けられることになり、表示部11にお
ける消費電力が増大する。
ここで、本発明の一態様に係る信号生成部12は、表示状況をモニターし、表示状況に応
じて電源回路50から出力される電位Va、Vcを制御する機能を有する。具体的には、
表示状況が変化した際、コントローラ20は記憶回路60に格納されたパラメータを変更
する機能を有する。そして、電源回路50は、変更されたパラメータを用いて電位Va、
Vcを生成する。これにより、発光素子LEに印加される電圧を表示状況に合わせて制御
することができ、表示部11の消費電力を低減することができる。
表示状況をモニターする方法は、特に限定されない。例えば、外光の強度をセンサによっ
て検出する方法、コントローラ20が外部から入力される信号(データIDなど)に基づ
いて映像の内容を識別する方法などが挙げられる。外光の強度によって電位Va、Vcを
制御する場合は、外光の強度が強まったときは、より高い輝度で発光素子LEが発光でき
るように電圧Va-Vcを増加させ、外光の強度が弱まったときはそれほど高い輝度で発
光素子LEを発光させる必要がないので、電圧Va-Vcを減少させることができる。ま
た、背景や写真などの静止画を表示する場合は、静止画ごとに表示に用いられる最大の輝
度を識別し、静止画ごとに電圧Va-Vcを設定することができる。また、動画を表示す
る場合は、所定の表示期間ごとに表示に用いられる最大の輝度を識別し、所定の表示期間
ごとに電圧Va-Vcを切り替えることができる。また、映像を視認するユーザーの好み
に合わせて特定の条件(明度、彩度、コントラストなど)が指定された場合は、その条件
下において電圧Va-Vcを設定することができる。
一例として、コントローラ20が外光の強度に応じて電位Va、Vcを制御する構成につ
いて説明する。図1に示す表示システム10は、センサ部13を有する。センサ部13は
、光の強度を検出する機能を有する。具体的には、センサ部13は、外光を検出し、外光
の強度に応じた信号SENを信号生成部12に出力する機能を有する。信号SENはコン
トローラ20に入力され、コントローラ20は信号SENに基づいて外光の強度の変化を
認識する。
外光の強度に変化があった場合、コントローラ20は記憶回路60に格納されたパラメー
タを外光の強度に応じて変更する。そして、記憶回路60に格納されたパラメータが変更
されると、電源回路50には外光の強度に応じたデータPvが供給される。そして電源回
路50は、新たに入力されたデータPvに基づいて電位Va、Vcを生成する。これによ
り、発光素子LEに印加される電圧が外光の強度に応じて変更される。
例えば、日中に室内から屋外に移動した際など、外光の強度が増加する際は、電圧Va-
Vcを増加させることにより、発光素子LEの輝度の範囲を拡大し、高輝度で映像の表示
を行うことができる。これにより、外光が強い屋外においても視認性が良好な映像を表示
することができる。一方、日中に屋外から室内に移動した際など、外光の強度が減少する
際は、電圧Va-Vcを減少させることにより、発光素子LEに印加される電圧を抑える
ことができ、消費電力を削減することができる。
なお、電位Va、Vcの切り替えの際にも映像を適切に表示するためには、変更後の電位
Va、Vcに合わせて画像処理回路30における画像処理のパラメータを修正する必要が
ある。そのため、コントローラ20は、電源回路50で用いられるパラメータの変更に合
わせて、画像処理回路30で用いられるパラメータも変更する。これにより、画像処理回
路30は変更後の電位Va、Vcに応じた画像処理を行うことができる。画像処理のパラ
メータの例としては、例えば、調光処理、調色処理、又はガンマ補正に用いられるパラメ
ータが挙げられる。なお、発光素子LEの制御に飽和領域で動作するトランジスタを利用
する場合は、画像処理のパラメータの修正を行わずに電位Va、Vcを切り替えることも
できる。
以上のように、表示システム10は、表示状況の変化に応じて発光素子LEに印加される
電圧を制御することができる。これにより、映像の視認性を維持しつつ消費電力を削減す
ることができる。
<表示システムの動作例>
次に、表示システム10の具体的な動作例を説明する。図2は、表示システム10の動作
例を示すフローチャートである。
まず、コントローラ20やセンサ部13などを用いて表示状況を検出する(ステップS1
)。そして、表示状況に変化がある、又は表示状況の変化量が基準値以上である場合(ス
テップS2でYES)、コントローラ20は表示状況に応じて、記憶回路60に格納され
たパラメータを変更する(ステップS3)。
ここで、コントローラ20は、電源回路50で用いられるパラメータとともに、画像処理
回路30で用いられるパラメータも変更する。画像処理回路30で用いられるパラメータ
の変更は、電源回路50で用いられるパラメータの変更に合わせて行われる。
記憶回路60に格納されたパラメータが変更されると、記憶回路60から電源回路50に
は変更後のパラメータに対応するデータPvが出力され、記憶回路60から画像処理回路
30には変更後のパラメータに対応するデータPiが出力される(ステップS4)。そし
て、電源回路50はデータPvに基づいて電位Va、Vcを変更し、画像処理回路30は
データPiに基づいてデータIDを補正してデータID´を生成する(ステップS5)。
一方、表示状況に変化がない、又は表示状況の変化量が基準値未満である場合(ステップ
S2でNO)、記憶回路60に格納されたパラメータは変更されない。よって、電源回路
50によって生成される電位Va、Vcは維持され、画像処理回路30は変更のないパラ
メータを用いてデータID´を生成する(ステップS6)。
そして、信号生成部12から表示部11に、電位Va、Vcと、データID´に基づいて
生成された信号SDと、が出力される(ステップS7)。これにより、発光素子LEには
電圧Va-Vcが印加され、発光素子LEに流れる電流が信号SDによって制御される。
その後、映像の表示を続行する場合(ステップS8でNO)は、再度表示状況の検出が行
われる(ステップS1)。
以上の動作により、表示システム10は表示状況に応じて発光素子LEに印加される電圧
を制御しつつ、これに応じて画像処理の内容を修正することができる。従って、映像の良
好な視認性を確保しつつ、消費電力を削減することができる。
<画像処理回路>
次に、画像処理回路30における補正処理の具体例について説明する。画像処理回路30
における補正処理は、入力された画像データXに対して調光、調色、ガンマ補正などの補
正を施し、補正データYを生成することにより行われる。この補正の方法は、補正の内容
や精度に応じて自由に設定することができるが、ここでは一例として、テーブル方式によ
る補正と関数近似方式による補正について説明する。
テーブル方式は、図3(A)に示すように、画像処理回路30に入力され得る画像データ
Xそれぞれに対応する補正データYを予め準備しておき、入力された画像データXに対応
する補正データYを出力する方法である。この方法を用いる場合、画像データXと補正デ
ータYの対応を表すルックアップテーブルが、パラメータとして記憶回路60に格納され
る。
テーブル方式にはルックアップテーブルが用いられるため、補正に必要なパラメータの数
は比較的多くなる。しかしながら、画像データXに対応する補正データYを個別に設定で
きるため、精度の高い補正を行うことができる。なお、補正に用いられるルックアップテ
ーブルが確定した段階で、補正データの最大値(図3(A)におけるYの最大値)が確定
する。そして、補正データの最大値に対応して、電位Va、Vcを決めることができる。
従って、表示状況に応じてルックアップテーブルを変更する際、同時に電位Va、Vcを
決定することができる。
一方、あらかじめ経験的に画像データXに対する補正データYを決定できる場合には、関
数近似方式を用いることができる。関数近似方式は、画像処理回路30に入力され得る画
像データXの範囲を複数の領域に区分し、各領域において画像データXと補正データYの
関係を近似式によって規定する方式である。図3(B)では、Xの範囲を領域A、B、C
に区分し、各領域の画像データXと補正データYの関係をそれぞれ直線で近似している。
そして、画像処理回路30に画像データXが入力されると、当該画像データXが属する領
域の近似直線に基づいて補正データYが算出される。
図3(B)に示す関数近似方式を用いる場合、領域の区分数や、直線を定義するための値
、a、a、b、b、bなどが、補正のパラメータとして記憶回路60に格
納される。
関数近似方式は、補正データYを近似によって算出する方法であるため、補正の精度はテ
ーブル方式に劣る。しかしながら、補正に必要なパラメータの数はテーブル近似よりも少
ないため、記憶回路60に格納されるデータの量を抑えることができ、記憶回路60の面
積の縮小などを図ることができる。
なお、関数近似方式における領域の区分数は特に限られない。区分数が多いほど補正の精
度は向上し、区分数が少ないほど簡易に補正を行うことができる。また、ここでは線形関
数によって近似が行われる場合について説明したが、非線形関数によって近似してもよい
。なお、関数を定義するパラメータa、a、a、b、b、bなどが確定した
段階で、補正データの最大値(図3(B)でYの最大値)が確定する。そして、補正デー
タの最大値に対応して、電位Va、Vcを決めることができる。したがって、表示状況に
応じてパラメータa、a、a、b、b、bなどを変更する際、同時に電位V
a、Vcを決定することができる。
以上のように、画像処理回路30は、記憶回路60に格納されたパラメータを用いて補正
処理を行う。そのため、表示状況に応じて記憶回路60に格納されたパラメータを変更す
ることにより、画像処理回路30による補正処理の内容を修正することができる。
<電源回路>
次に、電源回路50の構成例について説明する。図4(A)に、電源回路50の構成例を
示す。電源回路50は、変換回路51、増幅回路52を有し、記憶回路60から入力され
たデータPvに対応する電位を生成する機能を有する。
変換回路51は、デジタルデータとして入力されたデータPvを、アナログ電位に変換す
る機能を有するD/A変換回路である。変換回路51によって生成された電位は、増幅回
路52に出力される。
増幅回路52は、変換回路51から入力されたアナログ電位を増幅して出力する機能を有
する。増幅回路52から出力された電位は、電位Va又は電位Vcとして発光素子LEに
供給される。
電源回路50は、データPvに基づいて電位Vaと電位Vcの一方を生成する回路であっ
てもよい。電源回路50によって電位VaとVcの一方が制御される場合、他方は所定の
値に固定され、一方の電位の増減によって発光素子LEに印加される電圧Va-Vcが制
御される。
また、電源回路50は、データPvに基づいて電位Vaと電位Vcの双方を生成する回路
であってもよい。この場合の電源回路50の構成例を図4(B)に示す。図4(B)に示
す増幅回路は、変換回路51a、51b、増幅回路52a、52bを有する。変換回路5
1aには、電位Vaを生成するためのデータPv(Pva)が入力され、増幅回路52a
から電位Vaが出力される。変換回路51bには、電位Vcを生成するためのデータPv
(Pvc)が入力され、増幅回路52bから電位Vcが出力される。このような構成を用
いることにより、電位Vaと電位Vcをそれぞれ独立して制御することができる。
<記憶回路の構成例>
次に、記憶回路60の構成例について説明する。図5に、画像処理回路30及び電源回路
50で用いられるパラメータを記憶する機能を有する記憶回路60の具体的な構成例を示
す。
図5に示す記憶回路60は、レジスタ部61a、レジスタ部61bを有する。レジスタ部
61aは、複数のレジスタ62aを有する。レジスタ部61bは、複数のレジスタ62b
を有する。複数のレジスタ62bによって、スキャンチェーンレジスタが構成されている
。レジスタ部61bには、入力データ(データScan In)及びスキャンクロック信
号(信号Scan Clock)が入力される。
レジスタ62aは揮発性レジスタである。レジスタ62aの回路構成には特段の制約はな
く、データを記憶することが可能な回路であればよく、ラッチ回路、フリップフロップ回
路などで構成すればよい。画像処理回路30、電源回路50には、対応するレジスタ62
aからデータが入力される。そして、画像処理回路30、電源回路50は、レジスタ部6
1aから供給されるデータにしたがって、処理内容が制御される。
レジスタ62bは、電源が遮断された状態でもデータが消失しない不揮発性レジスタであ
ることが好ましい。レジスタ62bを不揮発化するため、ここでは、レジスタ62bは、
OSトランジスタを用いた記憶回路を備えている。
ここで、金属酸化物は、シリコンなどの半導体よりもエネルギーギャップが大きく、少数
キャリア密度を低くすることができるため、OSトランジスタのオフ電流は極めて小さい
。そのため、レジスタ62bにOSトランジスタを用いた場合、チャネル形成領域にシリ
コンを有するトランジスタ(以下、Siトランジスタともいう)などを用いる場合と比較
して、極めて長期間にわたってレジスタ62bに電位を保持することができる。これによ
り、レジスタ62bへの電力の供給が停止された期間においても、レジスタ62bに格納
されたデータを保持することができる。
記憶回路60に格納しているデータを更新する場合、まず、レジスタ部61bのデータを
変更する。レジスタ部61bの各レジスタ62bのデータを書き換えた後、レジスタ部6
1bの各レジスタ62bのデータを、レジスタ部61aの各レジスタ62aに一括してロ
ードする。これにより、コントローラ20、画像処理回路30、電源回路50は、一括し
て更新されたデータを使用して、各種処理を行うことができる。データの更新に同時性が
保たれるため、信号生成部12の安定した動作を実現できる。
例えば、表示状況の変化に応じて電位Va、Vcを変更する際、コントローラ20で算出
したパラメータ、具体的には、画像処理回路30で用いられるパラメータ及び電源回路5
0で用いられるパラメータに対応するデータが、データScan Inとしてレジスタ部
61bに順次入力される。そして、これらのパラメータは、それぞれレジスタ62bに格
納された後、レジスタ部61aに一括で転送される。これにより、記憶回路60に記憶さ
れたパラメータは、レジスタ部61aから画像処理回路30及び電源回路50に同時に出
力される。そのため、電源回路50で用いられるパラメータと、画像処理回路30で用い
られるパラメータを同時に更新することができる。これにより、電位Va、Vcの変更と
、変更後の電位Va、Vcに適合する画像処理のパラメータの設定を同じタイミングで行
うことができ、発光素子LEに印加される電圧を切り替える際の映像の乱れを防止するこ
とができる。
また、レジスタ部61aとレジスタ部61bとを備えることで、画像処理回路30、電源
回路50が動作中でも、レジスタ部61bのデータを更新することができる。これにより
、記憶回路60に格納されるパラメータを、表示状況に応じてリアルタイムで変更するこ
とができ、消費電力を効果的に削減することができる。
また、レジスタ62bとして不揮発性レジスタを用いることにより、記憶回路60への電
力の供給が停止された期間においても、記憶回路60にパラメータを保持することができ
る。記憶回路60への電力の供給を停止する際は、レジスタ62bにデータを退避(セー
ブ)させてから電力を遮断する。また、電力が復帰した後は、レジスタ62bに退避させ
たデータをレジスタ62aに復帰(ロード)させて通常動作を再開する。なお、レジスタ
62aに格納されているデータとレジスタ62bに格納されているデータとが整合しない
場合は、レジスタ62aのデータをレジスタ62bにセーブした後、あらためて、レジス
タ62bの保持回路にデータを格納する構成が好ましい。データが整合しない場合として
は、レジスタ部61bに更新データを挿入中などが挙げられる。
図6に、レジスタ62a、レジスタ62bの回路構成例を示す。図6には、レジスタ部6
1bの2段分のレジスタ62bと、これらレジスタ62bに対応する2個のレジスタ62
aを示している。
レジスタ62bは、保持回路120、セレクタ130、フリップフロップ回路140を有
する。セレクタ130とフリップフロップ回路140とでスキャンフリップフロップ回路
が構成されている。
保持回路120には、信号SAVE2、信号LOAD2が入力される。保持回路120は
、トランジスタTr1乃至Tr6、容量素子C1、C2を有する。トランジスタTr1、
Tr2はOSトランジスタである。トランジスタTr1、Tr2をバックゲート付きのO
Sトランジスタとしてもよい。
トランジスタTr1、Tr3、Tr4および容量素子C1により、3トランジスタ型のゲ
インセルが構成される。同様に、トランジスタTr2、Tr5、Tr6および容量素子C
2により、3トランジスタ型のゲインセルが構成される。2個のゲインセルによって、フ
リップフロップ回路140が保持する相補データを記憶する。トランジスタTr1のソー
ス又はドレインの一方は容量素子C1と接続され、トランジスタTr2のソース又はドレ
インの一方は容量素子C2と接続されている。ここで、トランジスタTr1、Tr2はO
Sトランジスタであるため、トランジスタTr1、Tr2をオフ状態とすることにより、
容量素子C1、C2に蓄積された電荷を長期間にわたって保持することができる。そのた
め、記憶回路60に保持されたデータを容量素子C1、C2に退避させることにより、電
力の供給が停止された状態でも長時間データを保持することが可能な記憶回路60を実現
することができる。なお、レジスタ62bにおいて、トランジスタTr1、Tr2以外の
トランジスタはSiトランジスタで構成すればよい。
保持回路120は、信号SAVE2に従い、フリップフロップ回路140が保持する相補
データを格納し、信号LOAD2に従い、保持しているデータをフリップフロップ回路1
40にロードする。
フリップフロップ回路140の入力端子には、セレクタ130の出力端子が接続され、デ
ータ出力端子には、レジスタ62aの入力端子が接続されている。フリップフロップ回路
140は、インバータ141乃至146、アナログスイッチ147、148を有する。ア
ナログスイッチ147、148の導通状態は、信号Scan Clockによって制御さ
れる。フリップフロップ回路140は、図6の回路構成に限定されず、様々なフリップフ
ロップ回路140を適用することができる。
セレクタ130の2個の入力端子の一方には、レジスタ62aの出力端子が接続され、他
方には、前段のフリップフロップ回路140の出力端子が接続されている。なお、レジス
タ部61bの初段のセレクタ130の入力端子は、記憶回路60の外部からデータが入力
される。
レジスタ62aは、インバータ151乃至153、クロックドインバータ154、アナロ
グスイッチ155、バッファ156を有する。レジスタ62aは信号LOAD1に基づい
て、フリップフロップ回路140のデータをロードする。レジスタ62aのトランジスタ
はSiトランジスタで構成すればよい。
次に、記憶回路60の動作例を説明する。図7に、図6に示す記憶回路60の構成を簡略
化して示す。ここでは、記憶回路60がN段(Nは2以上の整数)のレジスタ62a(6
2a[1]乃至[N])、保持回路120(120[1]乃至[N])、フリップフロッ
プ回路140(140[1]乃至[N])を有する場合について説明する。
図7において、データDRはフリップフロップ回路140からレジスタ62aに出力され
るデータを示し、データDSはレジスタ62aからフリップフロップ回路140に出力さ
れるデータを示し、データDSRはフリップフロップ回路140と保持回路120の間で
入出力されるデータを示し、データDOSは保持回路120に格納されているデータを表
す。また、レジスタ62a[1]乃至[N]からは、それぞれデータQ1乃至QNが出力
される。データQ1乃至QNは、記憶回路60から出力されるパラメータに対応する。
図8は、図7に示す記憶回路60の動作例を示すタイミングチャートである。ここでは一
例として、フリップフロップ回路140[1]乃至[N]に、データD乃至Dが格納
される場合について説明する。
まず、期間T1において、データD乃至Dが、データScan Inとして順に入力
され、フリップフロップ回路140[1]乃至[N]にデータD乃至Dが格納される
。その結果、データDR[1]乃至[N]、及びデータDSR[1]乃至[N]として、
データD乃至Dが出力される。
次に、期間T2において、信号LOAD1がハイレベルとなる。これにより、データDR
[1]乃至[N]として出力されたデータD乃至Dが、レジスタ62a[1]乃至[
N]に格納される。その結果、データQ1乃至QN、及びデータDS[1]乃至[N]と
して、データD乃至Dが出力される。このように、データScan Inとして順次
入力されたデータは、データQ1乃至QNとして一括で出力される。これにより、記憶回
路60から出力されるパラメータを一括して変更することが出来る。
次に、期間T3において、信号SAVE1がハイレベルとなる。これにより、データDS
[1]乃至[N]として出力されたデータD乃至Dが、フリップフロップ回路140
[1]乃至[N]に格納される。その結果、データDR[1]乃至[N]、及びデータD
SR[1]乃至[N]として、データD乃至Dが出力される。
なお、図8に示すように、期間T2と期間T3の間の期間において、データScan I
nが変動し、フリップフロップ回路140[1]乃至[N]に格納されたデータが変更さ
れても、データQ1乃至QNは変更されない。また、期間T3における動作により、フリ
ップフロップ回路140[1]乃至[N]のデータを、データQ1乃至QNで上書きする
ことができ、レジスタ62a[1]乃至[N]に格納されているデータとフリップフロッ
プ回路140[1]乃至[N]に格納されているデータを整合させることができる。これ
により、フリップフロップ回路140[1]乃至[N]に格納されるデータが更新されて
いる最中に後述するデータの退避を行う場合でも、データの整合性が保たれた状態でデー
タを退避することができる。また、退避されたデータの復帰を高速に行うことができる。
次に、期間T4において、信号SAVE2がハイレベルとなる。これにより、データDS
R[1]乃至[N]として出力されたデータD乃至Dが、保持回路120[1]乃至
[N]に格納される。すなわち、フリップフロップ回路140[1]乃至[N]に格納さ
れたデータが、保持回路120[1]乃至[N]に退避される。その結果、データDOS
[1]乃至[N]が、データD乃至Dとなる。具体的には、図6の容量素子C1、C
2の電極の電位が、データD乃至Dに対応した電位となる。
次に、期間T5において、記憶回路60への電源電位VDD3の供給が停止される、これ
により、レジスタ62a、保持回路120、フリップフロップ回路140からのデータの
出力が停止される。ただし、保持回路120に格納されているデータDOS[1]乃至[
N]は、記憶回路60への電力の供給が停止された期間においても保持されている。具体
的には、図6の容量素子C1、C2によって、データD乃至Dに対応した電位が保持
されている。
次に、期間T6において、記憶回路60への電力の供給が再開され、信号LOAD2がハ
イレベルとなる。このとき、保持回路120に保持されていたデータD乃至Dが、デ
ータDSR[1]乃至[N]として出力され、フリップフロップ回路140[1]乃至[
N]に格納される。すなわち、保持回路120[1]乃至[N]に退避されたデータが、
フリップフロップ回路140[1]乃至[N]に復帰される。その結果、データDR[1
]乃至[N]としてデータD乃至Dが出力される。
次に、期間T7において、信号LOAD1がハイレベルとなる。これにより、データDR
[1]乃至[N]として出力されたデータD乃至Dが、レジスタ62a[1]乃至[
N]に格納される。その結果、データQ1乃至QN、及びデータDS[1]乃至[N]と
して、データD乃至Dが出力される。これにより、保持回路120[1]乃至[N]
から復帰されたデータが、データQ1乃至QNとして外部に出力される。
以上のように、記憶回路60は、順次入力されたデータに対応して、外部への出力を一括
で変更することができる。また、記憶回路60は、電力の供給が停止される期間において
、退避したデータを保持することができる。
<表示部>
次に、表示部11の構成例について説明する。図9に、表示部11に設けることができる
画素70の構成例を示す。表示部11には複数の画素70が設けられ、複数の画素70が
それぞれ所定の階調を表示することにより、表示部11に映像が表示される。
[構成例]
図9(A)に示す画素70は、トランジスタTr11、Tr12、発光素子LE、容量素
子C11を有する。なお、ここでは、トランジスタTr11、Tr12をnチャネル型と
しているが、トランジスタの極性は自由に設定することができる。
トランジスタTr11のゲートは配線GLと接続され、ソース又はドレインの一方はトラ
ンジスタTr12のゲート、及び容量素子C11の一方の電極と接続され、ソース又はド
レインの他方は配線SLと接続されている。トランジスタTr12のソース又はドレイン
の一方は容量素子C11の他方の電極、及び発光素子LEの一方の電極と接続され、ソー
ス又はドレインの他方は電位Vaが供給される配線と接続されている。発光素子LEの他
方の電極は、電位Vcが供給される配線と接続されている。トランジスタTr11のソー
ス又はドレインの一方、トランジスタTr12のゲート、及び容量素子C11の一方の電
極と接続されたノードを、ノードN1とする。また、トランジスタTr12のソース又は
ドレインの一方、及び容量素子C11の他方の電極と接続されたノードを、ノードN2と
する。
ここでは、電位Vaを高電源電位とし、電位Vcを低電源電位とした場合について説明す
る。また、容量素子C11は、ノードN2の電位を保持するための保持容量としての機能
を有する。
なお、本明細書等において、トランジスタのソースとは、チャネル形成領域として機能す
る半導体層の一部であるソース領域や、当該半導体層と接続されたソース電極などを意味
する。同様に、トランジスタのドレインとは、当該半導体層の一部であるドレイン領域や
、当該半導体層と接続されたドレイン電極などを意味する。また、ゲートとは、ゲート電
極などを意味する。
また、トランジスタが有するソースとドレインは、トランジスタの導電型及び各端子に与
えられる電位の高低によって、その呼び方が入れ替わる。一般的に、nチャネル型トラン
ジスタでは、低い電位が与えられる端子がソースと呼ばれ、高い電位が与えられる端子が
ドレインと呼ばれる。また、pチャネル型トランジスタでは、低い電位が与えられる端子
がドレインと呼ばれ、高い電位が与えられる端子がソースと呼ばれる。本明細書では、便
宜上、ソースとドレインとが固定されているものと仮定して、トランジスタの接続関係を
説明する場合があるが、実際には上記電位の関係にしたがってソースとドレインの呼び方
が入れ替わる。
配線GLは、画素70を選択するための信号(以下、選択信号ともいう)を伝える機能を
有する。配線SLは、信号生成部12から出力される映像信号(信号SD)を伝える機能
を有する。配線SLの電位が映像信号に対応する。
トランジスタTr11は、配線SLの電位のノードN1への供給を制御する機能を有する
。また、具体的には、配線GLの電位を制御してトランジスタTr11をオン状態とする
ことにより、配線SLの電位がノードN1に供給され、画素70の書き込みが行われる。
ここで、その後、配線GLの電位を制御してトランジスタTr11をオフ状態とすること
により、ノードN1の電位が保持される。
そして、ノードN1、N2の間の電圧に応じてトランジスタTr12のソース-ドレイン
の間に流れる電流量が制御され、発光素子LEが当該電流量に応じた輝度で発光する。こ
れにより、画素70の階調を制御することができる。
なお、トランジスタTr12が飽和領域で動作し、トランジスタTr12のゲートの電位
が一定であれば、電位Vaが変動してもトランジスタTr12に流れる電流は変化しない
。つまり、電位Vaが変動しても発光素子LEに流れる電流、すなわち、輝度は変化しな
い。従って、表示部11が有する全ての画素70における発光素子LEが所望の輝度を得
られる範囲、具体的には、輝度が最大となる画素70の発光素子LEが所望の輝度を得ら
れる範囲で、電位Vaを下げることにより、表示部11に表示された映像を変化させるこ
となく、消費電力を低減することが可能となる。このとき、各画素70に書き込む電位を
変更する必要は無いため、画像データの変更に伴う追加の画像処理などは不要であり、消
費電力の低減に有効である。
上記の動作を配線GLごとに順次行うことにより、第1フレーム分の映像を表示すること
ができる。
なお、配線GLの選択には、プログレッシブ方式を用いてもよいし、インターレース方式
を用いてもよい。また、配線SLへの映像信号の供給は、配線SLに順次映像信号を供給
する点順次駆動を用いて行ってもよいし、全ての配線SLに一斉に映像信号を供給する線
順次駆動を用いて行ってもよい。また、複数の配線SLごとに順に、映像信号を供給して
もよい。
その後、第2のフレーム期間において、第1のフレーム期間と同様の動作により、映像の
表示が行われる。これにより、表示部11に表示される映像が書き換えられる。なお、映
像の書き換えの頻度は、表示部11の観察者が書き換えによる映像の変化を識別すること
が難しい頻度で行う。表示部11に動画を表示する場合は、映像の書き換えの頻度を、例
えば、1秒間に60回以上とすることが好ましい。これにより、なめらかな動画を表示す
ることができる。
一方、表示部11に静止画を表示する場合や、一定期間映像が変化しない、又は変化が一
定以下である動画を表示する場合などは、書き換えを行わず、直前のフレームの映像を維
持することが好ましい。これにより、映像の書き換えに伴う消費電力を削減することがで
きる。
映像の書き換えの頻度を減らす場合、ノードN1の電位が長時間保持されることが好まし
い。そのため、トランジスタTr11にはOSトランジスタを用いることが好ましい。こ
れにより、ノードN1の電位を極めて長期間にわたって保持することができ、映像の書き
換えの頻度を減らしても、表示状態を維持することができる。映像の書き換えの頻度は、
例えば、1日に1回以上且つ1秒間に0.1回未満、好ましくは1時間に1回以上且つ1
秒間に1回未満、より好ましくは30秒間に1回以上且つ1秒間に1回未満とすることが
できる。
なお、表示状態を維持するとは、映像の変化が一定の範囲より大きくならないように保持
することをいう。上記一定の範囲は適宜設定することができ、例えば使用者が映像を閲覧
する場合に、同じ映像であると認識できる範囲に設定することが好ましい。
また、映像の書き換えの頻度を減らすことにより、映像を表示する際のちらつき(フリッ
カーともいう)を低減することができる。これにより、表示部11の観察者の目の疲労を
低減することができる。
なお、トランジスタTr11には、OSトランジスタ以外のトランジスタを用いてもよい
。例えば、金属酸化物以外の単結晶半導体を有する基板の一部にチャネル形成領域が形成
されるトランジスタを用いてもよい。このような基板としては、単結晶シリコン基板や単
結晶ゲルマニウム基板などが挙げられる。また、トランジスタTr11として、金属酸化
物以外の材料を含む膜にチャネル形成領域が形成されるトランジスタを用いることもでき
る。金属酸化物以外の材料としては、シリコン、ゲルマニウム、シリコンゲルマニウム、
炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウ
ム、有機半導体などがあげられる。これらの材料は、単結晶半導体であってもよいし、非
晶質半導体、微結晶半導体、多結晶半導体などの非単結晶半導体であってもよい。
また、トランジスタTr12、及び以下で説明するトランジスタのチャネル形成領域に用
いることができる材料の例は、トランジスタTr11と同様である。
なお、画素70に含まれるトランジスタは、一対のゲートを有していてもよい。図9(B
)に示す画素70は、トランジスタTr11、Tr12が一対のゲートを有している点に
おいて、図9(A)と異なる。なお、トランジスタが一対のゲートを有する場合、一方の
ゲートを第1のゲート、フロントゲート、又は単にゲートと呼ぶことがあり、他方のゲー
トを第2のゲート、又はバックゲートと呼ぶことがある。
図9(B)に示すトランジスタTr11、Tr12はバックゲートを有し、バックゲート
はフロントゲートと接続されている。この場合、バックゲートにはフロントゲートと同じ
電位が印加され、トランジスタのオン電流を増加させることができる。特に、トランジス
タTr11は映像信号の書き込みに用いられるため、図9(B)に示す構造を採用するこ
とにより、高速な映像信号の書き込みが可能な画素70を実現することができる。
図9(C)に示すトランジスタTr11、Tr12は、バックゲートが配線BGLと接続
されている。配線BGLは、バックゲートに所定の電位を供給する機能を有する配線であ
る。配線BGLの電位を制御することにより、トランジスタTr11、Tr12の閾値電
圧を制御することができる。特に、トランジスタTr11はノードN1の電位の保持に用
いられるため、配線BGLの電位を制御してトランジスタTr11の閾値電圧をプラス側
にシフトさせることにより、トランジスタTr11のオフ電流を低減してもよい。なお、
配線BGLに供給される電位は、固定電位であってもよいし、変動する電位であってもよ
い。
配線BGLは、トランジスタTr11、Tr12ごとに個別に設けることもできる。また
、配線BGLは、表示部11が有する全て又は一部の画素70で共有されていてもよい。
[変形例]
図10(A)に、画素70の変形例を示す。図10(A)に示す画素70は、トランジス
タTr13を有する点において、図9(A)と異なる。トランジスタTr13のゲートは
配線RLと接続され、ソース又はドレインの一方はノードN2と接続され、ソース又はド
レインの他方は配線MLと接続されている。配線RLの電位を制御してトランジスタTr
13をオン状態とすることにより、ノードN2の電位をリセットすることができる。
また、発光素子LEに供給される電流の値はトランジスタTr12の特性によって影響を
受ける。そのため、画素70によって階調を表示する際は、トランジスタTr12の特性
の情報を含む信号を出力し、検査を行うことが好ましい。ここで、配線RLの電位を制御
してトランジスタTr13をオン状態とすることにより、トランジスタTr12を流れる
電流を配線MLに出力することができる。この電流の値から、トランジスタTr12の特
性に関する情報を得ることができる。
また、画素70が有する素子は、他の素子と所定の配線を共有することができる。図10
(B)に示す画素70は、トランジスタTr13のゲートが配線GLと接続されている点
において、図10(A)と異なる。すなわち、トランジスタTr11のゲートとトランジ
スタTr13のゲートは、同一の配線と接続されている。この場合、トランジスタTr1
1とトランジスタTr13の導通状態は、配線GLの電位によって同時に制御される。
また、画素70には、他の素子を適宜設けることができる。例えば、図10(C)に示す
ように、トランジスタTr12と発光素子LEの間にスイッチSWを設けることもできる
。この場合、例えば、トランジスタTr12の特性を読み出す期間において、スイッチS
Wをオフ状態とすることにより、トランジスタTr12に流れる電流の値を配線MLに正
確に伝えることができる。
また、画素70において、トランジスタの極性、発光素子の向き、配線の電位などは、適
宜変更することができる。図11(A)に示す画素70は、トランジスタTr11、Tr
12、Tr13の極性が図10(A)と異なり、pチャネル型である。また、容量素子C
11の一方の電極はトランジスタTr12のゲートと接続され、他方の電極は電位Vaが
供給される配線と接続されている。
また、画素70には極性が異なるトランジスタが設けられていてもよい。例えば、図11
(B)に示すように、トランジスタTr11、Tr13をnチャネル型とし、トランジス
タTr12をpチャネル型とすることができる。なお、図11(B)に示す容量素子C1
1の接続関係は、図11(A)と同様である。
以上の画素70の構成は、図1に示す表示部11に用いることができる。
上記の通り、本発明の一態様においては、表示部11に表示される映像の表示状況に応じ
て、発光素子LEに印加される電圧を制御することができる。これにより、表示部11の
消費電力を削減することができる。また、本発明の一態様において、記憶回路60から画
像処理回路30及び電源回路50にパラメータを同時に出力することができる。これによ
り、発光素子LEに印加される電圧を切り替える際の映像の乱れを防止することができ、
表示部11に視認性の高い映像を表示させることができる。
さらに、本発明の一態様において、表示部11又は信号生成部12にOSトランジスタを
用いることにより、表示システム10の消費電力を低減することができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態2)
本実施の形態では、上記実施の形態で説明した表示システムの、他の動作例及び構成例に
ついて説明する。
<動作例>
まず、映像の変化の有無に応じて電力の供給が制御される表示部11の動作例について説
明する。図12に、表示部11が有する画素部200及び駆動回路210と、信号生成部
12が有する駆動回路40と、を示す。画素部200は画素群201を含む。画素群20
1は、複数の画素202によって構成されている。画素202は表示素子を有し、所定の
階調を表示する機能を有する。複数の画素202が所定の階調を表示することにより、画
素部200に所定の映像が表示される。
図12には、画素群201がm列n行(m、nは2以上の整数)の画素202を有する構
成を示している。第i列第j行(iは1以上m以下の整数、jは1以上n以下の整数)の
画素202は、配線SL[i]及び配線GL[j]と接続されている。配線GL[1]乃
至[n]は駆動回路210と接続されている。配線SL[1]乃至[m]は駆動回路40
と接続されている。
駆動回路210は、選択信号を画素部200に供給する機能を有する。具体的には、駆動
回路210は、画素202と接続された配線GLに選択信号を供給する機能を有し、配線
GLは、駆動回路210から出力された選択信号を伝える機能を有する。
駆動回路40は、映像信号を生成して画素部200に供給する機能を有する。具体的には
、駆動回路40は、画素202と接続された配線SLに映像信号を供給する機能を有する
。配線SLに供給された映像信号は、駆動回路210によって選択された画素202に書
き込まれる。これにより、画素部200に映像が表示される。
ここで、画素202にはOSトランジスタを用いることが好ましい。これにより、画素部
200に表示される映像に変化がない期間において、画素202への映像信号の書き替え
の頻度を大幅に減らすことができ、消費電力を削減することができる。映像信号の書き込
みの頻度は、例えば、1日に1回以上且つ1秒間に0.1回未満、好ましくは1時間に1
回以上且つ1秒間に1回未満、より好ましくは30秒間に1回以上且つ1秒間に1回未満
とすることができる。
駆動回路210には、電源電位VDD1、スタートパルスGSP、クロック信号GCK、
信号PWCが供給される。駆動回路210は、電源電位VDD1が供給されている期間に
画素群201の各行の画素202の選択信号を生成し、対応する配線GLに供給する機能
を有する。具体的には、駆動回路210はn段のシフトレジスタを有し、シフトレジスタ
にスタートパルスGSP、クロック信号GCKが供給される。そして、シフトレジスタの
各段の出力信号と信号PWCとの論理積が、画素群201の各行の画素202の選択信号
として配線GL[1]乃至[n]に出力される。信号PWCのパルス幅により、選択信号
のパルス幅が制御される。
駆動回路40には、電源電位VDD2、スタートパルスSSP、クロック信号SCK、ラ
ッチ信号SLAT、画像データDATAが供給される。駆動回路40は、電源電位VDD
2が供給されている期間に、スタートパルスSSP、クロック信号SCK、画像データD
ATA、ラッチ信号SLATを用いて画素群201の各列の画素202の映像信号を生成
し、対応する配線SLに供給する機能を有する。具体的には、駆動回路40はm段のシフ
トレジスタ、各段に対応した複数ビットの第1のラッチ、第2のラッチ、D/A変換回路
を有する。当該シフトレジスタにスタートパルスSSP、クロック信号SCKが供給され
ると、シフトレジスタの各段の出力信号が順次選択信号として生成され、対応する列の第
1のラッチに画像データDATAが順次格納される。各列の第1のラッチに画像データD
ATAが格納された後、ラッチ信号SLATにより、第1のラッチのデータを第2のラッ
チに格納する。そして、D/A変換回路で第2のラッチのデータに対応したアナログ信号
である映像信号を生成する。
図13は、図12に示す駆動回路210の動作例を示すタイミングチャートである。図1
3において、期間T10は映像信号が配線SLに供給される期間であり、期間T20は映
像信号の供給が停止される期間であり、期間T30は映像信号の供給が再開される期間で
ある。なお、期間T10、T30に含まれる期間FPは、1フレーム期間を表す。また、
電位VGL[1]乃至[n]はそれぞれ、配線GL[1]乃至[n]の電位を表す。
まず、期間T10において、駆動回路210に電源電位VDD1、スタートパルスGSP
、クロック信号GCK、信号PWCが供給され、駆動回路210によって選択信号が生成
される。そして、配線GL[1]乃至[n]に順次選択信号が供給され、電位VGL[1
]乃至[n]が順次ハイレベルとなる。
選択信号が供給された配線GLと接続された画素202には、駆動回路40から映像信号
が供給される。これにより、画素群201に表示される映像が更新される。
次に、期間T20において、駆動回路210への電源電位VDD1の供給が停止され、駆
動回路210は停止状態となる。また、駆動回路210へのスタートパルスGSP、クロ
ック信号GCK、信号PWCの供給が停止される。そのため、期間T20において選択信
号は生成されず、画素群201は直前の表示状態を維持する。このように、映像信号が供
給されない期間において、駆動回路210を停止状態とすることにより、消費電力を削減
することができる。
次に、期間T30において、駆動回路210への電源電位VDD1の供給が再開され、ス
タートパルスGSP、クロック信号GCK、信号PWCが供給される。これにより、駆動
回路210による選択信号の生成が再開される。
なお、駆動回路40も、映像信号の供給の有無に応じて動作状態を制御することができる
。図14は、図12に示す駆動回路40の動作例を示すタイミングチャートである。なお
、電位VSL[1]乃至[m]はそれぞれ、配線SL[1]乃至[m]の電位を表す。
画素202の選択が行われる期間FPにおいて、駆動回路40には電源電位VDD2、ス
タートパルスSSP、クロック信号SCK、ラッチ信号SLATが供給される。駆動回路
40は、期間FPにおいて映像信号の生成及び出力を行う。
まず、期間T11において、画像データDATAとして、画像処理回路30(図1等参照
)からデータID´が供給される。そして、スタートパルスSSP、クロック信号SCK
、データID´に基づいて、配線GL[1]と接続された行の画素202に対応する画像
データが各列の第1のラッチに順次格納される。
次に、期間T12において、ラッチ信号SLATがハイレベルとなる。これにより、期間
T11において各列の第1のラッチに格納された画像データが各列の第2のラッチに格納
され、さらに各列のD/A変換回路により生成された映像信号が配線SL[1]乃至[m
]に供給され、電位VSL[1]乃至[m]はそれぞれ映像信号に対応する電位となる。
次に、期間T13において、電位VGL[1]がハイレベルとなり、配線GL[1]と接
続された行の画素202に電位VSL[1]乃至[m]が供給される。これにより、配線
GL[1]と接続された行の画素202の階調が更新される。また、期間T13において
、スタートパルスSSP、クロック信号SCK、データID´に基づいて、配線GL[2
]と接続された行の画素202に対応する画像データが各列の第1のラッチに順次格納さ
れる。
次に、期間T14において、ラッチ信号SLATがハイレベルとなる。これにより、期間
T13において各列の第1のラッチに格納された画像データが各列の第2のラッチに格納
され、さらに各列のD/A変換回路により生成された映像信号が配線SL[1]乃至[m
]に供給され、電位VSL[1]乃至[m]はそれぞれ映像信号に対応する電位となる。
次に、期間T15において、電位VGL[2]がハイレベルとなり、配線GL[2]と接
続された行の画素202に電位VSL[1]乃至[m]が供給される。これにより、配線
GL[2]と接続された行の画素202の階調が更新される。また、期間T15において
、スタートパルスSSP、クロック信号SCK、データID´に基づいて、配線GL[3
](図示せず)と接続された行の画素202に対応する画像データが各列の第1のラッチ
に順次格納される。
次に、期間T16において、ラッチ信号SLATがハイレベルとなる。これにより、期間
T15において各列の第1のラッチに格納された画像データが各列の第2のラッチに格納
され、さらに各列のD/A変換回路により生成された映像信号が配線SL[1]乃至[m
]に供給され、電位VSL[1]乃至[m]はそれぞれ映像信号に対応する電位となる。
同様の動作により、配線GL[4]乃至[n]と接続された行の画素202に映像信号が
供給される。期間T17は、配線GL[n]と接続された行の画素202に映像信号が供
給される期間である。このようにして、画素群201に表示される映像が更新される。
その後、映像信号の供給が停止される期間T20となると、駆動回路40への電源電位V
DD2の供給が停止され、駆動回路40は停止状態となる。また、駆動回路40へのスタ
ートパルスSSP、クロック信号SCK、ラッチ信号SLATの供給が停止される。この
ように、映像信号が供給されない期間において、駆動回路40を停止状態とすることによ
り、消費電力を削減することができる。
期間T30における駆動回路40の動作は、期間T10と同様である。なお、期間T20
においては、駆動回路40、駆動回路210の双方を停止状態としてもよいし、一方のみ
を停止状態としてもよい。また、図14では映像信号が全ての配線SLに一斉に供給され
る線順次駆動について説明したが、配線SLに順次に映像信号が供給される点順次駆動を
用いてもよいし、複数の配線SLごとに順に映像信号が供給される方式を用いてもよい。
このように、画素部200に表示される映像に変化がない期間において、駆動回路40又
は駆動回路210を停止状態とすることにより、表示システムの消費電力を削減すること
ができる。
<構成例>
次に、表示部11の他の構成例について説明する。図15に、表示システム10の構成例
を示す。図15に示す表示部11は、複数の表示ユニット90を用いて映像の表示を行う
機能を有する点において、図1と異なる。図15には一例として、表示部11が2つの表
示ユニット90(90a、90b)を有し、信号生成部12が2つの駆動回路40(40
a、40b)を有する構成を示している。
図15に示す信号生成部12は、表示ユニット90aに供給される映像信号と表示ユニッ
ト90bに供給される映像信号の両方を生成する機能を有する。具体的には、信号生成部
12には、2種類の画像データ(IDa、IDb)が入力される。画像処理回路30は、
データIDaに画像処理を施してデータIDa´を生成し、データIDbに画像処理を施
してデータIDb´を生成する。なお、データIDaの補正とデータIDbの補正はそれ
ぞれ、記憶回路60から入力されるデータPiを用いて行われる。
駆動回路40aは、データIDa´に基づいて映像信号(SDa)を生成し、表示ユニッ
ト90aに出力する機能を有する。駆動回路40bは、データIDb´に基づいて映像信
号(SDb)を生成し、表示ユニット90bに出力する機能を有する。そして、表示ユニ
ット90aは、信号生成部12から入力される信号SDaに基づいて映像を表示する機能
を有し、表示ユニット90bは、信号生成部12から入力される信号SDbに基づいて映
像を表示する機能を有する。
映像の表示には、表示ユニット90aと表示ユニット90bの両方を用いてもよいし、一
方のみを用いてもよい。両方を用いる場合、表示ユニット90aと表示ユニット90bを
用いて1つの映像を表示してもよいし、表示ユニット90aと表示ユニット90bにそれ
ぞれ独立した映像を表示してもよい。なお、表示部11に設けられる表示ユニット90の
数は3以上であってもよい。
2つの表示ユニット90を有する表示部11の具体的な構成例を、図16に示す。図16
に示す表示部11は、画素部200、駆動回路210a、210bを有する。また、画素
部200は、複数の画素202aによって構成される画素群201a、複数の画素202
bによって構成される画素群201bを有する。図15における表示ユニット90a、9
0bはそれぞれ、画素群201aと駆動回路210aによって構成されるユニット、画素
群201bと駆動回路210bによって構成されるユニットに相当する。
画素202a、202bは表示素子を有し、所定の階調を表示する機能を有する。複数の
画素202a又は複数の画素202bが所定の階調を表示することにより、画素部200
に所定の映像が表示される。画素202aが有する表示素子と画素202bが有する表示
素子の種類や特性は、同じであっても異なっていてもよい。また、画素202aと画素2
02bの回路構成は、同じであっても異なっていてもよい。
表示素子の例としては、液晶素子、発光素子などが挙げられる。液晶素子としては、透過
型の液晶素子、反射型の液晶素子、半透過型の液晶素子などを用いることができる。また
、表示素子として、シャッター方式のMEMS(Micro Electro Mech
anical System)素子、光干渉方式のMEMS素子、マイクロカプセル方式
、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を適用
した表示素子などを用いることもできる。また、発光素子の例は、実施の形態1における
発光素子LEと同様である。
映像の表示には、画素群201aと画素群201bの両方を用いてもよいし、一方のみを
用いてもよい。両方を用いる場合、画素群201a及び画素群201bを用いて1つの映
像を表示してもよいし、画素群201aを用いて表示される映像と画素群201bを用い
て表示される映像がそれぞれ独立していてもよい。
映像の表示に画素群201aと画素群201bの一方のみを用いる場合は、自動又は手動
で、映像を表示する画素群201を切り替えることができる。ここで、画素202aと画
素202bに異なる表示素子を設けることにより、画素群201aと画素群201bに表
示される映像の特性や品質などを異ならせることができる。この場合、表示を行う画素群
201を、周囲の環境や表示内容などに合わせて選択することができる。
駆動回路210は、選択信号を画素群201に供給する機能を有する。具体的には、駆動
回路210aは、画素202aと接続された配線GLaに選択信号を供給する機能を有し
、配線GLaは、駆動回路210aから出力された選択信号を伝える機能を有する。駆動
回路210bは、画素202bと接続された配線GLbに選択信号を供給する機能を有し
、配線GLbは、駆動回路210bから出力された選択信号を伝える機能を有する。
また、画素群201は信号生成部12が有する駆動回路40と接続されている。駆動回路
40は、映像信号を生成して画素群201に供給する機能を有する。具体的には、駆動回
路40aは、画素202aと接続された配線SLaに映像信号を供給する機能を有し、駆
動回路40bは、画素202bと接続された配線SLbに映像信号を供給する機能を有す
る。配線SLa、SLbに供給された映像信号は、駆動回路210a、210bによって
選択された画素202a、202bに書き込まれる。これにより、画素部200に映像が
表示される。
図17に、画素部200の構成例を示す。画素部200は、m列n行の画素202a、2
02bを有する。第i列第j行の画素202aは、配線SLa[i]及び配線GLa[j
]と接続され、第i列第j行の画素202bは、配線SLb[i]及び配線GLb[j]
と接続されている。配線GLa[1]乃至[n]は駆動回路210aと接続され、配線G
Lb[1]乃至[m]は駆動回路210bと接続されている。配線SLa[1]乃至[m
]は駆動回路40aと接続され、配線SLb[1]乃至[m]は駆動回路40bと接続さ
れている。
画素202aと画素202bは配線SLa、SLbが延在する方向(紙面上下方向)に沿
って交互に設けられており、画素202aと画素202bによって画素ユニット203が
構成されている。このように、画素202aと画素202bを同一の画素部200内に混
在させることにより、画素202aによる表示と画素202bによる表示を同一の領域に
おいて行うことができる。また、画素202aによる表示と画素202bによる表示を同
時に行う際は、これらの表示を合成することができる。
ここで、画素202a、202bにはOSトランジスタを用いることが好ましい。これに
より、画素部200に表示される映像に変化がない期間において、画素202a、202
bへの映像信号の書き替えの頻度を大幅に減らすことができ、消費電力を削減することが
できる。
また、画素202a、202bに設けられる表示素子は自由に選択することができる。例
えば、画素202aに透過型の液晶素子又は発光素子を設け、画素202bに反射型の液
晶素子を設けることができる。この場合、表示部11は、画素群201aを用いて色再現
性が高く(色域が広く)、コントラストの高い、鮮やかな映像の表示を行い、画素群20
1bを用いて低消費電力の表示を行うことができる。
一例として、画素202aが発光素子を有し、画素202bが反射型の液晶素子を有する
場合について説明する。反射型の液晶素子は、表示の際に外光以外の光源が不要であるた
め、低消費電力で映像の表示を行うことができる。一方、発光素子は、反射型の液晶素子
と比較して動作速度が速いため、表示の高速な切り替えが可能となる。そして、例えば反
射型の液晶素子には背景となる静止画や文字などを表示し、発光素子には動画などを表示
することができる。これにより、消費電力の低減と高品質の映像の表示を両立させること
ができる。このような構成は、表示部11を教科書などの教材、又はノートなどとして利
用する場合などに適している。
また、液晶素子の反射光と、発光素子の発光の両方を用いて映像の表示を行う場合、発光
素子の輝度を制御することにより、映像の補正を行うことができる。例えば、外光の強度
の変化に応じて発光素子の輝度を変化させることにより、調光又は調色などの補正を行い
、表示部11に表示される映像の視認性を向上させることができる。
また、図15に示すように、信号生成部12にはスイッチ回路80を設けることができる
。スイッチ回路80は、画像処理回路30、駆動回路40、電源回路50、記憶回路60
への電力の供給を制御する機能を有する。電力の供給の有無は、コントローラ20から入
力される制御信号に基づいて決定される。画像処理回路30、駆動回路40、電源回路5
0、又は記憶回路60を使用しない期間においては、コントローラ20によってスイッチ
回路80の導通状態を制御し、画像処理回路30、駆動回路40、電源回路50、又は記
憶回路60への電力の供給を停止することができる。これにより、信号生成部12の消費
電力を低減することができる。
図18(A)に、スイッチ回路80の構成例を示す。スイッチ回路80は、トランジスタ
Tr20を有する。トランジスタTr20のゲートは、コントローラ20から制御信号(
信号PC)が入力される端子と接続され、ソース又はドレインの一方は回路220と接続
され、ソース又はドレインの他方は高電源電位VDDが供給される配線と接続されている
。なお、ここではトランジスタTr20がpチャネル型である場合について説明するが、
トランジスタTr20はnチャネル型であってもよい。また、トランジスタTr20に供
給される電源電位は、低電源電位VSS(例えば、接地電位など)であってもよい。
回路220は、信号生成部12に設けられ、スイッチ回路80によって電力の供給が制御
される回路である。例えば回路220は、図15における画像処理回路30、駆動回路4
0a、40b、電源回路50、記憶回路60などに相当する。
コントローラ20から信号PCとしてローレベルの電位が供給されると、トランジスタT
r20はオン状態となり、回路220に電源電位VDDが供給される。これにより、回路
220に電力が供給される。一方、コントローラ20から信号PCとしてハイレベルの電
位が供給されると、トランジスタTr20はオフ状態となり、回路220への電源電位V
DDの供給が停止される。これにより、回路220への電力の供給が停止される。
なお、スイッチ回路80は、1つのトランジスタTr20で複数の回路への電力の供給を
同時に制御してもよい。例えば図18(B)に示すように、画像処理回路30、駆動回路
40a、40b、電源回路50、及び記憶回路60への電力の供給が、トランジスタTr
20によって一括で制御される構成を用いることもできる。
なお、トランジスタTr20として、OSトランジスタを用いることが好ましい。この場
合、トランジスタTr20がオフ状態である期間において、電流のリークを極めて小さく
抑えることができ、消費電力をより効果的に低減することができる。なお、トランジスタ
Tr20にはOSトランジスタ以外のトランジスタを用いてもよい。
なお、トランジスタTr20はバックゲート付きのOSトランジスタとしてもよい。
以上のように、複数の表示ユニット90を用いて表示を行う表示システム10を構成する
ことができる。例えば、表示ユニット90aに、実施の形態1で説明した印加される電圧
が制御される発光素子を設け、表示ユニット90bに反射型の液晶素子を設けることがで
きる。この場合、外光の強度が一定未満の場合は、印加される電圧が制御される発光素子
を用いて表示を行い、外光の強度が一定以上の場合は、反射型の液晶素子を用いて表示を
行うことができる。これにより、様々な環境下において、消費電力の低減と視認性の確保
を両立することが可能な表示システムを構成することができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、上記実施の形態で説明した表示システムのより具体的な構成例につい
て説明する。
<表示システムの構成例>
図19に、表示システム10の具体例を示す。図19に示す信号生成部12は、図15に
示す回路に加え、インターフェース301、フレームメモリ302、タイミングコントロ
ーラ303、センサコントローラ304、クロック生成回路305、タッチセンサコント
ローラ306を有する。また、画像処理回路30は、調光回路311、調色回路312、
ガンマ補正回路313を有する。また、記憶回路60は、図5に示すレジスタ部61a、
レジスタ部61bを有する。
表示部11は、画素202aが設けられた表示ユニット90a、画素202bが設けられ
た表示ユニット90bを有する。ここでは一例として、画素202aが発光素子を有し、
画素202bが反射型の液晶素子を有する場合について説明する。また、表示部11は、
タッチの有無、タッチ位置などの情報を得る機能を有するタッチセンサユニット307を
有していてもよい。表示部11がタッチセンサユニット307を有しない場合、タッチセ
ンサコントローラ306は省略することができる。
なお、ここでは表示部11に複数の表示ユニット90が設けられた構成について説明する
が、図19に示す構成は、表示部11が一の表示ユニット90を有する場合にも適用する
ことができる。この場合、信号生成部12に入力される画像データ、及び信号生成部12
から出力される映像信号は、それぞれ1種類となる。
信号生成部12は、ホスト14と通信を行う機能を有する。信号生成部12とホスト14
との通信は、インターフェース301を介して行われる。ホスト14から信号生成部12
には、画像データ、各種制御信号などが送られる。また、信号生成部12からホスト14
には、タッチセンサコントローラ306が取得したタッチの有無、タッチ位置などの情報
が送られる。なお、信号生成部12が有する回路は、ホスト14の規格、表示部11の仕
様等によって、適宜取捨される。ホスト14は、信号生成部12の動作を制御する機能を
有するプロセッサなどに相当し、CPU(Central Processing Un
it)、やGPU(Graphics Processing Unit)などによって
構成することができる。
フレームメモリ302は、信号生成部12に入力された画像データを記憶する機能を有す
る。具体的には、フレームメモリ302は、データIDを記憶し、画像処理回路30に出
力する機能を有する。
ホスト14から信号生成部12に入力された画像データが圧縮されている場合は、フレー
ムメモリ302には圧縮データが格納される。そして、フレームメモリ302から出力さ
れた圧縮データは、デコーダによって伸長された後、画像処理回路30に出力される。な
お、デコーダはフレームメモリ302とインターフェース301との間に配置することも
できる。
タイミングコントローラ303は、駆動回路40、タッチセンサコントローラ306、表
示ユニット90a、90bが有する駆動回路210a、210b(図16参照)などで用
いられるタイミング信号を生成する機能を有する。タイミング信号の生成に用いられるパ
ラメータは、記憶回路60に格納される。タイミングコントローラ303に入力されるパ
ラメータを変更することにより、タイミングコントローラ303によって生成されるタイ
ミング信号の波形を制御することができる。
センサコントローラ304は、信号SENに基づいて制御信号を生成し、コントローラ2
0に出力する機能を有する。そして、コントローラ20は入力された制御信号に基づいて
、画像処理回路30、記憶回路60、スイッチ回路80の動作を制御する機能を有する。
クロック生成回路305は、信号生成部12で使用されるクロック信号を生成する機能を
有する。
タッチセンサコントローラ306は、タッチセンサユニット307の動作を制御する機能
を有する。タッチセンサユニット307で検出されたタッチ情報を含む信号は、タッチセ
ンサコントローラ306で処理された後、インターフェース301を介してホスト14に
送信される。そして、ホスト14は、タッチ情報を反映した画像データを生成し、信号生
成部12に送信することができる。なお、信号生成部12が画像データにタッチ情報を反
映させる機能を有していてもよい。また、タッチセンサコントローラ306は、タッチセ
ンサユニット307に設けられていてもよい。
画像処理回路30は、調光回路311、調色回路312、ガンマ補正回路313を用いる
ことにより、データIDを補正する機能を有する。調光回路311は、データIDを補正
することにより、輝度を補正する機能を有する。調色回路312は、データIDを補正す
ることにより、色調を補正する機能を有する。ガンマ補正回路313は、データIDにガ
ンマ補正を施す機能を有する。調光回路311、調色回路312、ガンマ補正回路313
による補正の程度は、これらの回路に入力されるパラメータを変更することにより制御す
ることができる。
調光回路311、調色回路312、ガンマ補正回路313において用いられるパラメータ
は、記憶回路60に格納される。そして、補正を行う際は、記憶回路60に格納されたパ
ラメータが調光回路311、調色回路312、ガンマ補正回路313に出力される。ここ
で、コントローラ20は、表示状況に応じたパラメータを記憶回路60に格納し、当該パ
ラメータを記憶回路60から調光回路311、調色回路312、ガンマ補正回路313に
出力させることができる。これにより、画像処理回路30において表示状況に応じた補正
が行われる。
なお、画像処理回路30は、記憶回路60から入力されたパラメータを格納するための記
憶装置を有していてもよい。この場合、当該記憶装置にはOSトランジスタを用いること
が好ましい。これにより、画像処理回路30への電力の供給が停止された期間においても
パラメータを保持することができ、電力の供給が再開された際に画像処理を素早く再開す
ることができる。
スイッチ回路80は、画像処理回路30、駆動回路40a、40b、電源回路50、記憶
回路60、フレームメモリ302、タイミングコントローラ303への電力の供給を制御
する機能を有する。これらの回路への電力の供給の有無は、コントローラ20から出力さ
れる制御信号に基づいて決定される。制御信号は、表示部11に表示される映像の変化の
有無などに応じて、コントローラ20によって生成される。
また、駆動回路40aが画素202aに設けられた発光素子に流れる電流を検出する機能
を有する場合、画像処理回路30にはEL補正回路314を設けてもよい。EL補正回路
314は、発光素子に流れる電流に基づいて、発光素子の輝度を調節する機能を有する。
また、画像処理回路30は、表示部11の仕様によって、RGB-RGBW変換回路など
、他の処理回路を有していてもよい。RGB-RGBW変換回路とは、RGB(赤、緑、
青)画像データを、RGBW(赤、緑、青、白)画像信号に変換する機能をもつ回路であ
る。すなわち、表示部11がRGBW4色の画素を有する場合、画像データ内のW(白)
成分を、W(白)画素を用いて表示することで、消費電力を低減することができる。なお
、表示部11がRGBYの4色の画素を有する場合、例えば、RGB-RGBY(赤、緑
、青、黄)変換回路などを用いることができる。
また、タイミングコントローラ303は、記憶回路60に格納されたパラメータを用いて
、タイミング信号を生成することができる。図20に、タイミング信号を生成するタイミ
ングコントローラ303の動作例を示す。信号Srefはタイミングコントローラ303
に入力される基準信号であり、信号TSはタイミングコントローラ303によって生成さ
れるタイミング信号である。
タイミングコントローラ303は、基準信号Srefを基準として、信号TSがローレベ
ルからハイレベルになるタイミング、及びハイレベルからローレベルになるタイミングを
設定することにより、信号TSの波形を変更することができる。そして、これらのタイミ
ングの設定は、記憶回路60から入力されたパラメータを用いて行われる。図20におい
て、Raは、基準信号Srefがハイレベルになってから信号TSがローレベルである期
間を定義するパラメータであり、Rbは、Raに対応する期間後に信号TSがハイレベル
になってから、信号TSがハイレベルを維持し続ける期間を定義するパラメータである。
よって、記憶回路60から入力されるパラメータを変更することにより、タイミングコン
トローラ303によって生成されるタイミング信号の波形を変更することができる。
なお、記憶回路60には、上記以外のパラメータを格納することもできる。記憶回路60
に格納できる他のパラメータとしては、例えば、EL補正回路314のデータ、ユーザー
によって設定される、映像の輝度、映像の色調、省エネルギー設定(表示を暗くする、ま
たは表示を消す、までの時間)、タッチセンサコントローラ306の感度などが挙げられ
る。
<フレームメモリの構成例>
次に、フレームメモリ302の構成例について説明する。図21(A)に、フレームメモ
リ302に用いることができる記憶装置350の構成例を示す。記憶装置350は、制御
部351、セルアレイ352、周辺回路353を有する。周辺回路353は、センスアン
プ回路354、駆動回路355、メインアンプ356、入出力回路357を有する。
制御部351は、記憶装置350を制御する機能を有する。例えば、制御部351は、駆
動回路355、メインアンプ356、および入出力回路357を制御する機能を有する。
駆動回路355には、複数の配線WL、配線CSELが接続されている。駆動回路355
は、複数の配線WL、配線CSELに出力する信号を生成する。
セルアレイ352は、複数のメモリセル358を有する。メモリセル358は、配線WL
、配線LBL(又は配線LBLB)、配線BGLと接続されている。配線WLはワード線
であり、配線LBL、配線LBLBは、ローカルビット線である。図21(A)の例では
、セルアレイ352の構成は、折り返しビット線方式であるが、開放ビット線方式とする
こともできる。
図21(B)に、メモリセル358の構成例を示す。メモリセル358は、トランジスタ
MW1、容量素子CS1を有する。メモリセル358は、DRAM(ダイナミック・ラン
ダム・アクセス・メモリ)のメモリセルと同様の回路構成を有する。ここでは、トランジ
スタMW1はバックゲートをもつトランジスタである。トランジスタMW1のバックゲー
トは、配線BGLと接続されている。配線BGLには、電位Vbgが入力される。
トランジスタMW1は、OSトランジスタである。OSトランジスタはオフ電流が極めて
小さいため、OSトランジスタでメモリセル358を構成することで、容量素子CS1か
ら電荷がリークすることを抑えられるため、フレームメモリ302が有する記憶装置35
0のリフレッシュ動作の頻度を低減できる。また、電力の供給が遮断されても、フレーム
メモリ302が有する記憶装置350は長時間画像データを保持することが可能である。
また、電位Vbgを負電位にすることで、トランジスタMW1の閾値電圧を正電位側にシ
フトさせることができ、メモリセル358の保持時間を長くすることができる。
ここでいう、オフ電流とは、トランジスタがオフ状態のときにソースとドレインとの間に
流れる電流をいう。チャネル幅で規格化したOSトランジスタのオフ電流は、ソースドレ
イン間電圧が10V、室温(25℃程度)の状態で10×10-21A/μm(10ゼプ
トA/μm)以下とすることが可能である。トランジスタMW1に用いるOSトランジス
タのオフ電流は、室温(25℃程度)にて1×10-18A以下、又は、1×10-21
A以下、又は1×10-24A以下が好ましい。又は、オフ電流は85℃にて1×10
15A以下、又は1×10-18A以下、又は1×10-21A以下であることが好まし
い。
また、OSトランジスタのチャネル形成領域に含まれる金属酸化物は、インジウム(In
)および亜鉛(Zn)の少なくとも一方を含むこと好ましい。このような金属酸化物とし
ては、In酸化物、Zn酸化物、In-Zn酸化物、In-M-Zn酸化物(元素Mは、
Al、Ti、Ga、Y、Zr、La、Ce、Nd、又はHf)が代表的である。これら金
属酸化物は、電子供与体(ドナー)となる水素などの不純物を低減し、かつ酸素欠損も低
減することで、金属酸化物をi型半導体(真性半導体)にする、あるいはi型半導体に限
りなく近づけることができる。このような金属酸化物は、高純度化された金属酸化物と呼
ぶことができる。例えば、金属酸化物のキャリア密度は、8×1015cm-3未満、好
ましくは1×1011cm-3未満、より好ましくは1×1010cm-3未満であり、
且つ、1×10-9cm-3以上とすることができる。
また、金属酸化物はエネルギーギャップが大きく、電子が励起されにくく、ホールの有効
質量が大きい。このため、OSトランジスタはSiトランジスタと比較して、アバランシ
ェ崩壊等が生じにくい場合がある。アバランシェ崩壊に起因するホットキャリア劣化等が
抑制されることで、OSトランジスタは高いドレイン耐圧を有することとなり、高いドレ
イン電圧で駆動することが可能である。そのため、トランジスタMW1にOSトランジス
タを用いることにより、容量素子CS1に保持される電位の範囲を広げることができる。
メモリセル358以外の回路が有するトランジスタとしては、OSトランジスタ以外のト
ランジスタを用いてもよい。例えば、金属酸化物以外の単結晶半導体を有する基板の一部
にチャネル形成領域が形成されるトランジスタを用いてもよい。このような基板としては
、単結晶シリコン基板や単結晶ゲルマニウム基板などが挙げられる。また、トランジスタ
Tr20として、金属酸化物以外の半導体材料を含む膜に、チャネル形成領域が形成され
るトランジスタを用いることもできる。このようなトランジスタとしては、例えば、非晶
質シリコン膜、微結晶シリコン膜、多結晶シリコン膜、単結晶シリコン膜、非晶質ゲルマ
ニウム膜、微結晶ゲルマニウム膜、多結晶ゲルマニウム膜、又は単結晶ゲルマニウム膜を
半導体層に用いたトランジスタが挙げられる。例えば、メモリセル358以外の回路が有
するトランジスタをシリコンウエハに作製されるSiトランジスタとすると、セルアレイ
352をセンスアンプ回路354に積層して設けることができる。よって、記憶装置35
0の回路面積を縮小できる。
セルアレイ352は、センスアンプ回路354に積層して設けられている。センスアンプ
回路354は、複数のセンスアンプSAを有する。センスアンプSAは隣接する配線LB
L、配線LBLB(ローカルビット線対)、配線GBL、配線GBLB(グローバルビッ
ト線対)、複数の配線CSELに接続されている。センスアンプSAは、配線LBLと配
線LBLBとの電位差を増幅する機能を有する。
センスアンプ回路354には、4本の配線LBLに対して1本の配線GBLが設けられ、
4本の配線LBLBに対して1本の配線GBLBが設けられているが、センスアンプ回路
354の構成は、図21(A)の構成例に限定されない。
メインアンプ356は、センスアンプ回路354および入出力回路357と接続されてい
る。メインアンプ356は、配線GBLと配線GBLBの電位差を増幅する機能を有する
。メインアンプ356は省略することができる。
入出力回路357は、書き込みデータに対応する電位を配線GBLと配線GBLB、また
はメインアンプ356に出力する機能、配線GBLと配線GBLBの電位、またはメイン
アンプ356の出力電位を読み出し、データとして外部に出力する機能を有する。配線C
SELの信号によって、データを読み出すセンスアンプSA、およびデータを書き込むセ
ンスアンプSAを選択することができる。よって、入出力回路357は、マルチプレクサ
などの選択回路が不要であるため、回路構成を簡単化でき、占有面積を縮小することがで
きる。
上記のように、フレームメモリ302をOSトランジスタを用いて構成することにより、
電力の供給が停止された期間においても、画像データを保持することができる。そのため
、フレームメモリ302への電力の供給が再開された際、ホスト14(図19参照)から
画像データが入力される前に映像信号の生成を開始することができる。よって、クイック
スタートが可能なパワーゲーティングを行うことができる。
なお、図21に示す記憶装置350は、図19における画像処理回路30に設けることも
できる。この場合、画像処理回路30に設けられた当該記憶装置350に、調光回路31
1、調色回路312、ガンマ補正回路313において用いられるパラメータを記憶するこ
とができる。そして、画像処理回路30への電力の供給が停止された期間においても、画
像処理回路30に設けられた記憶装置350に、パラメータを保持することができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、上記実施の形態で説明した表示システムに用いることができる表示装
置の構成例について説明する。
図22に、上記実施の形態における表示部11に用いることができる表示装置の構成例を
示す。なお、図22(A)は、表示装置を示す上面図、図22(B)は図22(A)をA
-BおよびC-Dで切断した断面図である。この表示装置は、発光素子の発光を制御する
ものとして、点線で示された駆動回路部(ソース線駆動回路)601、画素部602、駆
動回路部(ゲート線駆動回路)603を含んでいる。また、604は封止基板、605は
シール材であり、シール材605で囲まれた内側は、空間607になっている。
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入力
される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリ
ントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等
を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配
線基板(PWB)が取り付けられていても良い。本明細書における表示装置には、表示装
置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとす
る。
次に、断面構造について図22(B)を用いて説明する。素子基板610上には駆動回路
部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601
と、画素部602中の一つの画素が示されている。
なお、ソース線駆動回路601はnチャネル型FET623とpチャネル型FET624
とを組み合わせたCMOS回路が形成される。また、駆動回路は、種々のCMOS回路、
PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板上
に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を基
板上ではなく外部に形成することもできる。
また、画素部602はスイッチング用FET611と、電流制御用FET612とそのド
レインに電気的に接続された第1の電極613とを含む複数の画素により形成されている
が、これに限定されず、3つ以上のFETと、容量素子とを組み合わせた画素部としても
よい。
FETに用いる半導体の種類及び結晶性については特に限定されず、非晶質半導体を用い
てもよいし、結晶性半導体を用いてもよい。FETに用いる半導体の例としては、第13
族半導体、第14族半導体、化合物半導体、有機半導体材料を用いることができるが、特
に、金属酸化物を用いると好ましい。該金属酸化物としては、例えば、In-Ga酸化物
、In-M-Zn酸化物(Mは、Al、Ga、Y、Zr、La、Ce、またはNd)等が
挙げられる。なお、エネルギーギャップが2eV以上、好ましくは2.5eV以上、さら
に好ましくは3eV以上の金属酸化物を用いることで、トランジスタのオフ電流を低減す
ることができるため、好ましい構成である。
なお、第1の電極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ
型の感光性アクリル樹脂膜を用いることにより形成することができる。
また、被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有す
る曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性アク
リル樹脂を用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm乃至3μm)
を有する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹
脂、或いはポジ型の感光性樹脂のいずれも使用することができる。
第1の電極613上には、EL層616及び第2の電極617がそれぞれ形成されている
。EL層616には有機金属錯体が含まれることが好ましい。当該有機金属錯体は、発光
層における発光中心物質として用いられることが好ましい。
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、素
子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素子
618が備えられた構造になっている。なお、空間607には、充填材が充填されており
、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材605で充填される
場合もある。封止基板604には凹部を形成し、そこに乾燥材を設けると水分の影響によ
る劣化を抑制することができ、好ましい構成である。
シール材605にはエポキシ樹脂やガラスフリットを用いるのが好ましい。また、これら
の材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、素子基板
610及び封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fi
ber Reinforced Plastics)、PVF(ポリビニルフロライド)
、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。
例えば、本実施の形態においては、様々な基板を用いて、トランジスタや発光素子を形成
することが出来る。基板の種類は、特定のものに限定されることはない。その基板の一例
としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板
、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチ
ル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓
性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガ
ラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又は
ソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの
一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET
)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表さ
れるプラスチックがある。または、一例としては、アクリル樹脂等の合成樹脂などがある
。または、一例としては、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン、
ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例として
は、ポリアミド、ポリイミド、アラミド、エポキシ樹脂、無機蒸着フィルム、又は紙類な
どがある。特に、半導体基板、単結晶基板、又はSOI基板などを用いてトランジスタを
製造することによって、特性、サイズ、又は形状などのばらつきが少なく、電流能力が高
く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによ
って回路を構成すると、回路の低消費電力化、又は回路の高集積化を図ることができる。
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタや発光素子を
形成してもよい。または、基板とトランジスタの間や、基板と発光素子の間に剥離層を設
けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より
分離し、他の基板に転載するために用いることができる。その際、トランジスタは耐熱性
の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングス
テン膜と酸化シリコン膜との無機膜の積層構造の構成や、基板上にポリイミド等の有機樹
脂膜が形成された構成等を用いることができる。
つまり、ある基板を用いてトランジスタや発光素子を形成し、その後、別の基板にトラン
ジスタや発光素子を転置し、別の基板上にトランジスタや発光素子を配置してもよい。ト
ランジスタや発光素子が転置される基板の一例としては、上述したトランジスタを形成す
ることが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミ
ドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナ
イロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レー
ヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの
基板を用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジス
タの形成、壊れにくい装置の製造、耐熱性の付与、軽量化、又は薄型化を図ることができ
る。
図23には白色発光を呈する発光素子を形成し、着色層(カラーフィルタ)等を設けるこ
とによってフルカラー化した表示装置の例を示す。図23(A)には基板701、下地絶
縁膜702、ゲート絶縁膜703、ゲート電極706、707、708、第1の層間絶縁
膜720、第2の層間絶縁膜721、周辺部742、画素部740、駆動回路部741、
発光素子の第1の電極724W、724R、724G、724B、隔壁725、EL層7
28、発光素子の第2の電極729、封止基板731、シール材732などが図示されて
いる。
また、図23(A)では着色層(赤色の着色層734R、緑色の着色層734G、青色の
着色層734B)は透明な基材733に設けている。また、黒色層(ブラックマトリック
ス)735をさらに設けても良い。着色層及び黒色層が設けられた透明な基材733は、
位置合わせし、基板701に固定する。なお、着色層、及び黒色層は、オーバーコート層
で覆われている。また、図23(A)においては、光が着色層を透過せずに外部へと出る
発光層と、各色の着色層を透過して外部に光が出る発光層とがあり、着色層を透過しない
光は白、着色層を透過する光は赤、青、緑となることから、4色の画素で映像を表現する
ことができる。
図23(B)では着色層(赤色の着色層734R、緑色の着色層734G、青色の着色層
734B)をゲート絶縁膜703と第1の層間絶縁膜720との間に形成する例を示した
。このように、着色層は基板701と封止基板731の間に設けられていても良い。
また、以上に説明した表示装置では、FETが形成されている基板701側に光を取り出
す構造(ボトムエミッション型)の表示装置としたが、封止基板731側に発光を取り出
す構造(トップエミッション型)の表示装置としても良い。トップエミッション型の表示
装置の断面図を図24に示す。この場合、基板701は光を通さない基板を用いることが
できる。FETと発光素子の陽極とを接続する接続電極を作製するまでは、ボトムエミッ
ション型の表示装置と同様に形成する。その後、第3の層間絶縁膜737を電極722を
覆って形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間絶縁膜73
7は第2の層間絶縁膜と同様の材料の他、他の様々な材料を用いて形成することができる
発光素子の第1の電極724W、724R、724G、724Bはここでは陽極とするが
、陰極であっても構わない。また、図24のようなトップエミッション型の表示装置であ
る場合、第1の電極を反射電極とすることが好ましい。EL層728の構成は、白色の発
光が得られるような素子構造とする。
図24のようなトップエミッションの構造では着色層(赤色の着色層734R、緑色の着
色層734G、青色の着色層734B)を設けた封止基板731で封止を行うことができ
る。封止基板731には画素と画素との間に位置するように黒色層(ブラックマトリック
ス)735を設けても良い。着色層(赤色の着色層734R、緑色の着色層734G、青
色の着色層734B)や黒色層はオーバーコート層によって覆われていても良い。なお封
止基板731は透光性を有する基板を用いることとする。
また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定され
ず、赤、緑、青の3色や赤、緑、青、黄の4色でフルカラー表示を行ってもよい。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、上記実施の形態で説明した表示装置を用いた表示モジュールの構成例
について説明する。
図25に示す表示モジュール1000は、上部カバー1001と下部カバー1002との
間に、FPC1003に接続されたタッチパネル1004、FPC1005に接続された
表示装置1006、フレーム1009、プリント基板1010、及びバッテリ1011を
有する。
上記実施の形態で説明した表示装置は、表示装置1006として用いることができる。
上部カバー1001及び下部カバー1002は、タッチパネル1004及び表示装置10
06のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル1004としては、抵抗膜方式又は静電容量方式のタッチパネルを表示装置
1006に重畳して用いることができる。また、タッチパネル1004を設けず、表示装
置1006に、タッチパネル機能を持たせるようにすることも可能である。
フレーム1009は、表示装置1006の保護機能の他、プリント基板1010の動作に
より発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム
1009は、放熱板としての機能を有していてもよい。
プリント基板1010は、電源回路、ビデオ信号及びクロック信号を出力するための信号
処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても
良いし、別途設けたバッテリ1011による電源であってもよい。バッテリ1011は、
商用電源を用いる場合には、省略可能である。
また、表示モジュール1000は、偏光板、位相差板、プリズムシートなどの部材を追加
して設けてもよい。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、上記実施の形態において用いることができるOSトランジスタの構成
例について説明する。
<トランジスタの構成例>
図26(A)は、トランジスタの構成例を示す上面図である。図26(B)は、図26(
A)のX1-X2線断面図であり、図26(C)はY1-Y2線断面図である。ここでは
、X1-X2線の方向をチャネル長方向と、Y1-Y2線方向をチャネル幅方向と呼称す
る場合がある。図26(B)は、トランジスタのチャネル長方向の断面構造を示す図であ
り、図26(C)は、トランジスタのチャネル幅方向の断面構造を示す図である。なお、
デバイス構造を明確にするため、図26(A)では、一部の構成要素が省略されている。
本発明の一態様に係る半導体装置は、絶縁層812乃至820、金属酸化物膜821乃至
824、導電層850乃至853を有する。トランジスタ801は絶縁表面に形成される
。図26では、トランジスタ801が絶縁層811上に形成される場合を例示している。
トランジスタ801は絶縁層818及び絶縁層819で覆われている。
なお、トランジスタ801を構成している絶縁層、金属酸化物膜、導電層等は、単層であ
っても、複数の膜が積層されたものであってもよい。これらの作製には、スパッタリング
法、分子線エピタキシー法(MBE法)、パルスレーザアブレーション法(PLA法)、
CVD法、原子層堆積法(ALD法)などの各種の成膜方法を用いることができる。なお
、CVD法は、プラズマCVD法、熱CVD法、有機金属CVD法などがある。
導電層850は、トランジスタ801のゲート電極として機能する領域を有する。導電層
851、導電層852は、ソース電極又はドレイン電極として機能する領域を有する。導
電層853は、バックゲート電極は、として機能する領域を有する。絶縁層817は、ゲ
ート電極(フロントゲート電極)側のゲート絶縁層として機能する領域を有し、絶縁層8
14乃至絶縁層816の積層で構成される絶縁層は、バックゲート電極側のゲート絶縁層
として機能する領域を有する。絶縁層818は層間絶縁層としての機能を有する。絶縁層
819はバリア層としてとしての機能を有する。
金属酸化物膜821乃至824をまとめて酸化物層830と呼ぶ。図26(B)、図26
(C)に示すように、酸化物層830は、金属酸化物膜821、金属酸化物膜822、金
属酸化物膜824が順に積層されている領域を有する。また、一対の金属酸化物膜823
は、それぞれ導電層851、導電層852上に位置する。トランジスタ801がオン状態
のとき、チャネル形成領域は酸化物層830のうち主に金属酸化物膜822に形成される
金属酸化物膜824は、金属酸化物膜821乃至823、導電層851、導電層852を
覆っている。絶縁層817は金属酸化物膜823と導電層850との間に位置する。導電
層851、導電層852はそれぞれ、金属酸化物膜823、金属酸化物膜824、絶縁層
817を介して、導電層850と重なる領域を有する。
導電層851及び導電層852は、金属酸化物膜821及び金属酸化物膜822を形成す
るためのハードマスクから作製されている。そのため、導電層851及び導電層852は
、金属酸化物膜821および金属酸化物膜822の側面に接する領域を有していない。例
えば、次のような工程を経て、金属酸化物膜821、822、導電層851、導電層85
2を作製することができる。まず、積層された2層の金属酸化物膜上に導電膜を形成する
。この導電膜を所望の形状に加工(エッチング)して、ハードマスクを形成する。ハード
マスクを用いて、2層の金属酸化物膜の形状を加工し、積層された金属酸化物膜821及
び金属酸化物膜822を形成する。次に、ハードマスクを所望の形状に加工して、導電層
851及び導電層852を形成する。
絶縁層811乃至818に用いられる絶縁材料には、窒化アルミニウム、酸化アルミニウ
ム、窒化酸化アルミニウム、酸化窒化アルミニウム、酸化マグネシウム、窒化シリコン、
酸化シリコン、窒化酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム
、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム
、酸化タンタル、アルミニウムシリケートなどがある。絶縁層811乃至818はこれら
の絶縁材料でなる単層、又は積層して構成される。絶縁層811乃至818を構成する層
は、複数の絶縁材料を含んでいてもよい。
なお、本明細書等において、酸化窒化物とは、酸素の含有量が窒素よりも多い化合物であ
り、窒化酸化物とは、窒素の含有量が酸素よりも多い化合物のことを意味する。
酸化物層830の酸素欠損の増加を抑制するため、絶縁層816乃至絶縁層818は、酸
素を含む絶縁層であることが好ましい。絶縁層816乃至絶縁層818は、加熱により酸
素が放出される絶縁膜(以下、「過剰酸素を含む絶縁膜」ともいう)で形成されることが
より好ましい。過剰酸素を含む絶縁膜から酸化物層830に酸素を供給することで、酸化
物層830の酸素欠損を補償することができる。トランジスタ801の信頼性および電気
的特性を向上することができる。
過剰酸素を含む絶縁層とは、TDS(Thermal Desorption Spec
troscopy:昇温脱離ガス分光法)において、膜の表面温度が100℃以上700
℃以下、又は100℃以上500℃以下の範囲における酸素分子の放出量が1.0×10
18[分子/cm]以上である膜とする。酸素分子の放出量は、3.0×1020at
oms/cm以上であることがより好ましい。
過剰酸素を含む絶縁膜は、絶縁膜に酸素を添加する処理を行って形成することができる。
酸素を添加する処理は、酸素雰囲気下による熱処理や、イオン注入法、イオンドーピング
法、プラズマイマージョンイオン注入法、又はプラズマ処理などを用いて行うことができ
る。酸素を添加するためのガスとしては、16もしくは18などの酸素ガス、亜
酸化窒素ガス又はオゾンガスなどを用いることができる。
酸化物層830の水素濃度の増加を防ぐために、絶縁層812乃至819中の水素濃度を
低減することが好ましい。特に絶縁層813乃至818の水素濃度を低減することが好ま
しい。具体的には、水素濃度は、2×1020atoms/cm以下であり、好ましく
は5×1019atoms/cm以下が好ましく、1×1019atoms/cm
下がより好ましく、5×1018atoms/cm以下がさらに好ましい。
上掲の水素濃度は、二次イオン質量分析法(SIMS:Secondary Ion M
ass Spectrometry)で測定された値である。
トランジスタ801において、酸素および水素に対してバリア性をもつ絶縁層(以下、バ
リア層ともいう)によって酸化物層830が包み込まれる構造であることが好ましい。こ
のような構造であることで、酸化物層830から酸素が放出されること、酸化物層830
に水素が侵入することを抑えることがでる。トランジスタ801の信頼性、電気的特性を
向上できる。
例えば、絶縁層819をバリア層として機能させ、かつ絶縁層811、812、814の
少なくとも1つをバリア層として機能させればよい。バリア層は、酸化アルミニウム、酸
化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イ
ットリウム、酸化ハフニウム、酸化窒化ハフニウム、窒化シリコンなどの材料で形成する
ことができる。
絶縁層811乃至818の構成例を記す。この例では、絶縁層811、812、815、
819は、それぞれ、バリア層として機能する。絶縁層816乃至818は過剰酸素を含
む酸化物層である。絶縁層811は窒化シリコンであり、絶縁層812は酸化アルミニウ
ムであり、絶縁層813は酸化窒化シリコンである。バックゲート電極側のゲート絶縁層
としての機能を有する絶縁層814乃至816は、酸化シリコン、酸化アルミニウム、酸
化シリコンの積層である。フロントゲート側のゲート絶縁層としての機能を有する絶縁層
817は、酸化窒化シリコンである。層間絶縁層としての機能を有する絶縁層818は、
酸化シリコンである。絶縁層819は酸化アルミニウムである。
導電層850乃至853に用いられる導電材料には、モリブデン、チタン、タンタル、タ
ングステン、アルミニウム、銅、クロム、ネオジム、スカンジウム等の金属、又は上述し
た金属を成分とする金属窒化物(窒化タンタル、窒化チタン、窒化モリブデン、窒化タン
グステン)等がある。インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、
酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸
化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したイン
ジウム錫酸化物などの導電性材料を用いることができる。
導電層850乃至853の構成例を記す。導電層850は窒化タンタル、又はタングステ
ン単層である。あるいは、導電層850は窒化タンタル、タンタルおよび窒化タンタルで
なる積層である。導電層851は、窒化タンタル単層、又は窒化タンタルとタングステン
との積層である。導電層852の構成は導電層851と同じである。導電層853は窒化
タンタルであり、導電体はタングステンである。
トランジスタ801のオフ電流の低減のために、金属酸化物膜822は、例えば、エネル
ギーギャップが大きいことが好ましい。金属酸化物膜822のエネルギーギャップは、2
.5eV以上4.2eV以下であり、2.8eV以上3.8eV以下が好ましく、3eV
以上3.5eV以下がさらに好ましい。
酸化物層830は、結晶性を有することが好ましい。少なくとも、金属酸化物膜822は
結晶性を有することが好ましい。上記構成により、信頼性、および電気的特性の良いトラ
ンジスタ801を実現できる。
金属酸化物膜822に適用できる酸化物は、例えば、In-Ga酸化物、In-Zn酸化
物、In-M-Zn酸化物(MはAl、Ga、Y、又はSn)である。金属酸化物膜82
2は、インジウムを含む酸化物層に限定されない。金属酸化物膜822は、例えば、Zn
-Sn酸化物、Ga-Sn酸化物、Zn-Mg酸化物等で形成することができる。金属酸
化物膜821、823、824も、金属酸化物膜822と同様の酸化物で形成することが
できる。特に、金属酸化物膜821、823、824は、それぞれ、Ga酸化物で形成す
ることができる。
金属酸化物膜822と金属酸化物膜821の界面に界面準位が形成されると、界面近傍の
領域にもチャネル形成領域が形成されるために、トランジスタ801の閾値電圧が変動し
てしまう。そのため、金属酸化物膜821は、構成要素として、金属酸化物膜822を構
成する金属元素の少なくとも1つを含むことが好ましい。これにより、金属酸化物膜82
2と金属酸化物膜821の界面には、界面準位が形成されにくくなり、トランジスタ80
1の閾値電圧等の電気的特性のばらつきを低減することができる。
金属酸化物膜824は、構成要素として、金属酸化物膜822を構成する金属元素の少な
くとも1つを含むことが好ましい。これにより、金属酸化物膜822と金属酸化物膜82
4との界面では、界面散乱が起こりにくくなり、キャリアの動きが阻害されにくくなるの
で、トランジスタ801の電界効果移動度を高くすることができる。
金属酸化物膜821乃至824のうち、金属酸化物膜822のキャリア移動度が最も高い
ことが好ましい。これにより、絶縁層816、817から離間している金属酸化物膜82
2にチャネルを形成することができる。
例えば、In-M-Zn酸化物等のIn含有金属酸化物は、Inの含有率を高めることで
、キャリア移動度を高めることができる。In-M-Zn酸化物では主として重金属のs
軌道がキャリア伝導に寄与しており、インジウムの含有率を多くすることにより、より多
くのs軌道が重なるため、インジウムの含有率が多い酸化物はインジウムの含有率が少な
い酸化物と比較して移動度が高くなる。そのため、金属酸化物膜にインジウムの含有量が
多い酸化物を用いることで、キャリア移動度を高めることができる。
そのため、例えば、In-Ga-Zn酸化物で金属酸化物膜822を形成し、Ga酸化物
で金属酸化物膜821、823を形成する。例えば、In-M-Zn酸化物で、金属酸化
物膜821乃至823を形成する場合、Inの含有率は金属酸化物膜822のInの含有
率を金属酸化物膜821、823よりも高くする。In-M-Zn酸化物をスパッタリン
グ法で形成する場合、ターゲットの金属元素の原子数比を変えることで、In含有率を変
化させることができる。
例えば、金属酸化物膜822の成膜に用いるターゲットの金属元素の原子数比In:M:
Znは、1:1:1、3:1:2、又は4:2:4.1が好ましい。例えば、金属酸化物
膜821、823の成膜に用いるターゲットの金属元素の原子数比In:M:Znは、1
:3:2、又は1:3:4が好ましい。In:M:Zn=4:2:4.1のターゲットで
成膜したIn-M-Zn酸化物の原子数比は、およそIn:M:Zn=4:2:3である
トランジスタ801に安定した電気的特性を付与するには、酸化物層830の不純物濃度
を低減することが好ましい。金属酸化物において、水素、窒素、炭素、シリコン、および
主成分以外の金属元素は不純物となる。例えば、水素および窒素はドナー準位の形成に寄
与し、キャリア密度を増大させてしまう。また、シリコンおよび炭素は金属酸化物中で不
純物準位の形成に寄与する。不純物準位はトラップとなり、トランジスタの電気的特性を
劣化させることがある。
例えば、酸化物層830は、シリコン濃度が2×1018atoms/cm以下、好ま
しくは、2×1017atoms/cm以下の領域を有する。酸化物層830の炭素濃
度も同様である。
酸化物層830は、アルカリ金属濃度が1×1018atoms/cm以下の、好まし
くは2×1016atoms/cm以下の領域を有する。金属酸化物膜822のアルカ
リ土類金属の濃度についても同様である。
酸化物層830は、水素濃度が1×1020atoms/cm未満の、好ましくは1×
1019atoms/cm未満の、より好ましくは5×1018atoms/cm
満の、さらに好ましくは1×1018atoms/cm未満の領域を有する。
上掲した金属酸化物膜822の不純物濃度は、SIMSにより得られる値である。
金属酸化物膜822が酸素欠損を有する場合、酸素欠損のサイトに水素が入り込むことで
ドナー準位を形成することがある。その結果、トランジスタ801のオン電流を低下させ
る要因となる。なお、酸素欠損のサイトは、水素が入るよりも酸素が入る方が安定する。
したがって、金属酸化物膜822中の酸素欠損を低減することで、トランジスタ801の
オン電流を大きくすることができる場合がある。よって、金属酸化物膜822の水素を低
減することで、酸素欠損のサイトに水素が入りこまないようにすることが、オン電流特性
に有効である。
金属酸化物に含まれる水素は、金属原子に結合している酸素と反応して水になるため、酸
素欠損を形成することがある。酸素欠損に水素が入ることで、キャリアである電子が生成
されることがある。また、水素の一部が金属原子に結合している酸素と結合して、キャリ
アである電子を生成することがある。金属酸化物膜822にチャネル形成領域が設けられ
るので、金属酸化物膜822に水素が含まれていると、トランジスタ801はノーマリー
オン特性となりやすい。このため、金属酸化物膜822中の水素はできる限り低減されて
いることが好ましい。
図26は、酸化物層830が4層構造の例であるが、これに限定されない。例えば、酸化
物層830を金属酸化物膜821又は金属酸化物膜823のない3層構造とすることがで
きる。又は、酸化物層830の任意の層の間、酸化物層830の上、酸化物層830の下
のいずれか二箇所以上に、金属酸化物膜821乃至824と同様の金属酸化物膜を1層又
は複数を設けることができる。
図27を参照して、金属酸化物膜821、822、824の積層によって得られる効果を
説明する。図27は、トランジスタ801のチャネル形成領域のエネルギーバンド構造の
模式図である。
図27中、Ec816e、Ec821e、Ec822e、Ec824e、Ec817eは
、それぞれ、絶縁層816、金属酸化物膜821、金属酸化物膜822、金属酸化物膜8
24、絶縁層817の伝導帯下端のエネルギーを示している。
ここで、真空準位と伝導帯下端のエネルギーとの差(「電子親和力」ともいう)は、真空
準位と価電子帯上端のエネルギーとの差(イオン化ポテンシャルともいう)からエネルギ
ーギャップを引いた値となる。なお、エネルギーギャップは、分光エリプソメータ(HO
RIBA JOBIN YVON社 UT-300)を用いて測定できる。また、真空準
位と価電子帯上端のエネルギー差は、紫外線光電子分光分析(UPS:Ultravio
let Photoelectron Spectroscopy)装置(PHI社 V
ersaProbe)を用いて測定できる。
絶縁層816、817は絶縁体であるため、Ec816eとEc817eは、Ec821
e、Ec822e、およびEc824eよりも真空準位に近い(電子親和力が小さい)。
金属酸化物膜822は、金属酸化物膜821、824よりも電子親和力が大きい。例えば
、金属酸化物膜822と金属酸化物膜821との電子親和力の差、および金属酸化物膜8
22と金属酸化物膜824との電子親和力の差は、それぞれ、0.07eV以上1.3e
V以下である。電子親和力の差は、0.1eV以上0.7eV以下が好ましく、0.15
eV以上0.4eV以下がさらに好ましい。なお、電子親和力は、真空準位と伝導帯下端
のエネルギーとの差である。
トランジスタ801のゲート電極(導電層850)に電圧を印加すると、金属酸化物膜8
21、金属酸化物膜822、金属酸化物膜824のうち、電子親和力が大きい金属酸化物
膜822に主にチャネルが形成される。
インジウムガリウム酸化物は、小さい電子親和力と、高い酸素ブロック性を有する。その
ため、金属酸化物膜824がインジウムガリウム酸化物を含むと好ましい。ガリウム原子
割合[Ga/(In+Ga)]は、例えば、70%以上、好ましくは80%以上、さらに
好ましくは90%以上とする。
また、金属酸化物膜821と金属酸化物膜822との間には金属酸化物膜821と金属酸
化物膜822の混合領域が存在する場合がある。また、金属酸化物膜824と金属酸化物
膜822との間には金属酸化物膜824と金属酸化物膜822の混合領域が存在する場合
がある。混合領域は、界面準位密度が低くなるため、金属酸化物膜821、822、82
4の積層されている領域は、それぞれの界面近傍においてエネルギーが連続的に変化する
(連続接合ともいう)バンド構造となる。
このようなエネルギーバンド構造を有する酸化物層830において、電子は主に金属酸化
物膜822を移動することになる。そのため、金属酸化物膜821と絶縁層812との界
面に、又は、金属酸化物膜824と絶縁層813との界面に準位が存在したとしても、こ
れらの界面準位により、酸化物層830中を移動する電子の移動が阻害されにくくなるた
め、トランジスタ801のオン電流を高くすることができる。
また、図27に示すように、金属酸化物膜821と絶縁層816の界面近傍、および金属
酸化物膜824と絶縁層817の界面近傍には、それぞれ、不純物や欠陥に起因したトラ
ップ準位Et826e、Et827eが形成され得るものの、金属酸化物膜821、82
4があることにより、金属酸化物膜822をトラップ準位Et826e、Et827eか
ら離間することができる。
なお、Ec821eとEc822eとの差が小さい場合、金属酸化物膜822の電子が該
エネルギー差を越えてトラップ準位Et826eに達することがある。トラップ準位Et
826eに電子が捕獲されることで、絶縁膜の界面にマイナスの固定電荷が生じ、トラン
ジスタの閾値電圧はプラス方向にシフトしてしまう。Ec822eとEc824eとのエ
ネルギー差が小さい場合も同様である。
トランジスタ801の閾値電圧の変動が低減され、トランジスタ801の電気的特性を良
好なものとするため、Ec821eとEc822eとの差、Ec824eとEc822e
と差を、それぞれ0.1eV以上とすることが好ましく、0.15eV以上とすることが
より好ましい。
なお、トランジスタ801はバックゲート電極を有さない構造とすることもできる。
<金属酸化物>
次に、上記のOSトランジスタに用いることができる、金属酸化物について説明する。以
下では特に、金属酸化物とCAC(Cloud-Aligned Composite)
の詳細について説明する。
CAC-OSまたはCAC-metal oxideは、材料の一部では導電性の機能と
、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。
なお、CAC-OSまたはCAC-metal oxideを、トランジスタのチャネル
形成領域に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機
能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と
、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(O
n/Offさせる機能)をCAC-OSまたはCAC-metal oxideに付与す
ることができる。CAC-OSまたはCAC-metal oxideにおいて、それぞ
れの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC-OSまたはCAC-metal oxideは、導電性領域、及び絶縁性
領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性
の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベ
ルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に
偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察され
る場合がある。
また、CAC-OSまたはCAC-metal oxideにおいて、導電性領域と、絶
縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm
以下のサイズで材料中に分散している場合がある。
また、CAC-OSまたはCAC-metal oxideは、異なるバンドギャップを
有する成分により構成される。例えば、CAC-OSまたはCAC-metal oxi
deは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナ
ローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に
、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップ
を有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有す
る成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記C
AC-OSまたはCAC-metal oxideをトランジスタのチャネル形成領域に
用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、
及び高い電界効果移動度を得ることができる。
すなわち、CAC-OSまたはCAC-metal oxideは、マトリックス複合材
(matrix composite)、または金属マトリックス複合材(metal
matrix composite)と呼称することもできる。
CAC-OSは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、
好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成で
ある。なお、以下では、金属酸化物において、一つあるいはそれ以上の金属元素が偏在し
、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2
nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともい
う。
なお、金属酸化物は、少なくともインジウムを含むことが好ましい。特にインジウムおよ
び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イット
リウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲル
マニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タ
ンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含ま
れていてもよい。
例えば、In-Ga-Zn酸化物におけるCAC-OS(CAC-OSの中でもIn-G
a-Zn酸化物を、特にCAC-IGZOと呼称してもよい。)とは、インジウム酸化物
(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸
化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)
とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする
。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、および
Z4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状とな
り、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した
構成(以下、クラウド状ともいう。)である。
つまり、CAC-OSは、GaOX3が主成分である領域と、InX2ZnY2Z2
またはInOX1が主成分である領域とが、混合している構成を有する複合金属酸化物で
ある。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が
、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2
の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場
合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn
1+x0)Ga(1-x0)(ZnO)m0(-1≦x0≦1、m0は任意数)で表
される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC(c-axis al
igned crystal)構造を有する。なお、CAAC構造とは、複数のIGZO
のナノ結晶がc軸配向を有し、かつa-b面においては配向せずに連結した結晶構造であ
る。
一方、CAC-OSは、金属酸化物の材料構成に関する。CAC-OSとは、In、Ga
、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察
される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモ
ザイク状にランダムに分散している構成をいう。従って、CAC-OSにおいて、結晶構
造は副次的な要素である。
なお、CAC-OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。
例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含ま
ない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1
主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム
、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン
、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネ
シウムなどから選ばれた一種、または複数種が含まれている場合、CAC-OSは、一部
に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とする
ナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成を
いう。
CAC-OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成
することができる。また、CAC-OSをスパッタリング法で形成する場合、成膜ガスと
して、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたい
ずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガ
スの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好まし
くは0%以上10%以下とすることが好ましい。
CAC-OSは、X線回折(XRD:X-ray diffraction)測定法のひ
とつであるOut-of-plane法によるθ/2θスキャンを用いて測定したときに
、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域
のa-b面方向、およびc軸方向の配向は見られないことが分かる。
またCAC-OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照
射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リ
ング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC-OSの
結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano-c
rystal)構造を有することがわかる。
また例えば、In-Ga-Zn酸化物におけるCAC-OSでは、エネルギー分散型X線
分光法(EDX:Energy Dispersive X-ray spectros
copy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と
、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合し
ている構造を有することが確認できる。
CAC-OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IG
ZO化合物と異なる性質を有する。つまり、CAC-OSは、GaOX3などが主成分で
ある領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互い
に相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3
などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2Zn
Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化
物半導体としての導電性が発現する。従って、InX2ZnY2Z2、またはInO
が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果
移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInO
が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが
主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なス
イッチング動作を実現できる。
従って、CAC-OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、
InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用するこ
とにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することが
できる。
また、CAC-OSを用いた半導体素子は、信頼性が高い。従って、CAC-OSは、さ
まざまな半導体装置に最適である。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態7)
本実施の形態では、本発明の一態様の半導体装置、表示装置、表示システムを用いること
が可能な電子機器について説明する。
本発明の一態様の表示装置は、外光の強さによらず、高い視認性を実現することができる
。そのため、携帯型の電子機器、装着型の電子機器(ウェアラブル機器)、及び電子書籍
端末などに好適に用いることができる。図28に、本発明の一態様の表示装置を用いた電
子機器の例を示す。
図28(A)、(B)に、携帯情報端末2000の一例を示す。携帯情報端末2000は
、筐体2001、筐体2002、表示部2003、表示部2004、及びヒンジ部200
5等を有する。
筐体2001と筐体2002は、ヒンジ部2005で連結されている。携帯情報端末20
00は、図28(A)に示すように折り畳んだ状態から、図28(B)に示すように筐体
2001と筐体2002を開くことができる。
例えば表示部、2003及び表示部2004に文書情報を表示することが可能であり、電
子書籍端末としても用いることができる。また、表示部2003及び表示部2004に静
止画像や動画像を表示することもできる。また、表示部2003は、タッチパネルを有し
ていてもよい。
このように、携帯情報端末2000は、持ち運ぶ際には折り畳んだ状態にできるため、汎
用性に優れる。
なお、筐体2001及び筐体2002には、電源ボタン、操作ボタン、外部接続ポート、
スピーカ、マイク等を有していてもよい。
なお、携帯情報端末2000は、表示部2003に設けられたタッチセンサを用いて、文
字、図形、イメージを識別する機能を有していてもよい。この場合、例えば、数学又は言
語などを学ぶための問題集などを表示する情報端末に対して、指、又はスタイラスペンな
どで解答を書き込んで、携帯情報端末2000で正誤の判定を行うといった学習を行うこ
とができる。また、携帯情報端末2000は、音声解読を行う機能を有していてもよい。
この場合、例えば、携帯情報端末2000を用いて外国語の学習などを行うことができる
。このような携帯情報端末は、教科書などの教材、又はノートなどとして利用する場合に
適している。
図28(C)に携帯情報端末の一例を示す。図28(C)に示す携帯情報端末2010は
、筐体2011、表示部2012、操作ボタン2013、外部接続ポート2014、スピ
ーカ2015、マイク2016、カメラ2017等を有する。
携帯情報端末2010は、表示部2012にタッチセンサを備える。電話を掛ける、或い
は文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部2012に触れる
ことで行うことができる。
また、操作ボタン2013の操作により、電源のオン、オフ動作や、表示部2012に表
示される画像の種類を切り替えることができる。例えば、メール作成画面から、メインメ
ニュー画面に切り替えることができる。
また、携帯情報端末2010の内部に、ジャイロセンサまたは加速度センサ等の検出装置
を設けることで、携帯情報端末2010の向き(縦か横か)を判断して、表示部2012
の画面表示の向きを自動的に切り替えるようにすることができる。また、画面表示の向き
の切り替えは、表示部2012を触れること、操作ボタン2013の操作、またはマイク
2016を用いた音声入力等により行うこともできる。
携帯情報端末2010は、例えば、電話機、手帳または情報閲覧装置等から選ばれた一つ
または複数の機能を有する。例えば、携帯情報端末2010はスマートフォンとして用い
ることができる。また、携帯情報端末2010は、例えば、移動電話、電子メール、文章
閲覧及び作成、音楽再生、動画再生、インターネット通信、ゲームなどの種々のアプリケ
ーションを実行することができる。
図28(D)に、カメラの一例を示す。カメラ2020は、筐体2021、表示部202
2、操作ボタン2023、シャッターボタン2024等を有する。またカメラ2020に
は、着脱可能なレンズ2026が取り付けられている。
ここではカメラ2020として、レンズ2026を筐体2021から取り外して交換する
ことが可能な構成としたが、レンズ2026と筐体が一体となっていてもよい。
カメラ2020は、シャッターボタン2024を押すことにより、静止画、または動画を
撮像することができる。また、表示部2022はタッチパネルとしての機能を有し、表示
部2022をタッチすることにより撮像することも可能である。
なお、カメラ2020は、ストロボ装置や、ビューファインダーなどを別途装着すること
ができる。または、これらが筐体2021に組み込まれていてもよい。
なお、図28に示す電子機器には、上記実施の形態で説明した表示システムを搭載するこ
とができる。また、電子機器には、図19におけるホスト14に相当するプロセッサを内
蔵することができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
10 表示システム
11 表示部
12 信号生成部
13 センサ部
14 ホスト
20 コントローラ
30 画像処理回路
40 駆動回路
50 電源回路
51 変換回路
52 増幅回路
60 記憶回路
61 レジスタ部
62 レジスタ
70 画素
80 スイッチ回路
90 表示ユニット
120 保持回路
130 セレクタ
140 フリップフロップ回路
141 インバータ
146 インバータ
147 アナログスイッチ
148 アナログスイッチ
151 インバータ
153 インバータ
154 クロックドインバータ
155 アナログスイッチ
156 バッファ
200 画素部
201 画素群
202 画素
203 画素ユニット
210 駆動回路
220 回路
301 インターフェース
302 フレームメモリ
303 タイミングコントローラ
304 センサコントローラ
305 クロック生成回路
306 タッチセンサコントローラ
307 タッチセンサユニット
311 調光回路
312 調色回路
313 ガンマ補正回路
314 EL補正回路
350 記憶装置
351 制御部
352 セルアレイ
353 周辺回路
354 センスアンプ回路
355 駆動回路
356 メインアンプ
357 入出力回路
358 メモリセル
601 ソース線駆動回路
602 画素部
603 ゲート線駆動回路
604 封止基板
605 シール材
607 空間
608 引き回し配線
610 素子基板
611 スイッチング用FET
612 電流制御用FET
613 電極
614 絶縁物
616 EL層
617 電極
618 発光素子
623 FET
624 FET
701 基板
702 下地絶縁膜
703 ゲート絶縁膜
706 ゲート電極
707 ゲート電極
708 ゲート電極
720 層間絶縁膜
721 層間絶縁膜
722 電極
724 第1の電極
725 隔壁
728 EL層
729 第2の電極
731 封止基板
732 シール材
733 基材
734 着色層
737 層間絶縁膜
740 画素部
741 駆動回路部
742 周辺部
801 トランジスタ
811 絶縁層
812 絶縁層
813 絶縁層
814 絶縁層
815 絶縁層
816 絶縁層
817 絶縁層
818 絶縁層
819 絶縁層
820 絶縁層
821 金属酸化物膜
822 金属酸化物膜
823 金属酸化物膜
824 金属酸化物膜
830 酸化物層
850 導電層
851 導電層
852 導電層
853 導電層
1000 表示モジュール
1001 上部カバー
1002 下部カバー
1003 FPC
1004 タッチパネル
1005 FPC
1006 表示装置
1009 フレーム
1010 プリント基板
1011 バッテリ
2000 携帯情報端末
2001 筐体
2002 筐体
2003 表示部
2004 表示部
2005 ヒンジ部
2010 携帯情報端末
2011 筐体
2012 表示部
2013 操作ボタン
2014 外部接続ポート
2015 スピーカ
2016 マイク
2017 カメラ
2020 カメラ
2021 筐体
2022 表示部
2023 操作ボタン
2024 シャッターボタン
2026 レンズ

Claims (5)

  1. 電源回路、画像処理回路、駆動回路、記憶回路、スイッチ回路およびコントローラを含む信号生成部と、
    表示部と、を有し、
    前記電源回路は、前記表示部に設けられた発光素子に供給される電位を生成する機能を有し、
    前記画像処理回路は、画像データに画像処理を行う機能を有し、
    前記記憶回路は、第1のパラメータと、第2のパラメータと、を格納する機能を有し、
    前記コントローラは、前記表示部に表示される映像の表示状況に応じて、前記記憶回路に格納された前記第1のパラメータ及び前記第2のパラメータを変更する機能を有し、
    前記スイッチ回路は、前記画像処理回路、前記駆動回路、前記電源回路、前記記憶回路への電力の供給を制御する機能を有し、前記電力の供給の有無は、前記コントローラから入力される制御信号に基づいて決定され、
    前記電源回路は、前記記憶回路から出力される前記第1のパラメータを用いて、前記電位を生成する機能を有し、
    前記画像処理回路は、調光回路、調色回路、及びガンマ補正回路を用い、前記記憶回路から出力される前記第2のパラメータを用いて、前記画像処理を行う機能を有し、
    前記記憶回路は、第1のレジスタ部と、第2のレジスタ部と、を有し、
    前記第2のレジスタ部には、前記第1のパラメータに対応する第1のデータと、前記第2のパラメータに対応する第2のデータと、が順次入力され、
    前記第2のレジスタ部は、前記第1のデータ及び前記第2のデータを、前記第1のレジスタ部に一括で転送する機能を有し、
    前記第1のレジスタ部は、前記電源回路への前記第1のデータの出力と、前記画像処理回路への前記第2のデータの出力と、を同時に行う機能を有し、
    前記第1のデータと前記第2のデータとを同時に出力することにより、前記発光素子に供給される電位の変更と、前記変更後の電位に適合する画像処理のパラメータの設定を同時に行い、
    前記記憶回路への電力の供給を停止する際は、前記第2のレジスタ部に前記第1のデータ及び前記第2のデータを保存させてから電力を遮断し、電力が復帰した後は、前記第2のレジスタ部に保存させた前記第1のデータ及び前記第2のデータを、前記第1のレジスタ部に復帰させる半導体装置。
  2. 請求項1において、
    前記第2のレジスタ部は、トランジスタと、容量素子と、を有し、
    前記トランジスタのソース又はドレインの一方は、前記容量素子と電気的に接続され、
    前記トランジスタは、チャネル形成領域に金属酸化物を有する半導体装置。
  3. 請求項1または2において、
    前記第1のパラメータ及び前記第2のパラメータの変更は、外光の強度、前記表示部に表示される映像の内容、又はユーザーによる設定の少なくとも一つに基づいて行われる半導体装置。
  4. 請求項1乃至請求項3のいずれか一項に記載の半導体装置を用いた表示システムであって、
    前記表示部は、第1の画素を有する第1の表示ユニットと、第2の画素を有する第2の表示ユニットと、を有し、
    前記第1の画素は、前記発光素子を有し、
    前記第2の画素は、反射型の液晶素子を有する表示システム。
  5. 請求項4に記載の表示システムと、ホストと、を有し、
    前記ホストは、前記信号生成部の動作を制御する機能を有するプロセッサによって構成されている電子機器。
JP2021214067A 2016-12-07 2021-12-28 半導体装置、表示システム、電子機器 Active JP7247316B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016237876 2016-12-07
JP2016237876 2016-12-07
JP2017231408A JP2018097358A (ja) 2016-12-07 2017-12-01 半導体装置、表示システム及び電子機器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017231408A Division JP2018097358A (ja) 2016-12-07 2017-12-01 半導体装置、表示システム及び電子機器

Publications (2)

Publication Number Publication Date
JP2022058453A JP2022058453A (ja) 2022-04-12
JP7247316B2 true JP7247316B2 (ja) 2023-03-28

Family

ID=62491494

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017231408A Withdrawn JP2018097358A (ja) 2016-12-07 2017-12-01 半導体装置、表示システム及び電子機器
JP2021214067A Active JP7247316B2 (ja) 2016-12-07 2021-12-28 半導体装置、表示システム、電子機器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017231408A Withdrawn JP2018097358A (ja) 2016-12-07 2017-12-01 半導体装置、表示システム及び電子機器

Country Status (3)

Country Link
US (1) US10748479B2 (ja)
JP (2) JP2018097358A (ja)
WO (1) WO2018104824A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291574B (zh) * 2017-02-24 2022-07-12 堺显示器制品株式会社 显示装置
EP3851553A4 (en) 2018-09-11 2021-11-03 Mitsubishi Engineering-Plastics Corporation METAL-COATED MOLDED ARTICLES OF RESIN AND METHOD FOR THEIR MANUFACTURING
CN110085168B (zh) * 2019-05-23 2020-12-15 京东方科技集团股份有限公司 一种显示面板的驱动方法及装置
KR20210077092A (ko) * 2019-12-16 2021-06-25 삼성디스플레이 주식회사 표시 장치 및 그 제어부 동작 방법
TWI726564B (zh) * 2019-12-31 2021-05-01 財團法人工業技術研究院 具備閘極驅動器的畫素陣列及矩陣式感測器陣列
CN111243540A (zh) * 2020-02-21 2020-06-05 合肥鑫晟光电科技有限公司 一种显示面板的驱动方法、其驱动电路及显示装置
CN113554967A (zh) * 2021-07-06 2021-10-26 北京奕斯伟计算技术有限公司 像素数据的处理方法、装置、电子设备及存储介质
WO2024053105A1 (ja) * 2022-09-09 2024-03-14 シャープディスプレイテクノロジー株式会社 制御装置及び表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098984A (ja) 2001-09-25 2003-04-04 Rohm Co Ltd 画像表示装置
JP2003241730A (ja) 2002-02-18 2003-08-29 Rohm Co Ltd 表示装置
JP2004233580A (ja) 2003-01-29 2004-08-19 Nec Electronics Corp 表示装置
JP2011017997A (ja) 2009-07-10 2011-01-27 Sony Corp 自発光表示装置及び自発光表示装置の駆動方法
JP2012063790A (ja) 2011-12-14 2012-03-29 Sanyo Electric Co Ltd 表示装置
JP2013137532A (ja) 2011-11-30 2013-07-11 Semiconductor Energy Lab Co Ltd 半導体表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887285B2 (ja) 2002-08-27 2007-02-28 ローム株式会社 表示装置
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
JP4858041B2 (ja) * 2006-09-25 2012-01-18 ソニー株式会社 画像表示装置及びその駆動方法
JP5072087B2 (ja) * 2007-10-31 2012-11-14 パナソニック株式会社 液晶表示装置および液晶表示方法
US10056055B2 (en) * 2010-02-24 2018-08-21 Dolby Laboratories Licensing Corporation Display management methods and apparatus
US9509935B2 (en) * 2010-07-22 2016-11-29 Dolby Laboratories Licensing Corporation Display management server
JP6463135B2 (ja) * 2015-01-07 2019-01-30 キヤノン株式会社 電子機器及び表示制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098984A (ja) 2001-09-25 2003-04-04 Rohm Co Ltd 画像表示装置
JP2003241730A (ja) 2002-02-18 2003-08-29 Rohm Co Ltd 表示装置
JP2004233580A (ja) 2003-01-29 2004-08-19 Nec Electronics Corp 表示装置
JP2011017997A (ja) 2009-07-10 2011-01-27 Sony Corp 自発光表示装置及び自発光表示装置の駆動方法
JP2013137532A (ja) 2011-11-30 2013-07-11 Semiconductor Energy Lab Co Ltd 半導体表示装置
JP2012063790A (ja) 2011-12-14 2012-03-29 Sanyo Electric Co Ltd 表示装置

Also Published As

Publication number Publication date
WO2018104824A1 (en) 2018-06-14
US10748479B2 (en) 2020-08-18
US20190333445A1 (en) 2019-10-31
JP2022058453A (ja) 2022-04-12
JP2018097358A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP7247316B2 (ja) 半導体装置、表示システム、電子機器
JP6412190B2 (ja) 半導体装置の駆動方法
JP7123522B2 (ja) ドライバic、および電子機器
CN111406280B (zh) 半导体装置、显示装置、电子设备及工作方法
TWI796835B (zh) 顯示裝置和電子裝置
TWI766363B (zh) 半導體裝置
JP2020129136A (ja) 半導体装置の動作方法
JP2023075216A (ja) 発光装置
JP2023083311A (ja) 表示装置
JP2018060176A (ja) 半導体装置、表示システム及び電子機器
TW202420570A (zh) 半導體裝置
TW202420571A (zh) 半導體裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7247316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150