JP7243182B2 - 絶縁回路基板の製造方法及びその絶縁回路基板 - Google Patents

絶縁回路基板の製造方法及びその絶縁回路基板 Download PDF

Info

Publication number
JP7243182B2
JP7243182B2 JP2018243225A JP2018243225A JP7243182B2 JP 7243182 B2 JP7243182 B2 JP 7243182B2 JP 2018243225 A JP2018243225 A JP 2018243225A JP 2018243225 A JP2018243225 A JP 2018243225A JP 7243182 B2 JP7243182 B2 JP 7243182B2
Authority
JP
Japan
Prior art keywords
layer
brazing material
copper
ceramic substrate
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243225A
Other languages
English (en)
Other versions
JP2020107671A (ja
Inventor
慎介 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018243225A priority Critical patent/JP7243182B2/ja
Publication of JP2020107671A publication Critical patent/JP2020107671A/ja
Application granted granted Critical
Publication of JP7243182B2 publication Critical patent/JP7243182B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、大電流、高電圧を制御するパワーモジュール等に用いられる絶縁回路基板の製造方法及びその絶縁回路基板に関する。
従来のパワーモジュール等に用いられる絶縁回路基板は、例えば、AlN(窒化アルミニウム)、Al(アルミナ)、Si(窒化ケイ素)などからなるセラミックス基板と、このセラミックス基板の一方の面に第一の金属板が接合されて構成された回路層と、セラミックス基板の他方の面に第二の金属板が接合されて構成された金属層と、を備えている。また、これらセラミックス基板と金属板との接合には一般にろう材が用いられる。金属板が銅又は銅合金板である場合、ろう材には活性金属を含むものが用いられる。
特許文献1に記載のパワーモジュール用基板では、第一の金属板(回路層)及び第二の金属板(金属層)が銅板とされており、これらの銅板を、Ag-Cu-Ti系のろう材ペーストを用いた活性金属法によってセラミックス基板に接合した構成とされている。
特許文献2では、銅または銅合金からなる銅部材とセラミックス部材とを接合する際に使用される銅部材接合用ペーストとして、Ag及び活性金属を含む金属粉末成分と、セラミックス粉末と、樹脂と、溶剤と、を含む構成のものを提案している。この場合、金属粉末成分の組成は、活性金属の含有量が1質量%以上30質量%以下とされ、残部がAg及び不可避不純物とされ、金属粉末成分の含有量に対するセラミックス粉末の含有量が1質量%以上15質量%以下とされている。また、活性金属としては、Ti、Hf、Zr、Nbが挙げられている。
これら特許文献1及び特許文献2記載のろう材では、セラミックス基板と銅板との接合界面にAg-Cu共晶層が形成される。
特開平8-139420号公報 特開2014-172802号公報
ところで、特許文献2に記載されたAg-Ti系ろう材を用いて銅板をセラミックス基板に接合すると、Ag-Cu-Ti系ろう材を用いて接合した場合と比較して、Ag-Cu共晶層を薄くすることができ、接合信頼性が向上することが知られている。一方で、銅板の周縁部まで接合性を確保するためには、銅板より大きくろう材を塗布することにより、銅板の周縁部の未接合領域をなくすことができ、効果的である。
しかしながら、銅板より大きくAg-Ti系ろう材を塗布すると、接合後に銅層の外側に形成されるろう材固化層がセラミックス基板との反応性が弱く、セラミックス基板から剥離して、異物が発生するという問題がある。
本発明は、このような事情に鑑みてなされたもので、ろう材固化層の剥離を防止して異物の発生を抑制しつつ、接合信頼性の高い絶縁回路基板を提供することを目的とする。
本発明の絶縁回路基板の製造方法は、セラミックス基板と銅又は銅合金からなる銅板とを活性金属ろう材を介して接合して、セラミックス基板の表面に銅層を有する絶縁回路基板を製造する方法であって、前記セラミックス基板の表面にAg及び活性金属からなる金属成分を含有する第1のろう材層を形成するとともに、前記第1のろう材層の周囲を囲んだ状態となるようにAg、Cu及び活性金属からなる金属成分を含有する第2のろう材層を形成した後、前記第2のろう材層を前記銅板の外周縁からはみ出させるようにして前記第1のろう材層の上に前記銅板を積層し、その後、前記第1のろう材層及び前記第2のろう材層を加熱することによりAgとCuの共晶反応を生じさせながら前記セラミックス基板と前記銅板を接合して、前記セラミックス基板の表面に前記銅層を形成し、前記銅層の周囲に前記第2のろう材層が溶融固化してなるろう材固化層を形成する。
セラミックス基板と銅板との間に介在される第1のろう材層は、加熱により、活性金属がセラミックス基板に優先的に拡散して窒化物又は酸化物の層を形成するとともに、銅板からCuが供給されることにより窒化物又は酸化物の層の上にAg-Cu共晶層を形成する。これにより、銅板がセラミックス基板に接合して、セラミックス基板の表面に銅層を形成する。窒化物又は酸化物の層にはAg粒子が分散している。
このセラミックス基板と銅層との間のAg-Cu共晶層は、銅板から供給されるCuとの共晶反応により形成されるので、薄肉であり、また、銅層の外側にはみ出さずに形成される。
一方、第1のろう材層の外側に設けられていた第2のろう材層は、加熱により、活性金属がセラミックス基板に拡散して窒化物又は酸化物の層を形成し、自身のCuがAgと共晶反応してAg-Cu共晶を形成した状態に固化する。この場合の窒化物又は酸化物の層にもAg粒子が分散している。このため、窒化物又は酸化物の層の上にAg-Cu共晶を有するろう材固化層が形成される。このろう材固化層は、窒化物又は酸化物の層にAg粒子が分散し、その上にAg-Cu共晶を含む層であるので、セラミックス基板とも接合性がよく、剥がれ等による異物の発生を防止することができる。
そして、銅層は、第1のろう材層の外側が第2のろう材層により囲まれた状態で加熱接合されているので、外周縁まで確実にセラミックス基板に接合される。
この場合、前記第2のろう材層は、接合後の前記ろう材固化層が前記銅層の外周縁から50μm以内の範囲内で前記銅層と前記セラミックス基板との接合界面に入り込むように設けられるとよい。
このように第2のろう材層を配置しておくことにより、第1のろう材層が接合後の銅層の外側にはみ出すことがなく、したがって、銅層からはみ出して固化したろう材層の剥離の発生を確実に防止することができる。銅層の外周縁からの距離が50μmを超えると、銅層外周部の接合が不十分になるおそれがある。
また、前記第2のろう材層は、接合後の前記銅層の外周縁から前記ろう材固化層がはみ出す量が200μm以下となるように設けられるとよい。
第2のろう材層により形成されるAg-Cu共晶を含むろう材固化層はセラミックス基板からの剥離の発生が抑制されるが、銅層の外周縁から200μmを超えてはみ出していると、剥離するおそれがある。
本発明の絶縁回路基板は、セラミックス基板の表面に銅又は銅合金からなる銅層が接合されており、前記セラミックス基板と前記銅層との接合界面にAg-Cu共晶層が形成され、前記銅層の周囲にはみ出して前記Ag-Cu共晶層より厚いAg-Cu共晶を含むろう材固化層が形成され、さらにCuの濃度が、前記Ag-Cu共晶層で10質量%未満であり、前記ろう材固化層で10質量%以上である。
この場合、前記Ag-Cu共晶を含むろう材固化層は、前記銅層の外周縁から50μm以内の範囲内で前記銅層と前記セラミックス基板との接合界面に入り込んでいるとよい。
また、前記銅層の外周縁から前記ろう材固化層がはみ出す量は200μm以下であるとよい。
本発明によれば、第1のろう材層を接合後の銅層の外側にはみ出させずにセラミックス基板と銅板とを強固に接合するとともに、銅層の外周縁部も第2のろう材層により確実に接合することができ、接合信頼性を高めることができる。しかも、銅層の外側にはみ出す部分もAg-Cu共晶を含むろう材固化層により構成されるので、剥離による異物の発生を抑制することができる。
本発明の一実施形態のパワーモジュール用基板の縦断面図である。 図1のパワーモジュール用基板の要部の拡大断面図である。 図1のパワーモジュール用基板の製造方法を示す工程図である。 セラミックス基板に銅板を接合する前の状態を示す斜視図である。
以下、本発明の絶縁回路基板及びその製造方法の実施形態について説明する。
本実施形態の絶縁回路基板は電源回路に用いられるパワーモジュール用基板である。このパワーモジュール用基板10は、図1に示すように、セラミックス基板11と、そのセラミックス基板11の一方の面に積層された回路層12Aと、セラミックス基板11の他方の面に積層された放熱層12Bと、を有している。
セラミックス基板11は、回路層12Aと放熱層12Bとの間の電気的接続を防止するものであって、窒化アルミニウム(AlN),窒化ケイ素(Si),酸化アルミニウム(Al)等を用いることができるが、そのうち、窒化ケイ素が高強度であるため、好適である。このセラミックス基板11の厚みは0.2mm以上1.5mm以下の範囲内に設定される。
回路層12Aは、電気特性に優れる銅又は銅合金から構成される。また、放熱層12Bも銅又は銅合金から構成される。これら回路層12A及び放熱層12Bとしては、例えば、純度99.96質量%以上の無酸素銅の銅板がセラミックス基板11に例えば活性金属ろう材にてろう付け接合されることにより形成される。この回路層12A及び放熱層12Bの厚みは0.1mm~1.0mmの範囲内に設定される。
これら回路層12A及び放熱層12B(以下、回路層と放熱層とを区別しないときは銅層12と称す)とセラミックス基板11との接合界面には、図2に示すように、Ag-Cu共晶層22が形成されている。また、このAg-Cu共晶層22の周囲を囲むように、Ag-Cu共晶層22より厚いAg-Cu共晶を含むろう材固化層23が形成されている。また、これらAg-Cu共晶層22及びAg-Cu共晶を含むろう材固化層23は、セラミックス基板11の上に窒化物又は酸化物の層21を介して形成されている。
Ag-Cu共晶層22は、厚みが0.1μm以上15μm未満である。一方、銅層12の外側にはみ出しているAg-Cu共晶を含むろう材固化層23は、厚みが15μm以上200μm以下である。
また、このAg-Cu共晶層22とAg-Cu共晶を含むろう材固化層23との境界は、銅層12の外周縁から内側に入り込んでおり、銅層12の外周縁からの距離Lは、50μm以下であることが好ましい。したがって、ろう材固化層23において、銅層12とセラミックス基板11との間に入り込んでいる部分は、Ag-Cu共晶層22とほぼ同じ厚さに形成される。また、銅層12の外周縁からはみ出すAg-Cu共晶を含むろう材固化層23のはみ出し量Hは10μm以上200μm以下であることが好ましい。
このように構成されるパワーモジュール用基板10の製造方法について図3及び図4を参照しながら工程順に説明する。
(ろう材塗布工程:S1)
まず、図4に示すように、セラミックス基板11の両面にAg及び活性金属からなる金属成分を含有する第1のろう材を塗布して乾燥することにより、第1のろう材層31を形成し、この第1のろう材層31の周囲を囲んだ状態にAg、Cu及び活性金属からなる金属成分を含有する第2のろう材を塗布して乾燥することにより、第2のろう材層32を形成する。活性金属としては、Ti、Hf、Zr、Nb等から選択される1種又は2種以上が用いられる。その中でもTiが好適であり、以下では活性金属としてTiを用いたものとして説明する。つまり、第1のろう材層31はAg-Tiろう材の層であり、第2のろう材層32はAg-Cu-Tiろう材の層である。いずれの層も、ろう材のペーストを塗布して乾燥させることにより形成される。
第1のろう材層31を形成するためのペーストは、Ag及びTiからなる金属粉末成分と、樹脂と、溶剤と、分散剤と、可塑剤と、還元剤とを含有し、Tiが0.4質量%以上75質量%以下で、残部がAg及び不可避不純物とされている。このAg-Tiろう材のペーストをセラミックス基板11にスクリーン印刷法等によって塗布して乾燥させることにより、第1のろう材層31を形成する。
また、第2のろう材層32を形成するためのペーストは、Ag、Cu及びTiからなる金属粉末成分と、樹脂と、溶剤と、分散剤と、可塑剤と、還元剤とを含有するペーストであり、Tiが0.4質量%以上75質量%以下で、Cuが0.4質量%以上50質量%以下、残部がAg及び不可避不純物とされている。このAg-Cu-Tiろう材のペーストをスクリーン印刷法等によって第1のろう材層31の周囲に塗布して乾燥させることにより、第1のろう材層31を囲む枠状に第2のろう材層32を形成する。
この第2のろう材層32において、ペーストの塗布領域は、後述したように接合した後のAg-Cu共晶層22が銅層12と同じ大きさとなるように設定してもよいが、Ag-Cu共晶層22の外周縁が、接合した後の銅層12の外周縁から50μm以内の範囲となるように設定するとよい。また、加熱固化して接合した後に、ろう材固化層23が銅層12の外周縁から外側に10μm以上200μm以下の範囲ではみ出すように形成される。
これら第1のろう材層31及び第2のろう材層32の厚さは、乾燥後で20μm以上300μm以下とされる。
(積層工程:S2)
次いで、第1のろう材層31の上に銅板12´を重ねて積層状態とする。この銅板12´は、銅又は銅合金からなる平板のプレス成形により銅層12の外形に打抜き形成されたものである。
セラミックス基板11の両面の第1のろう材層31の上に銅板12´をそれぞれ積層した後、これらを積層方向に加圧した状態とする。この加圧状態においては、セラミックス基板11と銅板12´との間に第1のろう材層31が配置されるとともに、銅板12´の外側を第2のろう材層32が囲むように配置される。第1のろう材層31と第2のろう材層32との境界は、銅板12´のほぼ外周縁の位置か、銅板12´の外周縁よりも若干内側に配置される。
(加熱工程:S3)
セラミックス基板11と銅板12´との積層体を加圧状態で加熱炉内に設置し、真空雰囲気下で接合温度に加熱した後冷却して、セラミックス基板11に銅板12´をろう付け接合する。この場合の接合条件としては、例えば0.1MPa以上3.5MPa以下の加圧力で積層体を加圧し、10-6Pa以上10-3Pa以下の真空雰囲気下で、Ag-Cu共晶温度以上Agの融点以下(例えば790℃以上850℃以下)の接合温度で、1分~60分の加熱とする。
このろう付けは、活性金属ろう付け法であり、第1のろう材層31及び第2のろう材層32中における活性金属であるTiは、セラミックス基板11に優先して拡散し、セラミックス基板11が窒化物系セラミックスである窒化アルミニウム(AlN)や窒化ケイ素(Si)からなる場合、セラミックス基板11との間で窒化チタン(TiN)を形成し、セラミックス基板11が酸化物系セラミックスである酸化アルミニウム(Al)等からなる場合、酸化チタン(TiO)を形成する。また、両ろう材層31,32中のAgはCuとの間で共晶反応を生じる。
具体的には、第1のろう材層31中のTiがセラミックス基板11に拡散して窒化チタン(TiN)の層を形成するとともに、第1のろう材層31中に銅板12´内のCuが拡散してAgとCuとの共晶反応により融点を低下させ、第1のろう材層31の溶融が促進される。加熱温度はAg-Cu共晶温度以上とされていることから、Ag-Cu共晶液相を形成し、このAg-Cu共晶液相と窒化チタンとが反応して、窒化チタン層21内にAg粒子が分散する。
一方、第1のろう材層31の外側に設けられていた第2のろう材層32は、Tiがセラミックス基板11に拡散して窒化チタン(TiN)の層を形成するとともに、ろう材自身にCuを含有しているので、AgとCuとの共晶反応によりAg-Cu共晶が形成される。この場合、この共晶反応に用いられるCuは第1のろう材層31の場合とは異なり、第2のろう材層32自身が含有していたものであり、共晶反応しなかったCuも残存する場合がある。
(冷却工程:S4)
セラミックス基板11と銅板12´との間に形成されたAg-Cu共晶液相は冷却により固化してAg-Cu共晶層22を形成する。このAg-Cu共晶層22と窒化チタン層21とを介してセラミックス基板11と銅板12´とが接合され、セラミックス基板11の両面に銅層12が形成される。
一方、第2のろう材層32が加熱溶融して固化されたものがろう材固化層23であり、銅層12の周囲のセラミックス基板11上に窒化チタン層21とAg-Cu共晶を含むろう材固化層23が形成され、セラミックス基板11と銅層12との間の窒化チタン層21及びAg-Cu共晶層22とそれぞれ連続して形成される。
なお、前述のろう材塗布工程において、第2のろう材層32は、その内周縁が第1のろう材層31の外周縁と隙間なく設けられるのが好ましいが、両ろう材層31,32は加熱工程で溶融した際に押し広げられるので、この冷却工程後に形成されるAg-Cu共晶層22とろう材固化層23との間に隙間がなくなっていればよく、ろう材塗布工程においては必ずしも第1のろう材層31と第2のろう材層32との間に隙間がないことに限定されない。
前述したように、セラミックス基板11と銅層12との間のAg-Cu共晶層22は、加熱工程において、Tiとともに第1のろう材層21を構成するAgが銅板12´から供給されるCuとの間でAg-Cu共晶反応して形成されるのに対して、銅層12の周囲のAg-Cu共晶を含むろう材固化層23は、第2のろう材層22自身が有していたCuとAgとの間でAg-Cu共晶反応して形成される。したがって、セラミックス基板11と銅層12との間のAg-Cu共晶層22は、第1のろう材層31が接していた部分から共晶反応に必要な最小限のCuのみ供給されて形成された層であるため、比較的薄肉に形成され、一方、銅層12の周囲に形成されるAg-Cu共晶を含むろう材固化層23は、第2のろう材層32が含有していたCuの一部が共晶反応せずに残存している場合があるため、セラミックス基板11と銅層12との間のAg-Cu共晶層22より厚肉に形成される。
このようにして製造されたパワーモジュール用基板10は、セラミックス基板11と銅層12との間にセラミックス基板11の表面に薄い窒化チタン層21が形成されるとともに、その上にAg-Cu共晶層22が形成され、このAg-Cu共晶層22の周囲を囲むようにろう材固化層23が形成されているので、銅層12の外周縁まで確実にセラミックス基板11に接合される。一方、銅層12の外側にはみ出しているろう材固化層23は、窒化チタン層21の上にAg-Cu共晶を含んでいるので、セラミックス基板11との接合性もよく、剥がれ等による異物の発生を防止することができる。
この場合、Ag-Cu共晶層22とAg-Cu共晶を含むろう材固化層23との境界は、銅層12の外周縁から内側に50μm以下の範囲内であり、50μmを超えると、銅層12の外周部の接合が不十分になるおそれがある。また、銅層12の外周縁からはみ出すAg-Cu共晶を含むろう材固化層23のはみ出し量Hは10μm以上200μm以下であり、200μmを超えてはみ出していると、剥離するおそれがある。ろう材固化層23が銅層12の外周縁から入り込んでいれば、はみ出し量Hは小さくてもよいが、10μm未満とするのは困難である。
なお、Ag-Cu共晶層22とろう材固化層23との境界は、加熱工程においてセラミックス基板11と銅板12´が膨張するので、その膨張分も考慮して、両ろう材層31,32の位置を設定する必要がある。この場合、Ag-Cu共晶層22とろう材固化層23との境界が銅層12の外周縁と一致するように(L=0μm)設定してもよいが、その距離Lが安定して0μmとなるように設定することは難しいので、現実的には10μm以上50μm以下となるように設定するとよい。
本発明は、上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
上記実施形態では、活性金属としてTiを用いたが、Ti以外のHf、Zr、Nb等を用いてもよい。
Siからなるセラミックス基板(40mm×40mm×0.32mmt)の一方の面に、スクリーン印刷によって、Ag-Tiろう材ペーストを塗布して乾燥させ、その外側にAg-Cu-Tiろう材ペーストを塗布して乾燥させることにより、第1のろう材層及び第2のろう材層を形成する。
また、第1のろう材層は、その外周縁と接合後に形成されるAg-Cu共晶層の銅層の外周縁との距離が表1に示す寸法となるように大きさを設定した。第2のろう材層は、第1のろう材層の外側に100μmの幅で枠状に形成した。両ろう材層の厚さは10μmとした。
比較例として、セラミックス基板と銅板との間及びその外側ともに、Ag-Tiろう材ペーストを塗布したもの(比較例1)、両方ともにAg-Cu-Tiろう材を塗布したもの(比較例2)も作製した。
そして、第1のろう材層の上に純度99.99質量%以上の無酸素銅(OFC)からなる銅板(37mm×37mm×0.3mmt)を積層して、0.6MPaの加圧力で加圧状態に保持し、真空雰囲気下、加熱温度820℃で30分間保持し、セラミックス基板と銅板とを接合した。
得られた接合体(絶縁回路基板)からセラミックス基板と銅層との間のAg-Cu共晶層の外周縁と、銅層の外周縁との距離を測定するとともに、接合信頼性及び脱落性を評価した。
Ag-Cu共晶層の外周縁と銅層の外周縁との距離は、接合後の接合体(絶縁回路基板)において、ろう材部(Ag-Cu共晶層及びろう材固化層)の断面を、EPMAによる元素マッピングし、Cuの濃度が10質量%未満の領域をAg-Cu共晶層、10質量%以上の領域をろう材固化層として特定することにより、これらの境界を検出し、その境界と銅層の外周縁との距離を求めた。
接合信頼性は、冷熱サイクル試験装置を使用し、接合体に対して、-40℃の液槽に5分浸漬した後、150℃の液槽に5分浸漬する操作を1000サイクル繰り返し、超音波探傷検査にて接合率を求めた。接合率は、接合すべき面積に対して実際に接合されていた面積の比率であり、95%以上をA、95%未満90%以上をB、90%未満をCとし、90%以上を合格とした。
脱落性評価は、銅層からはみ出しているろう材固化層に粘着テープを密着させた後、粘着テープを剥離して、粘着テープを密着させる前のろう材固化層に対して、粘着テープに剥離して付着したろう材固化層の面積の比率を求めた。5%以下をA、5%を超えた場合をBとし、5%以下を合格とした。
Figure 0007243182000001
表1に示されるように、実施例のものは、いずれも銅層の接合性及び銅層の周囲のろう材固化層の脱落性ともに合格の評価であった。特に、ろ う材固化層が銅層外周縁から接合界面に入り込んだ距離が50μm以内の範囲に設定された実施例1及び実施例2は接合信頼性、脱落性とも良好な結果であった。なお、 実施例1~3においては、銅層の外周縁からろう材固化層がはみ出す量は200μmであった。
一方、セラミックス基板と銅板との間及びその外側ともにAg-Tiろう材ペーストを塗布した比較例1は、銅層の接合信頼性は良好であったが、銅層の外側のろう材固化層に脱落が認められた。また、セラミックス基板と銅板との間及びその外側ともにAg-Cu-Tiろう材を塗布した比較例2は、銅層の外側のろう材固化層に脱落は認められなかったが、銅層の接合信頼性が劣っていた。比較例3は、セラミックス基板と銅板との間をAg-Cu-Tiろう材とし、その外側をAg-Tiろう材としたものであるが、接合信頼性、脱落性ともに劣っていた。
10 パワーモジュール用基板
11 セラミックス基板
12 銅層
12A 回路層
12B 放熱層
12´ 銅板
21 窒化チタン層
22 Ag-Cu共晶層
23 ろう材固化層
31 第1のろう材層
32 第2のろう材層

Claims (6)

  1. セラミックス基板と銅又は銅合金からなる銅板とを活性金属ろう材を介して接合して、セラミックス基板の表面に銅層を有する絶縁回路基板を製造する方法であって、前記セラミックス基板の表面にAg及び活性金属からなる金属成分を含有する第1のろう材層を形成するとともに、前記第1のろう材層の周囲を囲んだ状態となるようにAg、Cu及び活性金属からなる金属成分を含有する第2のろう材層を形成した後、前記第2のろう材層を前記銅板の外周縁からはみ出させるようにして前記第1のろう材層の上に前記銅板を積層し、その後、前記第1のろう材層及び前記第2のろう材層を加熱することによりAgとCuの共晶反応を生じさせながら前記セラミックス基板と前記銅板を接合して、前記セラミックス基板の表面に前記銅層を形成し、前記銅層の周囲に前記第2のろう材層が溶融固化してなるろう材固化層を形成することを特徴とする絶縁回路基板の製造方法。
  2. 前記第2のろう材層は、接合後の前記ろう材固化層が前記銅層の外周縁から50μm以内の範囲内で前記銅層と前記セラミックス基板との接合界面に入り込むように設けられることを特徴とする請求項1記載の絶縁回路基板の製造方法。
  3. 前記第2のろう材層は、接合後の前記銅層の外周縁から前記ろう材固化層がはみ出す量が200μm以下となるように設けられることを特徴とする請求項1又は2記載の絶縁回路基板の製造方法。
  4. セラミックス基板の表面に銅又は銅合金からなる銅層が接合されており、前記セラミックス基板と前記銅層との接合界面にAg-Cu共晶層が形成され、前記銅層の周囲にはみ出して前記Ag-Cu共晶層より厚いAg-Cu共晶を含むろう材固化層が形成され
    さらにCuの濃度が、前記Ag-Cu共晶層で10質量%未満であり、前記ろう材固化層で10質量%以上であることを特徴とする絶縁回路基板。
  5. 前記Ag-Cu共晶を含むろう材固化層は、前記銅層の外周縁から50μm以内の範囲内で前記銅層と前記セラミックス基板との接合界面に入り込んでいることを特徴とする請求項4記載の絶縁回路基板。
  6. 前記銅層の外周縁から前記ろう材固化層がはみ出す量は200μm以下であることを特徴とする請求項4又は5記載の絶縁回路基板。
JP2018243225A 2018-12-26 2018-12-26 絶縁回路基板の製造方法及びその絶縁回路基板 Active JP7243182B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243225A JP7243182B2 (ja) 2018-12-26 2018-12-26 絶縁回路基板の製造方法及びその絶縁回路基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243225A JP7243182B2 (ja) 2018-12-26 2018-12-26 絶縁回路基板の製造方法及びその絶縁回路基板

Publications (2)

Publication Number Publication Date
JP2020107671A JP2020107671A (ja) 2020-07-09
JP7243182B2 true JP7243182B2 (ja) 2023-03-22

Family

ID=71449584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243225A Active JP7243182B2 (ja) 2018-12-26 2018-12-26 絶縁回路基板の製造方法及びその絶縁回路基板

Country Status (1)

Country Link
JP (1) JP7243182B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165000A (ja) 2009-09-15 2016-09-08 東芝マテリアル株式会社 パワーモジュール

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165000A (ja) 2009-09-15 2016-09-08 東芝マテリアル株式会社 パワーモジュール

Also Published As

Publication number Publication date
JP2020107671A (ja) 2020-07-09

Similar Documents

Publication Publication Date Title
JP5757359B2 (ja) Cu/セラミックス接合体、Cu/セラミックス接合体の製造方法、及び、パワーモジュール用基板
JP5725060B2 (ja) 接合体、パワーモジュール用基板、及びヒートシンク付パワーモジュール用基板
KR102130868B1 (ko) 접합체, 파워 모듈용 기판, 및 히트 싱크가 부착된 파워 모듈용 기판
JP6287682B2 (ja) 接合体及びパワーモジュール用基板
EP3041042B1 (en) Method of producing bonded body and method of producing power module substrate
WO2010021267A1 (ja) 電子部品装置およびその製造方法
JP2008126272A (ja) 接続材料、接続材料の製造方法、および半導体装置
US11257735B2 (en) Heat sink-equipped power module substrate and manufacturing method for heat sink-equipped power module substrate
TW201539492A (zh) 電阻器及電阻器之製造方法
JP3935037B2 (ja) アルミニウム−セラミックス接合基板の製造方法
JP2013179263A5 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト
JP5152125B2 (ja) 接続材料、接続材料の製造方法、および半導体装置
WO2013089099A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、フラックス成分侵入防止層形成用ペーストおよび接合体の接合方法
JP7243182B2 (ja) 絶縁回路基板の製造方法及びその絶縁回路基板
JPH05347469A (ja) セラミックス回路基板
JP4244723B2 (ja) パワーモジュール及びその製造方法
JP4387658B2 (ja) ヒートシンク付セラミック回路基板及びその製造方法
JP2016152386A (ja) パワーモジュール用基板及びパワーモジュール
JP6201297B2 (ja) 銅板付きパワーモジュール用基板及び銅板付きパワーモジュール用基板の製造方法
JP6969471B2 (ja) 絶縁回路基板
JPH04170089A (ja) セラミックス回路基板
WO2024014532A1 (ja) 複層接合体及びそれを用いた半導体装置、並びにこれらの製造方法
US20240055392A1 (en) Method of manufacturing semiconductor device
JP6645281B2 (ja) セラミックス/アルミニウム接合体の製造方法、及び、パワーモジュール用基板の製造方法
JP6680144B2 (ja) セラミックス/Al−SiC複合材料接合体の製造方法、及びヒートシンク付パワーモジュール用基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7243182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150