JP7239863B2 - 自己校正機能付きadコンバータ - Google Patents

自己校正機能付きadコンバータ Download PDF

Info

Publication number
JP7239863B2
JP7239863B2 JP2021553954A JP2021553954A JP7239863B2 JP 7239863 B2 JP7239863 B2 JP 7239863B2 JP 2021553954 A JP2021553954 A JP 2021553954A JP 2021553954 A JP2021553954 A JP 2021553954A JP 7239863 B2 JP7239863 B2 JP 7239863B2
Authority
JP
Japan
Prior art keywords
voltage
unit
integrated
positive
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021553954A
Other languages
English (en)
Other versions
JPWO2021084645A1 (ja
Inventor
直志 美濃谷
賢一 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2021084645A1 publication Critical patent/JPWO2021084645A1/ja
Application granted granted Critical
Publication of JP7239863B2 publication Critical patent/JP7239863B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1028Calibration at two points of the transfer characteristic, i.e. by adjusting two reference values, e.g. offset and gain error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/257Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques using analogue/digital converters of the type with comparison of different reference values with the value of voltage or current, e.g. using step-by-step method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/54Input signal sampled and held with linear return to datum

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

本発明は、校正のための測定器を必要としない自己校正機能付きADコンバータに関する。
ADコンバータは周知のように既知の電圧を出力するDAコンバータと比較器で構成され、DAコンバータの出力値を順次変化させ比較器の出力が低出力電圧から高出力電圧に変化する最小のDAコンバータの出力値を設定した時のデジタル値をADコンバータの変換値として使用する(非特許文献1)。DAコンバータのオフセットや線形性の経時変化による変動がADコンバータの経時変化につながる。
代表的なDAコンバータにはR-2Rラダー回路、抵抗ストリング回路(非特許文献2)、PWM回路(非特許文献3)がある。R-2Rラダー回路では、比較的少ない抵抗素子数で高分解能・高精度な可変信号源を構成可能である。しかし、設定コードに対する出力の精度を高めるためにはMSB側に高い精度の抵抗が必要である。
抵抗ストリング回路は低消費電力で単調増加性が高いが、設定コードに対する出力の線形性が抵抗素子の均一性とレイアウトに依存するため、レイアウト設計と製造の試行錯誤が必要である。
PWM回路では、R-2Rラダー回路や抵抗ストリング回路のように抵抗素子列が不要でデジタル回路のみで製造できるため性能が安定しているという利点はあるが、出力に現れるリプルノイズ除去のための高次の低域通過フィルタに周波数精度の高い設計と製造が必要なる。
R-2Rラダー回路と抵抗ストリング回路に関しては、製造の最終段階での抵抗素子の調整や設定コードと出力の関係の補正により、線形性や精度を向上させることが可能である。しかし、この場合ではR-2Rラダー回路と抵抗ストリング回路の出力を確認しながら調整や補正を行うため、回路の外部に基準となる測定器が必要となる。
また、比較器のオフセット電圧、及びDAコンバータの単位電圧とその線形性は、時間が経過すれば変化する。よって、長期間にわたって変換精度を維持するためには、定期的な校正が不可欠である(非特許文献2)。
A/D変換の概要と仕組み ミームス(MEMEs)のサポートページ〔平成31年5月16日検索〕、インターネット(URL: http://memes.sakura.ne.jp/memes/?page_id=1120) DACの精度を改善するためのトリミング (1/3) EDN Japan〔平成31年5月16日検索〕、インターネット(URL: http://ednjapn.com/edn/articles/1611/08/news012.html) 裏ワザ!PWMを使って疑似D/Aコンバータを実現〔平成31年5月16日検索〕、インターネット(https://service.macnica.co.jp/library/107577)
しかしながら、比較器のオフセット電圧、及びDAコンバータの単位電圧の調整には、ADコンバータの外部に基準となる測定器が必要である。例えば遠隔地に配置されたADコンバータを校正するためには、測定器を携えて出かけなければならない。よって、遠隔地にある複数のADコンバータを校正するのは、困難であるという課題がある。
本発明は、この課題に鑑みてなされたものであり、校正のための測定器が不要な自己校正機能付きADコンバータを提供することを目的とする。
本発明の一態様に係る自己校正機能付きADコンバータは、校正のための測定器を必要としない自己校正機能付きADコンバータであって、基準電圧を生成する基準電圧部と、積算電圧の変化量の単位である2つ以上の単位電圧を有し、変換時においては入力電圧を初期値とした前記積算電圧が前記基準電圧を越えるまで前記2つ以上の単位電圧の何れか一つを積算する積算変換部と、校正時に前記2つ以上の単位電圧と比較器のオフセット電圧を校正する校正制御部と、変換時に前記比較器のオフセット電圧の極性を判定した後に、入力電圧をデジタル値に変換する変換制御部とを有する制御部とを備えるを備えることを要旨とする。
本発明によれば、校正のために外部に測定器が不要な自己校正機能付きADコンバータを提供することができる。
本発明の第1実施形態に係る自己校正機能付きADコンパータの構成例を示す機能ブロック図である。 図1に示す積算部の等価回路を示す図である。 図1に示す変換制御部の処理手順を示すフローチャートである。 図1に示すオフセット計測処理部の処理手順を示すフローチャートである。 図1に示す正負単位電圧相関計測処理部の処理手順を示すフローチャートである。 図1に示す単位電圧測処理部の処理手順を示すフローチャートである。 図1に示す積算部を変形した自己校正機能付きADコンバータの構成例を示す機能ブロック図である。 図7に示す差分演算部の変換時の等価回路を示す図である。 図7に示す差分演算部の校正時の等価回路を示す図である。 図7に示す変換制御部の処理手順を示すフローチャートである。 図7に示す積算部が生成する積算電圧と積算回数の関係例を模式的に示す図である。 図7に示す差分電圧計測処理部の処理手順を示すフローチャートである。 本発明の第2実施形態に係る自己校正機能付きADコンパータの構成例を示す機能ブロック図である。 図13に示す変換制御部の処理手順を示すフローチャートである。 図13に示す積算部が生成する積算電圧と積算回数の関係例を模式的に示す図である。 図13に示す単位電圧相関計測処理部の処理手順を示すフローチャートである。 図13に示す第2実施形態に係る自己校正機能付きADコンパータの変形例の構成例を示す機能ブロック図である。 図13に示す第2実施形態に係る自己校正機能付きADコンパータの変形例の構成例を示す機能ブロック図である。 図18に示す変換制御部の処理手順を示すフローチャートである。
以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。
〔第1実施形態〕
図1は本発明の第1実施形態に係る自己校正機能付きADコンバータの構成例を示すブロック図である。図1に示す自己校正機能付きADコンバータ100(以降ADコンバータ)は、校正のための測定器を必要としない自己校正機能付きADコンバータである。
本ADコンバータ100は、基準電圧部10、制御部20、及び積算変換部30を備える。積算変換部30は、切替部31、積算部32、及び比較器34を含む。
積算部32において入力電圧を初期値として単位電圧を積算し生成した積算電圧と基準電圧Vrefを比較器34により比較して入力電圧をデジタル値に変換する。積算電圧の変化量の単位である単位電圧を少なくとも2種有しており、校正時においては少なくとも2種の積算単位と比較器34のオフセット電圧を校正する。電流源と容量Coで積算部32を構成しており、積算電圧を増加させる時では正電流源320を使用し、積算電圧を減少させる時では負電流源321を使用する。
比較器34を構成する回路素子の特性のバラツキに起因して、比較器34のオフセット電圧は比較器34の入力電圧に依存して変化することがある。このため、入力電圧を保持して比較器34で保持した入力電圧と積算部32の積算電圧を比較してAD変換する処理方法では、入力電圧の大きさで比較器34のオフセット電圧が変化することを考慮した校正処理が必要となり校正処理の回数が多くなることが予想される。また、電流を流す出力端子の電圧に関わらず一定の電流を流す理想的な電流源の動作は、実際の電流源では実現されず電流が一定となる電流源の出力端子の電圧は制限される。このため積算部32の電圧範囲もこの電流源の特性により制限れる。これはADコンバータの入力電圧範囲を制限する。一般的にトランジスタで電流源を構成した場合、グランドに向かって電流を出力する正電流源においては、電流源の出力端子の電圧が電源電圧からトランジスタのしきい値電圧分低い電圧より高い時では正電流源は理想の動作から外れる。高電位から電流を引き抜く負電流源では電流源の出力端子の電圧がトランジスタのしきい値電圧とグランド間では電流源は理想の動作から外れる。
本実施形態では入力電圧を初期値として積算部32で単位電圧を積算した積算電圧と入力電圧の大きさに関わらず一定である基準電圧Vrefを比較することにより、基準電圧Vrefでの比較器34のオフセット電圧のみを校正すればよい処理としている。また、入力電圧が基準電圧Vrefより小さい場合では正電流源320を使用し、基準電圧Vrefより大きい場合では負電流源321を使用して、積算電圧が基準電圧Vrefになるまで積算してAD変換処理を行う。この処理により電流源の出力端子の電圧の制限に依存せずに入力電圧の範囲を電源電圧からグランドまでとできる。
なお、単位電圧は、正電流源320で生成した正の単位電圧、又は負の電流源321で生成した負の単位電圧の2つの例を示すが、単位電圧の数は2つ以上の複数で有っても構わない。
本実施形態のADコンバータ100は、校正のための測定器を必要としないADコンバータであって、基準電圧Vrefを生成する基準電圧部10と、積算電圧の変化量の単位である2つ以上の単位電圧を有し、変換時においては入力電圧を初期値とした積算電圧が基準電圧Vrefを越えるまで2つ以上の単位電圧の何れか一つを積算する積算変換部30と、校正時に2つ以上の単位電圧と比較器34のオフセット電圧を校正する校正制御部21と、変換時に比較器34のオフセット電圧の極性を判定した後に、入力電圧をデジタル値に変換する変換制御部22とを有する制御部20とを備える。
積算変換部30は、単位電圧を保持する容量Coに、変換時は入力電圧を接続させ、校正時は基準電圧Vref又は接地電圧を接続させる切替部31と、変換時は容量Coに入力電圧を保持させた後に、該保持させた電圧に2つ以上の単位電圧の何れか一つを積算して積算電圧を生成し、校正時は容量Coに基準電圧Vref又は接地電圧を保持させた後に、該保持させた電圧に2つ以上の単位電圧の何れか一つを積算した積算電圧を生成する積算部32と、基準電圧Vrefを一方の出力端に出力し積算電圧を他方の出力端に出力する場合と、基準電圧Vrefを他方の出力端に出力し積算電圧を一方の出力端に出力する場合とを切り替えるクロス・バースイッチ33と、一方の出力端と負入力端を接続し、他方の出力端と正入力端を接続させ正入力端の電圧が負入力端の電圧を越えた場合に比較信号を出力する比較器34とを備える。
積算部32は、蓄積した電荷により積算電圧を発生させる容量Coと、入力電圧が基準電圧Vrefより低い場合に積算電圧を増加させる時に使用する正電流源320と、入力電圧が基準電圧Vrefより高い場合に積算電圧を減少させる時に使用する負電流源321と、容量Coと正電流源320を接続・切断するSW1と、容量Coと負電流源を接続・切断するSW2と、容量Coに初期値を与える時に接続するSW3とを有する。
制御部20からの動作制御信号により切替部31、クロス・バースイッチ33、SW1、SW2とSW3を制御する。
本実施形態での積算動作について説明する。積算は所定の時間単位の整数倍の時間の間で正電流源320(または負電流源321)から容量Coに電荷を供給(または除去)することで実施される。図2(a)にクロス・バースイッチのs11とs13およびs12とs14を接続し正電流源320と容量Coを接続した場合の等価回路モデルを示す。本等価回路では容量Coの電流源側に接続されている電極をプラス(+)とし、グランド側をマイナス(-)としている。比較器34のオフセット電圧をVofcとしている。正電流源320で積算する時ではSW2とSW3を切断状態にしてSW1を所定の時間Δtのあいだ接続状態にした後SW1を切断状態にすることを繰返す。これをkp回繰返した時の正電流源320から供給される電荷はIp kp Δt となる。比較器34の正の入力側に存在する寄生容量Cp1を考慮すると、積算電圧は以下の式で表される。
Figure 0007239863000001
負電流源321で積算する場合では、SW1、SW3を切断状態にして所定の時間ΔtのあいだSW2を接続状態にした後切断状態にすることを繰返す。クロス・バースイッチ33のs11とs13およびs12とs14を接続し負電流源321と容量Coを接続した時の等価回路を図2(b)に示す。SW2を接続状態にすることをkn回繰返した時では、負電流源321と容量Coを接続する前の電荷(Co+Cp1)Vo,0から負電流源321によってIn knΔt (In>0)の電荷が除去されるため、積算電圧は以下の式で表される。
Figure 0007239863000002
したがって、正電流源320に接続した時の単位電圧Δt Ip/(Co+Cp1)と負電流源321に接続した時の単位電圧Δt In/(Co+Cp1)が分かれば、正電流源320に接続した回数kpと負電流源321に接続した回数knから積算電圧は算出できる。本実施形態ではIp>Inとして、正電流源320への接続時の単位電圧を正の単位電圧と記述し、負電流源への接続時を負の単位電圧と記述する。また、以下の説明では比較器のオフセット電圧を負(Vofc<0)として説明する。
本実施形態の変換時では、変換制御部22で変換制御処理を実行する。変換制御部の処理フローを図3に示す。オフセット極性判定ステップS1では、切替部31のa10とc10を接続しSW3を接続した状態で比較信号を制御部20でモニタしクロス・バースイッチ33の接続を決定する。比較信号が低電位電圧の場合ではクロス・バースイッチ33のs11とs13およびs12とs14を接続し、比較信号が高電位電圧の場合ではクロス・バースイッチ33のs11とs14およびs12とs13を接続する。
入力電圧比較ステップS2では、切替部31のa10とb10を接続しSW3を接続して入力電圧と基準電圧Vrefを比較する。積算回数計測ステップS3では、入力電圧比較ステップS2の比較結果に基づいて正電流源320または負電流源321の使用を決定した後、SW3を切断し比較信号の状態変化をモニタすることで積算電圧が基準電圧Vrefとなるまでに要した変換積算回数kvを計測する。記憶ステップS4では変換積算回数kvを記憶する。
校正時は、制御部20に含まれる構成制御部21が作用する。構成制御部21は、容量Coに基準電圧Vrefに相当する単位電圧をプリチャージした後に、比較器34の出力が反転するまでの単位電圧の積算回数を計測するオフセット計測処理部210と、入力電圧が基準電圧Vrefより大きい場合に、積算回数に所定回数を加算した過剰積算回数で正の単位電圧を加算して積算電圧を生成した後に該積算電圧が基準電圧Vrefより小さくまるまで負の単位電圧で減算して比較器34の出力が反転するまでの積算回数である正負相関積算回数を計測する正負単位電圧相関計測処理部211と、単位電圧をリセットした後に、正の単位電圧を積算して比較器34の出力が反転するまでの単位電圧の積算回数である単位電圧積算回数を計測する単位電圧計測処理部212とを備える。なお、校正時のクロス・バースイッチ33の接続は、変換制御部22で決定した接続状態を維持する。
図4にオフセット計測処理部の処理フローを示す。基準電圧プリチャージステップS11では切替部31のa10とc10を接続した状態でSW3を接続・切断して容量Coに基準電圧Vrefに相当する電荷をプリチャージする。オフセット計測ステップS12では、比較信号の状態変化をモニタすることで積算電圧が基準電圧を超えるまで積算し、はじめて基準電圧を超える積算回数より1回少ない積算回数であるオフセット積算回数koを計測する。記憶ステップS13ではkoを記憶する。正電流源320を使用した時の正単位電圧をVGp、比較器34のオフセット電圧をVofc、基準電圧Vrefとすると、積算電圧と基準電圧Vrefには以下の方程式が成立する。
Figure 0007239863000003
式(3)の右辺のVGpδkoは基準電圧Vrefおよびオフセット電圧の和と比較信号が状態変化する直前の積算電圧の差を表し、δkoは0以上1未満の実数である。
正負単位電圧相関計測処理は、入力電圧が基準電圧より大きい場合に実施する。図5に正負単位電圧相関計測処理部の処理フローを示す。基準電圧VrefプリチャージステップS20で容量Coに基準電圧Vrefに相当する電荷をプリチャージした後、オフセット積算回数koに所定の積算回数keを加算した積算回数で積算する過剰積算ステップS21を実施する。次に負積算計測ステップS22において、比較信号の状態変化をモニタすることで積算電圧が基準電圧Vrefより小さくなるまで負単位電圧VGnで積算する。この処理により、負積算計測ステップS22において積算電圧がはじめて基準電圧Vrefより小さくなる積算回数より1回少ない積算回数である正負相関積算回数kpを計測する。記憶ステップS23ではkpを記憶する。正負単位電圧相関計測処理において積算電圧と基準電圧には以下の方程式が成立する。
Figure 0007239863000004
式(4)の右辺のVGnδkpは基準電圧Vrefおよびオフセット電圧の和と比較信号が状態変化する直前の積算電圧の差を表し、δkpは0以上1未満の実数である。
図6に単位電圧計測処理部の処理フローを示す。リセットステップS30において容量Coの蓄積電荷をリセットする。この後、単位電圧計測ステップS31において、比較信号の状態変化をモニタすることで積算電圧が基準電圧Vrefを超えるまで正の単位電圧で積算する。この処理により積算電圧がはじめて基準電圧より大きくなる積算回数より1回少ない積算回数である単位電圧積算回数kiを計測する。記憶ステップS32ではkoを記憶する。単位電圧計測処理において積算電圧と基準電圧には以下の方程式が成立する。
Figure 0007239863000005
式(5)の右辺のVGpδkiは基準電圧Vrefおよびオフセット電圧の和と比較信号が状態変化する直前の積算電圧の差を表し、δkiは0以上1未満の実数である。
解析を容易にするためにko+δko=Ko、kp+δkp=Kp、ki+δki=Kiとし、式(3)と式(5)の差をとることにより以下のVGpの式を得る。
Figure 0007239863000006
式(6)を式(3)に代入することにより以下のVofcの式を得る。
Figure 0007239863000007
また、式(3)と式(4)からVGnの式を得る。
Figure 0007239863000008
VGp、VGn、Vofcに含まれるδki、δkp、δkoは0以上1未満の実数であるが、具体的な値は不明である。このδki、δkp、δkoの不確かさのためVGp、VGn、Vofcのとり得る値は範囲を持つ。VGp、VGn、Vofcの校正値は、VGp、VGn、Vofcの範囲の中央値により決定する。式(6)をδki、δkoで偏微分すると以下の式を得る。
Figure 0007239863000009
式(9)、式(10)より、VGpはδkiに対しては単調減少であり、δkoに対しては単調増加である。したがって、VGpの範囲は以下の式で表される。
Figure 0007239863000010
式(11)よりVGpの中央値である校正値VGpcは以下のように得られる。
Figure 0007239863000011
式(7)をδki、δkoで偏微分すると以下の式を得る。
Figure 0007239863000012
式(13)、式(14)より、Vofcはδkiに対しては単調減少であり、δkoに対しては単調増加である。したがって、Vofcの範囲は以下の式で表される。
Figure 0007239863000013
式(15)よりVofcの中央値である校正値Vofccは以下のように得られる。
Figure 0007239863000014
式(8)をδki、δkp、δkoで偏微分すると以下の式を得る。
Figure 0007239863000015
式(17)、式(18)、式(19)より、VGnはδki、δkp、δkoに対しては単調減少である。したがって、VGnの範囲は以下の式で表される。
Figure 0007239863000016
式(20)よりVGnの中央値である校正値VGncは以下のように得られる。
Figure 0007239863000017
以上の説明で示したように校正状態におけるオフセット計測処理、正負単位電圧相関計測処理、単位電圧計測処理により、単位電圧VGp、VGnおよび比較器34のオフセット電圧Vofcの校正値であるVGpc、VGnc、Vofccを得ることができる。
図3で示した変換制御部22の処理フローにより、入力電圧VinがVref-Vofc>Vinの場合のVinと変換積算回数kvの関係は以下の式で表される。
Figure 0007239863000018
式(22)でVGpδkvは基準電圧Vrefおよびオフセット電圧の和と比較信号が状態変化する直前の積算電圧の差を表し、δkvは0以上1未満の実数である。このδkvの不確かさのためVinのとり得る値は範囲を持つ。Vinの変換値はVinの範囲の中央値により決定する。Vinの範囲は式(23)となりVinの変換値Vincは式(24)で表される。
Figure 0007239863000019
また、入力電圧VinがVref-Vofc<Vinの場合のVinと変換積算回数kvの関係は以下の式で表される。
Figure 0007239863000020
式(25)でVGncδkvは基準電圧Vrefおよびオフセット電圧の和と比較信号が状態変化する直前の積算電圧の差を表し、δkvは0以上1未満の実数である。このδkvの不確かさのためVinのとり得る値は範囲を持つ。Vinの変換値はVinの範囲の中央値により決定する。Vinの範囲は式(26)となりVinの変換値Vincは式(27)で表される。
Figure 0007239863000021
図3で示した変換制御部22の処理により、校正状態で得た校正値VGpc、VGnc、Vofccを用いて入力電圧の変換値Vincを得ることができる。
上述ではVofc<0の場合で説明したが、Vofc>0の場合では変換制御部22によりクロス・バースイッチ33の11とs14およびs12とs13を接続した状態となる。この接続により、比較器34の入力では基準電圧Vrefとオフセット電圧の和と積算電圧を比較することとなるため、Vofc>0であっても上述と同じ変換時と校正時で校正した変換値Vincを求めることができる。
以上の説明で示した実施形態により、比較器34のオフセットや積算単位を構成する容量Co等が経時変化により変動しても、比較器34のオフセットとDAコンバータのアナログ値出力部である積算部32の校正が可能であり長期安定性の高いADコンバータ100を提供できる。
(変形例1)
図7は、第1実施形態の積算部32を変形したADコンバータ200の機能ブロック図を示す図である。図7に示す変形例1のADコンバータ200は、ADコンバータ100に対して積算部52と構成制御部41を備える点で異なる。
積算部52は、入力電圧が基準電圧Vrefより大きい場合に入力電圧とベース電圧の差を初期値として保持する処理により、入力電圧の範囲を電源電圧からグランドまでとできる。積算部52は、蓄積した電荷により積算電圧を発生させる容量Coと、ベース電圧Vbsを出力するベース電圧部521と、入力電圧とベース電圧Vbsの差を容量Coに保持する時に接続を切替える差分演算部520と、積算電圧を増加させる時に使用する正電流源320と、積算電圧を減少させる時に使用する負電流源321と、容量Coと正電流源320を接続・切断するSW1と、容量Coと負電流源321を接続・切断するSW2と、容量Coに初期値を与える時に接続するSW3とを有する。また、積算部52での正電流源320の電流の大きさは負電流源321の電流の大きさより大きく、正電流源320と負電流源321を使用した時の単位電圧をそれぞれ粗調整正単位電圧と微調整負単位電圧と記述する。
図8に変換時において、入力電圧Vinとベース電圧Vbsの差をとる時の等価回路を示す。Cpは配線、クロス・バースイッチ33と比較器34入力の寄生容量を表す。入力電圧が基準電圧Vrefより大きい場合では、変換時において切替部31のa10とb10を接続しSW3を接続した時に差分演算部520のa20とc20を接続する。この時等価回路は図8(a)となる。次にSW3を切断した後、差分演算部520のa20とb20を接続する(図8(b))。図8(a)と(b)で容量CoとCpに蓄積されている電荷は保存されるため以下の式(28)が成立し、積算開始前の初期値の電圧Vo,0は式(29)で表される。
Figure 0007239863000022
Vbsを適切に設定することにより、入力電圧Vinが正電流源320の出力端子の電圧範囲外でも、Vo,0を正電流源320の出力端子の電圧範囲内にすることができる。しかし、実際のVinとVo,0の差分電圧はVbs Co/(Co+Cp)となり寄生容量により予測できないため、校正が必要となる。本実施形態では校正時において図9に示す処理によりVbs Co/(Co+Cp)を校正する。
差分電圧Vbs Co/(Co+Cp)の校正では、切替部31のa10とd10を接続しSW3を接続する。このとき差分演算部520はa20とb20を接続する(図9(a))。次にSW3を切断した後差分演算部520のa20とc20を接続する(図9(b))。図9(a)と(b)の前後で容量CoとCpに蓄積されている電荷には電荷保存則が成立するため式(30)が成立し、Vo,0は式(31)で表されるように、差分電圧と等しくなる。
Figure 0007239863000023
この後で積算電圧が基準電圧Vrefと等しくなるまでの積算回数を計測することにより差分電圧を校正できる。
本積算部52での変換状態で実施される変換制御部22の処理フローを図10に示す。オフセット極性判定ステップS40と入力電圧比較ステップS41は図1の実施形態と同じであるため説明を割愛する。入力電圧比較ステップS41において入力電圧が基準電圧より大きいと判定した場合では、差分演算ステップS42に遷移する。差分演算ステップS42では図8で説明した処理を実施し積算部52の初期値を入力電圧から差分電圧を差し引いた電圧とする。入力電圧比較ステップS41において入力電圧が基準電圧Vrefより小さいと判定した場合では、入力電圧が積算部52の初期値となる。
増減積算回数計測ステップS43では、はじめに粗調整正単位電圧VGpで積算し積算電圧が基準電圧Vrefと比較器34のオフセット電圧の和を超えたら微調整負単位電圧VGnで積算する。図11に積算電圧と積算回数の関係を示す。kvc+1回目の粗調整正単位電圧での積算で基準電圧とオフセット電圧の和<積算電圧となったとすると、kvcを粗調整積算回数と定義する。また、微調整負単位電圧で積算を開始してからkvf+1回目で基準電圧Vrefとオフセット電圧の和>積算電圧となったとすると、kvfを微調整積算回数と定義する。記憶ステップS44ではkvcとkvfを記憶する。入力電圧VinがVref-Vofc>Vinの場合のVinと粗調整積算回数kvcおよび微調整積算回数kvfの関係は以下の式で表される。
Figure 0007239863000024
式(32)でVGnδkvは基準電圧Vrefおよびオフセット電圧の和と比較信号が状態変化する直前の積算電圧の差を表し、δkvは0以上1未満の実数である。
また、入力電圧VinがVref-Vofc<Vinの場合のVinとkvcおよびkvfの関係は以下の式で表される。
Figure 0007239863000025
校正時においては、オフセット計測処理、正負単位電圧相関計測処理、差分電圧計測処理、単位電圧計測処理を、それぞれオフセット計測処理部210、正負単位電圧相関計測処理部211、差分電圧計測処理部410、単位電圧計測処理部212で実施する。クロス・バースイッチ33の接続に関しては変換制御部22で決定した接続状態を維持する。オフセット計測処理は、図4での処理フローのオフセット計測ステップにおいて、はじめに粗調整正単位電圧で積算し積算電圧が基準電圧Vrefと比較器34のオフセット電圧の和を超えたら微調整負単位電圧で積算することが、図1の実施形態でのオフセット計測処理と異なる。ko2+1回目の粗調整正単位電圧での積算で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、ko2を粗調整オフセット積算回数と定義する。また、微調整負単位電圧で積算を開始してからko1+1回目で基準電圧Vrefとオフセット電圧の和>積算電圧となったとすると、ko1を微調整オフセット積算回数と定義する。基準電圧Vrefおよびオフセット電圧の和と積算電圧には以下の方程式が成立する。
Figure 0007239863000026
正負単位電圧相関計測処理は、積算回数計測ステップS3が増減積算回数計測ステップS43になること以外は図1の実施形態での処理と同じであるため説明を割愛する。図1の実施形態では、入力電圧が基準電圧Vrefより大きい場合に正負単位電圧相関計測処理を実施したが、図7の積算部52を使用した場合では入力電圧の大きさに関わらず実施する。積算電圧と基準電圧Vrefの関係式は式(4)のkoをko2とした以下の式となる。
Figure 0007239863000027
差分電圧計測処理部での処理フローを図12に示す。差分電圧チャージステップS50では式(30)と式(31)の説明で記述した処理を実施する。増減積算回数計測ステップS51は、変換制御部22の処理フローでの増減積算回数計測ステップS43と同じである。ks2+1回目の粗調整正単位電圧での積算で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、ks2を粗調整差分電圧積算回数と定義する。また、微調整負単位電圧で積算を開始してからks1+1回目で基準電圧Vrefとオフセット電圧の和>積算電圧となったとすると、ks1を微調整差分電圧積算回数と定義する。基準電圧Vrefおよびオフセット電圧の和、差分電圧Vsと積算電圧には以下の式(36)が成立する。ここでVsは式(31)と等価である。
Figure 0007239863000028
記憶ステップS52ではks2とks1を記憶する。差分電圧計測処理は入力電圧が基準電圧より低い場合は実施しなくてもよい。
単位電圧計測処理は、積算回数計測ステップが増減積算回数計測ステップになること以外は図1の実施形態での処理と同じである。ki2+1回目の粗調整正単位電圧での積算で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、ki2を粗調整単位電圧積算回数と定義する。また、微調整負単位電圧で積算を開始してからki1+1回目で基準電圧Vrefとオフセット電圧の和>積算電圧となったとすると、ki1を微調整単位電圧積算回数と定義する。基準電圧Vrefおよびオフセット電圧の和、積算電圧には以下の式(37)が成立する。
Figure 0007239863000029
表記を簡単にするためにkvf+δkv=Kv、ko1+δko=Ko、kp+δkp=Kp、ki1+δki=Ki、ks1+δks=Ksとし、式(34)と式(35)の差をとることにより以下の式を得る。
Figure 0007239863000030
式(35)と式(32)の差をとり式(36)を代入することでVGnとVGpの式を得る。
Figure 0007239863000031
Vref-Vofc>Vinの場合では、式(37)と式(32)の差をとり式(39)と式(40)を代入すると以下の式を得る。
Figure 0007239863000032
式(41)に含まれるδkv、δki、δkp、δkoは0以上1未満の実数であるが、具体的な値は不明である。このδkv、δki、δkp、δkoの不確かさのためVinのとり得る値は範囲を持つ。Vinの校正値は、Vinの範囲の中央値により決定する。式(41)をδkv、δki、δko、δkpで偏微分すると以下の式を得る。
Figure 0007239863000033
式(42)、式(43)、式(45)より、Vinはδkiとδkoに対して単調減少であり、δkvに対して単調増加である。式(44)より(Ki-Ko)(ki2-kvc)<(Ki-Kv)(ki2-ko2)の場合ではVinはδkpに対して単調増加である。このためVinの範囲は以下の式で表される。
Figure 0007239863000034
式(46)よりVinの中央値である校正値Vincは以下のように得られる。
Figure 0007239863000035
(Ki-Ko)(ki2-kvc)>(Ki-Kv)(ki2-ko2)の場合ではVinはδkpに対して単調減少であるためVinの範囲は以下の式で表される。
Figure 0007239863000036
式(46)よりVinの中央値である校正値Vincは以下のように得られる。
Figure 0007239863000037
Vref-Vofc<Vinの場合では、式(37)と式(36)の差をとり以下の式を得る。
Figure 0007239863000038
式(37)と式(33)の差をとり以下の式を得る。
Figure 0007239863000039
式(50)と式(51)の和をとり式(39)と式(40)を代入すると以下の式を得る。
Figure 0007239863000040
式(52)をδkv、δki、δko、δkp、δksで偏微分すると以下の式を得る。
Figure 0007239863000041
式(53)、式(54)、式(55)、式(57)より、Vinはδkiとδkoに対して単調減少であり、δkvとδksに対して単調増加である。∂Vin/∂(δkp)>0の場合ではVinはδkpに対して単調増加であるためVinの範囲は以下の式で表される。
Figure 0007239863000042
式(58)よりVinの中央値である校正値Vincは以下のように得られる。
Figure 0007239863000043
∂Vin/∂(δkp)<0の場合ではVinはδkpに対して単調減少であるためVinの範囲は以下の式で表される。
Figure 0007239863000044
式(60)よりVinの中央値である校正値Vincは以下のように得られる。
Figure 0007239863000045
以上説明したように、変形例1のADコンバータ200は、積算部52を含む積算変換部50と、差分電圧計測処理部410を含む校正制御部41とを備える。
積算部52は、単位電圧の中で絶対値の最も大きな粗調整正単位電圧VGp2と、該粗調整正単位電圧VGp2よりも絶対値の小さな微調整正単位電圧VGp1と、容量Coに、入力電圧とベース電圧部521が生成する所定のベース電圧との差分の電圧を充電する差分演算部520とを備える。
校正制御部41は、粗調整正単位電圧VGp2を積算した積算電圧が基準電圧Vrefと比較器34のオフセット電圧との和の電圧を越えたら、該積算電圧を更に微調整正単位電圧VGp1で積算する差分電圧計測処理部410を備える。
これにより、比較器34のオフセットや積算単位を構成する容量Co等が経時変化により変動しても、校正時と変換時で得た積算回数を用いて入力電圧の変換値Vincが得られ長期安定性の高いADコンバータを提供できる。
〔第2実施形態〕
図13は、本発明の第2実施形態に係るADコンバータ300の構成例を示す機能ブロック図である。図13に示すADコンバータ300は、負電流源321を具備しない積算変換部70を備える点で第1の実施例と異なる。図13は、1種の電流値(正電流源320)で2種の単位電圧を生成しているが、2種以上の電流値で生成した2種以上の単位電圧を積算するようにしても良い。
積算変換部70は、入力電圧が基準電圧より大きい場合に入力電圧とベース電圧の差を初期値として保持する処理により入力電圧の範囲を電源電圧からグランドまでとでき、容量Coとグランド間に抵抗部720を設けることにより正電流源320のみで粗調整と微調整を可能にしている。
積算部72は、蓄積した電荷により積算電圧を発生させる容量Coと、ベース電圧Vbsを出力するベース電圧部521と、入力電圧とベース電圧の差を容量Coに保持する時に接続を切替える差分演算部520と、容量Coの電流源に接続される端子とは別の端子をグランドに接続する時に容量Coとグランド間に接続する抵抗部720と、粗調整正単位電圧と微調整正単位電圧を発生させる正電流源320と、容量Coと正電流源320を接続・切断するSW1と、容量Coに初期値を与える時に接続するSW3とを有する。
入力電圧Vinとベース電圧Vbsの差をとる時の動作は図7に示した積算部52と同じなため説明を割愛する。
積算部72で変換時において実施される変換制御部22の処理フローを図14に示す。図7に示した積算部52の第1の変形例での変換制御部22の処理フロー(図10)とは、粗調・微調切替積算回数計測ステップS63を用いるところが異なる。粗調・微調切替積算回数計測ステップS63では、はじめに粗調整正単位電圧VGp2で積算した後、微調整正単位電圧VGp1で積算する。粗調整正単位電圧VGp2と微調整正単位電圧VGp1での正電流源の電流値をそれぞれI2、I1とする。図15(a)と(b)に本積算部72での積算電圧および電流値と積算回数kの関係を示す。VGp2で積算している時では、正電流源320からI2の電流が容量Coだけでなく抵抗部にも流れる。抵抗部の抵抗をRgとするとI2の電流が流れている瞬間では積算電圧にRg I2の電圧が重畳している。I2の電流が流れなくなった時では抵抗部720で生じる電圧がゼロになるため、積算電圧は式(1)に従う。本積算部72では、正電流源320からVGp2を生じさせる電流が流れているときの積算電圧に抵抗部720で生じる電圧が重畳しているときの電圧が基準電圧Vrefとオフセット電圧の和を超えたら、VGp1を生じさせる電流に正電流源320の電流を切替える。kvc回目のVGp2での積算で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、kvcを粗調整積算回数と定義する。また、VGp1で積算を開始してからkvf+1回目で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、kvfを微調整積算回数と定義する。記憶ステップS64ではkvcとkvfを記憶する。入力電圧VinがVref-Vofc>Vinの場合のVinと粗調整積算回数kvcおよび微調整積算回数kvfの関係は以下の式で表される。
Figure 0007239863000046
式(62)でVGp1δkvは基準電圧およびオフセット電圧の和と比較信号が状態変化する直前の積算電圧Vrefの差を表し、δkvは0以上1未満の実数である。
また、入力電圧VinがVref-Vofc<Vinの場合のVinとkvcおよびkvfの関係は以下の式で表される。
Figure 0007239863000047
校正時では、オフセット計測処理、単位電圧相関計測処理、差分電圧計測処理、単位電圧計測処理を、それぞれオフセット計測処理部、単位電圧相関計測処理部、差分電圧計測処理部、単位電圧計測処理部で実施する。オフセット計測処理で図7の積算部52の第1の変形例との異なる個所は、増減積算回数計測ステップが粗調・微調切替積算回数計測ステップとなることである。ko2回目のVGp2での積算で基準電圧とオフセット電圧の和<積算電圧となったとすると、ko2を粗調整オフセット積算回数と定義し、VGp1で積算を開始してからko1+1回目で基準電圧とオフセット電圧の和<積算電圧となったとすると、ko1を微調整オフセット積算回数と定義する。積算電圧と基準電圧の関係式は以下で表される。
Figure 0007239863000048
単位電圧相関計測処理の処理フローを図16に示す。基準電圧プリチャージステップS70は、図1の実施形態や図7の積算部52の第1の変形例と同じなため説明を割愛する。予備積算ステップS71ではオフセット計測処理で得られた粗調整オフセット積算回数ko2より1回少ない積算回数でVGp2を用いて積算する。この後、微調整積算回数ステップS72で基準電圧Vrefとオフセット電圧の和>積算電圧となるまでVGp1で積算する。kp+1回目のVGp1での積算で基準電圧Vrefとオフセット電圧の和>積算電圧となったとすると、kpを正相関積算回数と定義する。積算電圧と基準電圧Vrefの関係式は以下で表される。
Figure 0007239863000049
差分電圧計測処理と単位電圧計測処理で図7の積算部52の第1の変形例との異なる個所は、増減積算回数計測ステップが粗調・微調切替積算回数計測ステップとなることである。差分電圧計測処理において、ks2回目の粗調整正単位電圧での積算で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、ks2を粗調整差分電圧積算回数と定義し、微調整正単位電圧で積算を開始してからks1+1回目で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、ks1を微調整差分電圧積算回数と定義する。
単位電圧計測処理において、ki2回目の粗調整正単位電圧での積算で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、ki2を粗調整単位電圧積算回数と定義し、微調整正単位電圧で積算を開始してからki1+1回目で基準電圧Vrefとオフセット電圧の和<積算電圧となったとすると、ki1を微調整単位電圧積算回数と定義する。それぞれ、基準電圧Vrefと積算電圧の関係は以下の式で表される。
Figure 0007239863000050
差分電圧計測処理は入力電圧が基準電圧より低い場合は実施しなくてもよい。
表記を簡単にするためにkvf+δkv=Kv、ko1+δko=Ko、kp+δkp=Kp、ki1+δki=Ki、ks1+δks=Ksとし、式(64)と式(65)の差をとることにより以下の式を得る。
Figure 0007239863000051
式(65)と式(63)の差をとり式(66)を代入すると以下の式を得る。
Figure 0007239863000052
Vref-Vofc>Vinの場合では、式(67)と式(62)の差をとり式(68)、式(69)を代入すると以下の式を得る。
Figure 0007239863000053
式(70)に含まれるδkv、δki、δkp、δkoは0以上1未満の実数であるが、具体的な値は不明である。このδkv、δki、δkp、δkoの不確かさのためVinのとり得る値は範囲を持つ。Vinの校正値は、Vinの範囲の中央値により決定する。式(70)をδkv、δki、δko、δkpで偏微分すると以下の式を得る。
Figure 0007239863000054
式(71)、式(72)、式(74)より、Vinはδkvに対して単調減少であり、δkiとδkoに対して単調増加である。∂Vin/∂(δkp)>0の場合ではVinはδkpに対して単調増加であるためVinの範囲は以下の式で表される。
Figure 0007239863000055
式(75)よりVinの中央値である校正値Vincは以下のように得られる。
Figure 0007239863000056
∂Vin/∂(δkp)<0の場合ではVinはδkpに対して単調減少であるためVinの範囲は以下の式で表される。
Figure 0007239863000057
式(75)よりVinの中央値である校正値Vincは以下のように得られる。
Figure 0007239863000058
Vref-Vofc>Vinの場合では、式(67)と式(63)の差をとると以下の式を得る。
Figure 0007239863000059
また、式(67)と式(66)の差を取ると以下の式を得る。
Figure 0007239863000060
式(79)と式(80)の和をとって式(68)、式(69)を代入すると以下の式を得る。
Figure 0007239863000061
式(81)をδks、δkv、δki、δko、δkpで偏微分すると以下の式を得る。
Figure 0007239863000062
式(82)、式(83)、式(84)、式(86)より、Vinはδkvとδksに対して単調減少であり、δkiとδkoに対して単調増加である。∂Vin/∂(δkp)>0の場合ではVinはδkpに対して単調増加であるためVinの範囲は以下の式で表される。
Figure 0007239863000063
式(87)よりVinの中央値である校正値Vincは以下のように得られる。
Figure 0007239863000064
∂Vin/∂(δkp)<0の場合ではVinはδkpに対して単調減少であるためVinの範囲は以下の式で表される。
Figure 0007239863000065
式(87)よりVinの中央値である校正値Vincは以下のように得られる。
Figure 0007239863000066
以上説明したように、第2実施形態に係るADコンバータ300は、積算部72を含む積算変換部70と、単位電圧相関計測処理部610を含む校正制御部61とを備える。
積算変換部70は、単位電圧を保持する容量Coに、変換時は入力電圧を接続させ、校正時は基準電圧Vref又は接地電圧を接続させる切替部31と、変換時は容量Coに入力電圧を保持させた後に、容量Coを大きさの異なる複数の電流の何れかで充電して積算電圧を生成する正電流源320と、容量Coの正電流源320と反対側の端に、所定のベース電圧を生成するベース電圧部521、又は接地電圧に接続された抵抗部720を接続させる差分演算部520とを備える積算部72と、基準電圧Vrefを一方の出力端に出力し、積算電圧を他方の出力端に出力する場合と、基準電圧Vrefを他方の出力端に出力し、積算電圧を一方の出力端に出力する場合とを切り替えるクロス・バースイッチ33と、一方の出力端と負入力端を接続し、他方の出力端と正入力端を接続させ正入力端の電圧が負入力端の電圧を越えた場合に比較信号を出力する比較器34とを備える。
校正制御部61は、絶対値の大きな正の電流で生成した単位電圧である粗調整正単位電圧で積算した積算電圧が基準電圧Vrefと比較器34のオフセット電圧の和を越えたら、積算電圧を粗調整正単位電圧よりも絶対値の小さな微調整正単位電圧で積算する単位電圧相関計測処理部610を備える。
これにより、比較器34のオフセットや積算単位を構成する容量Co等が経時変化により変動しても、校正時と変換時で得た積算回数を用いて入力電圧の変換値Vincが得られ長期安定性の高いADコンバータを提供できる。
上述の本積算部72の動作では1回の積算で正電流源320の電流の出力と停止を行ったが、比較器34で基準電圧Vrefとオフセット電圧の和>積算電圧となるまで正電流源320の電流を継続して出力する処理でもよい。また、粗調整単位電圧の場合ではオフセット電圧の和>積算電圧となるまで正電流源320の電流を継続して出力し、微調整単位電圧の場合では1回の積算で正電流源320の電流の出力と停止の処理を行ってもよい。さらには、微調整単位電圧の場合ではオフセット電圧の和>積算電圧となるまで正電流源320の電流を継続して出力し、粗調整単位電圧の場合では1回の積算で正電流源320の電流の出力と停止の処理を行ってもよい。
(変形例2)
図17は、本発明の第2実施形態に係るADコンバータ300を変形した変形例2の機能ブロック図を示す図である。図17に示すADコンバータ400は、積算変換部80を備える点でADコンバータ300と異なる。積算変換部80はしきい値電圧部801を備える。
図13のブロック図では比較器34で基準電圧と積算電圧を比較したが、本実施例では任意のしきい値電圧およびオフセット電圧の和と積算電圧を比較する。この処理のため積算変換部80にしきい値電圧部801を設けている。しきい値電圧部801以外の積算変換部80の構成は第2実施形態(図13)と同じである。
制御部60の処理も第2実施形態と同様に、変換時では変換制御部60で変換制御処理を実施し、校正時ではオフセット計測処理、単位電圧相関計測処理、差分電圧計測処理、単位電圧計測処理を、それぞれオフセット計測処理部210、単位電圧相関計測処理部610、差分電圧計測処理部410、単位電圧計測処理部212で実施する。
変換制御処理において得られる積算電圧と基準電圧Vrefの関係式は、比較器34でしきい値電圧Vtおよびオフセット電圧の和と積算電圧を比較するため以下の式となる。
Figure 0007239863000067
式(91)がVt-Vofc>Vinの場合の関係式であり、式(92)がVt-Vofc>Vinの場合の関係式である。
オフセット計測処理、単位電圧相関計測処理、差分電圧計測処理、単位電圧計測処理において積算電圧と基準電圧Vrefの関係式はそれぞれ以下の式となる。
Figure 0007239863000068
差分電圧計測処理は入力電圧が基準電圧より低い場合は実施しなくてもよい。
表記を簡単にするためにkvf+δkv=Kv、ko1+δko=Ko、kp+δkp=Kp、ki1+δki=Ki、ks1+δks=Ksとし、式(93)と式(94)の差をとることにより以下の式を得る。
Figure 0007239863000069
式(96)と式(93)の差をとって式(97)を代入すると以下の式を得る。
Figure 0007239863000070
Vt-Vofc>Vinの場合では、式(96)と式(91)の差をとり、式(97)および式(98)を代入すると以下の式を得る。
Figure 0007239863000071
Vt-Vofc<Vinの場合では、式(96)および式(92)の差と式(96)および式(95)の差との和をとり、式(97)および式(98)を代入すると以下の式を得る。
Figure 0007239863000072
式(99)は式(70)と、式(100)は式(81)同じであるため、本実施形態においても第2実施形態と同様の演算によりVinの範囲の中央値である入力電圧の変換値Vincを得ることができる。
以上説明したように、変形例2のADコンバータ400は、しきい値電圧部801を含む積算変換部80を備える。
ADコンバータ400は、校正のための測定器を必要としない自己校正機能付きADコンバータであって、基準電圧を生成する基準電圧部10と、積算電圧の変化量の単位である2つ以上の単位電圧を有し、変換時においては入力電圧を初期値とした積算電圧が所定のしきい値電圧を越えるまで2つ以上の単位電圧の何れか一つの単位電圧を積算する積算変換部80と、校正時に2つ以上の単位電圧と比較器34のオフセット電圧を校正する校正制御部61と、変換時に比較器34のオフセット電圧の極性を判定した後に、入力電圧をデジタル値に変換する変換制御部22とを有する制御部60とを備える。
これにより、比較器34のオフセットや積算単位を構成する容量Co等が経時変化により変動しても、校正時と変換時で得た積算回数を用いて入力電圧の変換値Vincが得られ長期安定性の高いADコンバータを提供できる。
(変形例3)
図18は、本発明の第2実施形態を変形した変形例3の機能ブロック図を示す図である。
本変形例3では、しきい値電圧Vtおよび基準電圧Vrefの差としきい値電圧Vtおよび差分電圧Vsの差を比較器34のオフセット電圧Vofcより十分大きく設定した場合でかつ積算部72を使用した場合に適用できる。
第2実施形態(図13)および変形例2(図17)では粗調整単位電圧の符号が正であるため、積算の初期値は積算の終点であるしきい値電圧とオフセット電圧の和や差より低い必要がある。式(91)から式(96)では左辺のVt-Vofcより低い電圧を初期値とする必要がある。したがって、Vt-Vofc >VrefかつVt-Vofc>Vsとなるように、すなわちVt-Vref>VofcかつVt-Vs>VofcとなるようにVt、Vref、Vsを設定すればよい。
本変形例3ではオフセットの極性を判定する処理が不要なため、変換時は変換制御部22が変換制御処理を実施する。変換制御部22の処理フローは図19に示すように、図3に示すフローから極性判定ステップS1を除いたフローとなる。校正時の処理は、図17のブロック図での説明と同じなため割愛する。
以上説明したように、変形例3のADコンバータ500は、しきい値電圧部801を含む積算変換部90を備える。
積算変換部90は、単位電圧を保持する容量Coに、変換時は入力電圧を接続させ、校正時は基準電圧Vref又は接地電圧を接続させる切替部31と、変換時は、容量Coに入力電圧を保持させた後に、該保持させた電圧に2つ以上の単位電圧の何れか一つを積算して積算電圧を生成し、校正時は、容量Coに基準電圧又は接地電圧を保持させた後に、該保持させた電圧に2つ以上の単位電圧の何れか一つを積算して積算電圧を生成する積算部72と、しきい値電圧を生成するしきい値電圧部801と、しきい値電圧を負入力端に積算電圧を正入力端にそれぞれ接続させ、積算電圧がしきい値電圧を越えた場合に比較信号を出力する比較器34とを備える。
変形例3によれば、比較器34のオフセットや積算単位を構成する容量Co等が経時変化により変動しても、校正時と変換時で得た積算回数を用いて入力電圧の変換値Vincが得られ長期安定性の高いADコンバータを提供できる。
10:基準電圧部
20,40,60:制御部
21,41:校正制御部
22:変換制御部
30,50:積算変換部
31:切替部
32,52,72:積算部
33:クロス・バースイッチ
34:比較器
100,200,300,400,500:自己校正機能付きADコンバータ
210:オフセット計測処理部
211:正負単位電圧相関計測処理部
212:単位電圧計測処理部
320:正電流源
321:負電流源
410:差分電圧計測処理部
520:差分演算部
521:ベース電圧部
610:単位電圧相関計測処理部
720:抵抗部
801:しきい値電圧部

Claims (7)

  1. 校正のための測定器を必要としない自己校正機能付きADコンバータであって、
    基準電圧を生成する基準電圧部と、
    積算電圧の変化量の単位である2つ以上の単位電圧を有し、変換時においては入力電圧を初期値とした前記積算電圧が前記基準電圧を越えるまで前記2つ以上の単位電圧の何れか一つの単位電圧を積算する積算変換部と、
    校正時に前記2つ以上の単位電圧と比較器のオフセット電圧を校正する校正制御部と、変換時に前記比較器のオフセット電圧の極性を判定した後に、入力電圧をデジタル値に変換する変換制御部とを有する制御部と
    を備える自己校正機能付きADコンバータ。
  2. 前記積算変換部は、
    前記単位電圧を保持する容量に、変換時は入力電圧を接続させ、校正時は前記基準電圧又は接地電圧を接続させる切替部と、
    変換時は容量に入力電圧を保持させた後に、該保持させた電圧に前記2つ以上の単位電圧の何れか一つを積算して積算電圧を生成し、校正時は前記容量に前記基準電圧又は接地電圧を保持させた後に、該保持させた電圧に前記2つ以上の単位電圧の何れか一つを積算した積算電圧を生成する積算部と、
    前記基準電圧を一方の出力端に出力し前記積算電圧を他方の出力端に出力する場合と、前記基準電圧を他方の出力端に出力し前記積算電圧を一方の出力端に出力する場合とを切り替えるクロス・バースイッチと、
    前記一方の出力端と負入力端を接続し、前記他方の出力端と正入力端を接続させ前記正入力端の電圧が前記負入力端の電圧を越えた場合に比較信号を出力する前記比較器と
    を備えることを特徴とする請求項1に記載の自己校正機能付きADコンバータ。
  3. 前記校正制御部は、
    容量に前記基準電圧に相当する単位電圧をプリチャージした後に、前記比較器の出力が反転するまでの前記単位電圧の積算回数を計測するオフセット計測処理部と、
    前記入力電圧が前記基準電圧より大きい場合に、前記積算回数に所定回数を加算した過剰積算回数で正の単位電圧を加算して積算電圧を生成した後に該積算電圧が前記基準電圧より小さくまるまで負の単位電圧で減算して前記比較器の出力が反転するまでの積算回数である正負相関積算回数を計測する正負単位電圧相関計測処理部と、
    前記単位電圧をリセットした後に、前記正の単位電圧を積算して前記比較器の出力が反転するまでの前記単位電圧の積算回数である単位電圧積算回数を計測する単位電圧計測処理部と
    を備えることを特徴とする請求項1又は2に記載の自己校正機能付きADコンバータ。
  4. 前記積算部は、
    前記単位電圧の中で絶対値の最も大きな粗調整正単位電圧と、
    該粗調整正単位電圧よりも絶対値の小さな微調整正単位電圧と、
    前記容量に、入力電圧とベース電圧部が生成する所定のベース電圧との差分の電圧を充電する差分演算部と
    を備え、
    前記校正制御部は、
    前記粗調整正単位電圧を積算した積算電圧が前記基準電圧と前記比較器のオフセット電圧との和の電圧を越えたら、該積算電圧を更に前記微調整正単位電圧で積算する差分電圧計測処理部を
    備えることを特徴とする請求項2に記載の自己校正機能付きADコンバータ。
  5. 前記積算変換部は、
    前記単位電圧を保持する容量に、変換時は入力電圧を接続させ、校正時は前記基準電圧又は接地電圧を接続させる切替部と、
    変換時は前記容量に入力電圧を保持させた後に、前記容量を大きさの異なる複数の電流の何れかで充電して積算電圧を生成する正電流源と、前記容量の前記正電流源と反対側の端に、所定のベース電圧を生成するベース電圧部、又は接地電圧に接続された抵抗部を接続させる差分演算部とを備える積算部と、
    前記基準電圧を一方の出力端に出力し、前記積算電圧を他方の出力端に出力する場合と、前記基準電圧を他方の出力端に出力し、前記積算電圧を一方の出力端に出力する場合とを切り替えるクロス・バースイッチと、
    前記一方の出力端と負入力端を接続し、前記他方の出力端と正入力端を接続させ前記正入力端の電圧が前記負入力端の電圧を越えた場合に比較信号を出力する比較器と
    を備え、
    前記校正制御部は、
    絶対値の大きな正の電流で生成した単位電圧である粗調整正単位電圧で積算した積算電圧が前記基準電圧と前記比較器のオフセット電圧の和を越えたら、前記積算電圧を前記粗調整正単位電圧よりも絶対値の小さな微調整正単位電圧で積算する単位電圧相関計測処理部を
    備えることを特徴とする請求項1に記載の自己校正機能付きADコンバータ。
  6. 校正のための測定器を必要としない自己校正機能付きADコンバータであって、
    基準電圧を生成する基準電圧部と、
    積算電圧の変化量の単位である2つ以上の単位電圧を有し、変換時においては入力電圧を初期値とした前記積算電圧が所定のしきい値電圧を越えるまで前記2つ以上の単位電圧の何れか一つの単位電圧を積算する積算変換部と、
    校正時に前記2つ以上の単位電圧と比較器のオフセット電圧を校正する校正制御部と、変換時に前記比較器のオフセット電圧の極性を判定した後に、入力電圧をデジタル値に変換する変換制御部とを有する制御部と
    を備える自己校正機能付きADコンバータ。
  7. 前記積算変換部は、
    前記単位電圧を保持する容量に、変換時は入力電圧を接続させ、校正時は基準電圧又は接地電圧を接続させる切替部と、
    変換時は、前記容量に入力電圧を保持させた後に、該保持させた電圧に前記2つ以上の単位電圧の何れか一つを積算して積算電圧を生成し、校正時は、前記容量に前記基準電圧又は接地電圧を保持させた後に、該保持させた電圧に前記2つ以上の単位電圧の何れか一つを積算して積算電圧を生成する積算部と、
    前記しきい値電圧を生成するしきい値電圧部と、
    前記しきい値電圧を負入力端に前記積算電圧を正入力端にそれぞれ接続させ、前記積算電圧が前記しきい値電圧を越えた場合に比較信号を出力する前記比較器と
    を備えることを特徴とする請求項6に記載の自己校正機能付きADコンバータ。
JP2021553954A 2019-10-30 2019-10-30 自己校正機能付きadコンバータ Active JP7239863B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042542 WO2021084645A1 (ja) 2019-10-30 2019-10-30 自己校正機能付きadコンバータ

Publications (2)

Publication Number Publication Date
JPWO2021084645A1 JPWO2021084645A1 (ja) 2021-05-06
JP7239863B2 true JP7239863B2 (ja) 2023-03-15

Family

ID=75714924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021553954A Active JP7239863B2 (ja) 2019-10-30 2019-10-30 自己校正機能付きadコンバータ

Country Status (3)

Country Link
US (1) US11936396B2 (ja)
JP (1) JP7239863B2 (ja)
WO (1) WO2021084645A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11714437B2 (en) * 2019-05-28 2023-08-01 Nippon Telegraph And Telephone Corporation Variable reference voltage source
JPWO2022264307A1 (ja) * 2021-06-16 2022-12-22

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191988A (ja) 2012-03-13 2013-09-26 Ricoh Co Ltd 積分回路及びad変換回路
JP5346441B2 (ja) 2006-02-24 2013-11-20 株式会社半導体エネルギー研究所 液晶表示装置
JP6074820B2 (ja) 2015-01-23 2017-02-08 国立研究開発法人情報通信研究機構 アノテーション補助装置及びそのためのコンピュータプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191930A (ja) * 1983-04-15 1984-10-31 Hitachi Ltd アナログ・デイジタル変換回路
JPS6074820A (ja) * 1983-09-30 1985-04-27 Toshiba Corp A/d変換器
US5027116A (en) * 1987-02-24 1991-06-25 Micro Linear Corporation Self-calibrating analog to digital converter
JP2523998B2 (ja) * 1991-01-31 1996-08-14 株式会社東芝 コンパレ―タ
JP2003078365A (ja) * 2001-09-05 2003-03-14 Sony Corp オペアンプ回路、静電容量検出装置および指紋照合装置
US7825837B1 (en) * 2008-09-05 2010-11-02 National Semiconductor Corporation Background calibration method for analog-to-digital converters
US8638248B2 (en) * 2011-10-07 2014-01-28 Nxp, B.V. Input-independent self-calibration method and apparatus for successive approximation analog-to-digital converter with charge-redistribution digital to analog converter
US9356615B1 (en) * 2015-11-06 2016-05-31 Inphi Corporation Systems and methods for comparator calibration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346441B2 (ja) 2006-02-24 2013-11-20 株式会社半導体エネルギー研究所 液晶表示装置
JP2013191988A (ja) 2012-03-13 2013-09-26 Ricoh Co Ltd 積分回路及びad変換回路
JP6074820B2 (ja) 2015-01-23 2017-02-08 国立研究開発法人情報通信研究機構 アノテーション補助装置及びそのためのコンピュータプログラム

Also Published As

Publication number Publication date
JPWO2021084645A1 (ja) 2021-05-06
WO2021084645A1 (ja) 2021-05-06
US20220393696A1 (en) 2022-12-08
US11936396B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US11368162B2 (en) Self-calibration function-equipped AD converter
US9407839B2 (en) Solid-state imaging device
US8456335B2 (en) Analog-to-digital converter
JP7239863B2 (ja) 自己校正機能付きadコンバータ
KR101858258B1 (ko) 전원장치, 그 제어방법 및 이들을 이용한 시험장치
US20120200440A1 (en) A/d converter and semiconductor device
EP3428588A1 (en) Optical sensor arrangement and method for light sensing
TWI559115B (zh) Energy gap reference circuit
JP7315868B2 (ja) 自己校正機能付きadコンバータ
US20170089966A1 (en) Capacitance measurement
US9823285B2 (en) Charge measurement
WO2020105417A1 (ja) 可変基準電圧源
JP7328579B2 (ja) Adコンバータ
JP7406168B2 (ja) 自己校正機能付きadコンバータ
US11984903B2 (en) Variable reference voltage source
WO2022264307A1 (ja) 自己校正機能付きadコンバータ
US11714437B2 (en) Variable reference voltage source
JP7298366B2 (ja) 静電容量検出装置
WO2021245831A1 (ja) Adコンバータ
WO2013108728A1 (ja) 測定装置及びそれを用いた測定方法
JP2014039218A (ja) Ad変換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7239863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150