JP7229792B2 - 多孔質ガラス微粒子体の製造方法、多孔質ガラス微粒子体の製造装置、およびガラス母材の製造方法 - Google Patents

多孔質ガラス微粒子体の製造方法、多孔質ガラス微粒子体の製造装置、およびガラス母材の製造方法 Download PDF

Info

Publication number
JP7229792B2
JP7229792B2 JP2019011505A JP2019011505A JP7229792B2 JP 7229792 B2 JP7229792 B2 JP 7229792B2 JP 2019011505 A JP2019011505 A JP 2019011505A JP 2019011505 A JP2019011505 A JP 2019011505A JP 7229792 B2 JP7229792 B2 JP 7229792B2
Authority
JP
Japan
Prior art keywords
gas
burner
flow rate
purge gas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019011505A
Other languages
English (en)
Other versions
JP2019137602A (ja
Inventor
信敏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of JP2019137602A publication Critical patent/JP2019137602A/ja
Application granted granted Critical
Publication of JP7229792B2 publication Critical patent/JP7229792B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

本発明は、多孔質ガラス微粒子体の製造方法、多孔質ガラス微粒子体の製造装置、およびガラス母材の製造方法に関する。
従来から、下記特許文献1に示されるように、ガラスロッドなどの出発部材にガラス微粒子を堆積させる多孔質ガラス微粒子体の製造方法が知られている。この種の多孔質ガラス微粒子体を焼結させると、光ファイバなどを製造するためのガラス母材を得ることができる。
また、下記特許文献1には、多孔質ガラス微粒子体の端部で、原料ガスの流量を徐々に減らしつつ、バーナーに供給するガスを原料ガスから不活性ガス(パージガス)に切り替えることが開示されている。
特開2003-212554号公報
特許文献1では、原料ガスとして四塩化ケイ素を用いている。しかしながら、四塩化ケイ素を反応させると塩酸が生じるため、環境負荷や塩酸の処理コストなどの面で課題がある。そこで近年、多孔質ガラス微粒子体の原料として、四塩化ケイ素の代わりにケイ素含有有機化合物を用いることが多くなっている。
ところで、ケイ素含有有機化合物は可燃性を有するため、特許文献1に記載の方法では、原料ガスの流量を減らす工程や、パージガスに切り替える工程において、原料ガスの流速が低下した際にバーナー内に残留する原料に引火し、逆火が発生する可能性があった。
また、逆火の発生を抑制するために、パージガスの流量を大きくした場合には、このパージガスが多孔質ガラス微粒子体に強く吹き付けられて、多孔質ガラス微粒子体の温度勾配が大きくなってしまう。このため、多孔質ガラス微粒子体にひび割れなどの破損が生じやすくなり、品質が低下する場合があった。
本発明はこのような事情を考慮してなされ、ケイ素含有有機化合物を原料として用いた場合に、逆火の発生および多孔質ガラス微粒子体の品質の低下を抑制することを目的とする。
上記課題を解決するために、本発明の第1の態様に係る多孔質ガラス微粒子体の製造方法は、回転する出発部材に、ケイ素含有有機化合物を含む原料ガスから生成されたガラス微粒子の堆積層を形成する工程と、バーナーに供給されるガスを、前記原料ガスからパージガスに切り替える工程と、少なくとも前記原料ガスが前記バーナー内から排出されるまでの間、前記パージガスを第1流量で前記バーナーに供給する工程と、前記バーナーに供給される前記パージガスの流量を、前記第1流量よりも小さい第2流量に切り替える工程と、を有する。
上記第1の態様によれば、原料ガスがバーナー内から排出されるまでの間、パージガスが第1流量でバーナーに供給される。これにより、バーナー内の原料ガスが確実に排出され、バーナー内で原料ガスが燃焼する逆火の発生を抑えることができる。
さらに、原料ガスがバーナー内から排出された後は、パージガスの流量が第1流量よりも小さい第2流量に切り替えられる。これにより、ガラス微粒子の堆積層にパージガスが強く吹き付けられて、堆積層の温度勾配が大きくなって破損などが生じることを抑制できる。
ここで、前記パージガスの流量を、電子的に制御することで前記第1流量から前記第2流量へと切り替えてもよい。
この場合、第1流量および第2流量の調整が容易となり、製造装置の汎用性を向上させることができる。
また、パージガス供給源と前記バーナーとの間に設けられたガスだまりから前記パージガスを供給することで、前記パージガスの流量を前記第1流量とし、前記ガスだまりよりも上流側に設けられた供給機構によって、前記パージガスの流量を前記第2流量としてもよい。
この構成によれば、バーナーに供給されるパージガスの流量を、第1流量から第2流量へと速やかに切り替えることができる。従って、パージガスが第1流量で必要以上に長時間バーナーの出口から流出し続けることを抑制できる。結果として、多孔質ガラス微粒子体の品質の低下をより確実に抑えることができる。
また、前記原料ガスが前記バーナーに供給される場合とベントラインに供給される場合とに関わらず、前記原料ガスの流量が一定であってもよい。
この場合、逆火の発生をより確実に抑制することができる。
また、前記バーナーに供給されるガスが、前記原料ガスと酸素ガスとが混合された予混合ガスであってもよい。
この場合、原料ガスと酸素ガスとの混合比率が安定する。これにより、原料ガスを安定して効率よく反応させることが可能となるとともに、不完全燃焼による多孔質ガラス微粒子体及びバーナー内への炭素の付着なども抑止することができる。
また、予混合ガスは酸素を含有するため燃焼しやすく、逆火がさらに生じやすいが、前述の通り、上記態様の製造方法によってこのような逆火の発生を抑制することができる。
また、前記予混合ガスが前記バーナーに供給される場合とベントラインに供給される場合とに関わらず、前記予混合ガスの流量が一定であってもよい。
この場合、逆火の発生が抑制されるとともに、原料ガスと酸素ガスとの混合比がより安定し、製造条件の変動を抑える効果が得られる。
本発明の第2の態様に係るガラス母材の製造方法は、上記第1態様により得られた多孔質ガラス微粒子体を焼結させる工程を有する。
上述の通り、第1の態様に係る多孔質ガラス微粒子体の製造方法によれば、ガラス微粒子の堆積層にパージガスが強く吹き付けられて堆積層の破損などが生じることを抑制することができる。従って、このようにして得られた多孔質ガラス微粒子体を焼結させてガラス母材を得ることで、ガラス母材の品質を安定させることができる。
本発明の第3の態様に係る多孔質ガラス微粒子体の製造装置は、バーナーと、前記バーナーに、ケイ素含有有機化合物を含む原料ガスを供給する原料ガス供給ラインと、前記バーナーにパージガスを供給するパージガス供給ラインと、前記原料ガス供給ラインおよび前記パージガス供給ラインの、前記バーナーへの接続および遮断を切り替える切替機構と、前記パージガス供給ラインにおいて、前記切替機構よりも上流側に設けられ、前記パージガスの供給量を制御する制御機構と、を備え、前記制御機構は、前記バーナーに供給する前記パージガスの流量を、少なくとも前記原料ガスが前記バーナー内から排出されるまでの間第1流量とし、その後で前記第1流量よりも小さい第2流量へと切り替える。
上記第3の態様によれば、原料ガスがバーナー内から排出されるまでの間、バーナーに供給されるパージガスの流量が、制御機構によって第1流量とされる。これにより、バーナー内の原料ガスが確実に排出され、バーナー内で原料ガスが燃焼する逆火の発生を抑えることができる。
さらに、原料ガスがバーナー内から排出された後は、制御機構によって、パージガスの流量が第1流量よりも小さい第2流量に切り替えられる。これにより、ガラス微粒子の堆積層にパージガスが強く吹き付けられて、堆積層の温度勾配が大きくなって破損などが生じることを抑制できる。
ここで、前記制御機構が、一定量の前記パージガスを供給する供給機構と、前記パージガス供給ラインに接続され、かつ前記供給機構と前記切替機構との間に配置されたガスだまりと、を有してもよい。
この場合、ガスだまりからバーナーにパージガスが供給されている間の流量を第1流量とし、供給機構からバーナーにパージガスが供給されている間の流量を第2流量とすることができる。この構成により、例えば電子制御による場合と比較して、第1流量から第2流量へと切り替わる際の応答性が向上する。すなわち、第1流量から第2流量への切り替えが速やかに行われることで、大きな流量のパージガスが必要以上に長時間バーナーの出口から流出し続けることが抑えられる。結果として、多孔質ガラス微粒子体の品質の低下を、より確実に抑えることができる。
また、前記製造装置が、前記切替機構と前記バーナーとを接続する原料ガス配管をさらに備え、前記供給機構と前記切替機構との間の前記パージガス供給ラインの内容積および前記ガスだまりの内容積の合計が、前記バーナーの内容積および原料ガス配管の内容積の合計の4~20倍であってもよい。
この場合、バーナーおよび原料ガス配管内の原料ガスを確実に排出させつつ、パージガスが大きな流量で長時間バーナーの出口から流出することが抑えられる。
本発明の上記態様によれば、ケイ素含有有機化合物を原料として用いた場合に、逆火の発生および多孔質ガラス微粒子体の品質の低下を抑制することができる。
第1実施形態に係る多孔質ガラス微粒子体の製造装置の概略図である。 第1実施形態に係るガス供給装置の概略図であり、(a)は原料ガスをバーナーに供給する状態を示す。(b)はパージガスをバーナーに供給する状態を示す。 第2実施形態に係るガス供給装置の概略図であり、(a)は原料ガスをバーナーに供給する状態を示す。(b)はパージガスをバーナーに供給する状態を示す。 実施例に係るパージガスの流量の推移を示すグラフである。
(第1実施形態)
以下、第1実施形態の多孔質ガラス微粒子体の製造方法および製造装置について、図面に基づいて説明する。なお、本実施形態により得られる多孔質ガラス微粒子体は、例えばOVD法(外付け法)またはVAD法(気相軸付法)などに適用することで、光ファイバ母材を得ることができる。
OVD法とは、ガラスロッド等の出発部材の外表面にガラス微粒子を堆積させてガラススート層を形成した後、ガラススート層を加熱により焼結して透明ガラスを得る方法である。
VAD法は、ガラスロッド等の出発部材の先端部からガラス微粒子の堆積を開始して、円柱状のガラススートを形成した後、ガラススートを加熱により焼結させることで、透明ガラスを得る方法である。
ただし、本実施形態により得られる多孔質ガラス微粒子体の用途は、光ファイバ母材の製造に限定されない。
(多孔質ガラス微粒子体の製造装置)
図1に示すように、本実施形態の多孔質ガラス微粒子体の製造装置(以下、製造装置1という)は、反応容器2と、一対の回転チャック3と、バーナー4と、レール5と、ガス供給装置10Aと、を備えている。
一対の回転チャック3は、出発部材Mの両端部を支持している。回転チャック3により、出発部材Mは反応容器2内で回転させられる。
レール5は、出発部材Mの長手方向と同じ方向に延びている。バーナー4は、レール5に沿って移動可能となっている。すなわち、バーナー4は、出発部材Mの長手方向に沿って移動可能である。
なお、バーナー4は、レール5を長手方向に往復するように移動してもよい。あるいは、例えばレール5を環状に形成して、このレール5上を一方向に向けて循環するように複数のバーナー4を移動させてもよい。
図示は省略するが、バーナー4ではなく、出発部材Mをバーナー4などに対して出発部材Mの長手方向に沿って往復させても良い。
図2(a)に示すように、ガス供給装置10Aは、原料ガスG1を含むガスを、バーナー4に供給する。バーナー4の出口4aでは、このガスが燃焼して火炎Fが生じる。原料ガスG1が火炎F内で反応することでガラス微粒子が生成される。ガラス微粒子が出発部材Mの表面に堆積することで、ガラス微粒子の堆積層Lが形成される。これにより、多孔質ガラス微粒子体が得られる。
ここで本明細書では、堆積層Lのうち外径がほぼ一定の部分を有効部Eという。有効部Eは、堆積層Lの中央の領域である。有効部Eでは、火炎Fの出発母材Mへの当たり方やバーナー4の移動速度が一定となるため、ガラス微粒子が安定して堆積される。したがって、有効部Eでは外径がほぼ一定となり、焼結後に光ファイバの紡糸に有効に使用することができる。なお、堆積層Lのうち、有効部Eよりも外側の領域は、外径が不安定になっている。
原料ガスG1としては、例えば環状シロキサンD3(ヘキサメチルシクロトリシロキサン)、D4(オクタメチルシクロテトラシロキサン)、D5(デカメチルシクロペンタシロキサン)などのケイ素含有有機化合物を用いることができる。ケイ素含有有機化合物は、酸化反応させても塩酸を発生させないため、環境負荷の低減や、塩酸の処理設備が不要となることによる製造コスト低減などに寄与する。ただし、ケイ素含有有機化合部物は可燃性を有するため、逆火などが生じやすくなる。
なお、ガス供給装置10Aは、酸素ガスと原料ガスG1とを予め混合した状態でバーナー4に供給してもよい。あるいは、バーナー4内若しくはバーナー4の出口4a近傍で、原料ガスG1と酸素ガスとが混合されてもよい。
ここで、バーナー4がレール5を長手方向に往復する場合、バーナー4に原料ガスG1が継続して供給されると、バーナー4の往復移動の折り返し地点近傍における堆積層Lの厚みが大きくなってしまう。このため、堆積層Lのうち、均一な厚みの部分である有効部Eの割合を大きくするには、バーナー4が堆積層Lの端部P1またはP2の近傍(つまり有効部Eの外側)に到達したときに原料ガスG1の燃焼を一度停止し、バーナー4が往路に向けて移動を始めたときに再び原料ガスG1を燃焼させることが好ましい。すなわち、バーナー4への原料ガスG1の供給および停止の切り替えを繰り返し行うことが好ましい。
また、バーナー4が、環状に形成されたレール5を一方向に循環する場合にも、バーナー4への原料ガスG1の供給および停止の切り替えを、繰り返し行うことが好ましい。また、原料ガスG1の供給を停止したとき、火炎がバーナー4の内部で発生する逆火現象の発生を抑えるため、原料ガスG1をバーナー4の出口4aから排出させることが好ましい。
このような切り替えを行うためのガス供給装置10Aの構成について説明する。
(ガス供給装置)
図2(a)に示すように、ガス供給装置10Aは、原料ガス供給ライン11と、原料ガス配管12と、ベントライン13と、パージガス供給ライン14と、第1弁15と、第2弁16と、第3弁17と、を備えている。
原料ガス供給ライン11の上流側は、原料ガス供給源11aに接続されている。原料ガス供給源11aは、原料ガス供給ライン11を通じて、原料ガスG1を原料ガス配管12に向けて供給する。原料ガス供給ライン11の下流側は、原料ガス配管12およびベントライン13に向けて分岐している。原料ガス供給ライン11の下流側は、第1弁15を介してベントライン13に接続され、第2弁16を介して原料ガス配管12に接続されている。
原料ガス配管12の下流側は、バーナー4に接続されている。原料ガス配管12の上流側は、原料ガス供給ライン11およびパージガス供給ライン14に向けて分岐している。原料ガス配管12の下流側は、第2弁16を介して原料ガス供給ライン11に接続され、第3弁17を介してパージガス供給ライン14に接続されている。
ベントライン13の下流側は、処理装置13aに接続されている。ベントライン13の上流側は、第1弁15を介して原料ガス供給ライン11に接続されている。
パージガス供給ライン14の上流側は、パージガス供給源14aに接続されている。パージガス供給源14aは、パージガス供給ライン14を通じて、パージガスG2を原料ガス配管12に向けて供給する。パージガスG2としては、窒素などの不活性ガスを用いることができる。パージガス供給ライン14の下流側は、第3弁17を介して原料ガス配管12に接続されている。
パージガス供給源14aには、制御機構18Aが設けられている。本実施形態における制御機構18Aは、パージガス供給源14aがバーナー4に供給するパージガスG2の流量を電子的に制御する、電子制御部である。
第1弁15は、原料ガス供給ライン11とベントライン13との間に配置されている。第1弁15は、原料ガス供給ライン11とベントライン13との連通および遮断を切り替える。
第2弁16は、原料ガス供給ライン11と原料ガス配管12との間に配置されている。第2弁16は、原料ガス供給ライン11と原料ガス配管12との連通および遮断を切り替える。
第3弁17は、パージガス供給ライン14と原料ガス配管12との間に配置されている。第3弁17は、パージガス供給ライン14と原料ガス配管12との連通および遮断を切り替える。
第1弁15、第2弁16、および第3弁17は、原料ガス供給ライン11およびパージガス供給ライン14の、バーナー4への接続および遮断を切り替える切替機構Sを構成している。また、原料ガス配管12は、切替機構Sとバーナー4とを接続している。
なお、切替機構Sの構成はこれに限らず、上記のような切り替えを行うことができれば、適宜変更してもよい。
次に、ガス供給装置10Aの動作について、図2(a)、(b)を用いて説明する。図2(a)、(b)では、各弁15~17が開いた状態を白丸で表し、閉じた状態を黒丸で表している。
原料ガスG1をバーナー4に供給する場合には、図2(a)に示すように、第1弁15および第3弁17を閉じ、第2弁16を開いた状態とする。これにより、原料ガス供給源11aとバーナー4とが接続される。この状態では、原料ガスG1が、原料ガス供給ライン11、第2弁16、および原料ガス配管12を経由してバーナー4内に流入する。原料ガスG1はバーナー4の出口4aで燃焼し、火炎F内で反応することでガラス微粒子が生成される。なお、第3弁17が閉じられているため、パージガスG2はバーナー4に供給されない。
次に、原料ガスG1の供給を停止する場合には、図2(b)に示すように、第1弁15および第3弁17を開き、第2弁16を閉じた状態とする。これにより、原料ガス供給源11aとバーナー4との接続が経たれ、原料ガスG1はベントライン13へと向かう。その一方で、パージガス供給源14aとバーナー4とが接続されるため、パージガスG2がバーナー4内へと流入する。これにより、バーナー4内の原料ガスG1が出口4aから押し出される。このとき、パージガスG2の圧力がバーナー4の出口4a近傍の圧力よりも高いため、確実に原料ガスG1がバーナー4外に押し出される。結果として、原料ガスG1がバーナー4内で燃焼してしまう逆火現象の発生を抑えることができる。
上述したガス供給装置10Aの動作において、各弁15~17の開閉のタイミングは同時であることが好ましいが、逆火現象の発生を抑えることができる範囲内において開閉のタイミングがずれていても構わない。
なお、本実施形態では図2(b)に示すように、バーナー4への原料ガスG1の供給が停止された後も、バーナー4の出口4aから火炎Fを生じさせている。これは、原料ガスG1の燃焼補助用の火炎Fを継続して点火させておくことで、原料ガスG1が次回供給された際に、速やかに原料ガスG1の反応を開始させるためである。
(多孔質ガラス微粒子体の製造方法)
次に、本実施形態に係る多孔質ガラス微粒子体の製造方法について説明する。
まず、回転チャック3によって回転する出発部材Mに、ケイ素含有有機化合物を含む原料ガスG1から生成されたガラス微粒子の堆積層Lを形成する。このとき、ガス供給装置10Aは図2(a)に示す状態とされ、バーナー4に原料ガスG1が供給される。
次に、バーナー4がガラス微粒子の堆積層Lの有効部Eの外側(例えば端部P1若しくは端部P2)に位置する状態で、バーナー4に供給されるガスを、原料ガスG1からパージガスG2に切り替える。この切り替えは、切替機構Sを図2(b)に示す状態とすることにより行われる。
次に、少なくとも原料ガスG1がバーナー4内から排出されるまでの間、パージガスG2を第1流量でバーナー4に供給する。
次に、バーナー4に供給されるパージガスG2の流量を、第1流量よりも小さい第2流量に切り替える。本実施形態では、第1流量から第2流量への切り替えを、電子制御部である制御機構18Aにより行う。
次に、再び切替機構Sを図2(a)に示す状態とし、ガラス微粒子の堆積層Lを形成する。
以上の動作を繰り返し、堆積層Lを所望の厚みとすることで、多孔質ガラス微粒子体が得られる。
以上説明したように、本実施形態の製造方法では、原料ガスG1がバーナー4内から排出されるまでの間、パージガスG2を第1流量でバーナー4に供給する。これにより、バーナー4内の原料ガスG1が確実に排出される。従って、バーナー4内で原料ガスG1が燃焼する逆火現象の発生を抑えることができる。
さらに、原料ガスG1がバーナー4内から排出された後は、パージガスG2の流量が第1流量よりも小さい第2流量に切り替えられる。これにより、ガラス微粒子の堆積層LにパージガスG2が強く吹き付けられて、堆積層Lの温度勾配が大きくなって破損などが生じることを抑制できる。
また、制御機構18AによってパージガスG2の流量を電子的に制御することで、第1流量および第2流量の調整が容易となり、製造装置1の汎用性を向上させることができる。
なお、原料ガス供給ライン11からバーナー4に供給されるガスは、原料ガスG1と酸素ガスとが混合された予混合ガスであってもよい。この場合、原料ガスG1と酸素ガスとの混合比率が安定する。これにより、原料ガスG1を安定して効率よく反応させることが可能となるとともに、不完全燃焼による多孔質ガラス微粒子体(堆積層L)およびバーナー4内への炭素の付着なども抑止することができる。
また、予混合ガスは燃焼しやすい状態となるため逆火が生じやすいが、前述の通り、本実施形態ではこのような逆火の発生を抑制することができる。
また、原料ガスG1がバーナー4に供給される場合(図2(a))とベントライン13に供給される場合(図2(b))とに関わらず、原料ガスの流量は常に一定であることが好ましい。これにより、逆火の発生をより確実に抑制することができる。
さらに、バーナー4に供給されるガスが上記予混合ガスである場合も同様に、予混合ガスがバーナー4に供給される場合とベントライン13に供給される場合とに関わらず、予混合ガスの流量は常に一定であることが好ましい。これにより、逆火の発生が抑制されるとともに、原料ガスG1と酸素ガスとの混合比がより安定し、製造条件の変動を抑える効果が得られる。
また、上記製造方法により得られた多孔質ガラス微粒子体を焼結させることで、光ファイバなどのガラス母材を製造してもよい。このような製造方法によりガラス母材を製造することで、ガラス母材の品質を安定させることができる。
また、製造装置1は、バーナー4に原料ガスG1を供給する原料ガス供給ライン11と、バーナー4にパージガスG2を供給するパージガス供給ライン14と、原料ガス供給ライン11およびパージガス供給ライン14の、バーナー4への接続および遮断を切り替える切替機構Sと、パージガス供給ライン14において、切替機構Sよりも上流側に設けられ、パージガスG2の供給量を制御する制御機構18Aと、を備えている。
この構成により、上記した多孔質ガラス微粒子体の製造方法を容易に実現することができる。
(第2実施形態)
次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。本実施形態の製造装置1は、図3(a)に示すようなガス供給装置10Bを備えている。
図3(a)に示すように、本実施形態のガス供給装置10Bは、パージガス供給ライン14に絞り弁14bおよびガスだまり14cが設けられている。絞り弁14bおよびガスだまり14cは、パージガス供給源14aの下流側かつ第3弁17の上流側に位置している。絞り弁14bは、ガスだまり14cよりも上流側に位置している。ガスだまり14cは、絞り弁14bと第3弁17との間に位置している。
絞り弁14bは、パージガス供給源14aからバーナー4に向けて供給されるパージガスG2の流量を、一定量に調整する。つまり、パージガス供給源14aおよび絞り弁14bは、一定量のパージガスG2をバーナー4に向けて供給する、供給機構19を構成している。
ガスだまり14cの内部には、パージガス供給ライン14と同等の圧力のパージガスG2が充填されている。本実施形態では、パージガス供給ライン14における絞り弁14bと第3弁17との間の部分の内容積と、ガスだまり14cの内容積と、の合計(以下、容積V1と表す)が約200mlである。これに対して、バーナー4の内容積および原料ガス配管12の内容積の合計(以下、容積V2と表す)は約25mlである。このように、容積V1は容積V2の約8倍となっている。
次に、本実施形態におけるガス供給装置10Bの動作について説明する。
原料ガスG1をバーナー4に供給する場合には、図3(a)に示すように、第1弁15および第3弁17を閉じ、第2弁16を開いた状態とする。これにより、原料ガス供給源11aとバーナー4とが接続される。この状態では、原料ガスG1が、原料ガス供給ライン11、第2弁16、および原料ガス配管12を経由してバーナー4内に流入する。原料ガスG1はバーナー4の出口4aで燃焼し、火炎F内で反応することでガラス微粒子が生成される。なお、第3弁17が閉じられているため、パージガスG2はバーナー4に供給されない。ただし、ガスだまり14c内には、パージガスG2が充満した状態となっている。
次に、原料ガスG1の供給を停止する場合には、図3(b)に示すように、第1弁15および第3弁17を開き、第2弁16を閉じた状態とする。これにより、原料ガス供給源11aとバーナー4との接続が経たれ、原料ガスG1はベントライン13へと向かう。その一方で、ガスだまり14cとバーナー4とが接続されるため、パージガスG2がバーナー4内へと流入する。これにより、バーナー4内の原料ガスG1が出口4aから押し出される。このとき、ガスだまり14c内のパージガスG2の圧力が、バーナー4の出口4a近傍の圧力よりも高いため、確実に原料ガスG1がバーナー4外に押し出される。
ガスだまり14c内のパージガスG2が、バーナー4へと供給されることで、ガスだまり14c内の圧力は徐々に低下する。これに伴って、バーナー4へと供給されるパージガスG2の流量も徐々に低下する。最終的には、絞り弁14bによって調節された流量で、パージガスG2がバーナー4へと供給される。つまり、本実施形態では、ガスだまり14cからバーナー4へと供給される際のパージガスG2の流量が第1流量であり、絞り弁14bによって調節された流量が第2流量である。
このように、供給機構19およびガスだまり14cは、バーナー4へのパージガスG2の供給量を制御する、制御機構18Bを構成している。
制御機構18Bにガスだまり14cが含まれていることで、例えば電子制御のみによってパージガスG2の供給量を制御する場合と比較して、第1流量から第2流量へと切り替わる際の応答性が向上する。すなわち、第1流量から第2流量への切り替えが速やかに行われることで、大きな流量のパージガスG2が必要以上に長時間バーナー4の出口4aから流出し続けることが抑えられる。従って、多孔質ガラス微粒子体にパージガスG2が強く吹き付けられることによる品質の低下を、より確実に抑えることができる。
次に、第2実施形態に係る多孔質ガラス微粒子体の製造方法について、具体的な実施例を用いて説明する。
本実施例では、図3(a)、(b)に示す構成において、以下のように各パラメータを設定した。
パージガス供給ライン14における圧力…0.10MPaまたは0.15MPa
絞り弁14bを下流側に通過するパージガスG2の流量…1.5L/minまたは3.0L/min
容積V1…200ml
容積V2…25ml
図4は、上記条件下で、切替機構S(弁15~17)を、図3(a)に示す状態から図3(b)に示す状態へと切り替えた際に、バーナー4に供給されるパージガスG2の流量の変化を示している。図4の横軸は、切替機構Sを切り替えた時点を基準とした経過時間(秒)であり、図4の縦軸はパージガスG2の流量(L/min)である。
図4に示すように、バーナー4に供給されるパージガスG2の流量は、経過時間が0.4~0.5秒で急速に大きくなり、ピーク値となる。これは、ガスだまり14c内のパージガスG2が、バーナー4に向けて瞬間的に供給されていることによる。本実施例では、パージガスG2のピーク流量を第1流量という。第1流量は、条件によって異なるが、35~45L/minとなっている。
ガスだまり14c内のパージガスG2が放出されることで、ガスだまり14c内の圧力も徐々に低下する。経過時間が約0.5~1.0秒の間は、ガスだまり14c内の圧力低下に伴い、バーナー4に供給されるパージガスG2の流量も徐々に減少していく様子を示している。
その後、経過時間が約1.1秒の時点で、ガスだまり14c内の圧力は定常状態となる。これにより、パージガスG2の流量は、絞り弁14bによって調整された流量で一定となる。本実施例では、絞り弁14bによって調整されたパージガスG2の流量を第2流量という。
このように、制御機構18Bにガスだまり14cが含まれていることで、バーナー4に供給されるパージガスG2の流量を、第1流量から、第1流量よりも小さい第2流量へと、1秒程度で瞬時に切り替えることができる。従って、パージガスG2によってバーナー4内の原料ガスG1を確実に排出させつつ、パージガスG2が大きな流量で必要以上に長時間ガラス微粒子の堆積層Lに吹き付けられることを抑制できる。
また、本実施例では容積V1が200mlであり、容積V2が25mlであり、容積V1が容積V2の8倍であった。この条件により、パージガスG2によってバーナー4内の原料ガスG1を確実に排出させつつ、パージガスG2が大きな流量で長時間バーナー4の出口4aから流出し続けるのを防ぐことができた。なお、ばらつきなどを考慮すると、容積V1が容積V2の4~20倍、より好ましくは6~10倍であることが好ましい。
なお、本発明の技術的範囲は前記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、図2(b)、図3(b)では、バーナー4への原料ガスG1の供給が停止された後も、原料ガスG1の燃焼補助用の火炎Fが生じている。しかしながら、原料ガスG1の供給停止に伴い、火炎Fを完全に消火してもよい。
また、前記第2実施形態では、供給機構19がパージガス供給源14aおよび絞り弁14bによって構成されていた。しかしながら、供給機構19の構成は適宜変更してもよい。例えば、パージガス供給源14aと絞り弁14bとが一体になっていてもよい。
また、第2実施形態におけるガスだまり14cは、パージガス供給ライン14に別途設ける場合に限らず、例えばパージガス供給ライン14のうち絞り弁14bから第3弁17までの配管長を長くしたり、当該部分の配管を太くしたりすることで代用してもよい。これらの場合でも、バーナー4の出口4a近傍の圧力よりも高圧のパージガスG2が、絞り弁14bから第3弁17までの流路に充填されていることにより、第3弁17を開放した際に瞬間的に大流量のパージガスG2を流出させて、バーナー4内の原料ガスG1を排出することができる。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
1…製造装置 2…反応容器 3…回転チャック 4…バーナー 5…レール 10A、10B…ガス供給装置 11…原料ガス供給ライン 11a…原料ガス供給源 12…原料ガス配管 14…パージガス供給ライン 14a…パージガス供給源 14c…ガスだまり 18A、18B…制御機構 19…供給機構 E…有効部 G1…原料ガス G2…パージガス M…出発部材 L…堆積層 P1、P2…端部

Claims (11)

  1. 回転する出発部材に、ケイ素含有有機化合物を含む原料ガスから生成されたガラス微粒子の堆積層を形成する工程と、
    バーナーに供給されるガスを、前記原料ガスからパージガスに切り替える工程と、
    少なくとも前記原料ガスが前記バーナー内から排出されるまでの間、前記パージガスを第1流量で前記バーナーに供給する工程と、
    前記バーナーに供給される前記パージガスの合計流量を、前記第1流量よりも小さい第2流量に切り替える工程と、を有する、多孔質ガラス微粒子体の製造方法。
  2. 前記バーナーが前記ガラス微粒子の堆積層の有効部の外側に位置する状態で、前記バーナーに供給されるガスを、前記原料ガスから前記パージガスに切り替える、請求項1に記載の多孔質ガラス微粒子体の製造方法。
  3. 前記パージガスの合計流量を、電子的に制御することで前記第1流量から前記第2流量へと切り替える、請求項1または2に記載の多孔質ガラス微粒子体の製造方法。
  4. パージガス供給源と前記バーナーとの間に設けられたガスだまりから前記パージガスを供給することで、前記パージガスの合計流量を前記第1流量とし、
    前記ガスだまりよりも上流側に設けられた供給機構によって、前記パージガスの合計流量を前記第2流量とする、請求項1または2に記載の多孔質ガラス微粒子体の製造方法。
  5. 前記原料ガスが前記バーナーに供給される場合とベントラインに供給される場合とに関わらず、前記原料ガスの流量が一定である、請求項1から4のいずれか1項に記載の多孔質ガラス微粒子体の製造方法。
  6. 前記バーナーに供給されるガスが、前記原料ガスと酸素ガスとが混合された予混合ガスである、請求項1から4のいずれか1項に記載の多孔質ガラス微粒子体の製造方法。
  7. 前記予混合ガスが前記バーナーに供給される場合とベントラインに供給される場合とに関わらず、前記予混合ガスの流量が一定である、請求項6に記載の多孔質ガラス微粒子体の製造方法。
  8. 請求項1から7のいずれか1項に記載の製造方法により得られた多孔質ガラス微粒子体を焼結させる工程を有する、ガラス母材の製造方法。
  9. バーナーと、
    前記バーナーに、ケイ素含有有機化合物を含む原料ガスを供給する原料ガス供給ラインと、
    前記バーナーにパージガスを供給するパージガス供給ラインと、
    前記原料ガス供給ラインおよび前記パージガス供給ラインの、前記バーナーへの接続および遮断を切り替える切替機構と、
    前記パージガス供給ラインにおいて、前記切替機構よりも上流側に設けられ、前記パージガスの供給量を制御する制御機構と、を備え、
    前記制御機構は、前記バーナーに供給する前記パージガスの合計流量を、少なくとも前記原料ガスが前記バーナー内から排出されるまでの間第1流量とし、その後で前記第1流量よりも小さい第2流量へと切り替える、多孔質ガラス微粒子体の製造装置。
  10. 前記制御機構が、
    一定量の前記パージガスを供給する供給機構と、
    前記パージガス供給ラインに接続され、かつ前記供給機構と前記切替機構との間に配置されたガスだまりと、を有する、請求項9に記載の多孔質ガラス微粒子体の製造装置。
  11. 前記切替機構と前記バーナーとを接続する原料ガス配管をさらに備え、
    前記供給機構と前記切替機構との間の前記パージガス供給ラインの内容積および前記ガスだまりの内容積の合計が、前記バーナーの内容積および前記原料ガス配管の内容積の合計の4~20倍である、請求項10に記載の多孔質ガラス微粒子体の製造装置。
JP2019011505A 2018-02-05 2019-01-25 多孔質ガラス微粒子体の製造方法、多孔質ガラス微粒子体の製造装置、およびガラス母材の製造方法 Active JP7229792B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018017875 2018-02-05
JP2018017875 2018-02-05

Publications (2)

Publication Number Publication Date
JP2019137602A JP2019137602A (ja) 2019-08-22
JP7229792B2 true JP7229792B2 (ja) 2023-02-28

Family

ID=67476406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011505A Active JP7229792B2 (ja) 2018-02-05 2019-01-25 多孔質ガラス微粒子体の製造方法、多孔質ガラス微粒子体の製造装置、およびガラス母材の製造方法

Country Status (3)

Country Link
US (1) US11230489B2 (ja)
JP (1) JP7229792B2 (ja)
CN (1) CN110117161B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815766B2 (en) 2015-02-27 2020-10-27 Schlumberger Technology Corporation Vertical drilling and fracturing methodology
US20210246065A1 (en) * 2018-06-15 2021-08-12 Sumitomo Electric Industries, Ltd. Method for producing glass particulate deposit
JP7171639B2 (ja) * 2020-03-13 2022-11-15 信越化学工業株式会社 光ファイバ用多孔質ガラス母材の製造方法
JP7404144B2 (ja) * 2020-04-20 2023-12-25 株式会社フジクラ 多孔質ガラス微粒子体の製造方法および光ファイバ母材の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161555A (ja) 2002-11-14 2004-06-10 Sumitomo Electric Ind Ltd ガラス形成ガスの供給方法、ガラス微粒子堆積体の製造方法及びそれぞれの装置
JP2006342031A (ja) 2005-06-10 2006-12-21 Furukawa Electric Co Ltd:The 光ファイバ母材の製造方法
JP2011102232A (ja) 2009-10-15 2011-05-26 Asahi Glass Co Ltd 石英ガラス母材の製造方法
JP2011246310A (ja) 2010-05-27 2011-12-08 Fujikura Ltd 光ファイバ母材の製造装置及び製造方法
JP2013249232A (ja) 2012-06-01 2013-12-12 Furukawa Electric Co Ltd:The 光ファイバ用母材の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205629A (ja) 1985-03-08 1986-09-11 Sumitomo Electric Ind Ltd 原料供給装置
JPS61254242A (ja) 1985-05-01 1986-11-12 Sumitomo Electric Ind Ltd 原料供給装置
JPS6447437A (en) 1987-08-13 1989-02-21 Furukawa Electric Co Ltd Feeder of raw material
JPH0489322A (ja) 1990-07-31 1992-03-23 Furukawa Electric Co Ltd:The 原料供給装置に使用されている流量制御装置内の付着物除去方法
JPH0489323A (ja) 1990-07-31 1992-03-23 Furukawa Electric Co Ltd:The 原料供給装置に使用されている流量制御装置内の付着物除去方法
JP2873080B2 (ja) 1990-11-08 1999-03-24 株式会社フジクラ 光ファイバ用ガラス母材の製造装置
DE19628958C2 (de) * 1996-07-18 2000-02-24 Heraeus Quarzglas Verfahren zur Herstellung von Quarzglaskörpern
JP2003212554A (ja) * 2002-01-24 2003-07-30 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び製造装置
JP2009102207A (ja) 2007-10-25 2009-05-14 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び製造装置
JP5793338B2 (ja) 2011-05-02 2015-10-14 株式会社フジクラ 光ファイバ用ガラス母材の製造方法及び製造装置
KR20140045531A (ko) * 2011-07-06 2014-04-16 다우 글로벌 테크놀로지스 엘엘씨 다공성 침상 멀라이트 바디의 제조 방법
JP5849610B2 (ja) 2011-10-28 2016-01-27 住友電気工業株式会社 光ファイバ用ガラス母材の製造装置及び製造方法
JP5651675B2 (ja) 2012-12-25 2015-01-14 株式会社フジクラ ガラス多孔質体の製造装置及び製造方法、並びに光ファイバ母材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161555A (ja) 2002-11-14 2004-06-10 Sumitomo Electric Ind Ltd ガラス形成ガスの供給方法、ガラス微粒子堆積体の製造方法及びそれぞれの装置
JP2006342031A (ja) 2005-06-10 2006-12-21 Furukawa Electric Co Ltd:The 光ファイバ母材の製造方法
JP2011102232A (ja) 2009-10-15 2011-05-26 Asahi Glass Co Ltd 石英ガラス母材の製造方法
JP2011246310A (ja) 2010-05-27 2011-12-08 Fujikura Ltd 光ファイバ母材の製造装置及び製造方法
JP2013249232A (ja) 2012-06-01 2013-12-12 Furukawa Electric Co Ltd:The 光ファイバ用母材の製造方法

Also Published As

Publication number Publication date
JP2019137602A (ja) 2019-08-22
US20190241458A1 (en) 2019-08-08
US11230489B2 (en) 2022-01-25
CN110117161A (zh) 2019-08-13
CN110117161B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
JP7229792B2 (ja) 多孔質ガラス微粒子体の製造方法、多孔質ガラス微粒子体の製造装置、およびガラス母材の製造方法
JP5935882B2 (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
JP7276335B2 (ja) ガラス微粒子堆積体の製造方法
RU2009119291A (ru) Способ производства оптических волокон и устройство для производства оптических волокон
JP2004277257A (ja) 多孔質ガラス微粒子堆積体の製造法及びガラス微粒子合成用バーナ
JP2018145065A (ja) ガラス微粒子堆積体の製造方法および製造装置
JP5600687B2 (ja) 光ファイバ用の半製品としてのプリフォームを製造するマルチノズル型管状プラズマ堆積バーナ
JP7058627B2 (ja) 光ファイバ用多孔質ガラス母材の製造装置および製造方法
JP2009102207A (ja) ガラス微粒子堆積体の製造方法及び製造装置
US20120318025A1 (en) Device and method for manufacturing an optical preform
JP6643395B2 (ja) 多孔質ガラス微粒子体の製造方法および製造装置
US20070256456A1 (en) Manufacturing Apparatus Of Porous Glass Base Material And Glass Base Material For Optical Fiber
JP4460062B2 (ja) 光ファイバ母材の製造方法
JP6086168B2 (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
JP7404144B2 (ja) 多孔質ガラス微粒子体の製造方法および光ファイバ母材の製造方法
US11780761B2 (en) Method for producing porous glass fine particle body and method for producing optical fiber preform
US11091384B2 (en) Method of manufacturing porous glass deposition body for optical fiber
JP6839558B2 (ja) 光ファイバ多孔質母材の製造方法及び製造装置
CN111032587A (zh) 玻璃微粒沉积体的制造方法、玻璃母材的制造方法以及玻璃微粒沉积体
US20110016926A1 (en) Method of manufacturing optical fiber preform using plasma torch
JP2022128088A (ja) 光ファイバ母材の製造方法および光ファイバの製造方法
JP7332559B2 (ja) 光ファイバ用ガラス母材の製造方法
EP2316798A2 (en) Formation of microstructured fiber preforms using porous glass deposition
JP2007210868A (ja) ガラス母材の製造方法
JP3818567B2 (ja) 合成石英ガラスインゴットの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230215

R151 Written notification of patent or utility model registration

Ref document number: 7229792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151