JP7229064B2 - 半導体装置およびそれを用いた電力変換装置並びに半導体装置の駆動方法 - Google Patents

半導体装置およびそれを用いた電力変換装置並びに半導体装置の駆動方法 Download PDF

Info

Publication number
JP7229064B2
JP7229064B2 JP2019060329A JP2019060329A JP7229064B2 JP 7229064 B2 JP7229064 B2 JP 7229064B2 JP 2019060329 A JP2019060329 A JP 2019060329A JP 2019060329 A JP2019060329 A JP 2019060329A JP 7229064 B2 JP7229064 B2 JP 7229064B2
Authority
JP
Japan
Prior art keywords
gate
dual
igbt
temperature
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060329A
Other languages
English (en)
Other versions
JP2020162022A (ja
JP2020162022A5 (ja
Inventor
智之 三好
智康 古川
悠次郎 竹内
弘 鈴木
正樹 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019060329A priority Critical patent/JP7229064B2/ja
Priority to PCT/JP2019/047570 priority patent/WO2020194887A1/ja
Priority to CN201980092895.7A priority patent/CN113474981A/zh
Priority to EP19920716.8A priority patent/EP3952082A1/en
Publication of JP2020162022A publication Critical patent/JP2020162022A/ja
Publication of JP2020162022A5 publication Critical patent/JP2020162022A5/ja
Application granted granted Critical
Publication of JP7229064B2 publication Critical patent/JP7229064B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Inverter Devices (AREA)

Description

本発明は、半導体装置およびそれを用いた電力変換装置に関し、特に、エアコンや電子レンジなどの小電力機器から鉄道や製鉄所のインバータなどの大電力機器に適用される電力変換装置に好適である。
地球温暖化が世界共通の重要な緊急課題となっており、その対策の一つとしてパワーエレクトロニクス技術の貢献期待度が高まっている。特に、電力変換機能を司るインバータの高効率化に向けて、それを構成するパワースイッチング機能を果たすIGBT(Insulated Gate Bipolar Transistor)と、整流機能を果たすダイオードを主としたパワー半導体デバイスの低消費電力化が求められている。
図17は、インバータを構成する電力変換装置の回路構成の一例を示す図である。
絶縁ゲート端子171を有するIGBT170には、IGBT170と逆並列にダイオード172が接続されている。インバータは、電圧源169から電力が供給され、IGBT170の絶縁ゲート171に電圧が印加され高速にターンオン、ターンオフを繰り返すことで、接続された誘導性負荷168に供給する電力を制御する構成である。なお、誘導性負荷168としては、例えばモータ(電動機)である。
IGBT170およびダイオード172は、導通時に導通損失を発生し、スイッチング時にスイッチング損失を発生する。そのため、インバータを小型化・高効率化するためには、IGBT170およびダイオード172の導通損失とスイッチング損失とを低減する必要がある。ここで、スイッチング損失としては、IGBTから発生するターンオン損失およびターンオフ損失、ターンオン時にダイオードから発生するリカバリー損失、から構成される。
IGBTの導通損失およびターンオフ損失を低減する技術として、2つの独立した制御が可能なゲートを有するダブルゲート型IGBTに関する技術が、特許文献1または特許文献2に記載されているように知られている。
図18は、特許文献1に図示されたダブルゲート型IGBT179のシンボル図である。
ダブルゲート型IGBT179は、1つのコレクタ端子182、1つのエミッタ端子183に対して、2つのゲート端子180および181を有し、これら2つのゲート端子に入力するゲート信号によって、IGBTの導通・非導通を制御する。
図19は、ダブルゲート型IGBTのキャリア濃度プロファイルを示す図である。
キャリア濃度として、2つのゲートにオン信号を与えた場合のキャリア濃度185(破線部分)、および1つのゲートにオン信号を与えてもう1つのゲートにオフ信号を与えた場合のキャリア濃度184(実線部分)を示している。
2つのゲートにオン信号を与えた場合のキャリア濃度185は、エミッタからの正孔キャリアの注入が促進し、IGBT内部は高いキャリア濃度となることによって、IGBT導通時のオン電圧を低減することができる。
一方、1つのゲートにオン信号を与えて1つのゲートにオフ信号を与えた場合のキャリア濃度184は、正孔キャリアがエミッタへ排出されることによって、内部のキャリア濃度を低減することができる。
つまり、ダブルゲート型IGBTは、新たに付加した1つのゲートとそれに与えるゲート電圧によって、IGBT導通時のキャリア濃度を変調することを可能にする。この特徴を利用し、ターンオフスイッチングの直前に1つのゲート信号を先行してオフする駆動を適用することで、ターンオフ直前のキャリア濃度を一時的に下げることができるため、低いターンオフ損失の特長を導出することができる。
本発明では、この2つのゲート信号を適当なタイミングで導入することで、低損失な効果を導出できる上記のIGBTを、以下「デュアルゲートIGBT」と称す。
図20は、デュアルゲートIGBTの導通時点191、非導通時点192における、二つのゲート信号186および187、電圧波形188、電流波形189並びに電流・電圧積190を示す図である。なお、図示する電圧波形、電流波形および電流・電圧積において、実線はデュアルゲートIGBTの特性、破線はシングルゲート型IGBT(従来の一つのゲートを有するIGBT)の特性である。
デュアルゲートIGBTでは、スイッチングゲート186が閾値電圧198以上の電圧が印加されたオン状態から閾値電圧未満の電圧が印加されるオフ信号が入力する直前において、もう一方のキャリア制御ゲート187に先行してオフ信号を導入する駆動を適用する。キャリア制御ゲート187がオフすることで、IGBT内部のキャリア濃度が低減し、コレクタ-エミッタ間電圧195であるオン電圧が一時的に増加する。
その後、スイッチングゲート186がオフすることで、IGBTは導通状態から非導通状態へ推移する。そこで、キャリア濃度が低い状態から非導通状態へ推移することで、IGBT内部の空乏化が促進し、従来に対して高速にコレクタ-エミッタ間電圧195が上昇する。さらに、キャリアも高速に排出されることから、電流198も短時間で0(ゼロ)Aへ推移することとなる。
これによって、電流・電圧積の時間積分により導出されるターンオフ損失102は、従来のシングルゲート型IGBTの損失101に対し、大幅に低減されることとなる。この特性により、デュアルゲートIGBTとその駆動手法は、電力変換器における低電力損失化に有効な技術である。
一方で、このデュアルゲートIGBTの高速なスイッチング波形は、信頼性において注意が必要となる。デュアルゲートIGBTの電圧波形196は、ターンオフの際に急峻に増加するが、この時間変化dvCE/dt105が高くなりすぎると、EMI(Electro Magnetic Interference)ノイズ、電力変換器が起因する誘導障害およびモータの絶縁不良といった応用上の問題を引き起こす。
また、dvCE/dt105は、IGBT内部のキャリア濃度に依存するため、IGBT導通時の電流やIGBTの温度によって変化する。
したがって、低損失化が可能なデュアルゲートIGBTにおいて、dvCE/dtが上がり過ぎないように一定以下に管理することが、信頼性を維持する上で重要である。例えば、特許文献1に示された構造では、デュアルゲートIGBTの駆動電流や温度が変化した際のスイッチングで生じる高いdvCE/dtを抑えることは困難であった。
特許第4398719号公報 特開2016-162855号公報
本発明は、従来に示されたダブルゲート型のIGBTに対して、低い電力損失の性能を維持すると共に、デュアルゲートIGBTの通電電流や発熱起因で温度が変化しても、ターンオン、ターンオフスイッチング時に安定したdvCE/dtが得られることを可能にする。すなわち、低電力損失と高信頼性とを両立することのできる半導体回路およびそれを適用した電力変換装置を提供することにある。
上記課題を解決するため、本発明は、スイッチングゲートおよびキャリア制御ゲートを有するデュアルゲートIGBTから成る半導体装置であって、スイッチングゲートは、デュアルゲートIGBTの非導通状態から導通状態への移行時に、閾値電圧以上の電圧がキャリア制御ゲートより第1の所定時間先行して印加され、キャリア制御ゲートは、デュアルゲートIGBTの導通状態から非導通状態への移行時に、閾値電圧未満の電圧がスイッチングゲートより第2の所定時間先行して印加され、非導通状態から導通状態への移行時および導通状態から非導通状態への移行時に発生するデュアルゲートIGBTのコレクタエミッタ間電圧の時間変化が略一定となるように、第1および第2の所定時間はデュアルゲートIGBTの温度および通電電流量に応じて可変に制御され、第1の所定時間は、デュアルゲートIGBTの温度が高くかつ通電電流量が高くなるほど相対的に小さい値であり、第2の所定時間は、デュアルゲートIGBTの温度が高くかつ通電電流量が高くなるほど相対的に大きい値であることを特徴とする。
本発明によれば、高温で高電流の条件下で、最もキャリア濃度が高く、IGBTのスイッチング時に電力損失が高くなる条件において、デュアルゲートIGBTの低損失効果を発揮できると共に、低温で小電流の条件下で、キャリア濃度が低く、IGBTのスイッチング時にdvCE/dtが高くなる条件において、デュアルゲートIGBTのdvCE/dtの抑制効果を発揮することができる。
すなわち、低電力損失である性能と、スイッチング時の安定したdvCE/dtとを、2つのゲート信号の立ち上がり時間差(td_on)と立下り時間差(td_off)を制御することで実現することが可能である。これにより、従来に示された半導体装置に対し、低消費電力と、耐EMIノイズ、耐誘導障害およびモータの耐絶縁不良に関する高信頼性を維持した電力変換装置を提供することができる。
上記した以外の課題、構成および効果は、以下に示す各実施例の説明によって明らかにされる。
本発明の実施例1に係る半導体装置の駆動方式を説明するための図である。 比較例である半導体装置の駆動方式を示す図である。 ターンオンディレイtd_onをパラメータとし、ターンオンスイッチング損失とターンオンdvCE/dtの相関を示す図である。 ターンオフディレイtd_offをパラメータとし、ターンオフスイッチング損失とターンオフdvCE/dtの相関を示す図である。 ターンオンスイッチング時のtd_onに対する、デュアルゲートIGBT内部のキャリア充填時間の関係を示す図である。 デュアルゲートIGBTの駆動能力を示す順方向VCE-I特性を示す図である。 ターンオフスイッチング時のtd_offに対する、デュアルゲートIGBT内部のキャリア排出時間の関係を示す図である。 本発明の実施例2に係るデュアルゲートIGBTの順方向特性を示す図である。 d_on、td_offを可変に制御できる二つの信号を生成する駆動回路、並びにデュアルゲートIGBTから成る本発明の第2の実施例の構成図である。 デュアルゲートIGBTの温度と電流の情報を取得するタイミングと最適なtd_onとtd_offを導出する手法、並びにFPGAに書き込むLook-up Tableを示す図である。 本発明の実施例3に係る半導体装置の駆動方式を示す図である。 本発明の実施例4に係る半導体装置の状態センス方式、並びに、構成図を示す図である。 実施例4における、デュアルゲートIGBTの温度と電流の情報を取得するタイミングと最適なtd_onとtd_offを導出する手法、ならびにFPGAに書き込むLook-up Tableを示す図である。 本発明の実施例5に係る半導体装置の状態センス方式、並びに、構成図を示す図である。 実施例5に係るデュアルゲートIGBTの駆動能力を示す順方向VCE-I特性を示す図である。 本発明の実施例6に係る電力変換装置の構成の一例を示す図である。 インバータを構成する電力変換装置の回路構成の一例を示す図である。 ダブルゲート型IGBTのシンボル図である。 ダブルゲート型IGBTのキャリア濃度プロファイルを示す図である。 デュアルゲートIGBTの導通時、非導通時における、二つのゲート信号と電圧波形、電流波形、それによる電流・電圧積の時間推移を示す図である。
以下、本発明を実施するための形態として、本発明の実施例1~6を、図面を参照して説明する。なお、図中、ゲート信号を伝える導電線として、ゲート端子に対して一本の線で簡易的に示しているが、実際には、エミッタ電位を基準とするための基準用導電線も存在し、その基準電位に対する電圧を入力する。ただし、図においては、デュアルゲートIGBTのエミッタと導電する基準用導電線の記載は省略する。
本発明の実施例1に係る絶縁ゲート型(ゲート制御型)の半導体装置における駆動方式200を説明する。
図1は、駆動方式200を説明するために、実施例1に係るデュアルゲートIGBTの駆動信号波形とコレクタ-エミッタ間電圧(VCE)の波形を示す図である。
実施例1として用いる半導体装置は、IGBTに二つの独立制御が可能であるゲートを有するデュアルゲートIGBTとその駆動方式とから構成される。デュアルゲートIGBTは、二つの絶縁ゲート端子、一つのエミッタ端子および一つのコレクタ端子から構成される。その動作態様としては、少なくとも一つのゲート端子に印加される閾値電圧以上のゲート-エミッタ間電圧(以下、「ゲート電圧」と呼ぶ)によって、導通状態となり、二つのゲート端子に印加される閾値電圧未満のゲート電圧によって、非導通状態となる。すなわち、導通・非導通を二つのゲート端子に印加するゲート電圧で制御できるIGBTである。
ここで、導通・非導通のタイミングを制御できるゲート端子を、「スイッチングゲート(Gs)」、もう一つのゲート端子を、デュアルゲートIGBTの内部キャリア濃度を制御できる端子として「キャリア制御ゲート(Gc)」と定義する。
非導通期間106においては、Gsゲート1およびGcゲート2への信号は、共に閾値電圧未満でありため、キャリアは注入されず、VCE3は高電圧10が印加される。
次に、ターンオンタイミング6において、Gsゲート1に閾値電圧以上の電圧(以下、「ターンオン信号」と呼ぶ)が印加されて、キャリアが注入され、IGBTは導通期間107に移行する。
ここで、Gsゲート1およびGcゲート2のターンオン信号に、時間差a(td_on)12を設けることで、この時間差を設けることなく同時にターンオン信号を入れる場合に比して、キャリア注入時間が長くなる。これにより、導通から非導通に移行する期間を長くとることができる。すなわち、VCE3の時間変化量dvCE/dt16を下げることができる。
Gcゲート2がターンオンすると、IGBTの電導度変調が促進し、デュアルゲートIGBTの低導通損失の性能が実現される。
次に、ターンオフ直前の期間13において、Gcゲート2の信号を、Gsゲート1の信号に先行して閾値電圧未満に下げる。これによって、IGBT内部のキャリアが排出され、伝導度変調が抑制されることで、キャリア濃度が低減した状態へ移行する。
この後、ターンオフタイミング7において、Gsゲート1に閾値電圧未満の電圧(以下、「ターンオフ信号」と呼ぶ)が印加されると、コレクタ-エミッタ間に印加された電源電圧によってIGBT内部では空乏化が進み、コレクタ-エミッタ間電圧3が上昇する。また、キャリアが排出されコレクタ電流は遮断され、非導通期間106へ移行する。
ここで、Gsゲート1とGcゲート2のターンオフ信号に時間差b(td_off)13を設けることで、設けることなく同時にターンオフ信号を入れる場合に比して、キャリア排出時間は短くなる。これにより、dvCE/dt17は上昇し、また、コレクタ電流の遮断時間が短くなる。したがって、ターンオフ損失を下げることができる。
実施例1は、デュアルゲートIGBTの温度と通電電流に応じ、td_onとtd_offとを可変に制御する特徴を有する。td_onは、デュアルゲートIGBTの温度が低く、かつ通電電流が低いほど、相対的に大きな値14とする。また、td_offは、デュアルゲートIGBTの温度が低く、かつ通電電流が低いほど、相対的に小さな値15とする。
このようにデュアルゲートIGBTの状態に応じて、td_on12、14とtd_off13、15とを変化させて駆動することで、ターンオン時のdvCE/dt16、18と、ターンオフ時のdvCE/dt17、19とを略一定にすることができる。
したがって、デュアルゲートIGBTの低損失性能を導出することができると共に、EMIノイズ、誘導障害およびモータ絶縁に対する信頼性を維持することができる。
図2は、実施例1の駆動方式200との比較例として、td_on20、22とtd_off21、23とを固定値として駆動した場合の駆動方式300を示す図である。
d_on20、22とtd_off21、23とを固定値とした場合、ターンオンスイッチング時のdvCE/dt24、26は、デュアルゲートIGBTの温度が低く、かつ通電電流が低い条件となると、dvCE/dtが上昇する。これは、キャリアが注入しキャリア濃度が安定化する時間が短くなることに起因する。
また、ターンオフスイッチング時のdvCE/dt25、27も、デュアルゲートIGBTの温度が低く、かつ通電電流が低い条件となると、dvCE/dtが上昇する。これは、キャリアが排出する時間が短くなることに起因する。
以上のとおり、比較例に示した駆動方式300においては、デュアルゲートIGBTの低損失性能を導出することができる一方で、素子の温度や通電条件が変化した際に、EMIノイズ、誘導障害およびモータ絶縁に関する信頼性には懸念が残ることになる。
次に、スイッチング損失とdvCE/dtのトレードオフについて、図を使って実施例1の効果を述べる。
図3は、td_on29をパラメータとし、ターンオンスイッチング損失とターンオンdvCE/dtとの関係を示す図である。なお、駆動条件として、高温・高電流駆動条件30、高温・低電流駆動条件31、低温・低電流駆動条件32の3条件を示す。
d_on29の増加に伴い、dvCE/dtは低減し、ターンオンスイッチング損失は上昇する傾向を示す。また、損失は、高温、高電流駆動条件において、高くなる傾向を示す。一方、dvCE/dtは、高温、高電流駆動条件において、低くなる傾向を示す。
ここで、dvCE/dtに関し、信頼性の観点から上限規格値を設けた場合、温度・駆動電流に応じてtd_on29を変化させた駆動方式34とすることで、dvCE/dtの規格を満足すると共に、最もデュアルゲートIGBTのターンオンスイッチング損失を下げることが可能となる。なお、比較のために、td_on29を変化させず同じ時間とした場合の駆動方式33を示す。
図4は、td_off35をパラメータとし、ターンオフスイッチング損失とターンオフdvCE/dtとの関係を示す図である。なお、駆動条件として、高温・高電流駆動条件36、高温・低電流駆動条件37、低温・低電流駆動条件38の3条件を示す。
d_off35の増加に伴い、dvCE/dtは上昇し、ターンオフスイッチング損失は低減する傾向を示す。また、損失は、高温、高電流駆動条件において、高くなる傾向を示す。一方、dvCE/dtは、高温、高電流駆動条件において、低くなる傾向を示す。
ここで、dvCE/dtに関し、信頼性の観点から上限規格値を設けた場合、温度・駆動電流に応じてtd_off35を変化させた駆動方式40とすることで、dvCE/dtの規格を満足すると共に、最もデュアルゲートIGBTのターンオフスイッチング損失を下げることが可能となる。なお、比較のために、td_off35を変化させず同じ時間とした場合の駆動方式39を示す。
次に、実施例1の効果が得られる理由について説明する。
図5は、ターンオンスイッチング時のtd_onに対する、デュアルゲートIGBT内部のキャリア充填時間の関係を示す図である。ここで、キャリア充填時間とは、エミッタから注入される電子キャリアが起因となり、ドリフト領域で伝導度変調が生じ、キャリア濃度が安定化する時間である。なお、駆動条件として、高温・高電流駆動時41、高温・低電流駆動時42、低温・低電流駆動時43の3条件を示している。
d_onの増加に伴い、キャリア充填時間が長くなる傾向を示す。これは、GsゲートとGcゲートの2つのゲートの内、Gsゲートのみでキャリアが注入する、すなわち低い電流駆動能力の状態が長く、もう一方のGcゲートがオンすることで高い電流駆動能力の状態に移行する期間が長くなるためである。
図6は、GsゲートとGcゲートの2つのゲートをオンした際の駆動能力であるVCE-I波形46、47と、Gsゲートのみゲートをオンした際の駆動能力であるVCE-I波形48、49を示す図である。
GsゲートとGcゲートとをほぼ同等の面積とした場合、Gsゲートのみゲートオンした際の駆動能力48、49は、GsゲートとGcゲートの2つのゲートをオンした際の駆動能力46、47のほぼ半分に抑制して制御することができる。
キャリア充填時間が長くなることで、空乏化し高電圧が印加された初期状態から、キャリアが充填し、順方向の電圧降下であるオン電圧にまで、VCEが変化する時間が長くなるので、dvCE/dtは低下する。
また、低温、低電流駆動条件46、48になると、トランスコンダクタンスが高く、また、充填するキャリア濃度が下がることから、キャリア充填時間は短くなり、すなわちdvCE/dtが上昇する。
この関係により、図5に示すとおり、デュアルゲートIGBTの温度が低く、かつ通電電流量が低いほど、相対的にtd_onを大きい値とする駆動方式45とすることで、安定したdvCE/dtのターンオンスイッチングが可能となる。なお、比較のために、td_on29を変化させず同じ時間とした場合の駆動方式44を示す。
図7は、ターンオフスイッチング時のtd_offに対する、デュアルゲートIGBT内部のキャリア排出時間の関係を示す図である。ここで、キャリア排出時間とは、電導度変調によりドリフト領域で高いキャリア濃度を有する初期状態から、エミッタへホールキャリアが排出されることで、ドリフト領域が空乏化する時間である。なお、駆動条件として、高温・高電流駆動条件50、高温・低電流駆動条件51、低温・低電流駆動条件52の3条件を示す。
d_offの増加に伴い、キャリア排出時間が短くなる傾向を示す。これは、先行してGcゲートがオフする期間が長く設けられることで、その期間にて、キャリアがターンオフする前に事前に排出されてキャリア濃度が下がるためである。
キャリア排出時間が短くなることで、キャリアが充填し、順方向の電圧降下であるオン電圧が印加された初期状態から、空乏化し高電圧が印加される状態へ、VCEが変化する時間が短くなるので、dvCE/dtは上昇する。
また、低温、低電流駆動条件52になると、キャリアのライフタイムは短く、初期のキャリア濃度が低い状態であることから、キャリア排出時間は短くなり、すなわちdvCE/dtは上昇する。
以上の関係により、デュアルゲートIGBTの温度が低く、かつ通電電流量が低いほど、相対的にtd_offを小さい値とする駆動方式54により、安定したdvCE/dtのターンオフスイッチングが可能となる。なお、比較のために、td_off35を変化させず同じ時間とした場合の駆動方式53を示す。
以上のとおり、本発明の実施例1により、デュアルゲートIGBTが、低損失な性能で、温度や通電条件に対して安定したdvCE/dtでスイッチングすることが実現可能であることを示した。
本発明の実施例2に係る絶縁ゲート型(ゲート制御型)の半導体装置における状態センス方式400を説明する。
図8は、本実施例に関するデュアルゲートIGBTのコレクタ電流-コレクタ・エミッタ間電圧の相関、すなわち順方向特性を示す図である。
図8では、高温56および室温55での特性を示し、高電流、高温になるほど、コレクタ電流が通電する際に生じる電圧降下(以下、「オン電圧」といい、図中では「Von」と称す)が大きくなる(57から60へ至る変化)。これは、高電流になるほど、通電するのに必要なキャリア濃度が高くなるため、注入に要する電圧が上昇するためであり、また、高温になるほど、キャリアライフタイムが高くキャリア濃度が高くなるため、同様に注入に要する電圧が上昇するためである。この特性より、デュアルゲートIGBTのオン電圧をモニタすることで、デュアルゲートIGBTの温度や通電電流の大きさをセンシングできる。
図9は、本実施例のセンス方式400のための構成を示す図である。td_onおよびtd_offを可変に制御できる二つの信号を生成する駆動回路63、並びに、デュアルゲートIGBT61から構成される。
駆動回路63は、デュアルゲートIGBT61のコレクタ-エミッタ間電位差、すなわちオン電圧62をセンスする。このオン電圧の情報を受けて、駆動回路63の内部に設けられたプログラム可能な集積回路、例えばFPGA(Field-Programmable-Gate-Array)64が、デュアルゲートIGBTのオン電圧62に対して適当なtd_onおよびtd_offを設けた二つのタイミング信号を導出する。
駆動回路63の内部で、タイミング信号をバッファ回路66、67により電圧変換し、ゲート信号としてデュアルゲートIGBT61のGsゲート端子とGcゲート端子に与える。
この構成によって、デュアルゲートIGBT61の温度と通電電流に応じ、適当なtd_onおよびtd_offで駆動することができ、低損失と安定したdvCE/dtとを両立したスイッチングが実現できる。
図10は、本実施例において、デュアルゲートIGBTの温度および電流の情報を取得するタイミングと最適なtd_on29とtd_off35を導出する手法を示す図である。
d_on29およびtd_off35は、デュアルゲートIGBTの一つ前の導通パルス期間68において、オン電圧を読み取り(時点69)、FPGA64により、そのオン電圧に応じた値をロードすることで設定できる。
ここで、FPGA64には、オン電圧に応じた最適なtd_on29およびtd_off35の値を、予めプログラムにて記録する。一例としては、図10の下方に示す対応表(Look-up Table)71の形で記録される。ここで、Look-up Table71は、例えば、オン電圧がA以上B未満の際に、td_on29は「a」、td_off35は「a」といったように、センスしたオン電圧の入力値に対して、td_on29およびtd_off35の出力値が一義に決まる対応表である。
デュアルゲートIGBTは、一つ前の導通パルス期間68において、通電し、スイッチングすることで、電力損失による発熱が生じて温度が上昇する。この温度が、次のターンオンスイッチングにおけるデュアルゲートIGBTの温度であるため、一つ前の導通パルス期間におけるオン電圧のセンスは有効である。
また、モータ負荷を駆動するデュアルゲートIGBTの駆動電流は、連続値をとるため、一つ前のデュアルゲートIGBTの導通パルス期間が終了する直前の電流が、次のデュアルゲートIGBTのターンオンスイッチング時の駆動電流となる。そのため、電流条件の観点でも、一つ前の導通パルス期間68におけるオン電圧のセンスが有効である。
以上のとおり、本発明の実施例2により、デュアルゲートIGBTが、低損失な性能で、温度や通電条件に対して安定したdvCE/dtでスイッチングすることが可能であることを示した。
本発明の実施例3に係る絶縁ゲート型(ゲート制御型)の半導体装置における駆動方式500を説明する。
図11は、本実施例に係るデュアルゲートIGBTの駆動信号波形とコレクタエミッタ間電圧(VCE)の波形を示す図である。
本実施例は、IGBTとして二つの独立制御が可能であるゲートを有するデュアルゲートIGBTを用いた半導体装置に対する駆動方式に関する。
デュアルゲートIGBTの駆動信号は、電力変換器の指令信号72から生成される。その指令信号72は、モータ駆動のための交流波をデュアルゲートIGBTから成るインバータで出力する場合、導通パルス幅の変調されたPWM(Pulse Width Modulation)信号である。
図11には、そのPWM指令信号72、Gsゲート信号1、Gc信号2と4を示す。PWM指令信号72は、出力する交流波を電流リップルが小さく高品質な波形にするように、導通パルス幅が制御されている。この指令信号に応じ、デュアルゲートIGBTをオン・オフし、導通・非導通を制御することが、高品質なインバータ出力波形を保つ上で重要である。
したがって、導通・非導通のタイミングを決めるGsゲート信号1の導通パルス幅74は、PWM指令信号の導通パルス幅73と等しくすることが必要である。さらに、上述したデュアルゲートIGBTの低損失な性能を導出するためには、td_on12およびtd_off13の期間を設ける必要があり、Gcゲート信号2の導通パルス幅を短くすることでこれは実現できる。
また、上述したデュアルゲートIGBTの温度や通電電流の変化に対して、安定したdvCE/dtのスイッチングを導出するためには、td_on12、14およびtd_off13、15の各期間を温度と通電電流に応じて調整することが必要であり、Gcゲート信号2、4の導通パルス幅を調整することでこれは実現できる。
すなわち、図9に示す駆動回路63が、PWM指令信号65を受け、同じ導通パルス幅のGsゲート信号と、デュアルゲートIGBTの温度および通電電流に応じた最適なtd_onおよびtd_offを設けるように、可変で導通パルス幅の制御されたGcゲート信号とを出力する。これにより、低損失で安定したdvCE/dtのスイッチング波形に加え、高品質な交流出力波を導出することができる。
以上のとおり、本発明の実施例3により、デュアルゲートIGBTが、低損失な性能で、温度や通電条件に対して安定したdvCE/dtでスイッチングし、電流リップルの小さい高品質な交流波出力が可能であることを示した。
本発明の実施例4に係る絶縁ゲート型(ゲート制御型)の半導体装置における状態センス方式600を説明する。
図12は、本実施例のセンス方式600のための構成を示す図である。td_onおよびtd_offを可変に制御できる二つの信号を生成する駆動回路63、並びに、デュアルゲートIGBT61から構成される。
デュアルゲートIGBT61のエミッタ側には、エミッタ端子、エミッタ電流センス端子75およびエミッタ端子と接続して温度を検知可能なサーミスタ76が接続される。駆動回路63は、サーミスタ76よりデュアルゲートIGBT61の温度をセンスし、駆動回路63内に設けられ、デュアルゲートIGBTのエミッタ電流センス端子75とエミッタ端子とに接続した抵抗器79に印加される電圧によって電流をセンスする。
上記した温度77と電流78のセンス情報を受けて、駆動回路63の内部に設けられたプログラム可能な集積回路、例えばFPGA64が、デュアルゲートIGBTの温度と電流に対して適当なtd_onおよびtd_offを設けた二つのタイミング信号を導出する。
駆動回路63の内部で、タイミング信号をバッファ回路66、67により電圧変換し、ゲート信号としてデュアルゲートIGBTのGsゲート端子とGcゲート端子に与える。上記の構成によって、デュアルゲートIGBT61を、その温度と通電電流に応じて、適当なtd_onおよびtd_offで駆動することができ、低損失で安定したdvCE/dtを両立したスイッチングが実現できる。
図13は、本実施例において、デュアルゲートIGBTの温度および電流の情報を取得するタイミング69と最適なtd_on29とtd_off35とを導出する手法を示す図である。
d_on29およびtd_off35は、一つ前のデュアルゲートIGBTの導通パルス期間68において、温度および電流を読み取り(時点69)、FPGA64により、そのオン電圧に応じた値をロードすることで設定できる。ここで、FPGA64には、デュアルゲートIGBTの温度と電流に応じた最適なtd_on29およびtd_off35の値を、予めプログラムにて記録する。一例として、図13の下方に示す対応表(Look-up Table)80に記録される。Look-up Table80は、温度と電流に対し、td_onおよびtd_offに対応した2次元の対応表である。例えば、デュアルゲートIGBTの温度がA以上B未満であり、電流がA以上B未満の際に、td_on29は「a」(左側の表)、td_off35は「a」(右側の表)のように、センスした温度と電流の入力値に対し、td_on29およびtd_off35の出力値が一義に決まる対応表である。
本実施例による状態センス方式600においても、先の実施例2(図9に示す状態センス方式400)と同様の作用効果を奏することができることに加えて、実施例2の状態センス方式400のように、デュアルゲートIGBTのオン電圧により温度と電流を間接的にセンスする方式に対し、本実施例はより直接的に温度と電流をセンスできることから、より高精度なセンスが可能である。
以上のとおり、本発明の実施例4により、デュアルゲートIGBTが、低損失な性能で、温度や通電条件に対して安定したdvCE/dtでスイッチングすることが可能であることを示した。
本発明の実施例5に係る絶縁ゲート型(ゲート制御型)の半導体装置における状態センス方式700を説明する。
図14は、本実施例のセンス方式700のための構成を示す図である。td_onおよびtd_offを可変に制御できる二つの信号を生成する駆動回路63、並びに、デュアルゲートIGBT61から構成される。
デュアルゲートIGBT61は、2つの素子に分割されて並列接続した構成から成る。それぞれの素子に、エミッタ端子とエミッタ電流センス端子75が設けられる。ここで、二つに分解されたデュアルゲートIGBTの内の一つの素子82の二つのゲートは、共にGcゲートに接続される。すなわち、デュアルゲートIGBT61のGsゲートとGcゲートの本数比率が1:3となる。また、共にGcゲートに接続される方の素子82は、デュアルゲートIGBTではなく、シングルゲート型のIGBTでもよい。
二つのエミッタ端子は、温度検知が可能な一つのサーミスタ76と接続する。駆動回路63は、サーミスタ76よりデュアルゲートIGBT61の温度をセンスし、駆動回路63の内に設けられ、デュアルゲートIGBT61のエミッタ電流センス端子75とエミッタ端子に接続した抵抗器79に印加される電圧によって電流をセンスする。
上記した温度77および電流78のセンス情報を受けて、駆動回路63の内部に設けられたプログラム可能な集積回路、例えばFPGA64が、デュアルゲートIGBT61の温度と電流に対して適当なtd_onおよびtd_offを設けた二つのタイミング信号を導出する。
駆動回路63の内部で、タイミング信号をバッファ回路66、67により電圧変換し、ゲート信号としてデュアルゲートIGBTのGsゲートとGcゲート端子に信号を与える。
図15は、デュアルゲートIGBTの順方向電流特性として、特に、GsゲートとGcゲートとを共にオンした際の駆動性能83、GsゲートをオンしGcゲートをオフした際の駆動性能84と85、を示す。ここで、後者の駆動性能84と85については、本実施例のGsゲートとGcゲートの本数比率が1:3である場合の性能が85であり、先の実施例1~4にて示した本数比率が1:1である場合の性能が84である。
本数比率を上昇することで、Gsゲートをオン、Gcゲートをオフした際の駆動性能は下がる。すなわち、GsゲートとGcゲートを共にオンした際の駆動性能83との差が広がることになる。これは、GcゲートのバイアスによるデュアルゲートIGBTのキャリア制御性が高まることを示す。
したがって、本実施例に示すデュアルゲートIGBTの構成によって、td_onによるターンオンスイッチング時のdvCE/dtの調整量と、td_offによるターンオフスイッチング時のdvCE/dtの調整量とを、共に高めることができる。これにより、td_onおよびtd_offのばらつきに対する制御安定性を高めることができる。すなわち、デュアルゲートIGBTの温度と電流に応じたtd_onおよびtd_offの最適制御によるスイッチング時のdvCE/dtの安定性を高めることができる。
以上のとおり、本発明の実施例5により、デュアルゲートIGBTが、低損失な性能で、温度や通電条件に対して安定したdvCE/dtでスイッチングすることが可能であることを示した。
図16は、本発明の実施例6に係る電力変換装置の構成の一例を示す図である。
本実施例の電力変換装置800は、モータを主とした誘導性負荷95を駆動するインバータであって、直流電圧(電力)169を交流電圧(電力)に変換し、その交流電圧(電力)を誘導性負荷95に供給する。
また、図16は、一相分の上下アームのデュアルゲートIGBT91、92と逆並列接続されたダイオード93、94とから構成される回路を示すが、U相、V相およびW相の三相の上下アームのデュアルゲートIGBTで電力変換装置を構成し、誘導性負荷であるモータを駆動する場合において、本実施例が適用される。
出力する交流波形を得るため、指令部88から、導通パルス幅が変調されたPWM指令信号89、90を駆動回路63に入力する。このPWM指令信号を受けて、駆動回路63の内部に設けられたFPGA64によって、デュアルゲートIGBT91、92の電流と温度に応じてtd_onおよびtd_offが最適に調整されたGsゲート信号とGcゲート信号とが生成される。
上記のGsゲート信号とGcゲート信号とを受けてデュアルゲートIGBT91、92が動作し、導通・非導通のスイッチングが行われることにより、低損失でかつdvCE/dtの安定したスイッチングが可能となる。
本実施例の電力変換装置800は、上下アーム各々に配置された駆動回路63とデュアルゲートIGBT91、92とから構成され、上下アームの導通、非導通を相補的に制御できるように、PWM指令信号89、90が上下アーム各々に入力されることで、誘導性負荷95に交流出力波を印加することができる。
以上のとおり、本発明の実施例6により、デュアルゲートIGBTから構成された電力変換装置が、低損失な性能で、温度や通電条件に対して安定したdvCE/dtでスイッチングすることが可能であることを示した。
なお、本発明は、エアコンや電子レンジなどの小電力機器から、自動車、鉄道、製鉄所等に使用されるインバータのような大電力機器まで、広く用いられている半導体装置、半導体回路の駆動装置並びに電力変換装置に適用することができる。
また、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。さらに、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
1…Gsゲート信号、2…Gcゲート信号(素子高温、高電流駆動時)、
3…デュアルゲートIGBTのVCE(素子高温、高電流駆動時)、
4…Gcゲート信号(素子低温、低電流駆動時)、
5…デュアルゲートIGBTのVCE (素子低温、低電流駆動時)、
6…ターンオンタイミング、7…ターンオフタイミング、8…オン電圧、9…オフ電圧、
10…高電圧、11…0V、12…本発明のtd_on(素子高温、高電流駆動時)、
13…本発明のtd_off(素子高温、高電流駆動時)、
14…本発明のtd_on(素子低温、低電流駆動時)、
15…本発明のtd_off(素子低温、低電流駆動時)、
16…本発明のターンオンdvCE/dt(素子高温、高電流駆動時)、
17…本発明のターンオフdvCE/dt(素子高温、高電流駆動時)、
18…本発明のターンオンdvCE/dt(素子低温、低電流駆動時)、
19…本発明のターンオフdvCE/dt(素子低温、低電流駆動時)、
20…比較例のtd_on(素子高温、高電流駆動時)、
21…比較例のtd_off(素子高温、高電流駆動時)、
22…比較例のtd_on(素子低温、低電流駆動時)、
23…比較例のtd_off(素子低温、低電流駆動時)、
24…比較例のターンオンdvCE/dt(素子高温、高電流駆動時)、
25…比較例のターンオフdvCE/dt(素子高温、高電流駆動時)、
26…比較例のターンオンdvCE/dt(素子低温、低電流駆動時)、
27…比較例のターンオフdvCE/dt(素子低温、低電流駆動時)、
28…Gcゲート信号、29…本発明のtd_on
30…高温、高電流駆動時のdvCE/dtとターンオン損失、td_on依存、
31…高温、低電流駆動時のdvCE/dtとターンオン損失、td_on依存、
32…低温、低電流駆動時のdvCE/dtとターンオン損失、td_on依存、
33…td_on固定時の温度と駆動電流変化に伴うdvCE/dtとターンオン損失推移、
34…td_on可変時の温度と駆動電流変化に伴うdvCE/dtとターンオン損失推移、
35…本発明のtd_off
36…高温、高電流駆動時のdvCE/dtとターンオフ損失、td_off依存、
37…高温、低電流駆動時のdvCE/dtとターンオフ損失、td_off依存、
38…低温、低電流駆動時のdvCE/dtとターンオフ損失、td_off依存、
39…td_off固定時の温度と駆動電流変化に伴うdvCE/dtとターンオフ損失推移、
40…td_off可変時の温度と駆動電流変化に伴うdvCE/dtとターンオフ損失推移、
41…高温、高電流駆動時のtd_onとキャリア充填時間の相関、
42…高温、低電流駆動時のtd_onとキャリア充填時間の相関、
43…低温、低電流駆動時のtd_onとキャリア充填時間の相関、
44…td_on固定時の温度と駆動電流変化に伴うキャリア充填時間の変化、
45…td_on可変時の温度と駆動電流変化に伴うキャリア充填時間の変化、
46…Gs、Gc両側オン時、低温時、47…Gs、Gc両側オン時、高温時、
48…Gs片側オン時、低温時、49…Gs片側オン時、高温時、
50…高温、高電流駆動時のtd_offとキャリア排出時間の相関、
51…高温、低電流駆動時のtd_offとキャリア排出時間の相関、
52…低温、低電流駆動時のtd_offとキャリア排出時間の相関、
53…td_off固定時の温度と駆動電流変化に伴うキャリア排出時間の変化、
54…td_off可変時の温度と駆動電流変化に伴うキャリア排出時間の変化、
55…低温時の順方向電流特性、56…高温時の順方向電流特性、
57…低温、低電流通電時のオン電圧、58…低温、高電流通電時のオン電圧、
59…高温、低電流通電時のオン電圧、60…高温、高電流通電時のオン電圧、
61…デュアルゲートIGBT、62…デュアルゲートIGBTのオン電圧、
63…駆動回路、64…プログラム可能な集積回路(例えばFPGA)、
65…PWM指令信号、66…Gsゲート信号生成用のバッファ回路、
67…Gcゲート信号生成用のバッファ回路、
68…デュアルゲートIGBTが通電し、発熱する期間、
69…デュアルゲートIGBTのオン電圧をセンスするタイミング、
70…Look-up Tableから最適td_onと最適td_offをロードセット、
71…Look-up Tableのオン電圧に対するtd_onとtd_offの対応表、
72…PWM指令信号、73…導通指令パルス幅、74…Gsゲートの導通信号幅、
75…デュアルゲートIGBTのエミッタセンス端子、76…サーミスタ、
77…デュアルゲートIGBTの温度情報、
78…デュアルゲートIGBTの駆動電流情報、79…電流検出用抵抗器、
80…温度と駆動電流に対するtd_onとtd_offの対応表、
81…GsゲートとGcゲートに接続したデュアルゲートIGBT、
82…Gcゲートに接続したデュアルゲートIGBT、
83…Gs、Gc両側オン時の順方向特性、
84…Gs片側オン時の順方向特性(GsゲートとGcゲートの本数比率1:1)、
85…Gs片側オン時の順方向特性(GsゲートとGcゲートの本数比率1:3)、
86…GsゲートとGcゲートの本数比率1:1構造でのGcゲート信号による制御幅、
87…GsゲートとGcゲートの本数比率1:3構造でのGcゲート信号による制御幅、
88…指令部、89…上アームのPWM指令信号線、
90…下アームのPWM指令信号線、91…上アームのデュアルゲートIGBT、
92…下アームのデュアルゲートIGBT、
93…上アームの逆並列接続されたダイオード、
94…下アームの逆並列接続されたダイオード、
95…誘導性負荷、96…上アームデュアルゲートIGBTの温度と駆動電流の情報、
97…下アームデュアルゲートIGBTの温度と駆動電流の情報、
100…デュアルゲートIGBTの電流・電圧積、
101…従来IGBTのターンオフスイッチング損失、
102…デュアルゲートIGBTのターンオフスイッチング損失、
103…ディレイ期間、104…従来IGBTのターンオフdvCE/dt、
105…デュアルゲートIGBTのターンオフdvCE/dt、
106…非導通期間、107…導通期間、164…制御回路、
167…IGBTのゲートを駆動する駆動回路、168…誘導性負荷、
169…直流電圧(電力)源、170…IGBT、
171…IGBT70の絶縁ゲート(端子)、
172…IGBT70と逆並列接続のダイオード、179…ダブルゲート型IGBT、
180…第一のゲート端子、181…第二のゲート端子、182…コレクタ端子、
183…エミッタ端子、
184…第一のゲートにオン信号、第二のゲートにオフ信号を印加時のキャリア濃度分布、
185…第一のゲートと第二のゲートにオン信号を印加時のキャリア濃度分布、
186…ゲート信号、187…第二のゲート信号、188…電圧、189…電流、
190…電流・電圧積、191…導通時、192…非導通時、
193…IGBTの閾値電圧、194…電源電圧、
195…従来IGBTのコレクタ・エミッタ間電圧、
196…デュアルゲートIGBTのコレクタ・エミッタ間電圧、
197…従来IGBTのコレクタ電流、
198…デュアルゲートIGBTのコレクタ電流、
199…従来IGBTの電流・電圧積、
200…実施例1に係る絶縁ゲート型(ゲート制御型)の半導体装置の駆動方式、
300…比較例の絶縁ゲート型(ゲート制御型)の半導体装置の駆動方式、
400…実施例2に係る絶縁ゲート型(ゲート制御型)の半導体装置の状態センス方式、
500…実施例3に係る絶縁ゲート型(ゲート制御型)の半導体装置の駆動方式、
600…実施例4に係る絶縁ゲート型(ゲート制御型)の半導体装置の状態センス方式、
700…実施例5に係る絶縁ゲート型(ゲート制御型)の半導体装置の状態センス方式、
800…実施例6に係る電力変換装置

Claims (13)

  1. スイッチングゲートおよびキャリア制御ゲートを有するデュアルゲートIGBTから成る半導体装置であって、
    前記スイッチングゲートは、前記デュアルゲートIGBTの非導通状態から導通状態への移行時に、閾値電圧以上の電圧が前記キャリア制御ゲートより第1の所定時間先行して印加され、
    前記キャリア制御ゲートは、前記デュアルゲートIGBTの導通状態から非導通状態への移行時に、前記閾値電圧未満の電圧が前記スイッチングゲートより第2の所定時間先行して印加され、
    前記した非導通状態から導通状態への移行時および前記した導通状態から非導通状態への移行時に発生する前記デュアルゲートIGBTのコレクタエミッタ間電圧の時間変化が略一定となるように、前記第1および前記第2の所定時間は前記デュアルゲートIGBTの温度および通電電流量に応じて可変に制御され、
    前記第1の所定時間は、前記デュアルゲートIGBTの前記温度が高くかつ前記通電電流量が高くなるほど相対的に小さい値であり、
    前記第2の所定時間は、前記デュアルゲートIGBTの前記温度が高くかつ前記通電電流量が高くなるほど相対的に大きい値である
    ことを特徴とする半導体装置。
  2. 請求項1に記載の半導体装置であって、
    前記スイッチングゲートおよび前記キャリア制御ゲートに印加するゲート信号は、交流負荷を駆動するためのPWM指令信号より生成され、
    前記スイッチングゲートに印加するゲート信号の導通幅は、前記PWM指令信号の導通幅と同じで、
    前記キャリア制御ゲートに印加するゲート信号の導通幅は、前記PWM指令信号の導通幅よりも短い
    ことを特徴とする半導体装置。
  3. 請求項1または2に記載の半導体装置であって、
    前記第1および前記第2の所定期間は、前記デュアルゲートIGBTの一つ前の導通期間における前記デュアルゲートIGBTの前記温度および前記通電電流量により決定される
    ことを特徴とする半導体装置。
  4. 請求項1から3のいずれか1項に記載の前記デュアルゲートIGBTを2つ並列接続した第1および第2のデュアルゲートIGBTから成る半導体装置であって、
    前記第1および前記第2のデュアルゲートIGBTそれぞれのコレクタおよびエミッタは共通に接続され、
    前記第1のデュアルゲートIGBTの前記キャリア制御ゲートに印加するゲート信号が、前記第2のデュアルゲートIGBTの前記スイッチングゲートおよび前記キャリア制御ゲートの両方に印加される
    ことを特徴とする半導体装置。
  5. 請求項3または4に記載の半導体装置であって、
    プログラム可能な集積回路を備え、
    前記集積回路には、前記デュアルゲートIGBTの導通期間におけるコレクタエミッタ間オン電圧と前記第1および前記第2の所定期間との対応表がプログラムされ、
    前記デュアルゲートIGBTの一つ前の導通期間における前記コレクタエミッタ間オン電圧を用いて前記集積回路から読み出した前記第1および前記第2の所定期間に基づいて、前記スイッチングゲートおよび前記キャリア制御ゲートに印加するゲート信号が生成される
    ことを特徴とする半導体装置。
  6. 請求項3または4に記載の半導体装置であって、
    プログラム可能な集積回路を備え、
    前記集積回路は、前記デュアルゲートIGBTの前記温度および前記通電電流量と前記第1および前記第2の所定期間との対応表がプログラムされ、
    前記デュアルゲートIGBTの一つ前の導通期間における前記デュアルゲートIGBTの前記温度および前記通電電流量を用いて前記集積回路から読み出した前記第1および前記第2の所定期間に基づいて、前記スイッチングゲートおよび前記キャリア制御ゲートに印加するゲート信号が生成される
    ことを特徴とする半導体装置。
  7. 請求項6に記載の半導体装置であって、
    前記デュアルゲートIGBTの前記温度として、前記デュアルゲートIGBTのエミッタ端子に接続された温度検知用サーミスタの抵抗値を用い、
    前記デュアルゲートIGBTの前記通電電流量として、前記デュアルゲートIGBTのエミッタセンス用端子に流れる電流により生じる電圧降下値を用いる
    ことを特徴とする半導体装置。
  8. 請求項1から7のいずれか1項に記載の半導体装置は自らのコレクタエミッタ間に逆並列に接続したダイオードを有し、
    前記ダイオードを有する前記半導体装置を複数直列にして直流端子間に接続し、
    前記半導体装置同士の接続点を交流端子として構成される
    ことを特徴とする電力変換装置。
  9. スイッチングゲートおよびキャリア制御ゲートを有するデュアルゲートIGBTから成る半導体装置の駆動方法であって、
    前記デュアルゲートIGBTの非導通状態から導通状態への移行時に、前記スイッチングゲートに閾値電圧以上の電圧を前記キャリア制御ゲートより第1の所定時間先行させて印加し、
    前記デュアルゲートIGBTの導通状態から非導通状態への移行時に、前記第2のゲート端子に前記閾値電圧未満の電圧を前記スイッチングゲートより第2の所定時間先行させて印加し、
    前記第1および前記第2の所定時間を前記デュアルゲートIGBTの温度および通電電流量に応じて可変に制御して、
    前記第1の所定時間を、前記デュアルゲートIGBTの前記温度が高くかつ前記通電電流量が高くなるほど相対的に小さい値にし、
    前記第2の所定時間を、前記デュアルゲートIGBTの前記温度が高くかつ前記通電電流量が高くなるほど相対的に大きい値にし、
    前記した非導通状態から導通状態への移行時および前記した導通状態から非導通状態への移行時に発生する前記デュアルゲートIGBTのコレクタエミッタ間電圧の時間変化を略一定とする
    ことを特徴とする駆動方法
  10. 請求項9に記載の駆動方法であって、
    前記スイッチングゲートおよび前記キャリア制御ゲートに印加するゲート信号を、交流負荷を駆動するためのPWM指令信号より生成し、
    前記スイッチングゲートに印加するゲート信号の導通幅を、前記PWM指令信号の信号幅と同じにし、
    前記キャリア制御ゲートに印加するゲート信号の導通幅を、前記PWM指令信号の信号幅よりも短くする
    ことを特徴とする駆動方法
  11. 請求項9または10に記載の駆動方法であって、
    前記第1および前記第2の所定期間を、前記デュアルゲートIGBTの一つ前の導通期間における前記デュアルゲートIGBTの前記温度および前記通電電流量により決定する
    ことを特徴とする駆動方法。
  12. 請求項11に記載の駆動方法であって、
    前記デュアルゲートIGBTの導通期間におけるコレクタエミッタ間オン電圧と前記第1および前記第2の所定期間との対応関係を記録し、
    前記デュアルゲートIGBTの一つ前の導通期間における前記コレクタエミッタ間オン電圧を用いて前記対応関係から前記第1および前記第2の所定期間を求め、
    求めた前記第1および前記第2の所定期間に基づいて前記スイッチングゲートおよび前記キャリア制御ゲートに印加するゲート信号を生成する
    ことを特徴とする駆動方法。
  13. 請求項11に記載の駆動方法であって、
    前記デュアルゲートIGBTの前記温度および前記通電電流量と前記第1および前記第2の所定期間との対応関係を記録し、
    前記デュアルゲートIGBTの一つ前の導通期間における前記デュアルゲートIGBTの前記温度および前記通電電流量を用いて前記対応関係から前記第1および前記第2の所定期間を求め、
    求めた前記第1および前記第2の所定期間に基づいて前記スイッチングゲートおよび前記キャリア制御ゲートに印加するゲート信号を生成する
    ことを特徴とする駆動方法。
JP2019060329A 2019-03-27 2019-03-27 半導体装置およびそれを用いた電力変換装置並びに半導体装置の駆動方法 Active JP7229064B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019060329A JP7229064B2 (ja) 2019-03-27 2019-03-27 半導体装置およびそれを用いた電力変換装置並びに半導体装置の駆動方法
PCT/JP2019/047570 WO2020194887A1 (ja) 2019-03-27 2019-12-05 半導体装置およびそれを用いた電力変換装置並びに半導体装置の駆動方法
CN201980092895.7A CN113474981A (zh) 2019-03-27 2019-12-05 半导体器件和使用其的电力转换装置及半导体器件的驱动方法
EP19920716.8A EP3952082A1 (en) 2019-03-27 2019-12-05 Semiconductor device, power conversion device using same, and driving method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060329A JP7229064B2 (ja) 2019-03-27 2019-03-27 半導体装置およびそれを用いた電力変換装置並びに半導体装置の駆動方法

Publications (3)

Publication Number Publication Date
JP2020162022A JP2020162022A (ja) 2020-10-01
JP2020162022A5 JP2020162022A5 (ja) 2021-07-26
JP7229064B2 true JP7229064B2 (ja) 2023-02-27

Family

ID=72609380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060329A Active JP7229064B2 (ja) 2019-03-27 2019-03-27 半導体装置およびそれを用いた電力変換装置並びに半導体装置の駆動方法

Country Status (4)

Country Link
EP (1) EP3952082A1 (ja)
JP (1) JP7229064B2 (ja)
CN (1) CN113474981A (ja)
WO (1) WO2020194887A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023070368A (ja) 2021-11-09 2023-05-19 三菱電機株式会社 半導体装置、電力変換装置、および、半導体装置の駆動方法
CN116632053B (zh) * 2023-07-25 2024-01-30 深圳市美浦森半导体有限公司 一种rc-igbt器件的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038064A1 (ja) 2012-09-07 2014-03-13 株式会社日立製作所 電力変換用スイッチング素子および電力変換装置
JP2015195699A (ja) 2014-03-27 2015-11-05 株式会社デンソー 駆動装置
JP2017028811A (ja) 2015-07-20 2017-02-02 株式会社デンソー 半導体装置
JP2017229151A (ja) 2016-06-22 2017-12-28 ルネサスエレクトロニクス株式会社 駆動装置および電力供給システム
JP2018200974A (ja) 2017-05-29 2018-12-20 株式会社 日立パワーデバイス 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561393A (en) * 1992-02-03 1996-10-01 Fuji Electric Co., Ltd. Control device of semiconductor power device
JP4492065B2 (ja) * 2003-08-27 2010-06-30 セイコーエプソン株式会社 電気光学装置およびそれを用いた電子機器
JP4398719B2 (ja) 2003-12-25 2010-01-13 株式会社東芝 半導体装置
WO2014181450A1 (ja) * 2013-05-10 2014-11-13 株式会社 日立製作所 絶縁ゲート型半導体素子の制御装置およびそれを用いた電力変換装置
JP6333951B2 (ja) * 2014-03-13 2018-05-30 株式会社Joled El表示装置
JP2016162855A (ja) 2015-02-27 2016-09-05 株式会社日立製作所 半導体装置およびそれを用いた電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038064A1 (ja) 2012-09-07 2014-03-13 株式会社日立製作所 電力変換用スイッチング素子および電力変換装置
JP2015195699A (ja) 2014-03-27 2015-11-05 株式会社デンソー 駆動装置
JP2017028811A (ja) 2015-07-20 2017-02-02 株式会社デンソー 半導体装置
JP2017229151A (ja) 2016-06-22 2017-12-28 ルネサスエレクトロニクス株式会社 駆動装置および電力供給システム
JP2018200974A (ja) 2017-05-29 2018-12-20 株式会社 日立パワーデバイス 半導体装置

Also Published As

Publication number Publication date
WO2020194887A1 (ja) 2020-10-01
EP3952082A1 (en) 2022-02-09
JP2020162022A (ja) 2020-10-01
CN113474981A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP3736227B2 (ja) ドライブ回路
JP4343897B2 (ja) 電力変換装置
US7710187B2 (en) Gate drive circuit
US6380796B2 (en) Semiconductor power converting apparatus
JP4915158B2 (ja) 電力用スイッチング素子の駆動装置
JP2001352748A (ja) 半導体スイッチング素子のゲート駆動回路
JP4925841B2 (ja) 電力用半導体素子の駆動回路および電力変換装置
JP7229064B2 (ja) 半導体装置およびそれを用いた電力変換装置並びに半導体装置の駆動方法
WO2019171783A1 (ja) インバータ装置およびその駆動方法
US10439485B2 (en) DC inverter having reduced switching loss for paralleled phase leg switches
JP5480750B2 (ja) 半導体素子の駆動装置及び方法
CN102843124B (zh) 通过调节基极电流来驱动双极结型晶体管的系统和方法
US11336206B2 (en) Switching frequency and PWM control to extend power converter lifetime
CN107819408B (zh) 电源开关装置的分段式温度补偿
JP5460520B2 (ja) 半導体素子の駆動装置及び方法
JPH11252896A (ja) Iegtのゲート制御装置
US20220038093A1 (en) Gate driver
WO2023223426A1 (ja) 電力用半導体素子の駆動回路および駆動方法ならびにパワーモジュール
JP5462109B2 (ja) 半導体素子の駆動装置
JP2009017723A (ja) 電流増幅半導体素子の駆動回路
JP6561794B2 (ja) スイッチング回路
Mueller Design and analysis of a low-inductive power-semiconductor module with SiC T-MOSFET and Si IGBT in parallel operation
JP5780489B2 (ja) ゲート駆動回路
JP3049938B2 (ja) Igbtのゲート駆動方法
JPH10209832A (ja) 半導体スイッチ回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7229064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150