JP7227662B1 - 電磁気妨害低減装置及び電気回路の設計方法 - Google Patents

電磁気妨害低減装置及び電気回路の設計方法 Download PDF

Info

Publication number
JP7227662B1
JP7227662B1 JP2022086762A JP2022086762A JP7227662B1 JP 7227662 B1 JP7227662 B1 JP 7227662B1 JP 2022086762 A JP2022086762 A JP 2022086762A JP 2022086762 A JP2022086762 A JP 2022086762A JP 7227662 B1 JP7227662 B1 JP 7227662B1
Authority
JP
Japan
Prior art keywords
resistance value
input
output
resistor
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022086762A
Other languages
English (en)
Other versions
JP2023174100A (ja
Inventor
慎司 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Tsushin Kogyo Co Ltd
Original Assignee
Honda Tsushin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Tsushin Kogyo Co Ltd filed Critical Honda Tsushin Kogyo Co Ltd
Priority to JP2022086762A priority Critical patent/JP7227662B1/ja
Application granted granted Critical
Publication of JP7227662B1 publication Critical patent/JP7227662B1/ja
Publication of JP2023174100A publication Critical patent/JP2023174100A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)
  • Noise Elimination (AREA)

Abstract

【課題】電磁気妨害(EMI)を改善する。【解決手段】最低周波数設計工程71において、電磁気妨害低減装置が低減すべきノイズの最低周波数fを設定する。伝送路長さ算出工程72において、最低周波数設定工程71で設定した最低周波数fに基づいて、最低周波数fに反比例する伝送路長さpを算出する。第一長さ設定工程73において、入力側伝送路の長さp1を、伝送路長さ算出工程72で算出した伝送路長さp以上の長さに設定する。第二長さ設定工程74において、出力側伝送路の長さp2を、伝送路長さ算出工程72で算出した伝送路長さp以上の長さに設定する。【選択図】図4

Description

本発明は、電磁気妨害低減装置及び電気回路の設計方法に関する。
10ギガビット毎秒(Gbps)程度又はそれを超える高速大容量伝送では、電磁的両立性(EMC)が重視される。EMCには、電磁気妨害感受(EMS)と、電磁気妨害(EMI)とがある。EMSは、外部からのノイズの影響を意味し、EMIは、外部へのノイズの放射を意味する。
特許文献1は、入力側及び出力側のディファレンシャルモード等価抵抗値にかかわらず、ディファレンシャルモードインピーダンス及びコモンモードインピーダンスをそれぞれ整合させ、EMCを改善する電気回路を開示している。
特開2021-141437号公報
前記電気回路の抵抗として市販されている抵抗を使用する場合、計算上理想とされる抵抗値を有する抵抗が市販されているとは限らないので、インピーダンスを完全に整合できない場合がある。
この発明は、例えばこのような課題を解決し、EMC(特にEMI)を改善することを目的とする。
所定の第一の長さを有し、ディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が前記第一の長さにわたって一定である一対の入力側伝送路と、所定の第二の長さを有し、ディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が前記第二の長さにわたって一定である一対の出力側伝送路と、前記入力側伝送路と、前記出力側伝送路との間に電気接続された電気回路とを有し、前記電気回路は、前記一対の入力側伝送路のうち第一の入力側伝送路に電気接続された第一入力端子と、前記一対の入力側伝送路のうち第二の入力側伝送路に電気接続された第二入力端子と、前記一対の出力側伝送路のうち第一の出力側伝送路に電気接続された第一出力端子と、前記一対の出力側伝送路のうち第二の出力側伝送路に電気接続された第二出力端子と、接地端子と、前記第一入力端子と前記接地端子との間に電気接続された第一接地抵抗と、前記第二入力端子と前記接地端子との間に電気接続された第二接地抵抗と、前記第一入力端子と前記第二入力端子との間に電気接続された入力側抵抗と、前記第一入力端子と前記第一出力端子との間に電気接続された第一抵抗と、前記第二入力端子と前記第二出力端子との間に電気接続された第二抵抗と、前記第一出力端子と前記接地端子との間に電気接続された第三接地抵抗と、前記第二出力端子と前記接地端子との間に電気接続された第四接地抵抗と、前記第一出力端子と前記第二出力端子との間に電気接続された出力側抵抗と
を有する電磁気妨害低減装置を設計する設計方法は、前記電磁気妨害低減装置が低減すべきノイズの最低周波数を設定する最低周波数設定工程と、前記最低周波数設定工程で設定した前記最低周波数に基づいて、前記最低周波数に反比例する伝送路長さを算出する伝送路長さ算出工程と、前記第一の長さを、前記伝送路長さ算出工程で算出した前記伝送路長さ以上の長さに設定する第一長さ設定工程と、前記第二の長さを、前記伝送路長さ算出工程で算出した前記伝送路長さ以上の長さに設定する第二長さ設定工程とを有する。
前記設計方法は、前記第一接地抵抗と前記第二接地抵抗と前記入力側抵抗と前記第一抵抗と前記第二抵抗と前記第三接地抵抗と前記第四接地抵抗と前記出力側抵抗との抵抗値を設定する抵抗値設定工程と、前記抵抗値設定工程で設定した抵抗値に基づいて、前記電気回路の入力側及び出力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値をそれぞれ算出する等価抵抗値算出工程と、前記入力側伝送路のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が、前記等価抵抗値算出工程で算出した前記電気回路の入力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値と整合するよう、前記入力側伝送路を設計する入力側伝送路設計工程と、
前記出力側伝送路のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が、前記等価抵抗値算出工程で算出した前記電気回路の出力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値と整合するよう、前記出力側伝送路を設計する出力側伝送路設計工程とを更に有してもよい。
前記設計方法は、前記第一接地抵抗と前記第二接地抵抗と前記入力側抵抗と前記第三接地抵抗と前記第四接地抵抗と前記出力側抵抗とを接続せず、前記第一抵抗と前記第二抵抗との代わりにジャンパー抵抗を接続した前記電磁気妨害低減装置を試作する試作工程と、前記試作工程で試作した前記電磁気妨害低減装置の前記入力側伝送路の出力側及び前記出力側伝送路の入力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値を測定する等価抵抗値測定工程と、前記等価抵抗値測定工程で測定した等価抵抗値に基づいて、前記第一接地抵抗と前記第二接地抵抗と前記入力側抵抗と前記第一抵抗と前記第二抵抗と前記第三接地抵抗と前記第四接地抵抗と前記出力側抵抗との抵抗値を設定する抵抗値設定工程とを更に有してもよい。
前記設計方法は、前記電磁気妨害低減装置が透過すべき信号の周波数を設定する信号周波数設定工程と、前記信号周波数設定工程で設定した前記信号の周波数に基づいて、前記信号の周波数に反比例する立ち上がり時間を算出する立ち上がり時間算出工程とを更に有し、前記等価抵抗値測定工程において、前記立ち上がり時間算出工程で算出した立ち上がり時間以下の立ち上がり時間を有する信号を用いて、時間領域反射率測定法で等価抵抗値を測定してもよい。
第一入力端子と、第二入力端子と、第一出力端子と、第二出力端子と、接地端子と、前記第一入力端子と前記接地端子との間に電気接続された第一接地抵抗と、前記第二入力端子と前記接地端子との間に電気接続された第二接地抵抗と、前記第一入力端子と前記第二入力端子との間に電気接続された入力側抵抗と、前記第一入力端子と前記第一出力端子との間に電気接続された第一抵抗と、前記第二入力端子と前記第二出力端子との間に電気接続された第二抵抗と、前記第一出力端子と前記接地端子との間に電気接続された第三接地抵抗と、前記第二出力端子と前記接地端子との間に電気接続された第四接地抵抗と、前記第一出力端子と前記第二出力端子との間に電気接続された出力側抵抗とを有する電気回路を設計する設計方法は、以下の条件1から条件4をすべて満たす抵抗値R1,R2,R3,R4,R5を算出し、前記第一接地抵抗及び前記第二接地抵抗の抵抗値を、算出した前記抵抗値R1に設定し、前記第三接地抵抗及び前記第四接地抵抗の抵抗値を、算出した前記抵抗値R5に設定し、前記第一抵抗及び前記第二抵抗の抵抗値を、算出した前記抵抗値R3に設定し、算出した前記抵抗値R2が正の値である場合に、前記入力側抵抗の抵抗値を前記抵抗値R2に設定し、算出した前記抵抗値R2が負の値である場合に、前記入力側抵抗の抵抗値を1kΩ以上の所定の値に設定し、算出した前記抵抗値R4が正の値である場合に、前記出力側抵抗の抵抗値を前記抵抗値R4に設定し、算出した前記抵抗値R4が負の値である場合に、前記出力側抵抗の抵抗値を1kΩ以上の所定の値に設定する抵抗値設定工程を備え、(条件1)R3/R1=√(R01・R03+R3)/R01-1、(条件2)R3/R5=√(R01・R03+R3)/R03-1、(条件3)R3/r2=√(Z1・Z2+R3)/Z1-1、(条件4)R3/r4=√(Z1・Z2+R3)/Z2-1。ただし、r2=R1・R2/(2・R1+R2)、r4=R5・R4/(2・R5+R4)、Z1=R01・R02/(2・R01+R02)、Z2=R03・R04/(2・R03+R04)、R01=2・Wc1、R02=4・Wd1・Wc1/(4・Wc1-Wd1)、R03=2・Wc2、R04=4・Wd2・Wc2/(4・Wc2-Wd2)、Wc1は、前記第一入力端子及び前記第二入力端子に電気接続される入力側外部回路のコモンモード等価抵抗値、Wd1は、前記入力側外部回路のディファレンシャルモード等価抵抗値、Wc2は、前記第一出力端子及び前記第二出力端子に電気接続される出力側外部回路のコモンモード等価抵抗値、Wd2は、前記出力側外部回路のディファレンシャルモード等価抵抗値を、それぞれ示す。
前記設計方法は、前記抵抗値設定工程において、算出した前記抵抗値R2が負の値である場合に、前記第一入力端子と前記第二入力端子との間に前記入力側抵抗を電気接続しないこととしてもよい。
前記設計方法は、前記抵抗値設定工程において、算出した前記抵抗値R4が負の値である場合に、前記第一出力端子と前記第二出力端子との間に前記出力側抵抗を電気接続しないこととしてもよい。
前記設計方法は、前記抵抗値設定工程において、前記第一接地抵抗と、前記第二接地抵抗と、前記入力側抵抗と、前記第一抵抗と、前記第二抵抗と、前記第三接地抵抗と、前記第四接地抵抗と、前記出力側抵抗との抵抗値として、所定の複数の抵抗値のなかから選択した抵抗値を設定してもよい。
前記設計方法は、前記電気回路における損失量を設定する損失量設定工程を更に有し、前記抵抗値設定工程において、前記電気回路における損失量が、前記損失量設定工程で設定する損失量になるよう、前記抵抗値を設定してもよい。
前記設計方法によれば、インピーダンスを完全に整合できない場合であっても、反射波を減衰させることにより、共振の発生を防ぐので、EMIを改善することができる。
電磁気妨害低減装置の一例を示す図。 電気回路の一例を示す回路図。 有線通信システムの一例を示す図。 伝送路長さ設定処理の一例を示すフロー図。 伝送路設計処理の一例を示すフロー図。 抵抗値設定処理の一例を示すフロー図。 試作品の一例を示す図。 代用抵抗値と反射係数との関係を示すグラフ図。 抵抗値設定処理の一例を示すフロー図。
図1を参照して、電磁気妨害低減装置10について説明する。
電磁気妨害低減装置10は、例えば、プリント配線板11の上にエッチングなどにより形成されたプリント配線パターンと、プリント配線板11の上に実装されたチップ抵抗とによって構成される。
電磁気妨害低減装置10は、例えば、接地パターン12と、入力側伝送路13と、出力側伝送路14と、電気回路15とを有する。
接地パターン12は、プリント配線板11の裏面に形成された接地パターンにビアホールなどを介して電気接続されている。
入力側伝送路13は、一対の入力側伝送路パターン31,32を有する分布定数回路である。入力側伝送路パターン31,32は、平行に延びる長尺状のプリント配線パターンであり、一方の端で入力側端子(不図示)に電気接続し、他方の端で電気回路15に電気接続している。入力側伝送路13は、その長さにわたって一定の特性インピーダンス(コモンモード等価抵抗値及びディファレンシャルモード等価抵抗値)を有する。
入力側伝送路13の長さは、後述するとおり、電磁気妨害低減装置10が低減すべきノイズの周波数に基づいて設定される。
出力側伝送路14は、一対の出力側伝送路パターン41,42を有する分布定数回路である。出力側伝送路パターン41,42は、平行に上る長尺状のプリント配線パターンであり、一方の端で電気回路15に電気接続し、他方の端で出力側端子(不図示)に電気接続している。出力側伝送路14は、その長さにわたって一定の特性インピーダンス(コモンモード等価抵抗値及びディファレンシャルモード等価抵抗値)を有する。
出力側伝送路14の長さは、入力側伝送路13と同様、電磁気妨害低減装置10が低減すべきノイズの周波数に基づいて設定される。
電気回路15は、集中定数回路であり、例えば、一対の入力端子パターン51,52と、一対の出力端子パターン53,54と、四つの接地端子パターン55~58と、四つの接地抵抗61~64と、入力側抵抗65と、第一抵抗66と、第二抵抗67と、出力側抵抗68とを有する。
入力端子パターン51は、入力側伝送路パターン31に電気接続している。
入力端子パターン52は、入力側伝送路パターン32に電気接続している。
出力端子パターン53は、出力側伝送路パターン41に電気接続している。
出力端子パターン54は、出力側伝送路パターン42に電気接続している。
接地端子パターン55~58は、接地パターン12に電気接続している。
接地抵抗61は、入力端子パターン51と接地端子パターン55との間に電気接続されている。
接地抵抗62は、入力端子パターン52と接地端子パターン56との間に電気接続されている。
接地抵抗63は、出力端子パターン53と接地端子パターン57との間に電気接続されている。
接地抵抗64は、出力端子パターン54と接地端子パターン58との間に電気接続されている。
入力側抵抗65は、入力端子パターン51と入力端子パターン52との間に電気接続されている。
第一抵抗66は、入力端子パターン51と出力端子パターン53との間に電気接続されている。
第二抵抗67は、入力端子パターン52と出力端子パターン54との間に電気接続されている。
出力側抵抗68は、出力端子パターン53と出力端子パターン54との間に電気接続されている。
電気回路15は、このように構成されることにより、図2に示すような集中定数回路をなす。電気回路15については、特許文献1で詳しく説明されているので、ここでは詳しい説明を省略する。
電磁気妨害低減装置10は、例えばケーブルで接続された送信装置と受信装置とを有する有線通信システムにおいて、ケーブルから外部に放射されるノイズ(EMI)を抑えるために用いられる。
ケーブルから外部にノイズが放射されるのは、ケーブルがアンテナの役割を果たすからであり、放射されるノイズは、ケーブルを流れる電流に比例する。特に問題となるのは、ケーブルを含む範囲の両端で反射が発生し、共振が起きる場合である。
電磁気妨害低減装置10は、電気回路15の第一抵抗66及び第二抵抗67による減衰を伴う。このため、共振が起きる可能性がある範囲内に電磁気妨害低減装置10を設けることにより、ノイズを減衰させ、共振の発生を防ぐことができる。
図3を参照して、有線通信システム100の一例について説明する。
有線通信システム100は、送信装置110と、受信装置120とを有し、その間をケーブル131によって有線接続している。送信装置110は、プリント配線板111の上に設けられた送信回路(不図示)と、その出力に電気接続されたレセプタクル112とを有する。受信装置120は、プリント配線板121の上に設けられた受信回路(不図示)と、その入力に電気接続されたレセプタクル122とを有する。ケーブル131の一方の端には、プラグ132が設けられ、レセプタクル112に接続される。ケーブル131のもう一方の端には、プラグ133が設けられ、レセプタクル122に接続される。
このような有線通信システム100において、インピーダンスの不整合が発生しやすいのは、プリント配線板111,121にレセプタクル112,122をはんだ付けしたはんだ付け部、レセプタクル112,122の内部、プラグ132,133の内部、プラグ132,133とケーブル131との結線部などである。このため、これらの点で反射が発生し、その間にあるケーブル131を含む範囲で共振が起きる。
これを防ぐため、通常は、インピーダンス整合回路を、プリント配線板111,121にレセプタクル112,122をはんだ付けしたはんだ付け部に設け、反射を低減する。
しかし、上述したとおり、反射が発生するのは、この二つの点だけではない。レセプタクル112,122の内部、プラグ132,133の内部、プラグ132,133とケーブル131との結線部などでも、反射が発生する可能性がある。
電磁気妨害低減装置10は、反射波を減衰させることにより、共振の発生を防ぐ。すなわち、電磁気妨害低減装置10を共振が発生する可能性のある範囲内に配置することにより、反射波が電磁気妨害低減装置10を通るたびにノイズが減衰するので、共振の発生を防ぐことができる。
このため、電磁気妨害低減装置10は、反射が発生する位置よりもケーブル131に近い位置であれば、どこに設けてもよい。例えば、レセプタクル112の内部や、レセプタクル112とプラグ132との間の接続点や、プラグ132の内部に設けてもよい。
反射は、複数の位置で発生する可能性があるので、その点を考慮すると、電磁気妨害低減装置10は、なるべくケーブル131に近い位置に設けることが好ましい。したがって、電磁気妨害低減装置10は、プラグ132の内部に設けることが好ましい。
なお、特許文献1に記載されているとおり、電気回路15には、インピーダンスを整合させる機能がある。しかし、上述したとおり、電磁気妨害低減装置10は、反射波を減衰させることにより、共振の発生を防ぐものである。したがって、電磁気妨害低減装置10は、インピーダンスが不整合な位置に限らず、インピーダンスが整合している位置に設けてもよい。例えば、入力側伝送路13及び出力側伝送路14の特性インピーダンスは、同じであってもよい。あるいは、入力側伝送路13及び出力側伝送路14が敢えて異なる特性インピーダンスを有するよう設計してもよい。
また、電磁気妨害低減装置10は、ケーブル131の両側に設けるのではなく、片側だけに設けてもよい。その場合、電磁気妨害低減装置10は、送信側に設けることが好ましい。そうすれば、送信装置110のなかで発生したノイズがケーブル131に侵入する前に電磁気妨害低減装置10を通り、ノイズを減衰させることができる。
次に、電磁気妨害低減装置10を設計する方法について説明する。
図4を参照して、伝送路長さ設定処理70について説明する。
伝送路長さ設定処理70では、入力側伝送路13及び出力側伝送路14の長さを決定する。
伝送路長さ設定処理70は、例えば、最低周波数設計工程71と、伝送路長さ算出工程72と、第一長さ設定工程73と、第二長さ設定工程74とを有する。
最低周波数設計工程71において、電磁気妨害低減装置10が低減すべきノイズの最低周波数fを設定する。例えば、有線通信システム100が扱う信号の周波数帯域などに基づいて、有線通信システム100の内部で発生し得るノイズの周波数を算出し、算出した周波数に基づいて、電磁気妨害低減装置10が低減すべきノイズの最低周波数fを決定する。
なお、送信装置110で発生するノイズの周波数は、有線通信システム100が扱う信号の周波数や、その周波数を基本周波数とする高調波の周波数であることが多い。このため、有線通信システム100が扱う(すなわち、電磁気妨害低減装置10を透過する)信号の周波数を、最低周波数fとして設定してもよい。
伝送路長さ算出工程72において、最低周波数設計工程71で設定した周波数fに基づいて、伝送路の最低長さpを算出する。具体的に言うと、周波数fと長さpとの間には、反比例の関係がある。例えば、以下の式を使用して、周波数fから長さpを算出する。
p=λ/8
ただし、λは、周波数fにおける波長を示し、λ=c/(f・√ε)、cは、真空中における光速を示す。εは、プリント配線板11の実効比誘電率を示す。
例えば、ε=3.31である場合、f=2.06GHz(ギガヘルツ)のとき、p=10.0mm(ミリメートル)、f=1.03GHzのとき、p=20.0mmとなる。
第一長さ設定工程73において、伝送路長さ算出工程72で算出した長さpに基づいて、入力側伝送路13の長さp1を設定する。具体的に言うと、入力側伝送路13の長さp1を、長さp以上の長さに決定する。
第二長さ設定工程74において、伝送路長さ算出工程72で算出した長さpに基づいて、出力側伝送路14の長さp2を設定する。具体的に言うと、出力側伝送路14の長さp2を、長さp以上の長さに決定する。
ある周波数における伝送路の実効特性インピーダンスには、その周波数における波長の少なくとも八分の一の長さの範囲における特性インピーダンスが影響すると考えられる。
このため、周波数fにおける実効特性インピーダンスは、長さpの範囲内にある伝送路(又は回路)の特性インピーダンスの影響を受ける。
上述したとおり、入力側伝送路13及び出力側伝送路14は、その長さにわたって一定の特性インピーダンスを有する。このため、伝送路の長さをp以上とすれば、周波数fよりも高い周波数における実効特性インピーダンスは、安定した値となる。
そして、その特性インピーダンスに整合するよう、電気回路15を設計することにより、EMIを改善することができる。
図5を参照して、伝送路設計処理80について説明する。
伝送路設計処理80では、電気回路15の各抵抗の抵抗値を先に決定し、それに特性インピーダンスが整合するように、入力側伝送路13及び出力側伝送路14を設計する。
伝送路設計処理80は、例えば、損失量設定工程81と、抵抗値設定工程82と、等価抵抗値算出工程83と、入力側伝送路設計工程84と、出力側伝送路設計工程85とを有する。
損失量設定工程81において、電気回路15における損失量を設定する。上述したとおり、電磁気妨害低減装置10は、ノイズを減衰させ、共振の発生を防ぐ。したがって、電気回路15における損失量が大きいほど、電磁気妨害を低減できる。しかし、電気回路15における損失量が大きいと、信号も減衰してしまう。受信装置120に増幅回路を設けて減衰した信号を増幅すると、ケーブル131が拾った外部からのノイズも増幅される。このため、電気回路15における損失量が大きすぎると、EMSが悪化する。このため、目標とする電磁気妨害の低減量と、許容可能な信号の減衰量との兼ね合いに基づいて、電気回路15における損失量の範囲を決定する。
なお、ケーブル131の両側に電磁気妨害低減装置10を設ける場合は、送信装置110側における損失量と、受信装置120側における損失量とが異なってもよく、送信装置110側における損失量のほうが、受信装置120側における損失量よりも大きいことが好ましい。
抵抗値設定工程82において、損失量設定工程81で設定した損失量に基づいて、電気回路15の各抵抗の抵抗値を設定する。すなわち、電気回路15の損失量が、損失量設定工程81で設定した範囲に入るように、電気回路15の各抵抗の抵抗値を設定する。具体的に言うと、電気回路15の損失量と、各抵抗の抵抗値との間には、以下のような関係がある。
Sd=(Z2・Ad+Bd+Z1・Z2・Cd+Z1・Dd)/2√(Z1・Z2)
Sc=(R03・Ac+Bc+R01・R03・Cc+R01・Dc)/2√(R01・R03)
ただし、
Ad=1+R3/r4、
Bd=R3、
Cd=(r2+R3+r4)/(r2・r4)、
Dd=1+R3/r2、
Ac=1+R3/R5、
Bc=R3、
Cc=(R1+R3+R5)/(R1・R5)、
Dc=1+R3/R1、
r2=R1・R2/(2・R1+R2)、
r4=R5・R4/(2・R5+R4)、
Z1=R01・R02/(2・R01+R02)、
Z2=R03・R04/(2・R03+R04)、
R01=2・Wc1、
R02=4・Wd1・Wc1/(4・Wc1-Wd1)、
R03=2・Wc2、
R04=4・Wd2・Wc2/(4・Wc2-Wd2)、
Sdは、電気回路15におけるディファレンシャル信号の損失量、
Scは、電気回路15におけるコモン信号の損失量、
R1は、接地抵抗61及び接地抵抗62の抵抗値、
R2は、入力側抵抗65の抵抗値、
R3は、第一抵抗66及び第二抵抗67の抵抗値、
R4は、出力側抵抗68の抵抗値、
R5は、接地抵抗63及び接地抵抗64の抵抗値、
Wc1は、入力側伝送路13のコモンモード等価抵抗値、
Wd1は、入力側伝送路13のディファレンシャルモード等価抵抗値、
Wc2は、出力側伝送路14のコモンモード等価抵抗値、
Wd2は、出力側伝送路14のディファレンシャルモード等価抵抗値
をそれぞれ示し、以下の条件を満たす。
(条件1)R3/R1=√(R01・R03+R3)/R01-1、
(条件2)R3/R5=√(R01・R03+R3)/R03-1、
(条件3)R3/r2=√(Z1・Z2+R3)/Z1-1、
(条件4)R3/r4=√(Z1・Z2+R3)/Z2-1。
条件1~条件4をすべて満たしている場合、
Sd=(R3+√(Z1・Z2+R3))/√(Z1・Z2)
Sc=(R3+√(R01・R03+R3))/√(R01・R03)
となる。
そこで、例えば、この式によって求められるSd及びScが、損失量設定工程81で設定した範囲に入るように、各抵抗の抵抗値R1~R5を決定する。
例えば、R3=15Ω(オーム)、R1=R5=250Ω、R2=R4=10kΩ(キロオーム)とすると、Wd1=Wd2=83.2Ω、Wc1=Wc2=21.3Ω、Sd=1.420(-3.1dB(デジベル))、Sc=1.41(-3.0dB)となる。
なお、電気回路15の各抵抗として市販されているチップ抵抗を使用する場合、入手可能なチップ抵抗の抵抗値は、限られている。専用のチップ抵抗を製造してもよいが、入手可能なチップ抵抗の抵抗値のなかから電気回路15の各抵抗の抵抗値を選択するほうが、製造コストを抑えることができ、好ましい。
等価抵抗値算出工程83において、抵抗値設定工程82で設定した電気回路15の各抵抗の抵抗値に基づいて、電気回路15の入力側及び出力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値を算出する。
ここで、上述した条件1~条件4は、電気回路15の入力側及び出力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が、入力側伝送路13及び出力側伝送路14の特性インピーダンスと整合するための条件なので、上述した式に出てきたWc1は、電気回路15の入力側のコモンモード等価抵抗値に一致し、Wd1は、電気回路15の入力側のディファレンシャルモード等価抵抗値に一致し、Wc2は、電気回路15の出力側のコモンモード等価抵抗値に一致し、Wd2は、電気回路15の出力側のディファレンシャルモード等価抵抗値に一致する。
したがって、上述した式に出てきたWc1,Wd1,Wc2,Wd2の値を計算すれば、電気回路15の入力側及び出力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値を算出することができる。
例えば、以下の式を計算することにより、Wc1,Wd1,Wc2,Wd2の値を計算する。
Wc1=√(R1・R3・R5/(R1+R3+R5)・(1+R3/R5)/(1+R3/R1))/2
Wd1=2・√(r2・R3・r4/(r2+R3+r4)・(1+R3/r4)/(1+R3/r2))
Wc2=√(R1・R3・R5/(R1+R3+R5)・(1+R3/R1)/(1+R3/R5))/2
Wd2=2・√(r2・R3・r4/(r2+R3+r4)・(1+R3/r2)/(1+R3/r4))
入力側伝送路設計工程84において、入力側伝送路13の特性インピーダンスが、等価抵抗値算出工程83で算出した電気回路15の入力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値と整合するよう、入力側伝送路13を設計する。
入力側伝送路13の特性インピーダンスは、入力側伝送路パターン31,32の幅及び厚さ、入力側伝送路パターン31,32の間の間隔、プリント配線板11の厚さ、プリント配線板11の比誘電率などによって定まる。このうち、設計の自由度が高いのは、入力側伝送路パターン31,32の幅と、入力側伝送路パターン31,32の間の間隔とである。したがって、入力側伝送路13のディファレンシャルモード等価抵抗値がWd1に一致し、入力側伝送路13のコモンモード等価抵抗値がWc1に一致するように、例えば、入力側伝送路パターン31.32の幅と、入力側伝送路パターン31,32の間の間隔とを決定する。
出力側伝送路設計工程85において、出力側伝送路14の特性インピーダンスが、等価抵抗値算出工程83で算出した電気回路15の出力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値と整合するよう、出力側伝送路14を設計する。
出力側伝送路14のディファレンシャルモード等価抵抗値がWd2に一致し、出力側伝送路14のコモンモード等価抵抗値がWc2に一致するよう、例えば、出力側伝送路パターン41.42の幅と、出力側伝送路パターン41,42の間の間隔とを決定する。
このように、電気回路15の各抵抗の抵抗値を先に決定し、それと整合するように、入力側伝送路13及び出力側伝送路14を設計することにより、ほぼ完全な整合を達成することができ、EMIを改善することができる。
なお、電気回路15の各抵抗の抵抗値を先に決定するので、電気回路15は、あらかじめ決定された抵抗値を有する抵抗を含むワンチップ化した集積回路によって構成してもよい。これにより、電磁気妨害低減装置10の製造コストを抑えることができる。
図6を参照して、抵抗値設定処理90について説明する。
抵抗値設定処理90では、伝送路設計処理80とは逆に、入力側伝送路13及び出力側伝送路14の特性インピーダンスを実際に測定し、測定した特性インピーダンスと整合するように、電気回路15の各抵抗の抵抗値を決定する。
抵抗値設定処理90は、例えば、試作工程91と、信号周波数設定工程92と、立ち上がり時間算出工程93と、等価抵抗値測定工程94と、損失量設定工程95と、抵抗値設定工程96とを有する。
試作工程91において、電磁気妨害低減装置10を試作する。ただし、図7に示すように、第一抵抗66及び第二抵抗67の代わりにジャンパー抵抗69を実装し、それ以外の抵抗(接地抵抗61~64、入力側抵抗65、出力側抵抗68)は、実装しない。ジャンパー抵抗69は、抵抗値が0Ωである点を除いて、第一抵抗66及び第二抵抗67と同様の構成を有するチップ抵抗である。
なお、電磁気妨害低減装置10を実際に試作してもよいし、コンピュータシミュレーションにより仮想的に試作してもよい。
信号周波数設定工程92において、電磁気妨害低減装置10が透過すべき信号の周波数fを設定する。例えば、有線通信システム100が扱う信号の周波数帯域などに基づいて、電磁気妨害低減装置10が透過すべき信号の周波数fを決定する。
立ち上がり時間算出工程93において、信号周波数設定工程92で設定した周波数fに基づいて、時間領域反射率測定法(TDR)で用いる信号(例えばステップ信号)の立ち上がり時間Trを算出する。TDRで用いる信号の立ち上がり時間は、TDRで測定する特性インピーダンスの空間解像度に関係し、立ち上がり時間が短いほど、空間解像度が高くなる。これに対し、有線通信システム100が透過すべき信号の周波数fが低ければ、局所的な特性インピーダンスの影響は小さくなる。したがって、周波数fが低い場合は、空間解像度を高くする必要がないので、立ち上がり時間は長くてよい。具体的に言うと、周波数fと、立ち上がり時間Trとの間には、反比例の関係がある。例えば、以下の式を使用して、周波数fから立ち上がり時間Trを算出する。
Tr=1/f
例えば、f=8.24GHzのとき、Tr=121.4ps(ピコ秒)、f=4.12GHzのときTr=242.7psとなる。
等価抵抗値測定工程94において、立ち上がり時間算出工程93で算出した立ち上がり時間Tr以下の立ち上がり時間を有する信号を用いて、TDRにより、試作工程91で作製した試作品の特性インピーダンスを測定する。そして、測定により得られた結果に基づいて、入力側伝送路13と電気回路15とが接続する位置39(図7参照)における入力側伝送路13のディファレンシャルモード等価抵抗値Wd1及びコモンモード等価抵抗値Wc1と、電気回路15と出力側伝送路14とが接続する位置49(図7参照)における出力側伝送路14のディファレンシャルモード等価抵抗値Wd2及びコモンモード等価抵抗値Wc2とを取得する。
試作工程91で電磁気妨害低減装置10をコンピュータシミュレーションにより仮想的に試作した場合は、特性インピーダンスの測定も、コンピュータシミュレーションによって行う。
損失量設定工程95において、電気回路15における損失量を設定する。これは、上述した損失量設定工程81と同様なので、詳しい説明は省略する。
抵抗値設定工程96において、等価抵抗値測定工程94で測定したディファレンシャルモード等価抵抗値Wd1,Wd2及びコモンモード等価抵抗値Wc1,Wc2と、損失量設定工程95で設定した損失量とに基づいて、電気回路15の各抵抗の抵抗値を設定する。
抵抗値設定工程82についての説明で記載したとおり、電気回路15の損失量と、各抵抗の抵抗値との間には、以下のような関係がある。
Sd=(Z2・Ad+Bd+Z1・Z2・Cd+Z1・Dd)/2√(Z1・Z2)
Sc=(R03・Ad+Bd+R01・R03・Cd+R01・Dd)/2√(R01・R03)
ただし、
Ad=1+R3/r4、
Bd=R3、
Cd=(r2+R3+r4)/(r2・r4)、
Dd=1+R3/r2、
Ac=1+R3/R5、
Bc=R3、
Cc=(R1+R3+R5)/(R1・R5)、
Dc=1+R3/R1、
r2=R1・R2/(2・R1+R2)、
r4=R5・R4/(2・R5+R4)、
Z1=R01・R02/(2・R01+R02)、
Z2=R03・R04/(2・R03+R04)、
R01=2・Wc1、
R02=4・Wd1・Wc1/(4・Wc1-Wd1)、
R03=2・Wc2、
R04=4・Wd2・Wc2/(4・Wc2-Wd2)、
Sdは、電気回路15におけるディファレンシャル信号の損失量、
Scは、電気回路15におけるコモン信号の損失量、
R1は、接地抵抗61及び接地抵抗62の抵抗値、
R2は、入力側抵抗65の抵抗値、
R3は、第一抵抗66及び第二抵抗67の抵抗値、
R4は、出力側抵抗68の抵抗値、
R5は、接地抵抗63及び接地抵抗64の抵抗値、
Wc1は、入力側伝送路13のコモンモード等価抵抗値、
Wd1は、入力側伝送路13のディファレンシャルモード等価抵抗値、
Wc2は、出力側伝送路14のコモンモード等価抵抗値、
Wd2は、出力側伝送路14のディファレンシャルモード等価抵抗値
をそれぞれ示し、以下の条件を満たす。
(条件1)R3/R1=√(R01・R03+R3)/R01-1、
(条件2)R3/R5=√(R01・R03+R3)/R03-1、
(条件3)R3/r2=√(Z1・Z2+R3)/Z1-1、
(条件4)R3/r4=√(Z1・Z2+R3)/Z2-1。
抵抗値設定工程82と異なる点は、Wc1,Wd1,Wc2,Wd2として、等価抵抗値測定工程94で測定した実際の値を使用する点である。
このように、Wc1,Wd1,Wc2,Wd2として、等価抵抗値測定工程94で測定した実際の値を使用して、抵抗値を算出するので、入力側伝送路13及び出力側伝送路14の長さp1,p2は、伝送路長さ設定処理70で算出される長さpより短くてもよい。その場合、入力側伝送路13及び出力側伝送路14の先にある回路も含めて、長さpの範囲内にある部分が、Wc1,Wd1,Wc2,Wd2に影響することになるので、その部分も含めて試作工程91で試作する必要がある。
例えば、以下の式により計算されるSd及びScが、損失量設定工程95で設定した損失量の範囲に入るように、R3の値を決定する。
Sd=(R3+√(Z1・Z2+R3))/√(Z1・Z2)
Sc=(R3+√(R01・R03+R3))/√(R01・R03)
そして、以下の式を計算することにより、R1、R2、R4、R5の値を計算する。
R1=R3/√(R01・R03+R3)/R01-1)
R2=2・R1・r2/(R1-r2)
R5=R3/√(R01・R03+R3)/R03-1)
R4=2・R5・r4/(R5-r4)
Wc1,Wd1,Wc2,Wd2として、等価抵抗値測定工程94で測定した実際の値を使用するので、算出された各抵抗の抵抗値が、入手可能なチップ抵抗の抵抗値になるとは限らない。
その場合、入手可能なチップ抵抗の抵抗値のなかから、算出された各抵抗の抵抗値に近いものを選択し、各抵抗の抵抗値として設定してもよい。
また、Wc1,Wd1,Wc2,Wd2の値によっては、所望の減衰量を得ることができる抵抗値が存在しない場合がある。
例えば、条件1において、R3>0かつR1>0であるR3及びR1が存在するためには、R3>R01(R01-R03)であることが必要である。
同様に、条件2において、R3>0かつR5>0であるR3及びR5が存在するためには、R3>R03(R03-R01)であることが必要である。
また、条件3において、R3>0かつR2>0であるR3及びR2が存在するためには、R3>Z1(Z1-Z2)かつR3>(R03・Z1-R01・Z2)/(R01/Z1-Z1/R01)であることが必要である。
更に、条件4において、R3>0かつR4>0であるR3及びR4が存在するためには、R3>Z2(Z2-Z1)かつR3>(R01・Z2-R03・Z1)/(R03/Z2-Z2/R03)であることが必要である。
したがって、R3を十分に大きくすれば、条件1~条件4を満たす抵抗値は存在する。しかし、それでは、電気回路15の減衰量が大きくなり過ぎてしまう場合がある。
例えば、Wd1=98.0Ω、Wc1=25.0Ω、Wd2=85.6Ω、Wc2=23.6Ωである場合、R3を65.4Ω以上にしなければ、R2が負の値になってしまう。しかし、R3を65.4Ωに設定すると、Sd=3.17(-10.0dB)、Sc=3.02(-9.6dB)になる。したがって、電気回路15の減衰量をそれよりも小さくすることはできない。
そこで、電気回路15の減衰量をもっと小さくしたい場合は、各抵抗の抵抗値が正であるという縛りをなくして、R3の値をもっと小さく設定する。例えば、R3=15Ωに設定する。そうすると、他の抵抗の抵抗値は、計算上、R1=889.8Ω、R2=-898.1Ω、R4=615.0Ω、R5=194.4Ωとなる。
この場合、R2の値が負なので、このままでは、電気回路15を実現することはできない。そこで、計算上の抵抗値が負の値になった場合は、十分に大きな抵抗値(例えば1kΩ以上。好ましくは10kΩ以上)で代用する。あるいは、対応する抵抗(この例では入力側抵抗65)を実装しない。
例えば、R2=10kΩで代用した場合、Sd=1.46(-3.3dB)、Sc=1.36(-2.6dB)になる。また、入力側抵抗65を実装しない場合も、Sd=1.46(-3.3dB)、Sc=1.36(-2.6dB)と、同様の値になる。
各抵抗の抵抗値として計算上の値とは異なる値を使用するので、インピーダンス整合は不完全となる。しかし、上述したとおり、電磁気妨害低減装置10は、反射波を減衰させることにより、共振の発生を防ぐものなので、インピーダンスを完全に整合させることよりも、所望の減衰量を得ることのほうが重要である。
このように、インピーダンス整合と所望の減衰量の達成とが両立しない場合は、所望の減衰量の達成を優先させることにより、EMIを改善することができる。
図8を参照して、代用する抵抗値と、ディファレンシャルモードの反射係数との関係について説明する。
上述した例、すなわち、Wd1=98.0Ω、Wc1=25.0Ω、Wd2=85.6Ω、Wc2=23.6Ωの場合において、R3=15Ωとした場合を線201、R3=30Ωとした場合を線202、R3=51Ωとした場合を線203、R3=64Ωとした場合を線204でそれぞれ示す。横軸は、計算上、負の値となるR2を代用する抵抗値、縦軸は、その場合のディファレンシャルモードにおける反射係数を示す。なお、代用するR2の値はコモンモードにおける反射係数には影響しないので、代用するR2の値にかかわらず、コモンモード反射係数は、0である。
このグラフを見てわかるとおり、代用するR2の値を1kΩ以上とすれば、ディファレンシャルモード反射係数が十分小さくなる。
なお、各抵抗の抵抗値として計算上の値とは異なる値を使用するので、電気回路15の減衰量を再計算して、損失量設定工程95で設定した損失量の範囲に入るかを確認してもよい。また、インピーダンス整合が不完全になり、反射が発生するので、反射係数を算出して、許容できる範囲内に入っているかを確認してもよい。
ディファレンシャルモードノイズとコモンモードノイズとでは、コモンモードノイズのほうがEMIに対する影響が大きい。このため、ディファレンシャルモード等価抵抗値の整合と、コモンモード等価抵抗値の整合とが両立しない場合は、コモンモード等価抵抗値の整合を優先して、抵抗値を設定することが好ましい。
なお、上述した例において、R2の値が負になってしまうのは、上述した条件のうち、R3>Z1(Z1-Z2)及びR3>(R03・Z1-R01・Z2)/(R01/Z1-Z1/R01)が満たされていないことが原因である。(R3=225Ωに対して、Z1(Z1-Z2)=303.8Ω、(R03・Z1-R01・Z2)/(R01/Z1-Z1/R01)=4276Ω
したがって、例えばZ1を小さくしたりZ2を大きくしたりすることにより、Z1(Z1-Z2)及び(R03・Z1-R01・Z2)/(R01/Z1-Z1/R01)を小さくして、R3よりも小さくなるようにすれば、R2の値が負になるのを防ぐことができる。
Z1を小さくするには、入力側伝送路13のディファレンシャルモード等価抵抗値Wd1を小さくすればよい。また、Z2を大きくするためには、出力側伝送路14のディファレンシャルモード等価抵抗値Wd2を大きくすればよい。
例えば、Wd1=94.0Ω、Wd2=88.0Ωにすれば、Z1(Z1-Z2)=141.0Ω、(R03・Z1-R01・Z2)/(R01/Z1-Z1/R01)=148.6Ωとなるので、R3=15Ωとした場合でも、R1=889.8Ω、R2=15.17kΩ、R4=2.697kΩ、R5=194.4Ωとなり、抵抗値が負になることはない。
このように、計算の結果、実現できない抵抗値になってしまう場合は、入力側伝送路13や出力側伝送路14の設計を変更して、特性インピーダンスを変更してもよい。
また、入力側伝送路13や出力側伝送路14の設計を変更できない場合は、入力側伝送路13や出力側伝送路14の特性インピーダンスが、計算の結果得られる抵抗値が実現可能な値となる値であるものとして、各抵抗の抵抗値を決定してもよい。そうすれば、インピーダンスの整合は不完全となるが、所望の減衰量を得ることができるので、EMIを改善することができる。
図9を参照して、抵抗値設定処理90aについて説明する。
抵抗値設定処理90aでは、抵抗値設定処理90と同様に、入力側伝送路13及び出力側伝送路14の特性インピーダンスを実際に測定し、測定した特性インピーダンスと整合するように、電気回路15の各抵抗の抵抗値を決定する。
抵抗値設定処理90aは、例えば、試作工程91と、信号周波数設定工程92と、上限周波数算出工程93aと、等価抵抗値測定工程94と、損失量設定工程95と、抵抗値設定工程96とを有する。
試作工程91,信号周波数設定工程92、損失量設定工程95、抵抗値設定工程96は、抵抗値設定処理90と同様なので、説明を省略する。
上限周波数算出工程93aにおいて、信号周波数設定工程92で設定した周波数fに基づいて、ベクトルネットワークアナライザ(VNA)で用いる信号の上限周波数を算出する。VNAは、回路の特性インピーダンスではなく、周波数特性を測定する。しかし、VNAで測定した周波数特性をフーリエ逆変換することにより、TDRで測定するのと同様の特性インピーダンスを算出することができる。このようにして算出した特性インピーダンスの空間解像度は、VNAで使用する信号の周波数範囲に関係し、上限周波数が高いほど、空間解像度が高くなる。したがって、周波数fが低い場合は、空間解像度を高くする必要がないので、上限周波数は低くてよい。具体的に言うと、周波数fと、上限周波数fとの間には、比例の関係がある。例えば、以下の式を使用して、周波数fから上限周波数fを算出する。
=k・f
ただし、kは、所定の定数であり、例えば、k=0.99。好ましくは、0.45≦k≦1.48。
等価抵抗値測定工程94において、上限周波数算出工程93aで算出した上限周波数f以下の周波数範囲の信号を用いて、ベクトルネットワークアナライザで、試作工程91で作成した試作品の周波数特性を測定する。そして、測定した周波数特性から、試作品の特性インピーダンスを算出し、入力側伝送路13と電気回路15とが接続する位置39における入力側伝送路13のディファレンシャルモード等価抵抗値Wd1及びコモンモード等価抵抗値Wc1と、電気回路15と出力側伝送路14とが接続する位置49における出力側伝送路14のディファレンシャルモード等価抵抗値Wd2及びコモンモード等価抵抗値Wc2とを取得する。
このように、特性インピーダンスを測定する方法は、TDRに限らず、VNAであってもよい。
以上説明した実施形態は、本発明の理解を容易にするための一例である。本発明は、これに限定されるものではなく、添付の特許請求の範囲によって定義される範囲から逸脱することなく様々に修正し、変更し、追加し、又は除去したものを含む。これは、以上の説明から当業者に容易に理解することができる。
例えば、入力側伝送路や出力側伝送路は、分布定数回路ではなく、集中定数回路であってもよい。電気回路は、集中定数回路ではなく、分布定数回路であってもよい。
また、電磁気妨害低減装置による信号の減衰を補うため、例えば受信回路に増幅回路を設けてもよい。
また、電磁気妨害低減装置を試作する前に、コンピュータシミュレーションにより所望の特性インピーダンスを得ることができるかを確認してもよい。
10 電磁気妨害低減装置、11,111,121 プリント配線板、12 接地パターン、13 入力側伝送路、31,32 入力側伝送路パターン、14 出力側伝送路、39,49 位置、41,42 出力側伝送路パターン、15 電気回路、51,52 入力端子パターン、53,54 出力端子パターン、55~58 接地端子パターン、61~64 接地抵抗、65 入力側抵抗、66 第一抵抗、67 第二抵抗、68 出力側抵抗、69 ジャンパー抵抗、70 伝送路長さ設定処理、71 最低周波数設計工程、72 伝送路長さ算出工程、73 第一長さ設定工程、74 第二長さ設定工程、80 伝送路設計処理、81,95 損失量設定工程、82,96 抵抗値設定工程、83 等価抵抗値算出工程、84 入力側伝送路設計工程、85 出力側伝送路設計工程、90,90a 抵抗値設定処理、91 試作工程、92 信号周波数設定工程、93 立ち上がり時間算出工程、93a 上限周波数算出工程、94 等価抵抗値測定工程、100 有線通信システム、110 送信装置、112,122 レセプタクル、120 受信装置、131 ケーブル、132,133 プラグ、201~204 線。

Claims (9)

  1. 所定の第一の長さを有し、ディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が前記第一の長さにわたって一定である一対の入力側伝送路と、
    所定の第二の長さを有し、ディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が前記第二の長さにわたって一定である一対の出力側伝送路と、
    前記入力側伝送路と、前記出力側伝送路との間に電気接続された電気回路と
    を有し、
    前記電気回路は、
    前記一対の入力側伝送路のうち第一の入力側伝送路に電気接続された第一入力端子と、
    前記一対の入力側伝送路のうち第二の入力側伝送路に電気接続された第二入力端子と、
    前記一対の出力側伝送路のうち第一の出力側伝送路に電気接続された第一出力端子と、
    前記一対の出力側伝送路のうち第二の出力側伝送路に電気接続された第二出力端子と、
    接地端子と、
    前記第一入力端子と前記接地端子との間に電気接続された第一接地抵抗と、
    前記第二入力端子と前記接地端子との間に電気接続された第二接地抵抗と、
    前記第一入力端子と前記第二入力端子との間に電気接続された入力側抵抗と、
    前記第一入力端子と前記第一出力端子との間に電気接続された第一抵抗と、
    前記第二入力端子と前記第二出力端子との間に電気接続された第二抵抗と、
    前記第一出力端子と前記接地端子との間に電気接続された第三接地抵抗と、
    前記第二出力端子と前記接地端子との間に電気接続された第四接地抵抗と、
    前記第一出力端子と前記第二出力端子との間に電気接続された出力側抵抗と
    を有する電磁気妨害低減装置を設計する設計方法において、
    前記電磁気妨害低減装置が低減すべきノイズ又は前記電磁気妨害低減装置を透過する信号の最低周波数を設定する最低周波数設定工程と、
    前記最低周波数設定工程で設定した前記最低周波数に基づいて、前記最低周波数に反比例する伝送路長さを算出する伝送路長さ算出工程と、
    前記第一の長さを、前記伝送路長さ算出工程で算出した前記伝送路長さ以上の長さに設定する第一長さ設定工程と、
    前記第二の長さを、前記伝送路長さ算出工程で算出した前記伝送路長さ以上の長さに設定する第二長さ設定工程と
    前記第一接地抵抗と前記第二接地抵抗と前記入力側抵抗と前記第一抵抗と前記第二抵抗と前記第三接地抵抗と前記第四接地抵抗と前記出力側抵抗との抵抗値を設定する抵抗値設定工程と、
    前記抵抗値設定工程で設定した抵抗値に基づいて、前記電気回路の入力側及び出力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値をそれぞれ算出する等価抵抗値算出工程と、
    前記入力側伝送路のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が、前記等価抵抗値算出工程で算出した前記電気回路の入力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値と整合するよう、前記入力側伝送路を設計する入力側伝送路設計工程と、
    前記出力側伝送路のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が、前記等価抵抗値算出工程で算出した前記電気回路の出力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値と整合するよう、前記出力側伝送路を設計する出力側伝送路設計工程と
    を備え
    前記抵抗値設定工程において、前記第一接地抵抗と、前記第二接地抵抗と、前記入力側抵抗と、前記第一抵抗と、前記第二抵抗と、前記第三接地抵抗と、前記第四接地抵抗と、前記出力側抵抗との抵抗値として、市販されている入手可能なチップ抵抗の抵抗値のなかから選択した抵抗値を設定する、
    設計方法。
  2. 前記抵抗値設定工程において、以下の条件1から条件4をすべて満たす抵抗値R1,R2,R3,R4,R5を算出し、前記第一接地抵抗及び前記第二接地抵抗の抵抗値を、算出した前記抵抗値R1に設定し、前記第三接地抵抗及び前記第四接地抵抗の抵抗値を、算出した前記抵抗値R5に設定し、前記第一抵抗及び前記第二抵抗の抵抗値を算出した前記抵抗値R3に設定し前記入力側抵抗の抵抗値を、算出した前記抵抗値R2に設定し前記出力側抵抗の抵抗値を、算出した前記抵抗値R4に設定し、
    (条件1)R3/R1=√(R01・R03+R32)/R01-1、
    (条件2)R3/R5=√(R01・R03+R32)/R03-1、
    (条件3)R3/r2=√(Z1・Z2+R32)/Z1-1、
    (条件4)R3/r4=√(Z1・Z2+R32)/Z2-1
    ただし、
    r2=R1・R2/(2・R1+R2)、
    r4=R5・R4/(2・R5+R4)、
    Z1=R01・R02/(2・R01+R02)、
    Z2=R03・R04/(2・R03+R04)、
    R01=2・Wc1、
    R02=4・Wd1・Wc1/(4・Wc1-Wd1)、
    R03=2・Wc2、
    R04=4・Wd2・Wc2/(4・Wc2-Wd2)、
    Wc1は、前記第一入力端子及び前記第二入力端子に電気接続される入力側外部回路のコモンモード等価抵抗値、
    Wd1は、前記入力側外部回路のディファレンシャルモード等価抵抗値、
    Wc2は、前記第一出力端子及び前記第二出力端子に電気接続される出力側外部回路のコモンモード等価抵抗値、
    Wd2は、前記出力側外部回路のディファレンシャルモード等価抵抗値を、それぞれ示す、
    請求項1の設計方法。
  3. 前記電気回路における損失量を設定する損失量設定工程
    を更に備え、
    前記抵抗値設定工程において、前記電気回路における損失量が、前記損失量設定工程で設定する損失量になるよう、前記抵抗値を設定する、
    請求項1又は2の設計方法。
  4. 所定の第一の長さを有し、ディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が前記第一の長さにわたって一定である一対の入力側伝送路と、
    所定の第二の長さを有し、ディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値が前記第二の長さにわたって一定である一対の出力側伝送路と、
    前記入力側伝送路と、前記出力側伝送路との間に電気接続された電気回路と
    を有し、
    前記電気回路は、
    前記一対の入力側伝送路のうち第一の入力側伝送路に電気接続された第一入力端子と、
    前記一対の入力側伝送路のうち第二の入力側伝送路に電気接続された第二入力端子と、
    前記一対の出力側伝送路のうち第一の出力側伝送路に電気接続された第一出力端子と、
    前記一対の出力側伝送路のうち第二の出力側伝送路に電気接続された第二出力端子と、
    接地端子と、
    前記第一入力端子と前記接地端子との間に電気接続された第一接地抵抗と、
    前記第二入力端子と前記接地端子との間に電気接続された第二接地抵抗と、
    前記第一入力端子と前記第二入力端子との間に電気接続された入力側抵抗と、
    前記第一入力端子と前記第一出力端子との間に電気接続された第一抵抗と、
    前記第二入力端子と前記第二出力端子との間に電気接続された第二抵抗と、
    前記第一出力端子と前記接地端子との間に電気接続された第三接地抵抗と、
    前記第二出力端子と前記接地端子との間に電気接続された第四接地抵抗と、
    前記第一出力端子と前記第二出力端子との間に電気接続された出力側抵抗と
    を有する電磁気妨害低減装置を設計する設計方法において、
    前記電磁気妨害低減装置が低減すべきノイズ又は前記電磁気妨害低減装置を透過する信号の最低周波数を設定する最低周波数設定工程と、
    前記最低周波数設定工程で設定した前記最低周波数に基づいて、前記最低周波数に反比例する伝送路長さを算出する伝送路長さ算出工程と、
    前記第一の長さを、前記伝送路長さ算出工程で算出した前記伝送路長さ以上の長さに設定する第一長さ設定工程と、
    前記第二の長さを、前記伝送路長さ算出工程で算出した前記伝送路長さ以上の長さに設定する第二長さ設定工程と
    前記第一接地抵抗と前記第二接地抵抗と前記入力側抵抗と前記第三接地抵抗と前記第四接地抵抗と前記出力側抵抗とを接続せず、前記第一抵抗と前記第二抵抗との代わりにジャンパー抵抗を接続した前記電磁気妨害低減装置を試作する試作工程と、
    前記試作工程で試作した前記電磁気妨害低減装置の前記入力側伝送路の出力側及び前記出力側伝送路の入力側のディファレンシャルモード等価抵抗値及びコモンモード等価抵抗値を測定する等価抵抗値測定工程と、
    前記電気回路における損失量を設定する損失量設定工程と、
    前記第一接地抵抗と前記第二接地抵抗と前記入力側抵抗と前記第一抵抗と前記第二抵抗と前記第三接地抵抗と前記第四接地抵抗と前記出力側抵抗との抵抗値として、入手可能なチップ抵抗の抵抗値のなかから選択した抵抗値を設定する抵抗値設定工程と
    を備え
    前記抵抗値設定工程において、前記等価抵抗値測定工程で測定した等価抵抗値に基づいて、前記電気回路における損失量が、前記損失量設定工程で設定した損失量になるよう、前記抵抗値を選択する、
    設計方法。
  5. 前記抵抗値設定工程において、以下の条件1から条件4をすべて満たす抵抗値R1,R2,R3,R4,R5を算出し、前記第一接地抵抗及び前記第二接地抵抗の抵抗値を、入手可能なチップ抵抗の抵抗値のなかから、算出した前記抵抗値R1に近い抵抗値を選択して設定し、前記第三接地抵抗及び前記第四接地抵抗の抵抗値を、入手可能なチップ抵抗の抵抗値のなかから、算出した前記抵抗値R5に近い抵抗値を選択して設定し、前記第一抵抗及び前記第二抵抗の抵抗値を、入手可能なチップ抵抗の抵抗値のなかから、算出した前記抵抗値R3に近い抵抗値を選択して設定し、算出した前記抵抗値R2が正の値である場合に、前記入力側抵抗の抵抗値を、入手可能なチップ抵抗の抵抗値のなかから、前記抵抗値R2に近い抵抗値を選択して設定し、算出した前記抵抗値R2が負の値である場合に、前記入力側抵抗の抵抗値を1kΩ以上の所定の値に設定し、算出した前記抵抗値R4が正の値である場合に、前記出力側抵抗の抵抗値を、入手可能なチップ抵抗の抵抗値のなかから、前記抵抗値R4に近い抵抗値を選択して設定し、算出した前記抵抗値R4が負の値である場合に、前記出力側抵抗の抵抗値を1kΩ以上の所定の値に設定
    (条件1)R3/R1=√(R01・R03+R32)/R01-1、
    (条件2)R3/R5=√(R01・R03+R32)/R03-1、
    (条件3)R3/r2=√(Z1・Z2+R32)/Z1-1、
    (条件4)R3/r4=√(Z1・Z2+R32)/Z2-1
    ただし、
    r2=R1・R2/(2・R1+R2)、
    r4=R5・R4/(2・R5+R4)、
    Z1=R01・R02/(2・R01+R02)、
    Z2=R03・R04/(2・R03+R04)、
    R01=2・Wc1、
    R02=4・Wd1・Wc1/(4・Wc1-Wd1)、
    R03=2・Wc2、
    R04=4・Wd2・Wc2/(4・Wc2-Wd2)、
    Wc1は、前記第一入力端子及び前記第二入力端子に電気接続される入力側外部回路のコモンモード等価抵抗値、
    Wd1は、前記入力側外部回路のディファレンシャルモード等価抵抗値、
    Wc2は、前記第一出力端子及び前記第二出力端子に電気接続される出力側外部回路のコモンモード等価抵抗値、
    Wd2は、前記出力側外部回路のディファレンシャルモード等価抵抗値を、それぞれ示す、
    請求項4の設計方法。
  6. 前記抵抗値設定工程において、算出した前記抵抗値R2が負の値である場合に、前記第一入力端子と前記第二入力端子との間に前記入力側抵抗を電気接続しないこととする、
    請求項の設計方法。
  7. 前記抵抗値設定工程において、算出した前記抵抗値R4が負の値である場合に、前記第一出力端子と前記第二出力端子との間に前記出力側抵抗を電気接続しないこととする、
    請求項の設計方法。
  8. 前記電磁気妨害低減装置が透過すべき信号の周波数を設定する信号周波数設定工程と、
    前記信号周波数設定工程で設定した前記信号の周波数に基づいて、前記信号の周波数に反比例する立ち上がり時間を算出する立ち上がり時間算出工程と
    を更に備え、
    前記等価抵抗値測定工程において、前記立ち上がり時間算出工程で算出した立ち上がり時間以下の立ち上がり時間を有する信号を用いて、時間領域反射率測定法で等価抵抗値を測定する、
    請求項4乃至7いずれかの設計方法。
  9. 前記電磁気妨害低減装置が透過すべき信号の周波数を設定する信号周波数設定工程と、
    前記信号周波数設定工程で設定した前記信号の周波数に基づいて、前記信号の周波数に比例する上限周波数を算出する上限周波数算出工程と
    を更に備え、
    前記等価抵抗値測定工程において、前記上限周波数算出工程で算出した上限周波数以下の周波数範囲においてベクトルネットワークアナライザを用いて周波数特性を測定し、測定した周波数特性に基づいて等価抵抗値を算出する、
    請求項4乃至7いずれかの設計方法。
JP2022086762A 2022-05-27 2022-05-27 電磁気妨害低減装置及び電気回路の設計方法 Active JP7227662B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022086762A JP7227662B1 (ja) 2022-05-27 2022-05-27 電磁気妨害低減装置及び電気回路の設計方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022086762A JP7227662B1 (ja) 2022-05-27 2022-05-27 電磁気妨害低減装置及び電気回路の設計方法

Publications (2)

Publication Number Publication Date
JP7227662B1 true JP7227662B1 (ja) 2023-02-22
JP2023174100A JP2023174100A (ja) 2023-12-07

Family

ID=85277855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022086762A Active JP7227662B1 (ja) 2022-05-27 2022-05-27 電磁気妨害低減装置及び電気回路の設計方法

Country Status (1)

Country Link
JP (1) JP7227662B1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101649A (ja) 2004-11-22 2005-04-14 Nec Corp 半導体回路およびその製造方法
JP2013115409A (ja) 2011-12-01 2013-06-10 Renesas Electronics Corp 半導体パッケージ
DE102013015736A1 (de) 2013-09-20 2014-04-10 Daimler Ag Antennenanpassungsschaltung
JP2017059517A (ja) 2015-02-27 2017-03-23 セイコーエプソン株式会社 電子機器、およびプリンター
US20170149394A1 (en) 2015-11-25 2017-05-25 Mediatek Inc. Matching network circuit and Radio-Frequency Power Amplifier with Odd Harmonic Rejection and Even Harmonic Rejection and Method of Adjusting Symmetry of Differential Signals
JP2021141437A (ja) 2020-03-05 2021-09-16 本多通信工業株式会社 電気回路、電気コネクタ、電気コネクタアセンブリ
US20210320594A1 (en) 2020-04-13 2021-10-14 Advanced Energy Industries, Inc. Input impedance networks with power recovery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274401A (ja) * 1985-05-29 1986-12-04 Nippon Hoso Kyokai <Nhk> ストリツプ線路型方向性結合器
JP3200247B2 (ja) * 1993-07-27 2001-08-20 花王株式会社 油性化粧料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101649A (ja) 2004-11-22 2005-04-14 Nec Corp 半導体回路およびその製造方法
JP2013115409A (ja) 2011-12-01 2013-06-10 Renesas Electronics Corp 半導体パッケージ
DE102013015736A1 (de) 2013-09-20 2014-04-10 Daimler Ag Antennenanpassungsschaltung
JP2017059517A (ja) 2015-02-27 2017-03-23 セイコーエプソン株式会社 電子機器、およびプリンター
US20170149394A1 (en) 2015-11-25 2017-05-25 Mediatek Inc. Matching network circuit and Radio-Frequency Power Amplifier with Odd Harmonic Rejection and Even Harmonic Rejection and Method of Adjusting Symmetry of Differential Signals
JP2021141437A (ja) 2020-03-05 2021-09-16 本多通信工業株式会社 電気回路、電気コネクタ、電気コネクタアセンブリ
US20210320594A1 (en) 2020-04-13 2021-10-14 Advanced Energy Industries, Inc. Input impedance networks with power recovery

Also Published As

Publication number Publication date
JP2023174100A (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
US7446624B2 (en) Transmission line and wiring forming method
US9577852B2 (en) Common-mode suppressor based on differential transmission line
JP5819007B2 (ja) 直交補償ネットワークを用いた補償ネットワーク
US10524351B2 (en) Printed circuit board (PCB) with stubs coupled to electromagnetic absorbing material
US20140022030A1 (en) Signal transmission circuit and signal transmission cell thereof
JPWO2014115578A1 (ja) プリント配線基板、電子機器及び配線接続方法
JPWO2012133755A1 (ja) 伝送システムとバックプレーンシステム構築方法
JP6892126B2 (ja) 積層基板に形成した高速差動伝送線路
De Paulis et al. EBG-based common-mode stripline filters: Experimental investigation on interlayer crosstalk
TW201818596A (zh) 共模訊號吸收器及其等效電路
JP7227662B1 (ja) 電磁気妨害低減装置及び電気回路の設計方法
US20100301965A1 (en) Waveguide System with Differential Waveguide
JP2018011055A (ja) クロストーク及び反射損失を調整するプラグコネクタ
JP2021141437A (ja) 電気回路、電気コネクタ、電気コネクタアセンブリ
Ryu et al. Signal Integrity Analysis of Notch-Routing to Reduce Near-End Crosstalk for Tightly Coupled and Short Microstrip Channel
Broomall et al. Extending the useful range of copper interconnects for high data rate signal transmission
JP2016207834A (ja) 印刷配線板
Mechaik An evaluation of single-ended and differential impedance in PCBs
JP2021158195A (ja) 信号伝送回路およびプリント基板
Lin et al. A broadband filter design for common-mode noise suppression with multilayer mushroom structure in differential transmission line
Zhang et al. Transmission Line Intra-pair Skew Analysis and Management on PCIe 6.0
JP2021019217A (ja) 4相電力分配器及び電子機器
Vladuta et al. HIGH FREQUENCY COMMON-MODE NOISE IN SERDES CIRCUITS’OPTIMIZED INTERCONNECTIONS
Chuang et al. A new common-mode EMI suppression technique for GHz differential signals crossing slotted reference planes
JP7517851B2 (ja) 結合回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230203

R150 Certificate of patent or registration of utility model

Ref document number: 7227662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150