JP7226225B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP7226225B2
JP7226225B2 JP2019174451A JP2019174451A JP7226225B2 JP 7226225 B2 JP7226225 B2 JP 7226225B2 JP 2019174451 A JP2019174451 A JP 2019174451A JP 2019174451 A JP2019174451 A JP 2019174451A JP 7226225 B2 JP7226225 B2 JP 7226225B2
Authority
JP
Japan
Prior art keywords
combustor
fuel
air
fuel cell
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019174451A
Other languages
English (en)
Other versions
JP2021051923A (ja
Inventor
隆義 小島
優介 吉田
勇人 山下
毅 植木
徹朗 ▲瀬▼耒
健司 大島
翔平 石田
卓史 小代
康弘 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019174451A priority Critical patent/JP7226225B2/ja
Publication of JP2021051923A publication Critical patent/JP2021051923A/ja
Application granted granted Critical
Publication of JP7226225B2 publication Critical patent/JP7226225B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、燃料電池システムに関するものである。
従来、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池システムが知られている。燃料電池システムは、燃料電池スタックで消費されずに排出されたオフ燃料とオフ空気とを燃焼器で燃焼させ、その燃焼ガスの熱を改質器などに供給する。改質器は、都市ガスなどの原燃料ガスと水蒸気とを触媒により反応させ、燃料電池に供給する燃料ガスに改質する。
特許文献1に記載の燃料電池システムは、燃料電池スタックから排出されたオフ燃料と原燃料ガスとをエジェクタで合流し、改質器を通して再び燃料電池スタックに供給し、発電に使用する構成とされている。
特開2018-206685号公報
本発明の発明者らは、燃料電池システムにおいて、次のような課題を見出した。すなわち、燃料電池システムでは、燃料ガスが燃料電池スタックで発電に消費されて燃焼器で燃焼するオフ燃料の量が減少すると、燃焼器から改質器へ供給される熱量が不足する、または、改質器に温度分布が生じるといった課題がある。また、燃焼器で燃焼した燃焼ガスの熱が燃焼器の筐体から改質器を除く部位(例えば暖機用燃焼器)へ移動する熱量が増加する場合にも、同様の問題が生じる。その場合、改質器の触媒による燃料の改質反応が悪化し、発電効率が低下するおそれがある。
本発明は上記点に鑑みて、燃焼器から改質器へ効率的に熱供給することの可能な燃料電池システムを提供することを目的とする。
上記目的を達成するため、請求項1に記載の燃料電池システムは、燃料電池スタック(2)、改質器(4)および燃焼器(7)を備える。燃料電池スタックは、燃料ガスと酸化剤ガスを反応させて発電する。改質器は、源燃料を燃料電池スタックに供給する燃料ガスに改質する。燃焼器は、燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と、燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる。
その燃焼器は、筐体(32)、分割部材(33)、第1オフ空気供給口(41)、第2オフ空気供給口(42)、オフ燃料供給口(43)、オフ空気排出口(44)および構造体(45、47、333)を有している。筐体は、燃焼器の内部空間(50)を形成する。分割部材は、燃焼器の内部空間を第1室(51)と第2室(52)とに分割する。第1オフ空気供給口は、第1室にオフ空気を供給する。第2オフ空気供給口は、第2室にオフ空気を供給する。オフ燃料供給口は、第2室にオフ燃料を供給する。オフ空気排出口は、第2室でオフ燃料が燃焼する燃焼領域(53)に第1室からオフ空気を排出する。構造体は、燃焼器の内部空間に設けられ、オフ燃料とオフ空気とが燃焼した燃焼ガスの熱を改質器に供給するように構成されている。
これによれば、燃焼器は、内部空間に設けられた構造体により、燃焼ガスの熱を改質器に効率的に供給することが可能である。そのため、燃焼器に供給されるオフ燃料が減少した場合でも、燃焼器から改質器への熱供給量の不足が防がれる。したがって、この燃料電池システムは、改質器による燃焼ガスの生成が良好に行われるので、発電効率を向上することができる。
請求項10に記載の燃料電池システムは、燃料電池スタック(2)、改質器(4)、暖機用燃焼器(8)、燃焼器(7)、および熱回収構造(60、62)を備える。燃料電池スタックは、燃料ガスと酸化剤ガスを反応させて発電する。改質器は、源燃料を燃料電池スタックに供給する燃料ガスに改質する。暖機用燃焼器は、源燃料と空気とを点火プラグ(24)の着火により燃焼させる。燃焼器は、燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と、燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる。
その燃焼器は、筐体(32)、分割部材(33)、第1オフ空気供給口(41)、第2オフ空気供給口(42)、オフ燃料供給口(43)およびオフ空気排出口(44)を有している。筐体は、燃焼器の内部空間(50)を形成する。分割部材は、燃焼器の内部空間を第1室(51)と第2室(52)とに分割する。第1オフ空気供給口は、第1室にオフ空気を供給する。第2オフ空気供給口は、第2室にオフ空気を供給する。オフ燃料供給口は、第2室にオフ燃料を供給する。オフ空気排出口は、第2室でオフ燃料が燃焼する燃焼領域(53)に第1室からオフ空気を排出する。
そして、熱回収構造は、燃焼器の筐体から改質器を除く部位へ放射される輻射熱を回収し、燃焼器の内部空間に戻すように構成されている。
これによれば、燃焼器の筐体から改質器を除く部位へ放射される輻射熱が熱回収構造によって回収され、燃焼器の内部空間に戻されることで、燃焼器から改質器へ供給される熱量が増加する。そのため、燃焼器に供給されるオフ燃料が減少した場合でも、燃焼器から改質器への熱供給量の不足が防がれる。したがって、この燃料電池システムは、改質器による燃焼ガスの生成が良好に行われるので、発電効率を向上することができる。
請求項13に記載の燃料電池システムは、燃料電池スタック(2)、改質器(4)、暖機用燃焼器(8)、燃焼器(7)、および熱供給構造(71、72、431)を備える。燃料電池スタックは、燃料ガスと酸化剤ガスを反応させて発電する。改質器は、源燃料を燃料電池スタックに供給する燃料ガスに改質する。暖機用燃焼器は、源燃料と空気とを点火プラグ(24)の着火により燃焼させる。燃焼器は、燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と、燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる。
その燃焼器は、筐体(32)、分割部材(33)、第1オフ空気供給口(41)、第2オフ空気供給口(42)、オフ燃料供給口(43)およびオフ空気排出口(44)を有している。筐体は、燃焼器の内部空間(50)を形成する。分割部材は、燃焼器の内部空間を第1室(51)と第2室(52)とに分割する。第1オフ空気供給口は、第1室にオフ空気を供給する。第2オフ空気供給口は、第2室にオフ空気を供給する。オフ燃料供給口は、第2室にオフ燃料を供給する。オフ空気排出口は、第2室でオフ燃料が燃焼する燃焼領域(53)に第1室からオフ空気を排出する。
そして、熱供給構造は、暖機用燃焼器で燃焼した燃焼ガスの熱の一部を燃焼器に供給する。
ところで、上記請求項1に記載の発明のように、燃焼器の内部空間の熱を改質器側へ集中させる構成とした場合、内部空間の中でオフ燃料供給口付近の温度が下がり、燃料電池システムの起動時に燃焼器の着火性が低下するおそれがある。
そこで、請求項13に記載の発明では、燃料電池システムの起動時に、暖機用燃焼器で燃焼した燃焼ガスの熱の一部を熱供給構造により燃焼器に供給し、燃焼器の温度を上げることで、燃焼器を安定して着火することができる。
なお、熱供給構造は、燃焼器の内部空間の一部の温度を上げることで、燃焼器内に火種を作ることが可能である。そのため、熱供給構造の体格は比較的小さいものとすることが可能である。したがって、発電時に暖機用燃焼器が停止している場合には、燃焼器から熱供給構造を経由して暖機用燃焼器側に熱逃げが生じることを抑制することができる。
請求項17に記載の燃料電池システムは、燃料電池スタック(2)、改質器(4)および燃焼器(7)を備える。燃料電池スタックは、燃料ガスと酸化剤ガスを反応させて発電する。改質器は、源燃料を燃料電池スタックに供給する燃料ガスに改質する。燃焼器は、燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と、燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる。
その燃焼器は、筐体(32)、分割部材(33)、第1オフ空気供給口(41)、第2オフ空気供給口(42)、オフ燃料供給口(43)、オフ空気排出口(44)および酸化触媒(73)を有している。筐体は、燃焼器の内部空間(50)を形成する。分割部材は、燃焼器の内部空間を第1室(51)と第2室(52)とに分割する。第1オフ空気供給口は、第1室にオフ空気を供給する。第2オフ空気供給口は、第2室にオフ空気を供給する。オフ燃料供給口は、第2室にオフ燃料を供給する。オフ空気排出口は、第2室でオフ燃料が燃焼する燃焼領域(53)に第1室からオフ空気を排出する。酸化触媒は、複数のオフ燃料供給口のうち一部のオフ燃料供給口の近傍に設けられている。
これによれば、酸化触媒が設けられた付近のオフ燃料供給口から吹き出されたオフ燃料を比較的低温で着火させて火種を作ることが可能である。その火種から、その他のオフ燃料供給口から吹き出されるオフ燃料に火移りさせることで、燃焼器の燃焼領域全体で燃焼させることが可能である。したがって、この燃料電池システムは起動時に燃焼器を安定して着火することができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る燃料電池システムの構成図である。 燃料電池システムが備えるホットモジュールの一部を示す断面図である。 燃料電池システムが備える燃焼器とその近傍を示す断面図である。 燃料電池システムが備える燃焼器を示す斜視図である。 図2のV-V線において燃焼器のみを示す平面図である。 燃焼器における空気過剰率の分布を示すシミュレーション図である。 燃焼器における空気過剰率の分布を示すシミュレーション図である。 第2実施形態に係る燃料電池システムが備える燃焼器とその近傍を示す断面図である。 燃焼器内の温度分布を示すシミュレーション図である。 第2実施形態に係る燃料電池システムと、第1比較例の燃料電池ステムに関し、燃焼器が有する筐体の改質器側の壁の温度を比較したグラフである。 第3実施形態に係る燃料電池システムが備える燃焼器とその近傍を示す断面図である。 燃焼器内でオフ燃料と第1オフ空気の流れる方向を示した模式図である。 第4実施形態に係る燃料電池システムが備えるホットモジュールの一部を示す断面図である。 第4実施形態に係る燃料電池システムと、第2比較例の燃料電池ステムに関し、暖機用燃焼器の壁面温度を比較したグラフである。 第5実施形態に係る燃料電池システムが備えるホットモジュールの一部を示す断面図である。 第5実施形態に係る燃料電池システムと、第3比較例の燃料電池ステムに関し、燃焼器が有する筐体のオフ空気通路側の壁面温度を比較したグラフである。 第6実施形態に係る燃料電池システムが備えるホットモジュールの一部を示す断面図である。 第6実施形態に係る燃料電池システムと、第4比較例の燃料電池ステムに関し、燃焼器が有する筐体のオフ空気通路側の壁面温度を比較したグラフである。 第7実施形態に係る燃料電池システムが備えるホットモジュールの一部を示す断面図である。 燃焼器内の温度分布を示すシミュレーション図である。 第8実施形態に係る燃料電池システムが備える燃焼器とその近傍を示す断面図である。 図21のXXII-XXII線の位置において、燃焼器のみを示す平面図である。 第9実施形態に係る燃料電池システムが備える燃焼器とその近傍を示す断面図である。 図23のXXIV-XXIV線の位置において、燃焼器のみを示す平面図である。 第9実施形態に係る燃料電池システムと、第5比較例の燃料電池ステムに関し、オフ燃料の温度と燃焼率との関係を比較したグラフである。
以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
(第1実施形態)
第1実施形態について図面を参照しつつ説明する。図1に示すように、本実施形態の燃料電池システム1は、燃料電池スタック2、エジェクタ3、改質器4、蒸発器5、空気予熱器6、燃焼器7および暖機用燃焼器8などを備えている。なお、燃焼器7はオフガスバーナと呼ばれ、暖機用燃焼器8は暖機バーナと呼ばれることもある。
燃料電池スタック2には、都市ガスなどの原燃料ガスを水蒸気改質して生成した燃料ガスと、酸化剤ガスとしての空気(詳細には、空気中の酸素)が供給される。
都市ガスなどの原燃料ガスは、炭化水素(例えば、メタン)を含むガスである。原燃料ガスは、燃料用ブロア9の駆動により燃料供給経路10を流れ、エジェクタ3を介して改質器4に導入される。その燃料供給経路10のうち燃料用ブロア9とエジェクタ3との間に蒸発器5から延びる水蒸気経路11が接続されている。蒸発器5には、ポンプ12の駆動により水が供給される。蒸発器5に供給された水は、燃焼器7から排出される燃焼ガスの熱により加熱され、水蒸気となって燃料供給経路10を流れる原燃料ガスと混合される。
エジェクタ3は、入口13、吸引口14および吐出口15を有している。エジェクタ3の入口13には、原燃料ガスと水蒸気との混合ガスが供給される。エジェクタ3の吸引口14には、リサイクル通路16が接続されている。リサイクル通路16には、燃料電池スタック2で消費されなかった燃料ガスを含むオフ燃料の一部が流れる。エジェクタ3の吐出口15側の通路17には改質器4が接続されている。エジェクタ3は、入口13に供給される原燃料ガスと水蒸気との混合ガスを駆動流として、リサイクル通路16を流れるオフ燃料を吸引口14から吸引し、それらを混合したガスを吐出口15から改質器4へ吐出する。
改質器4は、原燃料ガスとオフ燃料と水蒸気との混合ガスおよび触媒が、燃焼器7から排出される燃焼ガスの熱により、水蒸気改質反応が可能な温度に加熱される。そして、原燃料ガスと水蒸気は、改質器4の有する触媒の存在のもとで反応し、水素と一酸化炭素を含む燃料ガスに改質される。その燃料ガスは、燃料電池スタック2の図示しない燃料極に供給される。
燃料電池スタック2に供給される酸化剤ガスとして用いられる空気は、空気用ブロア18の駆動により外気から取り込まれる。その空気は、空気供給経路19の途中に設けられた空気予熱器6を流れる際、燃焼器7から排出される燃焼ガスの熱により加熱される。空気予熱器6で加熱された空気は、燃料電池スタック2の図示しない空気極に供給される。
燃料電池スタック2は、セルスタックとも呼ばれるものであり、図示しない複数の燃料電池セルの集合体である。燃料電池セルは、例えば、固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)であり、電解質を挟んで一方側の面に燃料極(すなわち、アノード)が形成され、他方の面に空気極(すなわち、カソード)が形成された構成となっている。燃料電池スタック2は、燃料極に供給される燃料ガスと、空気極に供給される酸化剤ガスとしての空気(詳細には、空気中の酸素)との電気化学反応により発電する。
燃料電池スタック2で消費されなかった酸化剤ガスを含むオフ空気は、オフ空気通路20を経由して燃焼器7に供給される。また、燃料電池スタック2で消費されなかった燃料ガスを含むオフ燃料は、オフ燃料通路21を経由し、その一部が燃焼器7に供給される。
オフ燃料通路21の途中の部位とエジェクタ3の吸引口14とは、上述したリサイクル通路16により接続されている。そのため、オフ燃料通路21を流れるオフ燃料の他の一部は、リサイクル通路16を経由してエジェクタ3に吸い込まれる。すなわち、この燃料電池システム1は、エジェクタ3を備えることにより、燃料電池スタック2から排出されるオフ燃料をリサイクルして原燃料ガスと水蒸気と混合し、改質器4を通して再び燃料電池スタック2に供給することで発電に繰り返し使用する構成とされている。
燃焼器7は、燃料電池スタック2から供給されるオフ燃料とオフ空気とを高温場で自着火により燃焼させるように構成されている。燃焼器7でオフ燃料とオフ空気とが燃焼して生成された燃焼ガスは、燃焼器7の燃焼ガス出口22から燃焼ガス通路23に排出される。燃焼器7および燃焼ガス通路23は、改質器4、空気予熱器6および蒸発器5に対して燃焼ガスの熱を供給可能に設けられている。そのため、改質器4の有する触媒およびその触媒を流れる源燃料ガスや水蒸気、空気予熱器6を流れる空気、並びに、蒸発器5に供給される水は、燃焼器7および燃焼ガス通路23を流れる燃焼ガスの熱により加熱される。
暖機用燃焼器8は、燃料電池システム1の起動時に作動する。暖機用燃焼器8には、都市ガスと空気が供給される。暖機用燃焼器8は、都市ガスと空気との混合ガスを点火プラグ24により着火して燃焼させ、その燃焼ガスの熱により燃料電池スタック2を加熱するものである。なお、暖機用燃焼器8は、燃料電池システム1の起動時に続く発電時には動作を停止する。
本実施形態では、上述した燃料電池スタック2、改質器4、蒸発器5、エジェクタ3、空気予熱器6、燃焼器7および暖機用燃焼器8が、ホットモジュール25として構成されている。
次に、本実施形態の燃料電池システム1が備えるホットモジュール25の具体的な構成について図2~図5を参照して説明する。なお、以下の説明において、「上」、「下」の用語は、説明の便宜上用いるものであり、各部材が設置される方向を限定するものではない。
図2に示すように、ホットモジュール25の中央部には、有底筒状に形成された暖機用燃焼器8が設けられている。暖機用燃焼器8では、燃料供給部26に都市ガスが供給され、混合室28に空気が供給される。その都市ガスと空気は混合室28で混合された後、混合室から暖機用燃焼室29に供給される。暖機用燃焼室29では、点火プラグ24の着火により混合ガスが燃焼する。暖機用燃焼室29で燃焼した燃焼ガスは、暖機用燃焼ガス通路30を通って燃料電池スタック2の周囲を流れ、燃料電池スタック2の暖機加熱に用いられる。
暖機用燃焼器8の径方向外側に燃焼器7が設けられている。詳細には、暖機用燃焼器8の外縁を軸方向に延長した仮想円筒面(不図示)に対して径方向外側に燃焼器7が設けられている。その燃焼器7は、暖機用燃焼器8の径方向外側に環状に設けられている。
暖機用燃焼器8の下側、且つ、燃焼器7の径方向内側には、燃料電池スタック2の空気極から排出されたオフ空気が流れるオフ空気通路20が設けられている。また、燃焼器7の下側には、燃料電池スタック2の燃料極から排出されたオフ燃料が流れるオフ燃料通路21が設けられている。
オフ燃料通路21から燃焼器7に供給されるオフ燃料と、オフ空気通路20から燃焼器7に供給されるオフ空気とは、自着火により燃焼器7の内部空間50で燃焼する。燃焼器7の上方には、燃焼器7の燃焼ガス出口22に連通する筒状の燃焼ガス通路23が設けられている。
燃焼器7と燃焼ガス通路23の径方向外側に改質器4が設けられている。改質器4には触媒が設けられている。改質器4では、エジェクタ3から供給される燃料ガスと水蒸気とが触媒を上から下へ流れるように構成されている。なお、燃焼器7の上側、且つ、燃焼ガス通路23の径方向内側には、断熱材31が設けられている。
燃焼ガス通路23および改質器4の上方には、蒸発器5が設けられている。ホットモジュール25は、燃焼ガス通路23を流れた燃焼ガスが、蒸発器5の下側の流路27を流れた後、外気に排出されるように構成されている。
図3~図5に示すように、燃焼器7は、筐体32、分割部材33、第1オフ空気供給口41、第2オフ空気供給口42、オフ燃料供給口43、オフ空気排出口44、および、構造体としての複数のガイド板45などを有している。
筐体32は、燃焼器7の外殻を構成している。筐体32の内側には、内部空間50が形成されている。筐体32は環状に形成されている。そのため、筐体32の内部空間50も環状に形成されている。筐体32の径方向外側の壁の外側(径方向外側)に、改質器4が設けられている。一方、筐体32の径方向内側の壁の外側(径方向内側)に、オフ空気通路20が設けられている。また、燃焼器7の下側の壁の外側(下側)に、オフ燃料通路21が設けられている。
以下の説明では、筐体32の径方向外側の壁を「筐体32の改質器4側の壁34」、筐体32の径方向内側の壁を「筐体32のオフ空気通路20側の壁35」という。また、筐体32の下側の壁を「筐体32の下壁36」、筐体32の上側の壁を「筐体32の上壁37」という。
内部空間50には、内部空間50を第1室51と第2室52とに分割する分割部材33が設けられている。分割部材33は、上分割部材38と下分割部材39により構成されている。上分割部材38は、環状に形成された環状板381と、その環状板381の径方向外側の外縁から筐体32の下壁36に向けて筒状に延びる上筒部382とを有している。環状板381の径方向内側の部位は、筐体32のオフ空気通路20側の壁35に接続されている。
下分割部材39は、筐体32の下壁36に接続される接続部391と、その接続部391から環状板381側に向けて筒状に延びる下筒部392とを有している。なお、上分割部材38の有する上筒部382と、下分割部材39の有する下筒部392との間には、所定の隙間が設けられている。この隙間をオフ空気排出口44と呼ぶ。
内部空間50の中で第1室51は、上筒部382および下筒部392の径方向内側の面と、環状板381の下面と、筐体32のオフ空気通路20側の壁35の一部と、筐体32の下壁36の一部とによって仕切られた空間である。一方、内部空間50の中で第2室52は、第1室51以外の空間である。具体的には、第2室52は、上筒部382および下筒部392の径方向外側の面と、環状板381の上面と、筐体32の改質器4側の壁34と、筐体32の上壁37と、筐体32のオフ空気通路20側の壁35の一部と、筐体32の下壁36の一部とによって仕切られた空間である。
筐体32のオフ空気通路20側の壁35には、複数の第1オフ空気供給口41と、複数の第2オフ空気供給口42とが設けられている。複数の第1オフ空気供給口41は、筐体32のオフ空気通路20側の壁35のうち、環状板381が接続する位置よりも下側に設けられている。複数の第1オフ空気供給口41は、燃焼器7の周方向に並んで設けられている。第1オフ空気供給口41は、オフ空気通路20と第1室51とを連通している。そのため、第1オフ空気供給口41は、オフ空気通路20から第1室51にオフ空気を供給することが可能である。なお、以下の説明では、第1オフ空気供給口41から第1室51に供給されるオフ空気を「第1オフ空気」という。
複数の第2オフ空気供給口42は、筐体32のオフ空気通路20側の壁35のうち、環状板381が接続する位置よりも上側に設けられている。複数の第2オフ空気供給口42は、燃焼器7の周方向に並んで設けられている。第2オフ空気供給口42は、オフ空気通路20と第2室52とを連通している。そのため、第2オフ空気供給口42は、オフ空気通路20から第2室52にオフ空気を供給することが可能である。第2オフ空気供給口42の開口面積は、第1オフ空気供給口41の開口面積より大きく形成されている。なお、以下の説明では、第2オフ空気供給口42から第2室52に供給されるオフ空気を「第2オフ空気」という。
筐体32の下壁36には、複数のオフ燃料供給口43が設けられている。複数のオフ燃料供給口43は、筐体32の下壁36のうち、下分割部材39の接続部391よりも径方向外側(すなわち、下分割部材39の接続部391よりも筐体32の改質器4側の壁34側)に設けられている。複数のオフ燃料供給口43は、燃焼器7の周方向に並んで設けられている。オフ燃料供給口43は、オフ燃料通路21と第2室52とを連通している。これにより、オフ燃料供給口43は、オフ燃料通路21から第2室52にオフ空気を供給することが可能である。
オフ燃料供給口43から第2室52に供給されたオフ燃料は、燃焼器7の内部空間50の燃焼領域53の温度が自着火温度以上であり、且つ、空燃比(オフ空気の質量/オフ燃料の質量)が燃焼可能な範囲にある場合、自着火により燃焼する。燃焼領域53とは、第2室52でオフ燃料が燃焼する領域をいう。図3では、燃焼領域53を模式的に破線で示している。
第1オフ空気供給口41から第1室51に供給された第1オフ空気は、その第1室51からオフ空気排出口44を経由して燃焼領域53に向けて排出される。したがって、オフ空気排出口44から燃焼領域53に排出される第1オフ空気の空気量を適切に制御することで、燃焼領域53の空燃比が燃焼可能な範囲となり、オフ燃料供給口43から第2室52に供給されるオフ燃料が燃焼する。
構造体としての複数のガイド板45は、燃焼器7の内部空間50の第2室52に設けられている。複数のガイド板45は、円環状の板材46から切り起こされた形状とされている。そして、複数のガイド板45は、上分割部材38の有する環状板381の上で周方向に並ぶように設けられている。また、複数のガイド板45は、内部空間50の径方向に対して周方向に傾斜するように設けられている。これにより、複数の第2オフ空気供給口42から第2室52に供給される第2オフ空気は、複数のガイド板45によって流れの向きが周方向に向かうように案内される。そして、図5の矢印SW1に示すように、複数のガイド板45によって案内された第2オフ空気は、燃焼ガスと共に混ざり合いつつ筐体32の改質器4側の壁34に沿って第2室52を循環するように流れる。そのため、燃焼ガスの熱が効率的に改質器4に供給される共に、改質器4の周方向の温度分布が低減される。
図6および図7は、燃焼器7の第2室52における空気過剰率の分布を示すシミュレーション図である。
図6および図7に示されるように、燃焼器7の第2室52の中で上分割部材38の上側の領域は、空気過剰率λが大きい(すなわち、燃料リーン)領域となっている。すなわち、この領域には、第2オフ空気が流れている。
また、第2室52の中でオフ燃料供給口43の直上の領域(すなわち、燃焼領域53)は、空気過剰率λが小さい(すなわち、燃料リッチ)領域となっている。すなわち、この領域には、燃焼領域53で燃焼する燃焼ガスが流れている。
そして、図6および図7の矢印SW2に示したように、第2室52の中で燃焼領域53よりも径方向外側の領域では、第2オフ空気が周方向に流れ、その流れに伴って燃焼ガスが第2オフ空気と混ざり合いつつ周方向に流れている。
以上説明した第1実施形態の燃料電池システム1は、次の作用効果を奏するものである。
(1)第1実施形態では、燃焼器7の内部空間50に設けられる構造体としての複数のガイド板45は、燃焼器7で燃焼した燃焼ガスの熱を改質器4に供給するように構成されている。
これにより、燃料ガスが燃料電池スタック2で発電に繰り返し使用されて燃焼器7に供給されるオフ燃料が減少した場合でも、燃焼器7から改質器4へ燃焼ガスの熱が効率的に供給される。そのため、燃焼器7から改質器4への熱供給量の不足が防がれる。したがって、この燃料電池システム1は、改質器4による燃焼ガスの生成が良好に行われるので、発電効率を向上することができる。
(2)第1実施形態では、複数のガイド板45は、第2オフ空気供給口42から第2室52に供給される第2オフ空気が燃焼ガスと混ざり合い筐体32の改質器4側の壁34に沿って第2室52を循環するように、第2オフ空気を案内する。
これにより、燃焼領域53で燃焼した燃焼ガスが燃焼ガス出口22に直接流れることなく、筐体32の改質器4側の壁34に沿って第2室52を循環する。そのため、燃焼器7から改質器4へ燃焼ガスの熱を効率的、且つ、均一的に供給することが可能である。したがって、燃焼器7から改質器4への熱供給量の不足を防ぎ、且つ、改質器4の温度分布を低減することができる。
なお、第2オフ空気供給口42から第2室52に供給される第2オフ空気は、オフ空気排出口44から燃焼領域53に排出される第1オフ空気とオフ燃料との燃焼に寄与しない。そのため、複数のガイド板45で案内する空気の流れに第2オフ空気を使用することで、燃焼領域53における燃焼ガスの燃焼を不安定にすることなく、燃焼器7の燃焼ガスの熱を改質器4に効率的、且つ、均一的に供給することが可能である。
(3)第1実施形態では、複数のガイド板45は、内部空間50の径方向に対して周方向に傾斜するように設けられている。これにより、複数のガイド板45は、第2オフ空気供給口42から内部空間50に吹き出される第2オフ空気を、内部空間50の周方向に旋回させ、その流れに伴って燃焼ガスを筐体32の改質器4側の壁34に沿って旋回させることができる。したがって、筐体32の径方向外側の壁の外側に設けられた改質器4に対し、燃焼ガスの熱を効率的、且つ、均一的に供給することができる。
(第2実施形態)
第2実施形態について説明する。第2実施形態は、第1実施形態に対して、燃焼器7に設けられる構造体の構成を変更したものであり、その他の構成については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図8に示すように、第2実施形態では、燃焼器7の内部空間50の第2室52に、構造体としての壁部材47が設けられている。壁部材47は、筒状に形成され、筐体32の改質器4側の壁34と燃焼領域53との間に設けられている。この壁部材47の材料は、筐体32のオフ空気通路20側の壁35(すなわち、筐体32の改質器4とは反対側の壁35)の材料または分割部材33の材料よりも放射率の高いもので形成されている。
図9は、燃焼器7の内部空間50の温度分布を示すシミュレーション図である。
図9に示されるように、燃焼器7の内部空間50では、燃焼領域53で燃焼した燃焼ガスの熱により壁部材47が加熱されている。そして、壁部材47から放射される輻射熱により、筐体32の改質器4側の壁34(特に、壁部材47に対向する部位)が加熱される。なお、燃焼領域53で燃焼した燃焼ガスは、上方の燃焼ガス出口22に流れるので、筐体32の改質器4側の壁34の近傍では下側の空間の温度よりも上側の空間の温度が高くなっている。
図10は、第2実施形態に係る燃料電池システム1と、第1比較例の燃料電池システムに関し、燃焼器7が有する筐体32の改質器4側の壁34の温度を比較したグラフである。
第1比較例の燃料電池システムは、上述した第2実施形態の構成に対し、壁部材47の放射率が、筐体32のオフ空気通路20側の壁35の放射率と同一、且つ、分割部材33の放射率と同一の材料を使用したものである。
第1比較例のグラフにおいて、Aは、燃焼器7が有する筐体32の改質器4側の壁34の平均温度を示し、Bは、その壁34の上側の部位の温度を示し、Cは、その壁34の下側の部位の温度を示している。
第2実施形態のグラフにおいて、Dは、燃焼器7が有する筐体32の改質器4側の壁34の平均温度を示し、Eは、その壁34の上側の部位の温度を示し、Fは、その壁34の下側の部位の温度を示している。
このように、第2実施形態では、第1比較例に対し、燃焼器7が有する筐体32の改質器4側の壁34の平均温度が高くなり、さらに、その壁34の上側の部位の温度と下側の部位の温度との温度差が小さくなっている。このことから、第2実施形態は、第1比較例と比べて、燃焼器7から改質器4へ燃焼ガスの熱を効率的、且つ、均一的に供給することが可能であるといえる。
以上説明した第2実施形態の燃料電池システム1は、次の作用効果を奏するものである。
第2実施形態では、燃焼器7が有する構造体としての壁部材47は、筐体32の改質器4側の壁34と燃焼領域53との間に設けられる。そして、その壁部材47の材料は、筐体32のオフ空気通路20側の壁35(すなわち、筐体32の改質器4とは反対側の壁35)の材料または分割部材33の材料よりも放射率の高いもので形成されている。
これにより、燃焼ガスの熱によって壁部材47を加熱し、その壁部材47の輻射熱を用いて改質器4を加熱することで、燃焼器7で燃焼した燃焼ガスの熱を改質器4に効率的、且つ、均一的に供給できる。したがって、燃焼器7から改質器4への熱供給量の不足を防ぎ、且つ、改質器4の温度分布を低減することができる。
その他、第2実施形態の燃料電池システム1は、第1実施形態と同様の作用効果を奏することができる。
(第3実施形態)
第3実施形態について説明する。第3実施形態は、第1実施形態等に対して、燃焼器7に設けられる構造体の構成を変更したものであり、その他の構成については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
図11に示すように、第3実施形態では、分割部材33が1つの部材により構成されている。分割部材33は、環状に形成された環状板331と、その環状板331の径方向外側の外縁と筐体32の下壁36とを接続する筒部332とを有している。筒部332のうち筐体32の下壁36の近傍には、複数のオフ空気排出口44が設けられている。複数のオフ空気排出口44は、周方向に並ぶように設けられている。複数のオフ空気排出口44は、第1室51と第2室52を連通している。
図12に示すように、第3実施形態では、燃焼器7で燃焼した燃焼ガスの熱を改質器4に効率的に供給するための構造体は、分割部材33の有する筒部332のうちオフ燃料供給口43側の端部333により構成されている。その筒部332の端部333は、オフ燃料供給口43のうち改質器4とは反対側の一部を塞ぐように設けられている。これにより、図11および図12の矢印FFに示すように、オフ燃料供給口43から第2室52に吹き出されるオフ燃料は、筐体32の改質器4側の壁34のうち下側の部位に向けて流れる。筐体32の改質器4側の壁34のうち下側の部位は、換言すれば、改質器4のうち燃焼ガス出口22から遠い部位に対応する筐体32の壁といえる。そのため、第3実施形態の構造体は、オフ燃料供給口43から吹き出されるオフ燃料を、改質器4のうち燃焼ガス出口22から遠い部位に対応する筐体32の壁に向けて案内することが可能である。
以上説明した第3実施形態の燃料電池システム1は、次の作用効果を奏するものである。
(1)第3実施形態では、燃焼器7が有する構造体は、オフ燃料供給口43から吹き出されるオフ燃料を、改質器4のうち燃焼ガス出口22から遠い部位に対応する筐体32の壁に向けて案内するものである。
これにより、オフ燃料供給口43から第2室52に吹き出したオフ燃料が燃焼した燃焼ガスは、改質器4のうち燃焼ガス出口22から遠い部位に対応する筐体32の壁に向けて流れた後、燃焼ガス出口22へ流れる。そのため、改質器4のうち燃焼ガス出口22から遠い部位から燃焼ガス出口22に近い部位に亘り、燃焼ガスの熱を効率的、且つ、均一的に供給することができる。
(2)第3実施形態では、燃焼器7が有する構造体は、分割部材33のうちオフ燃料供給口43側の端部333により構成され、オフ燃料供給口43のうち改質器4とは反対側の一部を塞ぐように設けられている。
これにより、構造体は、オフ燃料供給口43から第2室52に吹き出すオフ燃料を改質器4側へ向けて案内することが可能である。
また、燃焼器7で燃焼した燃焼ガスの熱を改質器4に効率的に供給するための構造体を、分割部材33のうちオフ燃料供給口43側の端部333で構成することにより、部品点数を増加することなく、製造上のコストを低減することができる。
(第4および第5実施形態)
第4および第5実施形態で説明する燃料電池システム1は、燃焼器7から改質器4を除く部位(特に、暖機用燃焼器8側)へ移動する熱を回収して燃焼器7へ戻すための構成を備えるものである。その他の構成については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(第4実施形態)
図13に示すように、第4実施形態の燃料電池システム1は、燃焼器7の筐体32から改質器4を除く部位へ放射される輻射熱を回収し、燃焼器7の内部空間50に戻すように構成された熱回収構造を備えている。具体的には、熱回収構造は、燃焼器7より径方向内側で、暖機用燃焼器8および暖機用燃焼ガス通路30の外壁を囲うように設けられる流路壁60である。その流路壁60は、暖機用燃焼器8および暖機用燃焼ガス通路30の外壁と共に空気流路61を形成するものである。その空気流路61は、外気から燃料電池スタック2へ空気を供給するための空気供給経路19の一部を構成している。
上述したように、暖機用燃焼器8は、燃料電池システム1の起動時に作動するものであり、燃料電池システム1の発電時には動作を停止している。そのため、燃料電池システム1の発電時には、暖機用燃焼器8の温度が下がり、燃焼器7から暖機用燃焼器8側へ熱逃げが生じることが考えられる。その場合でも、第4実施形態では、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱が、空気流路61を流れる空気によって回収される。そして、その空気流路61を流れる空気は輻射熱を回収した後、燃料電池スタック2に供給される。その後、燃料電池スタック2で発電に消費されなかった空気はオフ空気となり、オフ空気通路20を経由して燃焼器7に供給される。これにより、燃焼器7の筐体32から暖機用燃焼器8側へ放射された輻射熱は、空気流路61を流れる空気によって回収され、燃料電池スタック2を経由した後、再びオフ空気を介して燃焼器7に戻される。
図14は、第4実施形態に係る燃料電池システム1と、第2比較例の燃料電池システムに関し、暖機用燃焼器8の底壁81の壁面温度を比較したグラフである。
第2比較例の燃料電池システムは、上述した第4実施形態の構成に対し、熱回収構造としての流路壁60を備えていない構成である。
図14の実線Hは、第4実施形態の燃料電池システム1が備える暖機用燃焼器8の壁面温度を示している。一方、実線Iは、第2比較例の燃料電池システムが備える暖機用燃焼器8の壁面温度を示している。
図14のグラフに示されるように、第4実施形態では、第2比較例に対し、起動時から発電時に亘り、暖機用燃焼器8の壁面温度が低くなっている。図14のグラフにハッチングで示したように、発電時における実線Hと実線Iとの温度差は、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱が熱回収構造により回収された熱量に相当する。その熱量は、上述したように、オフ空気を介して再び燃焼器7に戻されるものである。
以上説明した第4実施形態の燃料電池システム1は、次の作用効果を奏するものである。
(1)第4実施形態の燃料電池システム1は、燃焼器7の筐体32から改質器4を除く部位へ放射される輻射熱を回収し、燃焼器7の内部空間50に戻すように構成された熱回収構造を備えている。これにより、燃焼器7の筐体32から改質器4を除く部位へ放射される輻射熱が熱回収構造によって回収され、再び燃焼器7の内部空間50に戻されるので、燃焼器7から改質器4へ供給される熱量が増加する。そのため、燃料ガスが燃料電池スタック2で発電に繰り返し使用されて燃焼器7に供給されるオフ燃料が減少した場合でも、燃焼器7から改質器4への熱供給量の不足が防がれる。したがって、この燃料電池システム1は、改質器4による燃焼ガスの生成が良好に行われるので、発電効率を向上することができる。
(2)第4実施形態の燃料電池システム1が備える熱回収構造は、燃焼器7より径方向内側で、暖機用燃焼器8の外壁を囲うように設けられる流路壁60である。その流路壁60は、暖機用燃焼器8の外壁と共に空気流路61を形成する。
これにより、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱を、空気流路61を流れる空気によって回収し、その熱を再びオフ空気を介して燃焼器7に供給することが可能である。
また、熱回収構造としての流路壁60は、暖機用燃焼器8の外壁を囲うように設けられているので、空気流路61の断面積を小さくし、空気の流速を速くすることが可能である。これにより、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱の回収率を高めることができる。
(第5実施形態)
図15に示すように、第5実施形態の燃料電池システム1が備える熱回収構造は、燃焼器7の筐体32の径方向内側を囲うように設けられたオフ空気流路壁62である。オフ空気流路壁62は、筒状に形成された内筒部63と、その内筒部63の暖機用燃焼器8側の端部から燃焼器7の筐体32側に延びるフランジ部64とを有している。フランジ部64は、燃焼器7の筐体32に接続されている。これにより、オフ空気流路壁62は、燃焼器7の筐体32と共にオフ空気が流れるオフ空気流路65を形成する。オフ空気流路65は、オフ空気通路20の一部を構成する流路であり、その流路断面積が比較的小さく形成された流路である。オフ空気流路65を流れるオフ空気は、第1オフ空気供給口41および第2オフ空気供給口42から燃焼器7の内部空間50に供給される。
前述したように、燃料電池システム1の発電時に暖機用燃焼器8の温度が下がると、燃焼器7から暖機用燃焼器8側へ熱逃げが生じることが考えられる。その場合、第5実施形態では、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱は、オフ空気流路壁62によって形成されたオフ空気流路65を流れるオフ空気によって回収される。そして、そのオフ空気は、輻射熱を回収した後、第1オフ空気供給口41および第2オフ空気供給口42から燃焼器7の内部空間50に供給される。これにより、燃焼器7の筐体32から暖機用燃焼器8側へ放射された輻射熱は、オフ空気流路65を流れるオフ空気によって回収され、再び燃焼器7に戻される。
なお、図15の破線66に示すように、オフ空気流路壁62と燃焼器7の筐体32との間に、筒状の壁をさらに設けてもよい。これにより、オフ空気流路65の距離を長くすることで、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱の回収量を増やすことができる。
図16は、第5実施形態に係る燃料電池システム1と、第3比較例の燃料電池システムに関し、燃焼器7が有する筐体32のオフ空気通路20側の壁面温度を比較したグラフである。
第3比較例の燃料電池システムは、上述した第5実施形態の構成に対し、熱回収構造としてのオフ空気流路壁62を備えていない構成である。
図16の実線Jは、第5実施形態の燃料電池システム1の燃焼器7が有する筐体32のオフ空気通路20側の壁35の壁面温度を示している。一方、実線Kは、第3比較例の燃料電池システムの燃焼器7が有する筐体32のオフ空気通路20側の壁35の壁面温度を示している。
図16のグラフに示されるように、第5実施形態では、第3比較例に対し、起動時から発電時に亘り、燃焼器7が有する筐体32のオフ空気通路20側の壁35の壁面温度が低くなっている。図16のグラフにハッチングで示したように、発電時における実線Jと実線Kとの温度差が、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱が熱回収構造により回収された熱量に相当する。その熱量は、上述したように、オフ空気流路65を流れるオフ空気を介して再び燃焼器7に戻されるものである。
以上説明した第5実施形態の燃料電池システム1は、次の作用効果を奏するものである。
第5実施形態の燃料電池システム1が備える熱回収構造は、燃焼器7の筐体32の径方向内側を囲うように設けられるオフ空気流路壁62である。そのオフ空気流路壁62は、燃焼器7の筐体32と共にオフ空気が流れるオフ空気流路65を形成する。
これにより、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱を、オフ空気流路65を流れるオフ空気によって回収し、その熱を再び燃焼器7に供給することが可能である。
また、熱回収構造としてのオフ空気流路壁62は、燃焼器7の筐体32の径方向内側を囲う構成であるため、オフ空気流路65の断面積を小さくし、オフ空気の流速を速くすることが可能である。これにより、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱の回収率を高めることができる。
なお、図15の破線66に示したように、オフ空気流路壁62と燃焼器7の筐体32との間に筒状の壁をさらに設けることで、燃焼器7の筐体32から暖機用燃焼器8側へ放射される輻射熱の回収率をより高めることができる。
(第6~第9実施形態)
上述した第1~第3実施形態では、燃焼器7の熱を改質器4へ効率的に供給するための構造体を備えるものについて説明した。ところで、燃焼器7の内部空間50から改質器4へ効率的に熱供給が行われると、燃焼器7の内部空間50のうち改質器4から離れた場所にあるオフ燃料供給口43付近の温度が下がり、燃料電池システム1の起動時に燃焼器7の着火性が低下するおそれがある。
そこで、次に説明する第6~第9実施形態は、燃料電池システム1の起動時に燃焼器7の着火性を安定し、向上するための構成を備えるものである。その他の構成については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(第6実施形態)
図17に示すように、第6実施形態の燃料電池システム1は、暖機用燃焼器8で燃焼した燃焼ガスの熱の一部を燃焼器7に供給するように構成された熱供給構造を備えている。具体的には、熱供給構造は、暖機用燃焼器8と燃焼器7とを接続する熱伝導部材71である。より詳細には、熱伝導部材71は、暖機用燃焼器8の底壁81と、燃焼器7が有する筐体32のオフ空気通路20側の壁35とを接続している。その熱伝導部材71の材料は、燃焼器7の筐体32の材料または暖機用燃焼器8の底壁81の材料よりも熱伝導率の高いもので形成されている。また、熱伝導部材71は、その体格が比較的小さいものとされ、少なくとも1個所に設けられている。
図18は、第6実施形態に係る燃料電池システム1と、第4比較例の燃料電池システムに関し、燃焼器7の内部空間50の温度を比較したグラフである。
第4比較例の燃料電池システムは、上述した第6実施形態の構成に対し、熱供給構造としての熱伝導部材71を備えていない構成である。
図18の実線Lは、第6実施形態の燃料電池システム1が備える燃焼器7の内部空間50の温度を示している。一方、実線Mは、第4比較例の燃料電池システムが備える燃焼器7の内部空間50の温度を示している。
図18のグラフに示されるように、第6実施形態では、第4比較例と比べて、燃焼器7の内部空間50の温度は、燃料電池システム1の起動時から短時間で、オフ燃料が自着火する温度よりも高くなっている。したがって、第6実施形態では、第4比較例と比べて、燃料電池システム1の起動時から短時間で燃焼器7の燃焼を開始させることができる。
以上説明した第6実施形態の燃料電池システム1は、次の作用効果を奏するものである。
(1)第6実施形態の燃料電池システム1は、暖機用燃焼器8で燃焼した燃焼ガスの熱の一部を燃焼器7に供給する熱供給構造を備えている。これにより、燃料電池システム1の起動時に燃焼器7の内部空間50の温度が短時間で上昇する。そのため、燃料電池システム1の起動時に燃焼器7を安定して着火することができる。
なお、熱供給構造は、燃焼器7の内部空間50の一部の温度を上げることで、燃焼器7内に火種を作り、その火種から火移りさせることで、燃焼器7の燃焼領域53全体で燃焼させることが可能である。そのため、熱供給構造の体格を小型化し、且つ、その個数を少なくとも1個とすることが可能である。したがって、発電時に暖機用燃焼器8が停止している場合には、燃焼器7から熱供給構造を経由して暖機用燃焼器8に熱逃げが生じることを抑制することができる。
(2)第6実施形態では、熱供給構造は、燃焼器7と暖機用燃焼器8とを接続する熱伝導部材71により構成されている。その熱伝導部材71の材料は、燃焼器7の筐体32の材料または暖機用燃焼器8の外壁の材料よりも熱伝導率の高いもので形成されている。
これにより、燃料電池システム1の起動時に、暖機用燃焼器8で燃焼した燃焼ガスの熱が熱伝導部材71を経由して燃焼器7に伝わるので、燃焼器7の内部空間50の温度が短時間で上昇する。したがって、燃料電池システム1の起動時に燃焼器7を安定して着火することができる。
(第7実施形態)
図19に示すように、第7実施形態の燃料電池システム1が備える熱供給構造は、暖機用燃焼器8の内部の暖機用燃焼室29と燃焼器7の第1室51とを連通する燃焼ガス供給経路72である。燃焼ガス供給経路72は、パイプなどにより構成され、暖機用燃焼器8の暖機用燃焼室29燃焼した燃焼ガスを、燃焼器7の第1室51に供給することが可能である。また、燃焼ガス供給経路72は、その体格が比較的小さいものとされ、少なくとも1個所に設けられている。これにより、燃料電池システム1の起動時に、暖機用燃焼器8の暖機用燃焼室29で燃焼した燃焼ガスの一部が、燃焼ガス供給経路72を経由して燃焼器7の第1室51に供給される。そのため、第1オフ空気の温度が上がるため、燃焼器7を安定して着火することができる。
図20は、燃焼器7の内部空間50の温度分布を示すシミュレーション図である。
図20に示されるように、燃焼器7の内部空間50では、第2室52の温度より、第1室51の温度が高くなっている。第1室51のオフ空気はオフ空気排出口44から燃焼領域53に排出され、燃焼に寄与するものとなる。
以上説明した第7実施形態の燃料電池システム1は、次の作用効果を奏するものである。
第7実施形態では、熱供給構造としての燃焼ガス供給経路72は、暖機用燃焼器8で燃焼した燃焼ガスの一部を、燃焼器7の第1室51に供給するものである。これにより、燃料電池システム1の起動時に、暖機用燃焼器8で燃焼した燃焼ガスの一部が燃焼ガス供給経路72を経由して燃焼器7の第1室51に供給される。そのため、第1室51から燃焼領域53に供給される第1オフ空気の温度が高くなるので、燃焼器7を安定して着火することができる。
なお、燃焼ガス供給経路72は、燃焼器7の第1室51の一部の温度を上げることで、燃焼器7の燃焼領域53に火種を作り、その火種から火移りさせることで、燃焼器7の燃焼領域53全体で燃焼させることが可能である。そのため、燃焼ガス供給経路72の体格を小型化し、且つ、その個数を少なくとも1個とすることが可能である。したがって、発電時に暖機用燃焼器8が停止している場合には、燃焼器7から燃焼ガス供給経路72を経由して暖機用燃焼器8に熱逃げが生じることを抑制することができる。
(第8実施形態)
図21および図22に示すように、第8実施形態の燃料電池システム1が備える熱供給構造は、複数のオフ燃料供給口43のうち所定のオフ燃料供給口431である。その所定のオフ燃料供給口431は、その他のオフ燃料供給口43に比べて、燃焼器7の有する筐体32の暖機用燃焼器8側の壁(すなわち、筐体32のオフ空気通路20側の壁35)に対して近い位置に設けられている。
そして、図21の矢印Nで示すように、その所定のオフ燃料供給口431は、燃焼器7の有する筐体32の暖機用燃焼器8側の壁35(すなわち、筐体32のオフ空気通路20側の壁35)に向けてオフ燃料を吹き出すように構成されている。図21では、所定のオフ燃料供給口431からオフ燃料が吹き出される方向を矢印Nで示している。燃料電池システム1の起動時では、暖機用燃焼器8から放射される輻射熱などにより、燃焼器7の有する筐体32の暖機用燃焼器8側の壁35(すなわち、筐体32のオフ空気通路20側の壁35)の温度が高くなる。そのため、その壁35に向けて所定のオフ燃料供給口431からオフ燃料を吹き出すことで、燃焼器7内に火種を作ることが可能である。図21では、その火種を模式的に示し符号FPを付している。
その火種となった燃焼ガスは、第1室51からオフ空気排出口44を通り第2室52の燃焼領域53に移動する。そのため、その火種から、その他のオフ燃料供給口43から吹き出されるオフ燃料に火移りさせ、燃焼器7の燃焼領域53全体で燃焼させることが可能である。図21では、火種から火移りした火炎を模式的に示し符号FLを付している。
以上説明した第8実施形態では、燃焼器7が有する所定のオフ燃料供給口431を上記のように構成することで、燃料電池システム1の起動時に燃焼器7を安定して着火することができる。
(第9実施形態)
図23および図24に示すように、第9実施形態の燃料電池システム1は、複数のオフ燃料供給口43のうち一部のオフ燃料供給口43の近傍に酸化触媒73を設置している。この酸化触媒73は、その酸化触媒73が設けられた付近のオフ燃料供給口43から吹き出されたオフ燃料を比較的低温で着火させることが可能であり、オフ燃料の着火源となるものである。すなわち、酸化触媒73を着火源とした燃焼を火種として、その他のオフ燃料供給口43から吹き出されるオフ燃料に火移りさせることで、燃焼器7の燃焼領域53全体で燃焼させることが可能である。したがって、この燃料電池システム1は起動時に燃焼器7を安定して着火することができる。
なお、燃焼器7の燃焼ガス出口22に連通する燃焼ガス通路23の途中に設けられた酸化触媒74は、燃焼器7で燃え残った一酸化炭素などのオフ燃料を酸化させるものである。
図25は、第9実施形態に係る燃料電池システム1と、第5比較例の燃料電池システムに関し、オフ燃料の温度と燃焼率との関係を比較したグラフである。
第5比較例の燃料電池システムは、上述した第9実施形態の構成に対し、オフ燃料供給口43の近傍に酸化触媒73が設置されていない構成である。
図25の実線Pに示されるように、第5比較例では、燃焼器7に供給されるオフ燃料の温度が所定の温度以上になると燃焼率が上昇する。それに対し、図25の実線Qに示されるように、第9実施形態では、燃焼器7に供給されるオフ燃料の温度が第5比較例よりも低い温度で燃焼率が上昇する。したがって、第9実施形態の燃料電池システム1は、起動時に燃焼器7の温度が比較的低温状態からオフ燃料を燃焼させることが可能となるので、燃焼器7を安定して着火することができる。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(1)上記各実施形態では、燃料電池システム1の備える燃料電池スタック2が固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)により構成されるものとして説明したが、これに限るものではない。燃料電池スタック2は、例えば固体高分子形燃料電池(polymer electrolyte fuel cell:PEFC)など、種々の燃料電池を採用することが可能である。
(2)上記各実施形態では、燃料電池システム1の備える燃焼器7は環状に形成されるものとして説明したが、これに限るものではない。燃焼器7の形状は、例えば直方体、立方体など、種々の形状のものを採用することが可能である。
(3)上記各実施形態では、燃料電池システム1はエジェクタ3を備えることで、オフ燃料をリサイクルして繰り返し使用するものとして説明したが、これに限るものではない。本発明は、エジェクタ3を備えていない燃料電池システム1に適用することも可能である。
(4)上記第1実施形態では、構造体としてのガイド板45は分割部材33に設けられるものとして説明したが、これに限るものではない。ガイド板45は、例えば、筐体32のオフ空気通路20側の壁35から径方向外側に突出するように設けてもよく、または、筐体32の上壁37から筐体32の下壁36側に突出するように設けてもよい。
(5)上記第2実施形態では、構造体としての壁部材47は筒状に設けられるものとして説明したが、これに限らず、その形状は、例えば、内部空間50の周方向に断続的に設けられるものであってもよい。
(6)上記第3実施形態では、オフ燃料供給口43の一部を塞ぐ構造体は、分割部材33の有する筒部332のうちオフ燃料供給口43側の端部333により構成されるものとして説明したが、これに限るものではない。オフ燃料供給口43の一部を塞ぐ構造体は、分割部材33とは別部材で構成してもよい。または、オフ燃料供給口43自体の穴の向きを筐体32の改質器4側の壁34側に向けるように構成することで、オフ燃料供給口43から吹き出されるオフ燃料がその壁34のうち下側の部位に向けて流れるようにしてもよい。
(7)上記第6および第7実施形態では、暖機用燃焼器8から燃焼器7に熱を供給する熱供給構造としての熱伝導部材71および燃焼ガス供給経路72は、少なくとも1か所に設けられるものとして説明したが、これに限るものではない。熱伝導部材71および燃焼ガス供給経路72はいずれも複数個所に設けてもよい。また、熱伝導部材71が接続される燃焼器7の筐体32の位置に限定はない。また、燃焼ガス供給経路72が連通する燃焼器7の内部空間50の場所は、第1室51に限らず、例えば第2室52であってもよい。
(8)上記第8実施形態では、複数のオフ燃料供給口43のうち所定のオフ燃料供給口431を少なくとも1個として説明したが、その数は複数個としてもよい。
(9)上記第9実施形態では、酸化触媒73を少なくとも1個として説明したが、その数は複数個としてもよい。
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、燃料電池システムは、燃料電池スタック、改質器および燃焼器を備える。燃料電池スタックは、燃料ガスと酸化剤ガスを反応させて発電する。改質器は、源燃料を燃料電池スタックに供給する燃料ガスに改質する。燃焼器は、燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と、燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる。
その燃焼器は、筐体、分割部材、第1オフ空気供給口、第2オフ空気供給口、オフ燃料供給口、オフ空気排出口および構造体を有している。筐体は、燃焼器の内部空間を形成する。分割部材は、燃焼器の内部空間を第1室と第2室とに分割する。第1オフ空気供給口は、第1室にオフ空気を供給する。第2オフ空気供給口は、第2室にオフ空気を供給する。オフ燃料供給口は、第2室にオフ燃料を供給する。オフ空気排出口は、第2室でオフ燃料が燃焼する燃焼領域に第1室からオフ空気を排出する。構造体は、燃焼器の内部空間に設けられ、オフ燃料とオフ空気とが燃焼した燃焼ガスの熱を改質器に供給するように構成されている。
これによれば、燃料ガスが燃料電池スタックで発電に使用されて燃焼器に供給されるオフ燃料が減少した場合でも、燃焼器から改質器へ燃焼ガスの熱が効率的に供給されるので、燃焼器から改質器への熱供給量の不足が防がれる。したがって、この燃料電池システムは、改質器による燃焼ガスの生成が良好に行われるので、発電効率を向上することができる。
第2の観点によれば、構造体は、第2オフ空気供給口から第2室に供給されるオフ空気を案内するガイド板である。第2オフ空気供給口から第2室に供給されるオフ空気はガイド板に案内され、燃焼ガスと共に筐体の改質器側の壁に沿って第2室を循環する。
これによれば、燃焼領域で燃焼した燃焼ガスが燃焼ガス出口に直接流れることなく、筐体の改質器側の壁に沿って第2室を循環する。そのため、燃焼器から改質器へ燃焼ガスの熱を効率的、且つ、均一的に供給することが可能である。したがって、燃焼器から改質器への熱供給量の不足を防ぎ、且つ、改質器の温度分布を低減することができる。
なお、第2オフ空気供給口から第2室に流出する第2オフ空気は、オフ空気排出口から排出される第1オフ空気とオフ燃料との燃焼に寄与しない。そのため、ガイド板で案内する空気の流れに第2オフ空気を使用することで、燃焼領域における燃焼ガスの燃焼を不安定にすることなく、燃焼器の燃焼ガスの熱を改質器に効率的、且つ、均一的に供給することが可能である。
第3の観点によれば、燃焼器の内部空間は環状に形成されたものである。その筐体の径方向内側の壁に第2オフ空気供給口が設けられ、筐体の径方向外側の壁の外側に改質器が設けられている。そして、ガイド板は、内部空間の径方向に対して周方向に傾斜するように設けられている。
これによれば、ガイド板は、第2オフ空気供給口から内部空間に吹き出される第2オフ空気を、内部空間の周方向に旋回させ、その流れに伴って燃焼ガスを筐体の改質器側の壁に沿って旋回させることが可能である。したがって、筐体の径方向外側の壁の外側に設けられた改質器に対し、燃焼ガスの熱を効率的、且つ、均一的に供給することができる。
第4の観点によれば、構造体は、筐体の改質器側の壁と燃焼領域との間に設けられる壁部材である。その壁部材の材料は、筐体の改質器とは反対側の壁の材料または分割部材の材料よりも放射率の高いもので形成されている。
これによれば、燃焼ガスの熱によって壁部材を加熱し、その壁部材の輻射熱を用いて改質器を加熱することで、燃焼器で燃焼した燃焼ガスの熱を改質器に効率的に供給できる。さらに、改質器の温度分布を均一化することができる。
第5の観点によれば、燃焼器の第2室には、燃焼ガスを排出する燃焼ガス出口が設けられている。そして、構造体は、オフ燃料供給口から第2室に吹き出すオフ燃料を、改質器のうち燃焼ガス出口から遠い部位に対応する筐体の壁に向けて案内するものである。
これによれば、オフ燃料供給口から第2室に吹き出したオフ燃料が燃焼した燃焼ガスは、改質器のうち燃焼ガス排出口から遠い部位に対応する筐体の内壁面に向けて流れた後、燃焼ガス排出口へ流れる。そのため、改質器のうち燃焼ガス排出口から遠い部位から燃焼ガス排出口に近い部位に亘り、燃焼ガスの熱を効率的、且つ、均一的に供給することができる。
第6の観点によれば、構造体は、分割部材のうちオフ燃料供給口側の端部により構成され、オフ燃料供給口のうち改質器とは反対側の一部を塞ぐように設けられている。
これによれば、構造体は、オフ燃料供給口から第2室に吹き出すオフ燃料を改質器側へ向けて案内することが可能である。
また、分割部材のうちオフ燃料供給口側の端部により構造体を構成することで、部品点数を増加することなく、製造上のコストを低減することができる。
第7の観点によれば、燃料電池システムは、暖機用燃焼器および熱回収構造をさらに備える。暖機用燃焼器は、源燃料と空気とを点火プラグの着火により燃焼させる。熱回収構造は、燃焼器の筐体から改質器を除く部位へ放射される輻射熱を回収し、燃焼器の内部空間に戻すように構成されている。
これによれば、燃焼器の筐体から改質器を除く部位へ放射される輻射熱が熱回収構造によって回収され、再び燃焼器の内部空間に戻されるので、燃焼器から改質器へ供給される熱量が増加する。そのため、燃料ガスが燃料電池スタックで発電に使用されて燃焼器に供給されるオフ燃料が減少した場合でも、燃焼器から改質器への熱供給量の不足が防がれる。したがって、この燃料電池システムは、改質器による燃焼ガスの生成が良好に行われるので、発電効率を向上することができる。
第8の観点によれば、燃料電池システムは、暖機用燃焼器および熱供給構造をさらに備える。暖機用燃焼器は、源燃料と空気とを点火プラグの着火により燃焼させる。熱供給構造は、暖機用燃焼器で燃焼した燃焼ガスの熱の一部を燃焼器に供給する。
これによれば、燃料電池システムの起動時に燃焼器の内部空間の温度が短時間で上昇する。そのため、燃料電池システムの起動時に燃焼器を安定して着火することができる。
なお、熱供給構造は、燃焼器の内部空間の一部の温度を上げることで、燃焼器内に火種を作り、その火種から火移りさせることで、燃焼器の燃焼領域全体で燃焼させることが可能である。そのため、熱供給構造の体格を小型化し、且つ、その個数を少なくとも1個とすることが可能である。したがって、発電時に暖機用燃焼器が停止している場合には、燃焼器から熱供給構造を経由して暖機用燃焼器に熱逃げが生じることを抑制することができる。
第9の観点によれば、燃焼器は、複数のオフ燃料供給口のうち一部のオフ燃料供給口の近傍に設けられた酸化触媒をさらに有している。
これによれば、酸化触媒が設けられた付近のオフ燃料供給口から吹き出されたオフ燃料を比較的低温で着火させて火種を作ることが可能である。その火種から、その他のオフ燃料供給口から吹き出されるオフ燃料に火移りさせることで、燃焼器の燃焼領域全体で燃焼させることが可能である。したがって、この燃料電池システムは起動時に燃焼器を安定して着火することができる。
第10の観点によれば、燃料電池システムは、燃料電池スタック、改質器、暖機用燃焼器、燃焼器、および熱回収構造を備える。燃料電池スタックは、燃料ガスと酸化剤ガスを反応させて発電する。改質器は、源燃料を燃料電池スタックに供給する燃料ガスに改質する。暖機用燃焼器は、源燃料と空気とを点火プラグの着火により燃焼させる。燃焼器は、燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と、燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる。
その燃焼器は、筐体、分割部材、第1オフ空気供給口、第2オフ空気供給口、オフ燃料供給口およびオフ空気排出口を有している。筐体は、燃焼器の内部空間を形成する。分割部材は、燃焼器の内部空間を第1室と第2室とに分割する。第1オフ空気供給口は、第1室にオフ空気を供給する。第2オフ空気供給口は、第2室にオフ空気を供給する。オフ燃料供給口は、第2室にオフ燃料を供給する。オフ空気排出口は、第2室でオフ燃料が燃焼する燃焼領域に第1室からオフ空気を排出する。
そして、熱回収構造は、燃焼器の筐体から改質器を除く部位へ放射される輻射熱を回収し、燃焼器の内部空間に戻すように構成されている。
これによれば、第9の観点も、第7の観点と同様の作用効果を奏することができる。
第11の観点によれば、燃焼器は環状に形成され、暖機用燃焼器は燃焼器の径方向内側に設けられている。熱回収構造は、燃焼器より径方向内側で、暖機用燃焼器の外壁を囲うように設けられる流路壁である。その流路壁は、暖機用燃焼器の外壁と共に空気流路を形成する。そして、燃料電池システムは、空気流路を流れる空気が、燃料電池スタックを経由し、オフ空気となって燃焼器の内部空間に供給されるように構成されている。
これによれば、燃焼器の筐体から暖機用燃焼器側へ放射される輻射熱を、空気流路を流れる空気によって回収し、その熱を再びオフ空気を介して燃焼器に供給することが可能である。
また、熱回収構造としての流路壁は、暖機用燃焼器の外壁を囲うように設けられているので、空気流路の断面積を小さくし、空気の流速を速くすることが可能である。これにより、燃焼器の筐体から暖機用燃焼器側へ放射される輻射熱の回収率を高めることができる。
第12の観点によれば、燃焼器は環状に形成され、暖機用燃焼器は燃焼器の径方向内側に設けられている。熱回収構造は、燃焼器の筐体の径方向内側を囲うように設けられるオフ空気流路壁である。そのオフ空気流路壁は、燃焼器の筐体と共にオフ空気が流れるオフ空気流路を形成する。そして、燃料電池システムは、オフ空気流路を流れるオフ空気が、第1オフ空気供給口および第2オフ空気供給口から燃焼器の内部空間に供給されるように構成されている。
これによれば、燃焼器の筐体から暖機用燃焼器側へ放射される輻射熱を、オフ空気流路を流れるオフ空気によって回収し、その熱を再び燃焼器に供給することが可能である。
また、熱回収構造としてのオフ空気流路壁は、燃焼器の筐体の径方向内側を囲う構成であるため、オフ空気流路の断面積を小さくし、オフ空気の流速を速くすることが可能である。これにより、燃焼器の筐体から暖機用燃焼器側へ放射される輻射熱の回収率を高めることができる。
第13の観点によれば、燃料電池システムは、燃料電池スタック、改質器、暖機用燃焼器、燃焼器、および熱供給構造を備える。燃料電池スタックは、燃料ガスと酸化剤ガスを反応させて発電する。改質器は、源燃料を燃料電池スタックに供給する燃料ガスに改質する。暖機用燃焼器は、源燃料と空気とを点火プラグの着火により燃焼させる。燃焼器は、燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と、燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる。
その燃焼器は、筐体、分割部材、第1オフ空気供給口、第2オフ空気供給口、オフ燃料供給口およびオフ空気排出口を有している。筐体は、燃焼器の内部空間を形成する。分割部材は、燃焼器の内部空間を第1室と第2室とに分割する。第1オフ空気供給口は、第1室にオフ空気を供給する。第2オフ空気供給口は、第2室にオフ空気を供給する。オフ燃料供給口は、第2室にオフ燃料を供給する。オフ空気排出口は、第2室でオフ燃料が燃焼する燃焼領域に第1室からオフ空気を排出する。
そして、熱供給構造は、暖機用燃焼器で燃焼した燃焼ガスの熱の一部を燃焼器に供給する。
これによれば、第12の観点も、第8の観点と同様の作用効果を奏することができる。
第14の観点によれば、熱供給構造は、燃焼器と暖機用燃焼器とを接続する熱伝導部材である。熱伝導部材の材料は、燃焼器の筐体の材料または暖機用燃焼器の外壁の材料よりも熱伝導率の高いもので形成されている。
これによれば、燃料電池システムの起動時に、暖機用燃焼器で燃焼した燃焼ガスの熱が熱伝導部材を経由して燃焼器に伝わるので、燃焼器の内部空間の温度が短時間で上昇する。そのため、燃料電池システムの起動時に燃焼器を安定して着火することができる。
第15の観点によれば、熱供給構造は、暖機用燃焼器で燃焼した燃焼ガスの一部を、燃焼器の第1室に供給する燃焼ガス供給経路である。
これによれば、燃料電池システムの起動時に、暖機用燃焼器で燃焼した燃焼ガスの一部が燃焼ガス供給経路を経由して燃焼器の第1室に供給される。そのため、第1室から燃焼領域に供給される第1オフ空気の温度が高くなるので、燃焼器を安定して着火することができる。
第16の観点によれば、熱供給構造は、複数のオフ燃料供給口のうち所定のオフ燃料供給口である。その所定のオフ燃料供給口は、その他のオフ燃料供給口に比べて、燃焼器の有する筐体の暖機用燃焼器側の壁に対して近い位置に設けられ、燃焼器の有する筐体の暖機用燃焼器側の壁に向けてオフ燃料を吹き出すように構成されている。
これによれば、燃料電池システムの起動時は、暖機用燃焼器から放射される輻射熱などにより、燃焼器の有する筐体の暖機用燃焼器側の壁の温度が高くなる。そのため、その内壁面に向けて所定のオフ燃料供給口からオフ燃料を吹き出すことで、燃焼器内に火種を作ることが可能である。その火種から、その他のオフ燃料供給口から吹き出されるオフ燃料に火移りさせることで、燃焼器の燃焼領域全体で燃焼させることが可能である。したがって、燃焼器を安定して着火することができる。
第17の観点によれば、燃料電池システムは、燃料電池スタック、改質器および燃焼器を備える。燃料電池スタックは、燃料ガスと酸化剤ガスを反応させて発電する。改質器は、源燃料を燃料電池スタックに供給する燃料ガスに改質する。燃焼器は、燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と、燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる。
その燃焼器は、筐体、分割部材、第1オフ空気供給口、第2オフ空気供給口、オフ燃料供給口、オフ空気排出口および酸化触媒を有している。筐体は、燃焼器の内部空間を形成する。分割部材は、燃焼器の内部空間を第1室と第2室とに分割する。第1オフ空気供給口は、第1室にオフ空気を供給する。第2オフ空気供給口は、第2室にオフ空気を供給する。オフ燃料供給口は、第2室にオフ燃料を供給する。オフ空気排出口は、第2室でオフ燃料が燃焼する燃焼領域に第1室からオフ空気を排出する。酸化触媒は、複数のオフ燃料供給口のうち一部のオフ燃料供給口の近傍に設けられている。
これによれば、第17の観点も、第9の観点と同様の作用効果を奏することができる。
1:燃料電池システム、 2:燃料電池スタック、
4:改質器、 7:燃焼器、
32:筐体、 33:分割部材、
41:第1オフ空気供給口、 42:第2オフ空気供給口、
43:オフ燃料供給口、 44:オフ空気排出口、
45、47、333:構造体、 50:内部空間、
51:第1室、 52:第2室、
53:燃焼領域

Claims (17)

  1. 燃料ガスと酸化剤ガスを反応させて発電する燃料電池スタック(2)と、
    源燃料を前記燃料電池スタックに供給する燃料ガスに改質する改質器(4)と、
    前記燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と前記燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる燃焼器(7)と、を備える燃料電池システムにおいて、
    前記燃焼器は、
    前記燃焼器の内部空間(50)を形成する筐体(32)と、
    前記燃焼器の前記内部空間を第1室(51)と第2室(52)とに分割する分割部材(33)と、
    前記第1室にオフ空気を供給する第1オフ空気供給口(41)と、
    前記第2室にオフ空気を供給する第2オフ空気供給口(42)と、
    前記第2室にオフ燃料を供給するオフ燃料供給口(43)と、
    前記第2室でオフ燃料が燃焼する燃焼領域(53)に前記第1室からオフ空気を排出するオフ空気排出口(44)と、
    前記燃焼器の前記内部空間に設けられ、オフ燃料とオフ空気とが燃焼した燃焼ガスの熱を前記改質器に供給するように構成された構造体(45、47、333)とを有している、燃料電池システム。
  2. 前記構造体は、前記第2オフ空気供給口から前記第2室に供給されるオフ空気が燃焼ガスと共に前記筐体の前記改質器側の壁(34)に沿って前記第2室を循環するように、前記第2オフ空気供給口から前記第2室に供給されるオフ空気を案内するガイド板(45)である、請求項1に記載の燃料電池システム。
  3. 前記燃焼器の前記内部空間は環状に形成されたものであり、
    前記筐体の径方向内側の壁に前記第2オフ空気供給口が設けられ、前記筐体の径方向外側の壁の外側に前記改質器が設けられており、
    前記ガイド板は、前記内部空間の径方向に対して周方向に傾斜するように設けられている、請求項2に記載の燃料電池システム。
  4. 前記構造体は、前記筐体の前記改質器側の壁と前記燃焼領域との間に設けられる壁部材(47)であり、
    前記壁部材の材料は、前記筐体の前記改質器とは反対側の壁(35)の材料または前記分割部材の材料よりも放射率の高いもので形成されている、請求項1に記載の燃料電池システム。
  5. 前記燃焼器の前記第2室には、燃焼ガスを排出する燃焼ガス出口(22)が設けられており、
    前記構造体(333)は、前記オフ燃料供給口から前記第2室に吹き出すオフ燃料を、前記改質器のうち前記燃焼ガス出口から遠い部位に対応する前記筐体の壁に向けて案内するものである、請求項1に記載の燃料電池システム。
  6. 前記構造体は、前記分割部材のうち前記オフ燃料供給口側の端部(333)により構成され、前記オフ燃料供給口のうち前記改質器とは反対側の一部を塞ぐように設けられている、請求項5に記載の燃料電池システム。
  7. 源燃料と空気とを点火プラグ(24)の着火により燃焼させる暖機用燃焼器(8)と、
    前記燃焼器の前記筐体から前記改質器を除く部位へ放射される輻射熱を回収し、前記燃焼器の前記内部空間に戻すように構成された熱回収構造(60、62)と、をさらに備える、請求項1ないし6のいずれか1つに記載の燃料電池システム。
  8. 源燃料と空気とを点火プラグ(24)の着火により燃焼させる暖機用燃焼器(8)と、
    前記暖機用燃焼器で燃焼した燃焼ガスの熱の一部を前記燃焼器に供給する熱供給構造(71、72、431)と、をさらに備える、請求項1ないし7のいずれか1つに記載の燃料電池システム。
  9. 前記燃焼器は、複数の前記オフ燃料供給口のうち一部の前記オフ燃料供給口の近傍に設けられた酸化触媒(73)をさらに有している、請求項1ないし8のいずれか1つに記載の燃料電池システム。
  10. 燃料ガスと酸化剤ガスを反応させて発電する燃料電池スタック(2)と、
    源燃料を前記燃料電池スタックに供給する燃料ガスに改質する改質器(4)と、
    源燃料と空気とを点火プラグ(24)の着火により燃焼させる暖機用燃焼器(8)と、
    前記燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と前記燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる燃焼器(7)と、を備える燃料電池システムにおいて、
    前記燃焼器は、
    前記燃焼器の内部空間(50)を形成する筐体(32)と、
    前記燃焼器の前記内部空間を第1室(51)と第2室(52)とに分割する分割部材(33)と、
    前記第1室にオフ空気を供給する第1オフ空気供給口(41)と、
    前記第2室にオフ空気を供給する第2オフ空気供給口(42)と、
    前記第2室にオフ燃料を供給するオフ燃料供給口(43)と、
    前記第2室でオフ燃料が燃焼する燃焼領域(53)に前記第1室からオフ空気を排出するオフ空気排出口(44)を有しており、
    前記燃焼器の筐体から前記改質器を除く部位へ放射される輻射熱を回収し、前記燃焼器の前記内部空間に戻すように構成された熱回収構造(60、62)をさらに備える燃料電池システム。
  11. 前記燃焼器は環状に形成され、
    前記暖機用燃焼器は前記燃焼器の径方向内側に設けられており、
    前記熱回収構造は、前記燃焼器より径方向内側で、前記暖機用燃焼器の外壁を囲うように設けられ、前記暖機用燃焼器の外壁と共に空気流路を形成する流路壁(60)であり、
    前記空気流路を流れる空気が、前記燃料電池スタックを経由し、オフ空気となって前記燃焼器の前記内部空間に供給されるように構成されている、請求項10に記載の燃料電池システム。
  12. 前記燃焼器は環状に形成され、
    前記暖機用燃焼器は前記燃焼器の径方向内側に設けられており、
    前記熱回収構造は、前記燃焼器の前記筐体の径方向内側を囲うように設けられ、前記燃焼器の前記筐体と共にオフ空気が流れるオフ空気流路を形成するオフ空気流路壁(62)であり、
    前記オフ空気流路を流れるオフ空気が、前記第1オフ空気供給口および前記第2オフ空気供給口から前記燃焼器の前記内部空間に供給されるように構成されている、請求項10に記載の燃料電池システム。
  13. 燃料ガスと酸化剤ガスを反応させて発電する燃料電池スタック(2)と、
    源燃料を前記燃料電池スタックに供給する燃料ガスに改質する改質器(4)と、
    源燃料と空気とを点火プラグ(24)の着火により燃焼させる暖機用燃焼器(8)と、
    前記燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と前記燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる燃焼器(7)と、を備える燃料電池システムにおいて、
    前記燃焼器は、
    前記燃焼器の内部空間(50)を形成する筐体(32)と、
    前記燃焼器の前記内部空間を第1室(51)と第2室(52)とに分割する分割部材(33)と、
    前記第1室にオフ空気を供給する第1オフ空気供給口(41)と、
    前記第2室にオフ空気を供給する第2オフ空気供給口(42)と、
    前記第2室にオフ燃料を供給するオフ燃料供給口(43)と、
    前記第2室でオフ燃料が燃焼する燃焼領域(53)に前記第1室からオフ空気を排出するオフ空気排出口(44)を有しており、
    前記暖機用燃焼器で燃焼した燃焼ガスの熱の一部を前記燃焼器に供給する熱供給構造(71、72、431)をさらに備える燃料電池システム。
  14. 前記熱供給構造は、前記燃焼器と前記暖機用燃焼器とを接続する熱伝導部材(71)であり、
    前記熱伝導部材の材料は、前記燃焼器の前記筐体の材料または前記暖機用燃焼器の外壁の材料よりも熱伝導率の高いもので形成されている、請求項13に記載の燃料電池システム。
  15. 前記熱供給構造は、前記暖機用燃焼器で燃焼した燃焼ガスの一部を、前記燃焼器の前記第1室に供給する燃焼ガス供給経路(72)である、請求項13に記載の燃料電池システム。
  16. 前記熱供給構造は、複数の前記オフ燃料供給口のうち所定の前記オフ燃料供給口(431)であり、
    所定の前記オフ燃料供給口は、その他の前記オフ燃料供給口に比べて、前記燃焼器の有する前記筐体の前記暖機用燃焼器側の壁(35)に対して近い位置に設けられ、前記燃焼器の有する前記筐体の前記暖機用燃焼器側の壁に向けてオフ燃料を吹き出すように構成されている、請求項13に記載の燃料電池システム。
  17. 燃料ガスと酸化剤ガスを反応させて発電する燃料電池スタック(2)と、
    源燃料を前記燃料電池スタックに供給する燃料ガスに改質する改質器(4)と、
    前記燃料電池スタックで消費されなかった燃料ガスを含むオフ燃料と前記燃料電池スタックで消費されなかった酸化剤ガスを含むオフ空気とを燃焼させる燃焼器(7)と、を備える燃料電池システムにおいて、
    前記燃焼器は、
    前記燃焼器の内部空間(50)を形成する筐体(32)と、
    前記燃焼器の前記内部空間を第1室(51)と第2室(52)とに分割する分割部材(33)と、
    前記第1室にオフ空気を供給する第1オフ空気供給口(41)と、
    前記第2室にオフ空気を供給する第2オフ空気供給口(42)と、
    前記第2室にオフ燃料を供給する複数のオフ燃料供給口(43)と、
    前記第2室でオフ燃料が燃焼する燃焼領域(53)に前記第1室からオフ空気を排出するオフ空気排出口(44)と、
    複数の前記オフ燃料供給口のうち一部の前記オフ燃料供給口の近傍に設けられた酸化触媒(73)を有している、燃料電池システム。
JP2019174451A 2019-09-25 2019-09-25 燃料電池システム Active JP7226225B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019174451A JP7226225B2 (ja) 2019-09-25 2019-09-25 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019174451A JP7226225B2 (ja) 2019-09-25 2019-09-25 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2021051923A JP2021051923A (ja) 2021-04-01
JP7226225B2 true JP7226225B2 (ja) 2023-02-21

Family

ID=75158045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019174451A Active JP7226225B2 (ja) 2019-09-25 2019-09-25 燃料電池システム

Country Status (1)

Country Link
JP (1) JP7226225B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2621338A (en) * 2022-08-08 2024-02-14 Ceres Ip Co Ltd Fuel cell system and method of operating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151501A (ja) 1999-11-22 2001-06-05 Matsushita Electric Works Ltd 改質装置
JP2005213133A (ja) 2004-02-02 2005-08-11 Nippon Oil Corp 改質器および燃料電池システム
JP2006179365A (ja) 2004-12-24 2006-07-06 Matsushita Electric Works Ltd 燃料電池用改質器
JP2006240916A (ja) 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd 改質器
JP2013229144A (ja) 2012-04-24 2013-11-07 Honda Motor Co Ltd 燃料電池モジュール
JP2017212203A (ja) 2016-05-19 2017-11-30 パナソニックIpマネジメント株式会社 高温動作型燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007325A (ja) * 2001-06-20 2003-01-10 Hitachi Ltd 燃料電池アノードオフガスの燃焼器、水素製造装置および燃料電池発電システム
JP6098397B2 (ja) * 2013-06-28 2017-03-22 株式会社デンソー 燃料電池システム
JP6545577B2 (ja) * 2015-08-31 2019-07-17 東京瓦斯株式会社 燃焼器及び燃料電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151501A (ja) 1999-11-22 2001-06-05 Matsushita Electric Works Ltd 改質装置
JP2005213133A (ja) 2004-02-02 2005-08-11 Nippon Oil Corp 改質器および燃料電池システム
JP2006179365A (ja) 2004-12-24 2006-07-06 Matsushita Electric Works Ltd 燃料電池用改質器
JP2006240916A (ja) 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd 改質器
JP2013229144A (ja) 2012-04-24 2013-11-07 Honda Motor Co Ltd 燃料電池モジュール
JP2017212203A (ja) 2016-05-19 2017-11-30 パナソニックIpマネジメント株式会社 高温動作型燃料電池システム

Also Published As

Publication number Publication date
JP2021051923A (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
KR101750636B1 (ko) 고온 연료전지를 위한 화염 안정된 혼합기-이덕터-산화기
JP6109484B2 (ja) 燃料電池装置
JP2017147220A (ja) 高温動作型燃料電池モジュール
JP6465865B2 (ja) 燃焼器及び燃料電池システム
CN106663824A (zh) 燃料电池系统
JP7226225B2 (ja) 燃料電池システム
CN113023674A (zh) 天然气重整装置和sofc发电系统
JP4988172B2 (ja) 固体酸化物形燃料電池発電システム
CN102782412B (zh) 用于提供热废气的装置及其应用
US20230238549A1 (en) Fuel cell module
JP7215032B2 (ja) 燃料電池装置
US11923572B2 (en) Fuel cell module
US11476473B2 (en) Fuel cell module
US11362358B2 (en) Fuel cell module
JP2009274886A (ja) 改質装置用燃焼装置、改質装置および燃料電池システム
JP7310519B2 (ja) 燃焼器
JP7215405B2 (ja) 燃焼器
JP7367736B2 (ja) 燃料電池モジュール
JP6111998B2 (ja) 燃焼装置
WO2024033614A1 (en) Fuel cell system and method of operating the same
JP2023084334A (ja) オフガス燃焼器、燃料電池システム
TW202414872A (zh) 燃料電池系統及操作其之方法
KR101576713B1 (ko) 연료전지용 예혼합 연소버너
JP6175010B2 (ja) 燃料電池モジュール
JP2006100206A (ja) 燃料電池に用いられる水素供給装置の燃焼装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7226225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150