JP7209717B2 - 第1および第2の誘電体部分を有する誘電体共振器アンテナ - Google Patents

第1および第2の誘電体部分を有する誘電体共振器アンテナ Download PDF

Info

Publication number
JP7209717B2
JP7209717B2 JP2020529551A JP2020529551A JP7209717B2 JP 7209717 B2 JP7209717 B2 JP 7209717B2 JP 2020529551 A JP2020529551 A JP 2020529551A JP 2020529551 A JP2020529551 A JP 2020529551A JP 7209717 B2 JP7209717 B2 JP 7209717B2
Authority
JP
Japan
Prior art keywords
dielectric
sdp
electromagnetic device
fdp
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020529551A
Other languages
English (en)
Other versions
JP2021510949A (ja
Inventor
パンセ、クリスティ
タラスキー、ジャンニ
ローズ ジョージ、ロシン
Original Assignee
ロジャーズ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/246,880 external-priority patent/US10892544B2/en
Application filed by ロジャーズ コーポレーション filed Critical ロジャーズ コーポレーション
Publication of JP2021510949A publication Critical patent/JP2021510949A/ja
Application granted granted Critical
Publication of JP7209717B2 publication Critical patent/JP7209717B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

本開示は、概して電磁デバイス、特に誘電体共振器アンテナ(DRA)システムに関し、より詳細には、DRAシステム内の複数の誘電体構造に関連する利得、反射損失、および絶縁性を高めるための第1および第2の誘電体部分を有するDRAシステムに関する。この出願は、2018年2月21日に出願された米国仮出願番号第62/633,256号の利益を主張する2019年1月14日に出願された米国出願番号第16/246,892号の利益を主張するものであり、その全体が参照により本明細書に組み込まれる。また、この出願は、2018年1月15日に出願された米国仮出願番号第62/617,358号の利益を主張する2019年1月14日に出願された米国出願番号第16/246,880号の利益を主張するものであり、その全体が参照により本明細書に組み込まれる。
既存のDRA共振器およびアレイはそれらの意図した目的に適したものであり得る一方、遠距離場における高い指向性を備えた高利得DRAシステムを構築するための改善されたDRA構造によりDRAの技術を向上して、例えば、帯域幅の制限、効率の制限、利得の制限、指向性の制限、または製造技術の複雑さなどの既存の欠点を克服することが可能となり得る。
一実施形態は、電磁デバイスを含み、前記電磁デバイスは誘電体構造を有し、前記誘電体構造は、近位端および遠位端を有するとともに空気以外の誘電体材料を有する第1の誘電体部分(FDP)と、近位端および遠位端を有する第2の誘電体部分(SDP)であって、前記SDPの近位端が前記FDPの遠位端に近接して配置され、空気以外の誘電体材料を有する前記SDPとを含み、前記FDPの誘電体材料は、前記SDPの誘電体材料の平均誘電率よりも大きい平均誘電率を有する。
一実施形態は、電磁デバイスを形成する方法を含み、当該方法は、基板を提供すること、前記基板上に複数の第1の誘電体部分(FDP)を配置することであって、前記複数のFDPの各々が近位端および遠位端を有するとともに空気以外の誘電体材料を有し、各前記FDPの近位端が前記基板上に配置される、前記複数のFDPを配置すること、および、各前記FDPに近接した第2の誘電体部分(SDP)を配置することを含み、各前記SDPは近位端および遠位端を有し、各前記SDPの近位端は対応する前記FDPの遠位端に近接して配置され、各前記SDPは空気以外の誘電体材料を有し、各前記FDPの誘電体材料は、対応する前記SDPの誘電体材料の平均誘電率よりも大きい平均誘電率を有し、各FDPおよび対応するSDPにより誘電体構造が形成される。
一実施形態は、少なくとも1つの誘電体材料で形成された少なくとも1つのレンズ部分を有する電磁誘電体レンズを含み、前記少なくとも1つのレンズ部分は、前記少なくとも1つの誘電体材料の境界によって輪郭形成されたキャビティを有する。
本発明の上記の特徴および利点ならびに他の特徴および利点は、添付の図面と併せて本発明の以下の詳細な説明から容易に明らかとなる。
添付の図面において同様の要素に同様な符号が付された例示的かつ非限定的な図面を参照する。
一実施形態による、電磁(EM)デバイスのユニットセルを示す回転斜視図。 一実施形態による、図1Aのユニットセルを示す側面図。 一実施形態による、図1Aに示されたものに対する代替的なユニットセルを示す回転斜視図。 一実施形態による、図1Cのユニットセルを示す側面図。 一実施形態による、図1Bおよび図1Dのものと類似するが代替的なユニットセルを示す側面図。 一実施形態による、図1B、図1D、および図2のものと類似するが代替的なユニットセルを示す側面図。 一実施形態による、図1Bの複数のユニットセルのM×Nアレイ(M=6)を示す側面図。 一実施形態による、図1Bの複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 一実施形態による、図5AのM×Nアレイの分解されたアセンブリを示す側面図。 一実施形態による、図5Aのものと類似するが代替的な複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 一実施形態による、図6AのM×Nアレイの分解されたアセンブリを示す側面図。 一実施形態による、図5Aおよび図6Aのものと類似するが代替的な複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 一実施形態による、図7AのM×Nアレイの分解されたアセンブリを示す側面図。 一実施形態による、図6Aのものと類似するが代替的な複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 一実施形態による、図7Aのものと類似するが代替的な複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 一実施形態による、図8Aのものと類似するが代替的な複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 図9Aの細部9Bを示す拡大図。 一実施形態による、図9Aのものと類似するが代替的な複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 一実施形態による、図5Aのものと類似するが代替的な複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 一実施形態による、図11のものと類似するが代替的な複数のユニットセルのM×Nアレイ(M=2)を示す側面図。 一実施形態による、基板上の複数の第1の誘電体部分のM×Nアレイ(M=2およびN=2)を示す平面図。 一実施形態による、接続構造を介して相互接続された、複数の第2の誘電体部分のM×Nアレイ(M=2およびN=2)と複数の取付部分とを含むモノリシック構造を示す平面図。 一実施形態による、図14Aのものと類似するが代替的なモノリシック構造を示す平面図。 一実施形態による、図14Aおよび図14Bのものと類似するが代替的なモノリシック構造を示す平面図。 一実施形態による、図14A~図15のものと類似するが代替的なモノリシック構造を示す平面図。 一実施形態による、図14A~図16のものと類似するが代替的なモノリシック構造を示す平面図。 一実施形態による、図14A~図17のものと類似するが代替的なモノリシック構造を示す平面図。 一実施形態による、図14A~図18のものと類似するが代替的なモノリシック構造を示す平面図。 一実施形態による、図14A~図19のものと類似するが代替的なモノリシック構造を示す平面図。 一実施形態による、図14A~図20のものと類似するが代替的なモノリシック構造を示す平面図。 一実施形態による、単一のユニットセルの数学的モデリングの性能特性を示す図。 一実施形態によるユニットセルのS(1,1)反射損失の性能特性を、同実施形態による要素を有さない同様のユニットセルのものと比較した、一実施形態による数学的性能特性を示す図。
以下の詳細な説明は例示の目的で多くの詳細を含むが、当業者は以下の詳細に対する多くの変形および変更が特許請求の範囲内に含まれることを理解し得る。したがって、以下の例示的な実施形態は、特許請求の範囲の発明に対する一般性を失うことなく、かつ制限を課すことなく説明される。
一実施形態は、種々の図面によって示され説明されるように、第1の誘電体部分とその第1の誘電体部分に対して戦略的に配置された第2の誘電体部分とを有する誘電体構造の形態を有する電磁デバイスを提供し、少なくとも第1の誘電体部分が電磁的に励起されて遠距離場に電磁場を放射する(例えば、電磁的に共鳴して放射する)ときの、利得の改善、帯域幅の改善、反射損失の改善、および/または絶縁性の改善をもたらす。一実施形態では、第1の誘電体部分のみが電磁的に励起されて遠距離場に電磁場を放射する。別の実施形態では、第1の誘電体部分および第2の誘電体部分の両方が電磁的に励起されて遠距離場に電磁場を放射する。第1の誘電体部分のみが電磁的に励起されて遠距離場に電磁場を放射する実施形態では、第1の誘電体部分が電磁誘電体共振器と見なされ、第2の誘電体部分が誘電体電磁ビーム成形器と見なされ得る。第1の誘電体部分と第2の誘電体部分の両方が電磁的に励起されて遠距離場に電磁場を放射する実施形態では、第1の誘電体部分と第2の誘電体部分の組み合わせが電磁誘電体共振器と見なされ、第2の誘電体部分が誘電体電磁ビーム成形器と見なされ得る。一実施形態では、誘電体構造は全誘電体構造である(例えば、埋め込み金属または金属粒子が存在しない)。
図1Aおよび図1Bは、第1の誘電体部分2020と第2の誘電体部分2520とから構成された誘電体構造2000を有する電磁(EM)デバイス1000を示す。第1の誘電体部分2020は、近位端2040および遠位端2060を有するとともに、直交xyz座標系のz軸に平行に配向された、近位端2040から遠位端2060への隆起方向を有する3次元(3D)形状2080を有する。本明細書に開示される目的において、直交xyz座標系のz軸は、関連する第1の誘電体部分2020の中心垂直軸と整列かつ一致しており、ここで、xz平面、yz平面、およびxy平面は図示されるように種々の図面において配向され、z軸はEMデバイス1000の基板に直交している。ただし、z’軸がEMデバイス1000の基板に直交しない回転変換された直交x’y’z’座標系が使用されてもよいことが理解され得る。本明細書に開示される目的に適したすべてのそのような直交座標系が考慮され、本明細書に開示された発明の範囲内に含まれると見なされる。第1の誘電体部分2020は、空気以外の誘電体材料(Dk材)を含むが、一実施形態において、第1の誘電体部分2020が中空を有する場合には、第1の誘電体部分2020は、本明細書に開示される目的に適した空気、真空、または他のガスの内部領域を含んでもよい。一実施形態では、第1の誘電体部分2020は、半球ドーム形の3D形状であるか、あるいはドーム形状の上端すなわち遠位端2060と垂直側壁とを備えた長尺ドーム形の3D形状であるか、または、概して凸状の遠位端2060を有する形の3D形状を有する。一実施形態では、第1の誘電体部分2020は、半球ドームを形成するための誘電体シェルの積層配置を含み、各連続する外側配置層は実質的に埋め込まれて、隣接する内側配置層に直接接触している。第2の誘電体部分2520は、近位端2540および遠位端2560を有し、第2の誘電体部分2520の近位端2540は、第1の誘電体部分2020の遠位端2060に近接して配置されて誘電体構造2000を形成する。第2の誘電体部分2520は、空気以外の誘電体材料を含む。第2の誘電体部分2520は、第2の誘電体部分2520の近位端2540に近接する第1のxy平面断面領域2580と、第2の誘電体部分2520の近位端2540と遠位端2560との間の第2のxy平面断面領域2600とを有する3D形状を有し、ここで、第2のxy平面断面領域2600は第1のxy平面断面領域2580よりも大きい。一実施形態では、第1のxy平面断面領域2580および第2のxy平面断面領域2600は円形であるが、他のいくつかの実施形態では、楕円形、または本明細書に開示される目的に適した任意の他の形状であってもよい。一実施形態では、第2の誘電体部分2520は、第2のxy平面断面領域2600と遠位端2560との間に配置された第3のxy平面断面領域2640を有し、ここで、第3のxy平面断面領域2640は第2のxy平面断面領域2600よりも大きい。一実施形態では、第2の誘電体部分2520の遠位端2560は平面である。一実施形態では、第1の誘電体部分2020の誘電体材料は、第2の誘電体部分2520の誘電体材料の平均誘電率よりも大きい平均誘電率を有する。一実施形態では、誘電体構造2000は、例えば、埋め込み金属または金属粒子が存在しない全誘電体構造である。一実施形態では、第1の誘電体部分2020は単一の誘電体材料である。
一実施形態では、第1の誘電体部分2020の誘電体材料は10以上の平均誘電率を有し、第2の誘電体部分2520の誘電体材料は9以下の平均誘電率を有する。あるいは、第1の誘電体部分2020の誘電体材料は11以上の平均誘電率を有し、第2の誘電体部分2520の誘電体材料は5以下の平均誘電率を有する。あるいは、第1の誘電体部分2020の誘電体材料は12以上の平均誘電率を有し、第2の誘電体部分2520の誘電体材料は3以下の平均誘電率を有する。あるいは、第1の誘電体部分2020の誘電体材料は10以上20以下の平均誘電率を有し、第2の誘電体部分2520の誘電体材料は2以上9以下の平均誘電率を有する。あるいは、第1の誘電体部分2020の誘電体材料は10以上15以下の平均誘電率を有し、第2の誘電体部分2520の誘電体材料は2以上5以下の平均誘電率を有する。あるいは、第2の誘電体部分2520の誘電体材料は、空気の誘電率よりも大きくかつ9以下の平均誘電率を有する。
一実施形態では、第2の誘電体部分2520は、全体最大高さHSおよび全体最大幅WSを有し、ここで、HSはWSよりも大きい。一実施形態では、HSはWSの1.5倍以上である。あるいは、一実施形態では、HSはWSの2倍以上である。
一実施形態では、第1の誘電体部分2020は、全体最大高さHFおよび全体最大幅WFを有し、ここで、HSはHFよりも大きく、WSはWFよりも大きい。一実施形態では、HSはHFの5倍よりも大きく、WSはWFの1.2倍よりも大きい。
一実施形態では、第2の誘電体部分2520は、近位端2540に近接する第1のサブ部分2519と、遠位端2560に近接する第2のサブ部分2521とを有し、ここで、第2のxy平面断面領域2600は第1のサブ部分2519内に含まれ、第3のxy平面断面領域2640は第2のサブ部分2521内に含まれる。一実施形態では、第1のサブ部分2519は直径W1の円筒形の3D形状を有し、第2のサブ部分2521は、W1の下部直径をW1よりも大きなWSの上部直径に拡大した切頭円錐形の3D形状を有する。一実施形態では、直径W1は直径WFよりも大きい。
図1Cおよび図1Dを参照すると、一実施形態において、EMデバイス1000に類似し同様な特徴に同様に符号が付されたEMデバイス1001は、図1Aおよび図1Bの第2の誘電体部分2520に類似した第2の誘電体部分2550を有するが、このEMデバイス1001は、第2の誘電体部分2550内部に内側領域2700を有しており、この内側領域2700は、第2の誘電体部分2550の残りの外側本体部分の誘電率よりも小さい誘電率を有する材料から形成されている。一実施形態では、内側領域2700は空気である。概略的に説明すると、第2の誘電体部分2550の外側本体部分は第1の誘電率を有する誘電体材料から形成され、内側領域2700は第1の誘電率よりも小さい第2の誘電率を有する誘電体材料から形成されている。EMデバイス1001の他の特徴は、EMデバイス1000の特徴と同様であるかまたは同一である。
図2および図3を参照すると、図2はEMデバイス1002を示し、図3はEMデバイス1003を示しており、双方のEMデバイス1002,1003はEMデバイス1000に類似しており、同様な特徴には同様な符号が付されている。
一実施形態では、図2に示されたEMデバイス1002は、図1Aおよび図1Bの第2の誘電体部分2520に類似した第2の誘電体部分2522を有するが、この第2の誘電体部分2522は、第2の誘電体部分2522の高さHS全体にわたって直径W1を有する円筒形状を有している。すなわち、第2の誘電体部分2522は、EMデバイス1000の第2の誘電体部分2520の第1のサブ部分2519を拡張した形態に類似している。一実施形態では、第2の誘電体部分2522は、全体最大高さHSおよび全体最大幅W1を有し、ここで、HSはW1よりも大きい。一実施形態では、HSはW1の1.5倍以上である。あるいは、一実施形態では、HSはW1の2倍以上である。
一実施形態では、図3に示されたEMデバイス1003は、EMデバイス1002の第2の誘電体部分2522と同様な全体最大幅W1および全体最大高さHSを有する第2の誘電体部分2523を有しているが、この第2の誘電体部分2523は、実質的に垂直な側壁を有する下側部分2524と、切頭楕円形状を有する上側部分2525とを有する3D形状を有している。図3を、図1A、図1B、図1C、図1D、および図2と比較すると、第1の誘電体部分2020が凸状の遠位端2060を有し得るだけでなく、第2の誘電体部分2523も凸状の遠位端2560を有し得ることが分かる。一実施形態では、第2の誘電体部分2523は、全体最大高さHSおよび全体最大幅W1を有し、ここで、HSはW1よりも大きい。一実施形態では、HSはW1の1.5倍以上である。あるいは、一実施形態では、HSはW1の2倍以上である。
本明細書に開示される第2の誘電体部分2520,2521,2522の高さ対幅の比を調整することにより、より高いTE(横方向(transverse electric))モードがサポートされ、より広い遠距離場TE放射帯域幅が得られる。
一実施形態では、第2の誘電体部分2520,2521,2522,2523は、第1の誘電体部分2020と直接密着して配置される。しかしながら、本発明の範囲はそのようなものに限定されない。一実施形態では、第2の誘電体部分2520,2521,2522,2523は、図1Bにおいて破線2530によって示されるように、第1の誘電体部分2020の遠位端2060からλの5倍以下の距離に配置され、ここで、λは、EMデバイス1000の動作中心周波数における自由空間波長である。あるいは、一実施形態では、第2の誘電体部分2520,2521,2522,2523は、第1の誘電体部分2020の遠位端2060からλの3倍以下の距離に配置される。あるいは、一実施形態では、第2の誘電体部分2520,2521,2522,2523は、第1の誘電体部分2020の遠位端2060からλの2倍以下の距離に配置される。あるいは、一実施形態では、第2の誘電体部分2520,2521,2522,2523は、第1の誘電体部分2020の遠位端2060からλの1倍以下の距離に配置される。あるいは、一実施形態では、第2の誘電体部分2520,2521,2522,2523は、第1の誘電体部分2020の遠位端2060からλの1/2倍以下の距離に配置される。あるいは、一実施形態では、第2の誘電体部分2520,2521,2522,2523は、第1の誘電体部分2020の遠位端2060からλの1/10倍以下の距離に配置される。
図4を参照すると、同図は、本明細書に開示される任意の誘電体構造によるアレイ3000内の複数の誘電体構造2000を示しており、ここで、複数の誘電体構造2000の各々の第2の誘電体部分2520,2521,2522,2523は、接続構造4000を介して、少なくとも1つの他の第2の誘電体部分2520,2521,2522,2523に物理的に接続されている。一実施形態では、各接続構造4000は、複数の誘電体構造2000のうちの1つの全体外形寸法、例えば、WSまたはHSと比較して(ページの平面内において)相対的に薄い。一実施形態では、各接続構造4000は非ガスの誘電体材料から形成され、それぞれの接続された誘電体構造2000の全体高さHSよりも小さい断面全体高さHCを有する。一実施形態では、各接続構造4000および関連する第2の誘電体部分2520,2521,2522,2523は、単一のモノリシック構造5000を形成する。一実施形態では、各接続構造4000は、関連するEMデバイス1000が動作可能な対応する動作中心周波数の自由空間波長λよりも小さい断面全体高さHCを有する。一実施形態では、接続構造4000は、対応する第2の誘電体部分2520,2521,2522,2523の誘電体材料と同じ誘電体材料で形成される。一実施形態では、接続構造4000および対応する第2の誘電体部分2520,2521,2522,2523は、連続的なシームレス構造として上記単一のモノリシック構造5000を形成する。
前述した図面をまとめて全体的に参照し、特に図4を参照すると、誘電体構造2000のEMデバイス1000,1001,1002,1003または誘電体構造2000のアレイ3000の実施形態は基板3200をさらに含み、この基板3200上に、個々の誘電体構造2000または誘電体構造2000のアレイが配置されている。一実施形態では、基板3200は、誘電体3140と、誘電体3140上に配置された金属フェンス構造3500とを含む。図4のアレイ3000に関して、基板3200は少なくとも1つの支持部分3020を有し、接続構造4000は少なくとも1つの取付部分4020を有する。一実施形態では、少なくとも1つの取付部分4020の各々は、少なくとも1つの支持部分3020と1対1に対応する関係で配置されている。
前述した図面をさらにまとめて全体的に参照し、特に図4を参照すると、誘電体構造2000のEMデバイス1000,1001,1002,1003または誘電体構造2000のアレイ3000の実施形態では、金属フェンス構造3500は、導電性ベース3514を備えた凹部3512を囲む複数の導電性電磁反射部3510を含み、各導電性電磁反射部3510は、複数の誘電体構造2000のうちの対応する1つと1対1の関係で配置されるとともに、複数の誘電体構造2000のうちの対応する1つを実質的に囲むように配置されている。一実施形態では、金属フェンス構造3500は単一の金属フェンス構造であり、複数の導電性電磁反射部3510は単一の金属フェンス構造3500と一体に形成されている。
一実施形態では、各EMデバイス1000,1001,1002,1003は、所与の誘電体構造2000を電磁的に励起するための信号フィード3120を含み、この信号フィード3120は誘電体3140を介して金属フェンス構造3500から分離されており、一実施形態では、この誘電体3140は空気以外の誘電性媒体であり、また、一実施形態では、信号フィード3120はスロット開口3130を備えたマイクロストリップである(例えば、図1A参照)。しかしながら、所与の誘電体構造2000の励起は、銅線、同軸ケーブル、マイクロストリップ(例えば、スロット開口を有するもの)、ストリップライン(例えば、スロット開口を有するもの)、導波路、表面集積導波路(surface integrated waveguide)、基板集積導波路(substrate integrated waveguide)、または、対応する誘電体構造2000に電磁的に結合される例えば導電性インクなど、本明細書に開示される目的に適した任意の信号フィードによって行われてもよい。当業者によって理解されるように、電磁的に結合されるという表現は、2つの位置の間で物理的接触を必ずしも伴うことなく、一つの位置から別の位置への電磁エネルギーの意図した伝達を指す用語であり、本明細書に開示される一実施形態に関して、より具体的には、関連する誘電体構造2000の電磁共振モードと一致する電磁共振周波数を有する信号ソース間の相互作用を指す。例えば図1Aに示されるような誘電体構造2000と対応する電磁反射金属フェンス構造3500との組み合わせの1つは、本明細書ではユニットセル1020と呼ばれる。
図4に示されるように、誘電体3140および金属フェンス構造3500は、基板3200の少なくとも1つの支持部分3020の位置を規定するそれぞれ軸方向に整列した貫通孔3030,3530をそれぞれ有する。一実施形態では、少なくとも1つの取付部分4020の各々は、少なくとも1つの支持部分3020の各々と1対1に対応して配置されている。一実施形態では、少なくとも1つの取付部分4020の各々は、少なくとも1つの支持部分3020の対応する1つに接着されているかまたは固定されている。図4は、6幅にわたる複数の誘電体構造2000を有したM×Nアレイ3000(M=6)を示している。一実施形態では、Nも6に等しくてもよく、または本明細書に開示される目的に適した任意の数の誘電体構造2000に等しくてもよい。さらに、本明細書に開示される所与のアレイにおけるM×Nの誘電体構造の数は単に例示の目的であり、MおよびNの双方の値は、本明細書に開示される目的に適した任意の数とすることができることが理解される。したがって、本明細書に開示される本発明の範囲内に含まれる任意のM×Nアレイが考慮される。
以下、図5A~図10を参照する。
図5Aは、M×Nアレイ3001(M=2、Nは制限されない)を示し、図4のアレイ3000に類似して、誘電体3140および金属フェンス構造3500は、基板3200の各支持部分3020の位置を規定するそれぞれ軸方向に整列した貫通孔3030,3530をそれぞれ有し、各取付部分4020は、誘電体3140および金属フェンス構造3500のそれぞれ対応する貫通孔3030,3530内に配置されている。図5Bは、本明細書において上述したモノリシック構造5000に類似したモノリシック構造5010を基板3200にアセンブリする前の図5Aのアレイ3001を示している。図示されるように、アレイ3001は、接続構造4000を有する接続アレイであり、第2の誘電体部分2520の低Dk材は、第2の誘電体部分2520の近位端2040に示されるように、第1の誘電体部分2020の高Dk材の側面すべてを覆っており、また、第2の誘電体部分2520は、図5Aの破線5012によって示されるように、第1の誘電体部分2020に直接密着している。
図6Aは、M×Nアレイ3002(M=2、Nは制限されない)を示し、図5Aのアレイ3001に類似して、誘電体3140および金属フェンス構造3500は、基板3200の少なくとも1つの支持部分3020の位置を規定するそれぞれ軸方向に整列した貫通孔3030,3530をそれぞれ有し、各取付部分4020は、金属フェンス構造3500の対応する貫通孔3530内に配置されているが、誘電体3140の貫通孔3030内には配置されていない。一実施形態では、誘電体3140の貫通孔3030には、図5Aに示されるモノリシック構造5010に類似したモノリシック構造5020の取付部分4020を基板3200に固定する接着剤などの結合材料3012が充填される。図6Bは、モノリシック構造5020を基板3200にアセンブリする前の図6Aのアレイ3002を示している。図示されるように、アレイ3002は、接続構造4000を有する接続アレイであり、第2の誘電体部分2520の低Dk材は、第2の誘電体部分2520の近位端2040に示されるように、第1の誘電体部分2020の高Dk材の側面すべてを覆っておらず、第2の誘電体部分2520の近位端2040と、第1の誘電体部分2020が配置される金属フェンス構造3500の導電性ベース3514との間にはギャップ5014が存在し、第2の誘電体部分2520は、図5Aの破線5012によって示されるように、第1の誘電体部分2020に直接密着している。
図7Aは、M×Nアレイ3003(M=2、Nは制限されない)を示し、図5Aおよび図6Aのそれぞれアレイ3001,3002に類似しているが、いくつかの代替的特徴を有している。図7Aに示されるように、誘電体3140は接続構造4030の取付部分4020の領域に貫通孔を有しておらず、接続構造4030は接続構造4000に類似するが代替的な構造であり、金属フェンス構造3500は、取付部分4020が載置される凹状の支持面3540を有し、これにより少なくとも1つの支持部分3020を形成している。一実施形態では、結合材料3012は、モノリシック構造5010,5020に類似したモノリシック構造5030の取付部分4020を凹状の支持面3540に固定する。図7Bは、モノリシック構造5030を基板3200にアセンブリする前の図7Aのアレイ3003を示している。換言すると、基板3200の各支持部分3020は上向き支持面3540を含み、接続構造4030の各取付部分4020は、対応する1つの上向き支持面3540と対向して係合するように配置された下向き取付面4024を含む。
図示されるように、アレイ3003は、接続構造4030を有する接続アレイであり、第2の誘電体部分2520の低Dk材は、第2の誘電体部分2520の近位端2040に示されるように、第1の誘電体部分2020の高Dk材の側面すべてを覆っておらず、第2の誘電体部分2520の近位端2040と、第1の誘電体部分2020が配置される金属フェンス構造3500の導電性ベース3514との間にはギャップ5014が存在し、第2の誘電体部分2520は、図7Aのギャップ5016によって示されるように、第1の誘電体部分2020の遠位端2060から離れた距離に配置されている。図7Aの接続構造4030と図5Aの接続構造4000とを比較すると、接続構造4000は断面全体高さHCを有し、接続構造4030は断面全体高さHC1を有し、ここで、HC1はHCよりも小さい。一実施形態では、HC1はλの1倍以下であり、ここで、λは、EMデバイス1000の動作中心周波数における自由空間波長である。あるいは、一実施形態では、HC1はλの1/2倍以下である。あるいは、一実施形態では、HC1はλの1/4倍以下である。あるいは、一実施形態では、HC1はλの1/5倍以下である。あるいは、一実施形態では、HC1はλの1/10倍以下である。
図8Aは、M×Nアレイ3004(M=2、Nは制限されない)を示し、図6Aのアレイ3004に類似しているが、接続構造の高さがHCではなくHC1である。図8および図6Aにおける他の同様な特徴には同様な符号が付されている。
図8Bは、M×Nアレイ3005(M=2、Nは制限されない)を示し、ギャップ5014,5016を有する図7Aのアレイ3003と結合材料3012を有する図8Aのアレイ3004との組み合わせに類似しているが、代替の取付機能を有している。一実施形態では、基板3200の各支持部分3020は、金属フェンス構造3500に形成された上向き肩部3024を含み、モノリシック構造5020の各取付部分4020は、対応する1つの上向き肩部3024に配置された下向き肩部4024を含み、取付部分4020の遠位端4026の断面は減少され、この遠位端4026が金属フェンス構造3500の開口部または貫通孔3534と係合している。取付部分4020の遠位端4026の下方において金属フェンス構造3500に形成された空間3536には、モノリシック構造5020を基板3200に固定する結合材料3012が充填されている。
図6A、図8A、および図8Bを参照すると、一実施形態に含まれる構造では、対応する取付部分4020の一部分のみが金属フェンス構造3500の対応する1つの貫通孔3030,3530,3534内に配置され、結合材料3012が金属フェンス構造3500の残りの貫通孔部分と基板3200の対応する貫通孔に少なくとも部分的に配置されることが分かる。
図8Bを参照すると、一実施形態に含まれる構造では、段差付きポスト端部4021を備えた(参照符号4020によって示される)ポストが接続構造4030の取付部分4020に形成され、この段差付きポスト端部4021が金属フェンス構造3500の対応する貫通孔3534内に部分的に配置されることが分かる。一実施形態では、ポスト4020および段差付きポスト端部4021は円筒形である。
図9Aは、M×Nアレイ3006(M=2、Nは制限されない)を示し、図8Aのアレイ3004に類似しているが代替の取付機能を有している。図9Bは、図9Aに示される細部9Bである。一実施形態では、基板3200の各支持部分3020は、金属フェンス構造3500に形成された下向きアンダーカット肩部3022を含み、接続構造4030の各取付部分4020は、金属フェンス構造3500の開口部3532を介して対応する下向きアンダーカット肩部3022とスナップフィット係合するように配置された上向きスナップフィット肩部4022を含む。図9Aおよび図9Bは、誘電体3140の貫通孔3030を示すが、このような貫通孔3030は、接続構造4030のスナップフィット脚部4050の寸法に応じて必要でない場合もあることが理解され得る。一実施形態では、スナップフィット脚部4050は開口中央領域4052を含み、開口中央領域4052は、前述のスナップフィット係合を容易にするために側部4054が内側に撓むことを可能にする。取付部分4020の遠位端のテーパ状先端(tapered nose)4056は、開口部3532内への取付部分4020の挿入を容易にする。
図10は、M×Nアレイ3007(M=2、Nは制限されない)を示し、ギャップ5014,5016を有する図7Aのアレイ3003と、スナップフィット脚部4050を有する図9Aのアレイ3005との組み合わせに類似している。図10、図9A、および図7Aの間における他の同様な特徴には同様な符号が付されている。
図5A~図10と組み合わせた図1~図4の上述の説明から分かるように、本明細書に開示される多くのEMデバイスの特徴は、本明細書に開示される他のEMデバイスの特徴と置換可能であるとともに、それら他のEMデバイスの特徴とともに使用可能である。したがって、EMデバイスの機能のすべての組み合わせが図示され本明細書に具体的に説明されているわけではないが、当業者は、本明細書に開示される発明の範囲から逸脱することなく、一つのEMデバイスの機能を別のEMデバイスの機能に置換できることを理解し得る。したがって、本明細書に開示されるEMデバイスの特徴のあらゆる組み合わせが本明細書に開示される発明の範囲内にあることが意図されるとともに考慮される。
以下、図11および図12を参照する。
図11は、M×Nアレイ3008(M=2、Nは制限されない)を示し、図5Aのアレイ3001に類似しているが、図5Aに示される接続構造4000を有していない。図11および図5Aの間における他の同様な特徴には同様な符号が付されている。
図12は、M×Nアレイ3009(M=2、Nは制限されない)を示し、図11のアレイ3007に類似しているが、接続構造4000を有しておらず、図3に示すものに類似した第2の誘電体部分2523を有している。図12および図11の間における他の同様な特徴には同様な符号が付されている。
上述した説明および/または図1~図12の例示から分かるように、本発明の実施形態は、接続構造4000を含んでも含んでいなくてもよく、いずれの場合も本明細書に開示される発明の実施形態に従って依然として機能する。したがって、接続構造を含む本明細書に開示された任意の実施形態は、そのような接続構造を有さずに実施されてもよく、同様に、接続構造を有さない本明細書に開示された任意の実施形態は、そのような接続構造を備えて実施されてもよい。
以下、図13を参照すると、同図は、M×Nアレイ3040(M=2、N=2)の実施形態の例示的な平面図を示しているが、本発明はこのような2×2アレイに限定されるものではない。アレイ3040は、図5A、図6A、図7A、図8A、図8B、図9A、図10にそれぞれ示される上述したアレイ3001,3002,3003,3004,3005,3006,3007のいずれかを代表したものであり、対応する第2の誘電体部分2520,2523、接続構造4000,4030、および/またはモノリシック構造5020を有していない。図示されるように、アレイ3040は、導電性電磁反射部3510および導電性ベース3514(誘電体3140は隠れて見えない)を有する金属フェンス構造3500、第1の誘電体部分2020、スロット付きフィード開口3130(上述したフィード構造のいずれかと置換可能)、および支持部分3020を備えた基板3200を含む。以下、図14Aを図13と組み合わせて参照すると、図14Aは、基板3200へのアセンブリ前のモノリシック構造5010を示している。図示されるように、モノリシック構造5010は、複数の第2の誘電体部分2520と、複数の取付部分4020と、接続構造4000,4030とを有する。接続構造4000,4030は、第2の誘電体部分2520と取付部分4020との間の空間を完全に満たすものとして示されているが、これは例示のみを目的としたものであり、接続構造4000,4030は、第2の誘電体部分2520と取付部分4020とを相互接続してモノリシック構造5010を形成する接続分岐のみを有する必要があることが理解され得る。例えば、図14Bを参照すると、図14Bは、図14Aに示されるものと同じ第2の誘電体部分2520および取付部分4020を示すが、接続構造4000,4030は複数の相互接続リブであり、この組み合わせがモノリシック構造5010を形成する。図14Aと少なくとも図5Aおよび図7Aとの比較は、接続構造4000,4030が基板3200から離れた距離に配置され、空気または任意の非ガスの誘電体材料によって占められ得ることを示す。基板3200に対して距離を置いて配置されたモノリシック構造5010のそれらの部分は、本明細書では非取付ゾーン4222とも呼ばれる。
以下、図15~図21を参照すると、これらの図は、取付部分4020の代替配置、誘電体構造2000のアレイレイアウト(図15~図21では誘電体構造2000の第2の誘電体部分2520のみを図示している)、およびそれらによる接続構造4000,4030を示している。図15では、第2の誘電体部分2520が直線レイアウトで配置され、取付部分4120が第2の誘電体部分2520(およびそれによる誘電体構造2000)を完全に取り囲むように配置されている。図16では、第2の誘電体部分2520が直線レイアウトで配置され、取付部分4220が第2の誘電体部分2520を部分的に取り囲んで少なくとも1つの非取付領域4222がモノリシックと基板との間に存在するように配置されている。図17では、第2の誘電体部分2520が非直線レイアウトで配置され、取付部分4120が図15のものと同様に第2の誘電体部分2520を完全に取り囲むように配置されている。図18では、第2の誘電体部分2520が非直線レイアウトで配置され、取付部分4320が図15および図17のものに類似して第2の誘電体部分2520を完全に取り囲むように配置される一方、追加のより厚い取付部分4322が例えばアレイのコーナーなどの戦略的位置に配置されている。図19では、第2の誘電体部分2520が非直線レイアウトで配置され、取付部分4322は、図18に示される追加のより厚い取付部分4322によって形成されるが図18に示される周囲の取付部分4320を有しておらず、これによりモノリシックと基板との間に少なくとも1つの非取付領域4222が存在している。図20では、第2の誘電体部分2520が非直線レイアウトで配置され、取付部分4420は、図18に示される周囲の取付部分4320のわずかな部分とともに図18に示される追加のより厚い取付部分4322によって形成されており、これによりモノリシックと基板との間には少なくとも1つの非取付領域4222が存在している。図21では、第2の誘電体部分2520が非直線レイアウトで配置され、取付部分4520は、図18に示される周囲の取付部分4320のさらなる部分とともに図18に示される追加のより厚い取付部分4322によって形成されており、これによりモノリシックと基板との間には少なくとも1つの非取付領域4222が存在している。図15~図21の接続構造4000,4030は、本明細書の開示と一致する任意の方法で、対応する取付部分4120,4220,4222,4320,4322,4420,4520と第2の誘電体部分2520とを相互接続するように形成され得る。
以上の説明から、本発明の実施形態が含むEMデバイス100では、基板3200の少なくとも1つの支持部分3020の各々と接続構造4000,4030の少なくとも1つの取付部分4020,4120,4220,4222,4320,4322,4420,4520のうちの対応する1つとが互いに取り付けられて第1の取付ゾーン4020,4120,4220,4222,4320,4322,4420,4520を画定し、アレイ3000,3001,3002,3003,3004,3005,3006,3007,3008,3009の各第1の誘電体部分2020と基板3200とが互いに取り付けられて第2の取付ゾーン(第1の誘電体部分2020と基板3200との間の全接触領域)を画定し、単一のモノリシック構造5000,5010と基板3200との間における第1の取付ゾーンまたは第2の取付ゾーン以外のゾーンにより非取付ゾーン4222が画定されることが理解され得る。一実施形態では、第1の取付ゾーンは第2の取付ゾーンを少なくとも部分的に取り囲む。あるいは、一実施形態では、第1の取付ゾーンは第2の取付ゾーンを完全に取り囲む。
以上の説明から、本明細書の開示と一致する実施形態を提供するべく取付部分および接続構造とともに誘電体構造のレイアウトを構成するにあたっては多くの変形例が存在するためそれらを網羅的に列挙することはできないことが理解され得る。本明細書の開示と一致するそのような配置のあらゆるものが本明細書に開示される発明の範囲内に含まれることが意図されるとともに考慮される。
以下、図22~23を参照すると、これらの図は、本明細書に開示され、図7A,図13,図14Aによって概略的に表される例示的な実施形態の利点を示す数学的モデリングデータを示している。図22は、本明細書に開示される実施形態の第1の誘電体部分2020と第2の誘電体部分2520との両方を有する単一の放射誘電体構造2000、より詳細には単一のユニットセル1020の性能特性、より詳細にはdBi利得およびS(1,1)反射損失を示す。図示されているように、帯域幅は69GHz~85GHzの間で-10dBiにおいて21%であり、利得は、この21%帯域幅における79GHzで12.3dBiのピークを有しつつ実質的に一定であり、この21%帯域幅での3つの共振モードはTEモードTE01,TE02,TE03である。図23は、図22に関するものと同じユニットセル1020のS(1,1)反射損失性能特性を、第2の誘電体部分2520を備える場合と備えない場合とで比較したものを示しており、本明細書に開示される実施形態の利点を示すために提示されている。曲線2300は、第2の誘電体部分2520を備える場合のS(1,1)特性を示し、曲線2310は、第2の誘電体部分2520を備えない場合のS(1,1)特性を示している。同図から分かるように、第2の誘電体部分2520を使用することで、69GHzから85GHzまでの動作周波数範囲において少なくとも40dBiだけ最小反射損失が向上する。
以上の観点から、本明細書に開示されるEMデバイス1000は、異なる中心周波数における少なくとも2つの共振モードを有する動作周波数範囲を有して動作可能であり、それら共振モードのうちの少なくとも1つは第2の誘電体部分2520の存在によってサポートされることが理解され得る。一実施形態では、少なくとも2つの共振モードはTEモードである。また、本明細書に開示されるEMデバイス1000は、異なる中心周波数における少なくとも3つの共振モードを有する動作周波数範囲を有して動作可能であり、それら少なくとも3つの共振モードのうちの少なくとも2つが第2の誘電体部分2520の存在によってサポートされることが理解され得る。一実施形態では、少なくとも3つの共振モードはTEモードである。一実施形態では、EMデバイス1000は、動作周波数範囲内の最小反射損失値を有して動作可能であり、第2の誘電体部分2520を取り除くと、動作周波数範囲内の最小反射損失値が少なくとも5dBi、あるいは少なくとも10dBi、あるいは少なくとも20dBi、あるいは少なくとも30dBi、さらにあるいは少なくとも40dBiだけ増加する。
以上のすべての観点で、本明細書ではEMデバイスの特徴の特定の組み合わせについて説明したが、これらの特定の組み合わせは例示のみを目的としたものであり、本明細書に開示されるEMデバイスの特徴のいずれかの任意の組み合わせを本発明の実施形態に従って使用できることが理解され得る。このような組み合わせのすべてが本明細書では意図されるとともに本明細書に開示される発明の範囲内にあると見なされる。
図1C、図1D、および少なくとも図4を再度参照すると、一実施形態は、第2の誘電体部分2550(あるいは本明細書では電磁(EM)誘電体レンズと呼ばれる)を含み、この第2の誘電体部分250は、少なくとも1つの誘電体材料で形成された少なくとも1つのレンズ部分(本明細書ではこの部分も参照符号2550によって参照される)を有し、この少なくとも1つのレンズ部分2550は、その少なくとも1つの誘電体材料の境界によって輪郭形成されたキャビティ2700を有することが理解され得る。一実施形態では、少なくとも1つのレンズ部分2550は、複数の積層レンズ部分(破線2552で示される)から形成される。一実施形態では、複数のレンズ部分2550,2552はアレイ状に配置される(例えば、図4のアレイ3000を参照)。一実施形態では、複数のレンズ部分2550,2552が接続され(例えば、図4の接続構造4000を参照)、それら複数のレンズ部分2550,2552の接続は少なくとも1つの誘電体材料によってもたらされる。一実施形態では、EM誘電体レンズ2550は全誘電体構造である。
本明細書に開示されるEMデバイス1000の構造の以上の説明の観点から、一実施形態は、そのようなEMデバイス1000を形成する方法も含むことが理解され得る。この方法は、基板を提供すること;基板上に複数の第1誘電体部分(FDP)を配置することであって、複数のFDPの各FDPは近位端および遠位端を有するとともに空気以外の誘電体材料を含み、各FDPの近位端が基板上に配置されること;各FDPに近接して第2の誘電体部分(SDP)を配置することであって、各SDPは近位端および遠位端を有するとともに空気以外の誘電体材料を含み、各SDPの近位端は対応するFDPの遠位端に近接して配置されること、を含み、各FDPの誘電体材料は、対応するSDPの誘電体材料の平均誘電率よりも大きい平均誘電率を有しており、各FDPおよび対応するSDPによって誘電体構造が形成される。この方法の一実施形態において、各SDPは、非ガスの誘電体材料で形成された接続構造を介して少なくとも1つの他のSDPに物理的に接続されており、接続構造および接続されたSDPによって単一のモノリシック構造が形成される。この方法の一実施形態において、SDPを配置することは、各FDPに近接して単一のモノリシック構造を配置することを含む。この方法の一実施形態において、単一のモノリシック構造は、シームレスで連続的な構造を有する単一の誘電体材料である。この方法の一実施形態において、方法はさらに、単一のモノリシック構造を基板に取り付けることを含む。この方法の一実施形態において、上記取り付けることは、基板の支持プラットフォーム上に単一のモノリシック構造のポストを結合(bonding)によって取り付けることを含む。この方法の一実施形態において、上記取り付けることは、単一のモノリシック構造のスナップフィットポストを基板の肩部の孔にスナップフィットによって取り付けることを含む。この方法の一実施形態において、上記取り付けることは、単一のモノリシック構造の段差付きポストを一部分のみ基板の貫通孔に取り付けること、およびその貫通孔に結合材料を適用してポストを基板に結合することを含む。この方法の一実施形態において、誘電体構造は全誘電体構造である。
本明細書では例示的な実施形態を参照して本発明を説明したが、特許請求の範囲から逸脱することなく種々の変更が可能であり等価物で要素を置き換えることができることが当業者には理解され得る。本発明の本質的な範囲から逸脱することなく特定の状況または材料を本発明の教示に適合させるために多くの変形を行うことができる。したがって、本発明は、当該発明を実施するために考慮される最良または唯一の態様として本明細書に開示される特定の実施形態(群)に限定されず、特許請求の範囲内に含まれるすべての実施形態を含むことが意図される。図面および上記の説明では、特定の用語および/または寸法が採用され得るが、例示的な実施形態が開示されるものであり、特に明記されない限り、それらは一般的、例示的、および/または説明的な意味でのみ使用されており限定する目的ではない。したがって、特許請求の範囲はそのように限定されない。層、膜、領域、基板、または他の説明された特徴などの要素が他の要素の「上にある」と記載される場合、その要素は他の要素上に直接存在してもよいし、介在する要素が存在してもよい。これに対して、要素が他の要素の「直接上にある」と記載される場合、介在する要素は存在しない。第1、第2などの用語の使用は順序や重要性を示すものではなく、第1、第2などの用語は、ある要素を他の要素から区別するために使用される。1つなどの用語の使用は数量の制限を示すのではなく、参照される項目の少なくとも1つの存在を示す。本明細書で使用される「備える」という用語は、1つまたは複数の追加の特徴の潜在的包含を排除するものではない。また、本明細書で提供される背景技術の情報は、本明細書に開示された発明に潜在的に関連すると本出願人が考える情報を明らかにするために提供されている。このような背景情報のいずれかが本明細書に開示された発明の実施形態に対する先行技術を構成するものであると認めることを必ずしも意図するものではなくそのように解釈されるべきものでもない。

Claims (70)

  1. 電磁デバイスであって、
    誘電体構造を備え、該誘電体構造が、
    近位端および遠位端を有するとともに空気以外の第1の平均誘電率を有する第1の誘電体材料による第1の誘電体部分(FDP)であって、近位端が前記FDPの底部に近接して位置し、遠位端が前記FDPの頂部に近接して位置し、半球ドーム形か、長尺ドーム形か、垂直側壁とドーム形状の遠位端とを備える長尺ドーム形か、または凸状の遠位端を有する誘電体媒体の形の3次元(3D)形状を有する前記FDPと、
    近位端および遠位端を有するとともに空気以外の第2の平均誘電率を有する第2の誘電体材料による第2の誘電体部分(SDP)であって、近位端が前記SDPの底部に近接して位置し、遠位端が前記SDPの頂部に近接して位置し、前記SDPの近位端が前記FDPの遠位端に近接して配置される、前記SDPと、を含み、
    前記FDPの前記第1の誘電体材料の前記第1の平均誘電率は、前記SDPの前記第2の誘電体材料の前記第2の平均誘電率よりも大きく、
    前記SDPは全体最大高さHSおよび全体最大幅WSを有し、HSはWSよりも大きく、
    前記SDPは全体中間最大幅W1を有し、
    WSは前記SDPの遠位端に近接して位置し、W1は前記SDPの遠位端と近位端との間に位置し、
    WSはW1よりも大きく、
    前記FDPは全体最大幅WFを有し、
    WSおよびW1の少なくとも一方がWFよりも大きく、
    HSは、前記SDPの近位端から遠位端への方向に見たものであり、WS、W1、およびWFは、HSと直交する方向に見たものであることを特徴とする電磁デバイス。
  2. 前記誘電体構造が全誘電体構造である、請求項1に記載の電磁デバイス。
  3. 前記FDPが単一の誘電体材料である、請求項1または2に記載の電磁デバイス。
  4. 前記SDPが外側本体と内側領域とを含み、前記外側本体が第1の誘電率を有する誘電体材料を含み、前記内側領域が第1の誘電率よりも小さい第2の誘電率を有する誘電体材料を含む、請求項1~3のいずれか一項に記載の電磁デバイス。
  5. 前記内側領域が空気を含む、請求項4に記載の電磁デバイス。
  6. 前記SDPは、前記SDPの近位端に近接する第1のxy平面断面領域と、前記SDPの近位端と遠位端との間の第2のxy平面断面領域とを有する3D形状を有し、前記第2のxy平面断面領域が前記第1のxy平面断面領域よりも大きい、請求項1~5のいずれか一項に記載の電磁デバイス。
  7. 前記SDPが前記FDPと直接密着して配置されている、請求項1~6のいずれか一項に記載の電磁デバイス。
  8. 前記SDPが前記FDPの遠位端からλの5倍以下の距離に配置されており、ここで、λは、動作中心周波数における自由空間波長である、請求項1~6のいずれか一項に記載の電磁デバイス。
  9. 前記SDPが前記FDPの遠位端からλの3倍以下の距離に配置されており、ここで、λは、動作中心周波数における自由空間波長である、請求項1~6のいずれか一項に記載の電磁デバイス。
  10. 前記SDPが前記FDPの遠位端からλの2倍以下の距離に配置されており、ここで、λは、動作中心周波数における自由空間波長である、請求項1~6のいずれか一項に記載の電磁デバイス。
  11. 前記SDPが前記FDPの遠位端からλの1倍以下の距離に配置されており、ここで、λは、動作中心周波数における自由空間波長である、請求項1~6のいずれか一項に記載の電磁デバイス。
  12. 前記SDPが前記FDPの遠位端からλの1/2倍以下の距離に配置されており、ここで、λは、動作中心周波数における自由空間波長である、請求項1~6のいずれか一項に記載の電磁デバイス。
  13. 前記SDPが前記FDPの遠位端からλの1/10倍以下の距離に配置されており、ここで、λは、動作中心周波数における自由空間波長である、請求項1~6のいずれか一項に記載の電磁デバイス。
  14. 前記FDPの誘電体材料が10以上の誘電率を有し、
    前記SDPの誘電体材料が9以下の誘電率を有する、請求項1~13のいずれか一項に記載の電磁デバイス。
  15. 前記FDPの誘電体材料が11以上の誘電率を有し、
    前記SDPの誘電体材料が5以下の誘電率を有する、請求項1~13のいずれか一項に記載の電磁デバイス。
  16. 前記FDPの誘電体材料が12以上の誘電率を有し、
    前記SDPの誘電体材料が3以下の誘電率を有する、請求項1~13のいずれか一項に記載の電磁デバイス。
  17. 前記FDPの誘電体材料が10以上20以下の誘電率を有し、
    前記SDPの誘電体材料が2以上9以下の誘電率を有する、請求項1~13のいずれか一項に記載の電磁デバイス。
  18. 前記FDPの誘電体材料が10以上15以下の誘電率を有し、
    前記SDPの誘電体材料が2以上5以下の誘電率を有する、請求項1~13のいずれか一項に記載の電磁デバイス。
  19. HSがWSの1.5倍以上である、請求項6に記載の電磁デバイス。
  20. HSがWSの2倍以上である、請求項6に記載の電磁デバイス。
  21. 前記FDPが全体最大高さHFおよび全体最大幅WFを有し、
    HSがHFよりも大きく、
    WSがWFよりも大きい、請求項6に記載の電磁デバイス。
  22. HSがHFの5倍よりも大きく、
    WSがWFの1.2倍よりも大きい、請求項21に記載の電磁デバイス。
  23. 前記FDPが凸状の遠位端を含み、
    前記SDPが平坦な遠位端を含む、請求項1~22のいずれか一項に記載の電磁デバイス。
  24. 前記FDPが凸状の遠位端を含み、
    前記SDPが凸状の遠位端を含む、請求項1~22のいずれか一項に記載の電磁デバイス。
  25. 前記SDPの近位端が全体最大幅W1を有し、前記SDPの遠位端が全体最大幅WSを有し、
    WSがW1よりも大きい、請求項1~24のいずれか一項に記載の電磁デバイス。
  26. アレイ状に配置された複数の誘電体構造を備え、
    前記複数の誘電体構造の各SDPが、接続構造を介して少なくとも1つの他のSDPに物理的に接続されている、請求項1~25のいずれか一項に記載の電磁デバイス。
  27. 各前記接続構造は、前記複数の誘電体構造のうちの1つの全体外形寸法と比較して相対的に薄く、また、各前記接続構造は、対応する前記接続された誘電体構造の全体高さよりも小さい断面全体高さを有するとともに非ガスの誘電体材料で形成され、各前記接続構造およびそれに関連する前記SDPが単一のモノリシック構造を形成する、請求項26に記載の電磁デバイス。
  28. 各前記接続構造は、前記電磁デバイスが動作可能な対応する動作中心周波数の自由空間波長よりも小さい断面全体高さを有する、請求項27に記載の電磁デバイス。
  29. 前記接続構造は、前記SDPの誘電体材料と同じ誘電体材料で形成されている、請求項26~28のいずれか一項に記載の電磁デバイス。
  30. 前記接続構造および前記SDPは、連続的なシームレス構造として単一のモノリシック構造を形成する、請求項26~29のいずれか一項に記載の電磁デバイス。
  31. 前記誘電体構造のアレイが配置される基板をさらに備え、前記基板が少なくとも1つの支持部分を含み、
    前記接続構造が少なくとも1つの取付部分を含み、前記少なくとも1つの取付部分の各々が前記少なくとも1つの支持部分と1対1に対応する関係で配置されている、請求項26~30のいずれか一項に記載の電磁デバイス。
  32. 各前記SDPが、対応する1つの前記FDPの遠位端から規定のギャップによる距離を置いて配置されている、請求項26~31のいずれか一項に記載の電磁デバイス。
  33. 前記基板の前記少なくとも1つの支持部分の各々が下向きアンダーカット肩部を含み、
    前記接続構造の前記少なくとも1つの取付部分の各々が、対応する前記下向きアンダーカット肩部とスナップフィット係合するように配置された上向きスナップフィット肩部を含む、請求項31に記載の電磁デバイス。
  34. 前記基板の前記少なくとも1つの支持部分の各々が上向き支持面を含み、
    前記接続構造の前記少なくとも1つの取付部分の各々が、対応する前記上向き支持面に対向して係合するように配置された下向き取付面を含む、請求項31に記載の電磁デバイス。
  35. 前記少なくとも1つの取付部分の各々が、前記少なくとも1つの支持部分のうちの対応する1つに接着される、請求項34に記載の電磁デバイス。
  36. 前記基板の前記少なくとも1つの支持部分の各々と、前記接続構造の前記少なくとも1つの取付部分のうちの対応する1つとが互いに取り付けられて第1の取付ゾーンを画定し、
    前記アレイの各前記FDPと前記基板とが互いに取り付けられて第2の取付ゾーンを画定し、
    前記接続構造と前記SDPとによって形成された単一のモノリシック構造と前記基板との間のゾーンであって、前記第1の取付ゾーンまたは前記第2の取付ゾーン以外のゾーンが非取付ゾーンを画定する、請求項31に記載の電磁デバイス。
  37. 前記第1の取付ゾーンが前記第2の取付ゾーンを少なくとも部分的に取り囲む、請求項36に記載の電磁デバイス。
  38. 前記第1の取付ゾーンが前記第2の取付ゾーンを完全に取り囲む、請求項36に記載の電磁デバイス。
  39. 前記基板は、複数の導電性電磁反射部を含む金属フェンス構造を備え、前記複数の導電性電磁反射部の各々が、前記複数の誘電体構造のうちの対応する誘電体構造と1対1の関係で配置されるとともに当該対応する誘電体構造を実質的に取り囲むように配置されている、請求項31に記載の電磁デバイス。
  40. 前記金属フェンス構造が単一の金属フェンス構造であり、
    前記複数の導電性電磁反射部が前記単一の金属フェンス構造と一体的に形成されている、請求項39に記載の電磁デバイス。
  41. 前記基板および前記金属フェンス構造が、前記基板の前記少なくとも1つの支持部分の位置を規定する軸方向に整列した貫通孔をそれぞれ含む、請求項39または40に記載の電磁デバイス。
  42. 前記少なくとも1つの取付部分の各々は、前記金属フェンス構造の複数の貫通孔のうちの対応する1つの内部に一部分のみが配置され、
    前記金属フェンス構造の残りの貫通孔部分および前記基板の対応する貫通孔に結合材料が少なくとも部分的に配置される、請求項39~41のいずれか一項に記載の電磁デバイス。
  43. 前記接続構造の前記少なくとも1つの取付部分の各々は段差付きポスト端部を有するポストを形成し、
    前記段差付きポスト端部が前記金属フェンス構造の複数の貫通孔のうちの対応する1つの内部に部分的に配置されている、請求項39~42のいずれか一項に記載の電磁デバイス。
  44. 前記ポストおよび前記段差付きポスト端部の少なくとも一方が円筒形である、請求項43に記載の電磁デバイス。
  45. 前記誘電体構造が誘電体共振器アンテナの少なくとも一部を形成する、請求項1~44のいずれか一項に記載の電磁デバイス。
  46. 前記誘電体共振器アンテナが、異なる中心周波数における少なくとも2つの共振モードを含む動作周波数範囲を有して動作可能であり、前記共振モードのうちの少なくとも1つが前記SDPの存在によってサポートされる、請求項45に記載の電磁デバイス。
  47. 前記少なくとも2つの共振モードがTEモードである、請求項46に記載の電磁デバイス。
  48. 前記誘電体共振器アンテナが、異なる中心周波数における少なくとも3つの共振モードを含む動作周波数範囲を有して動作可能であり、前記少なくとも3つの共振モードのうちの少なくとも2つが前記SDPの存在によってサポートされる、請求項45に記載の電磁デバイス。
  49. 前記少なくとも3つの共振モードがTEモードである、請求項48に記載の電磁デバイス。
  50. 前記誘電体共振器アンテナが動作周波数範囲における最小反射損失値を有して動作可能であり、前記SDPを取り除くと、前記動作周波数範囲における前記最小反射損失値が少なくとも5dB増加する、請求項45に記載の電磁デバイス。
  51. 前記誘電体共振器アンテナが動作周波数範囲における最小反射損失値を有して動作可能であり、前記SDPを取り除くと、前記動作周波数範囲における前記最小反射損失値が少なくとも10dB増加する、請求項45に記載の電磁デバイス。
  52. 前記誘電体共振器アンテナが動作周波数範囲における最小反射損失値を有して動作可能であり、前記SDPを取り除くと、前記動作周波数範囲における前記最小反射損失値が少なくとも20dB増加する、請求項45に記載の電磁デバイス。
  53. 前記誘電体共振器アンテナが動作周波数範囲における最小反射損失値を有して動作可能であり、前記SDPを取り除くと、前記動作周波数範囲における前記最小反射損失値が少なくとも30dB増加する、請求項45に記載の電磁デバイス。
  54. 前記誘電体共振器アンテナが動作周波数範囲における最小反射損失値を有して動作可能であり、前記SDPを取り除くと、前記動作周波数範囲における前記最小反射損失値が少なくとも40dB増加する、請求項45に記載の電磁デバイス。
  55. 請求項1に記載の前記電磁デバイスを製造する方法であって、
    基板を提供すること、
    前記基板上に複数の前記第1の誘電体部分(FDP)を配置することであって、各前記FDPの前記近位端が前記基板上に配置されるように複数の前記FDPを配置すること、
    各前記FDPに近接させて複数の前記第2の誘電体部分(SDP)の一つを配置することであって、各前記SDPの前記近位端が対応する前記FDPの前記遠位端に近接して配置されるように複数の前記SDPの一つを配置すること、を備え、各前記FDPおよび対応する前記SDPにより誘電体構造が前記基板上に形成されることを特徴とする方法。
  56. 各前記SDPは、非ガスの誘電体材料で形成された接続構造を介して少なくとも1つの他の前記SDPに物理的に接続されており、前記接続構造および前記接続されたSDPにより単一のモノリシック構造が形成される、請求項55に記載の方法。
  57. 前記SDPを配置することが、
    各前記FDPに近接して前記単一のモノリシック構造を配置することを含む、請求項56に記載の方法。
  58. 前記単一のモノリシック構造が、シームレスで連続的な構造を有する単一の誘電体材料である、請求項57に記載の方法。
  59. 前記単一のモノリシック構造を前記基板に取り付けることをさらに備える請求項57または58に記載の方法。
  60. 前記取り付けることが、
    前記基板の支持プラットフォーム上に前記単一のモノリシック構造のポストを結合によって取り付けることを含む、請求項59に記載の方法。
  61. 前記取り付けることが、
    前記単一のモノリシック構造のスナップフィットポストを前記基板の肩部の孔にスナップフィットによって取り付けることを含む、請求項59に記載の方法。
  62. 前記取り付けることが、
    前記単一のモノリシック構造の段差付きポストの一部分のみを前記基板の貫通孔に取り付けること、および、前記貫通孔内に結合材料を適用して前記ポストを前記基板に結合することを含む、請求項59に記載の方法。
  63. 前記誘電体構造が全誘電体構造である、請求項55~62のいずれか一項に記載の方法。
  64. 電磁誘電体レンズであって、
    少なくとも1つの誘電体材料で形成された少なくとも1つのレンズ部分を備え、前記少なくとも1つのレンズ部分が、前記少なくとも1つの誘電体材料の境界によって輪郭形成されたキャビティを含み、
    前記少なくとも1つのレンズ部分は全体最大高さHSおよび全体最大幅WSを有し、HSはWSよりも大きく、
    前記少なくとも1つのレンズ部分は全体中間最大幅W1を有し、
    WSは前記少なくとも1つのレンズ部分の遠位端に近接して位置し、W1は前記少なくとも1つのレンズ部分の遠位端と近位端との間に位置し、
    WSはW1よりも大きく、
    HSは、前記少なくとも1つのレンズ部分の近位端から遠位端への方向に見たものであり、WSおよびW1は、HSと直交する方向に見たものであることを特徴とする電磁誘電体レンズ。
  65. 前記少なくとも1つのレンズ部分が複数のレンズ部分を含む、請求項64に記載の電磁誘電体レンズ。
  66. 前記複数のレンズ部分がアレイ状に配置されている、請求項65に記載の電磁誘電体レンズ。
  67. 前記複数のレンズ部分が接続されている、請求項65に記載の電磁誘電体レンズ。
  68. 前記複数のレンズ部分の接続が前記少なくとも1つの誘電体材料によってもたらされる、請求項67に記載の電磁誘電体レンズ。
  69. 前記電磁誘電体レンズが全誘電体構造である、請求項64~68のいずれか一項に記載の電磁誘電体レンズ。
  70. 前記キャビティは、前記少なくとも1つの誘電体材料の誘電率よりも小さい誘電率を有する誘電体材料を含む、請求項64~69のいずれか一項に記載の電磁誘電体レンズ。
JP2020529551A 2018-01-15 2019-01-15 第1および第2の誘電体部分を有する誘電体共振器アンテナ Active JP7209717B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201862617358P 2018-01-15 2018-01-15
US62/617,358 2018-01-15
US201862633256P 2018-02-21 2018-02-21
US62/633,256 2018-02-21
US16/246,880 2019-01-14
US16/246,892 2019-01-14
US16/246,880 US10892544B2 (en) 2018-01-15 2019-01-14 Dielectric resonator antenna having first and second dielectric portions
US16/246,892 US10910722B2 (en) 2018-01-15 2019-01-14 Dielectric resonator antenna having first and second dielectric portions
PCT/US2019/013577 WO2019140420A1 (en) 2018-01-15 2019-01-15 Dielectric resonator antenna having first and second dielectric portions

Publications (2)

Publication Number Publication Date
JP2021510949A JP2021510949A (ja) 2021-04-30
JP7209717B2 true JP7209717B2 (ja) 2023-01-20

Family

ID=67213085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529551A Active JP7209717B2 (ja) 2018-01-15 2019-01-15 第1および第2の誘電体部分を有する誘電体共振器アンテナ

Country Status (6)

Country Link
US (1) US10910722B2 (ja)
JP (1) JP7209717B2 (ja)
KR (1) KR20200100634A (ja)
CN (1) CN111602298A (ja)
DE (1) DE112019000418T5 (ja)
WO (1) WO2019140420A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US20210044022A1 (en) * 2015-10-28 2021-02-11 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
US11876295B2 (en) 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
CN110754017B (zh) 2017-06-07 2023-04-04 罗杰斯公司 介质谐振器天线系统
KR101952247B1 (ko) * 2017-11-16 2019-02-26 홍익대학교 산학협력단 슈퍼스트레이트를 이용한 배열 안테나 장치 및 슈퍼스트레이트를 이용한 배열 안테나 튜닝 방법
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11239563B2 (en) * 2018-05-01 2022-02-01 Rogers Corporation Electromagnetic dielectric structure adhered to a substrate and methods of making the same
US11031697B2 (en) * 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
GB2594171A (en) 2018-12-04 2021-10-20 Rogers Corp Dielectric electromagnetic structure and method of making the same
EP3734757B1 (en) * 2019-05-02 2023-05-17 Nokia Solutions and Networks Oy A multi-band antenna arrangement
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
KR20230096915A (ko) * 2020-10-29 2023-06-30 엘지전자 주식회사 다층 기판으로 구현된 안테나 모듈 및 이를 포함하는 전자 기기
WO2022261880A1 (zh) * 2021-06-17 2022-12-22 华为技术有限公司 一种介质谐振器、滤波器、多工器及基站
EP4280381A1 (en) * 2022-05-19 2023-11-22 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with protruding dielectric signal element, and manufacture method
US20240113436A1 (en) * 2022-10-03 2024-04-04 Apple Inc. Electronic Devices with Dielectric Resonator Antennas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141566A (ja) 2008-12-11 2010-06-24 Denso Corp 誘電体装荷アンテナ

Family Cites Families (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR60492E (ja) 1949-08-19 1954-11-03
GB947238A (en) 1961-10-03 1964-01-22 Fairey Eng Spherical microwave lens
US4366484A (en) 1978-12-29 1982-12-28 Ball Corporation Temperature compensated radio frequency antenna and methods related thereto
IN158260B (ja) 1981-06-22 1986-10-04 American Petro Mart Inc
FR2582864B1 (fr) 1985-06-04 1987-07-31 Labo Electronique Physique Modules unitaires d'antenne hyperfrequences et antenne hyperfrequences comprenant de tels modules
FR2647599B1 (fr) 1989-05-24 1991-11-29 Alcatel Espace Structure de realisation de circuits et composants appliquee aux hyperfrequences
US5453752A (en) 1991-05-03 1995-09-26 Georgia Tech Research Corporation Compact broadband microstrip antenna
US5453754A (en) 1992-07-02 1995-09-26 The Secretary Of State For Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Dielectric resonator antenna with wide bandwidth
GB9219226D0 (en) 1992-09-11 1992-10-28 Secr Defence Dielectric resonator antenna with wide bandwidth
SE501288C2 (sv) 1993-11-30 1995-01-09 Corimed Gmbh Förfarande för framställning av keramiskt implantatmaterial, företrädesvis hydroxylapatit uppvisande keramiskt implantatmaterial
GB9417450D0 (en) 1994-08-25 1994-10-19 Symmetricom Inc An antenna
US6198450B1 (en) 1995-06-20 2001-03-06 Naoki Adachi Dielectric resonator antenna for a mobile communication
JP3324340B2 (ja) * 1995-06-20 2002-09-17 松下電器産業株式会社 誘電体共振器アンテナ
JPH098539A (ja) * 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd 誘電体共振器アンテナ
CA2176656C (en) 1995-07-13 2003-10-28 Matthew Bjorn Oliver Broadband circularly polarized dielectric resonator antenna
JP3381503B2 (ja) * 1996-02-16 2003-03-04 株式会社村田製作所 誘電体レンズ
CA2173679A1 (en) 1996-04-09 1997-10-10 Apisak Ittipiboon Broadband nonhomogeneous multi-segmented dielectric resonator antenna
JP3186622B2 (ja) 1997-01-07 2001-07-11 株式会社村田製作所 アンテナ装置および送受信装置
JPH10224141A (ja) 1997-02-10 1998-08-21 Toshiba Corp モノリシックアンテナ
JPH10341108A (ja) 1997-04-10 1998-12-22 Murata Mfg Co Ltd アンテナ装置およびレーダモジュール
US6061031A (en) 1997-04-17 2000-05-09 Ail Systems, Inc. Method and apparatus for a dual frequency band antenna
JP3120757B2 (ja) 1997-06-17 2000-12-25 株式会社村田製作所 誘電体線路装置
EP1091915B1 (en) 1998-05-29 2004-09-29 Nokia Corporation Composite injection mouldable material
JP3269458B2 (ja) 1998-07-06 2002-03-25 株式会社村田製作所 アンテナ装置および送受信装置
DE19836952A1 (de) 1998-08-17 2000-04-20 Philips Corp Intellectual Pty Sende- und Empfangsvorrichtung
DE19837266A1 (de) 1998-08-17 2000-02-24 Philips Corp Intellectual Pty Dielektrische Resonatorantenne
JP3178428B2 (ja) 1998-09-04 2001-06-18 株式会社村田製作所 高周波放射源アレー、アンテナモジュールおよび無線装置
US6147647A (en) 1998-09-09 2000-11-14 Qualcomm Incorporated Circularly polarized dielectric resonator antenna
DE69938413T2 (de) 1998-09-30 2009-04-23 Anritsu Corp. Planare antenne und verfahren zur herstellung derselben
DE19858799A1 (de) 1998-12-18 2000-06-21 Philips Corp Intellectual Pty Dielektrische Resonatorantenne
DE19858790A1 (de) 1998-12-18 2000-06-21 Philips Corp Intellectual Pty Dielektrische Resonatorantenne
GB9904373D0 (en) 1999-02-25 1999-04-21 Microsulis Plc Radiation applicator
US6344833B1 (en) 1999-04-02 2002-02-05 Qualcomm Inc. Adjusted directivity dielectric resonator antenna
US6292141B1 (en) 1999-04-02 2001-09-18 Qualcomm Inc. Dielectric-patch resonator antenna
US6556169B1 (en) 1999-10-22 2003-04-29 Kyocera Corporation High frequency circuit integrated-type antenna component
US6452565B1 (en) 1999-10-29 2002-09-17 Antenova Limited Steerable-beam multiple-feed dielectric resonator antenna
KR100333474B1 (ko) * 1999-11-24 2002-04-25 안병엽 유전체 공진기 안테나
US6621381B1 (en) 2000-01-21 2003-09-16 Tdk Corporation TEM-mode dielectric resonator and bandpass filter using the resonator
GB2360133B (en) 2000-03-11 2002-01-23 Univ Sheffield Multi-segmented dielectric resonator antenna
AU4256001A (en) 2000-03-11 2001-09-24 Antenova Limited Dielectric resonator antenna array with steerable elements
EP1134838A1 (en) 2000-03-14 2001-09-19 Lucent Technologies Inc. Antenna radome
KR100365294B1 (ko) 2000-04-21 2002-12-18 한국과학기술연구원 저온소결 저손실 고주파유전체 세라믹스 조성물 및 그 제조방법
KR100365295B1 (ko) 2000-05-03 2002-12-18 한국과학기술연구원 저온소결 저손실 고주파 유전체 세라믹스 조성물 및 그 제조방법
US6528145B1 (en) 2000-06-29 2003-03-04 International Business Machines Corporation Polymer and ceramic composite electronic substrates
JP3638889B2 (ja) 2000-07-27 2005-04-13 大塚化学ホールディングス株式会社 誘電性樹脂発泡体及びそれを用いた電波レンズ
DE10042229A1 (de) 2000-08-28 2002-03-28 Epcos Ag Elektrisches Bauelement, Verfahren zu dessen Herstellung und dessen Verwendung
JP3562454B2 (ja) 2000-09-08 2004-09-08 株式会社村田製作所 高周波用磁器、誘電体アンテナ、支持台、誘電体共振器、誘電体フィルタ、誘電体デュプレクサおよび通信機装置
US6512494B1 (en) 2000-10-04 2003-01-28 E-Tenna Corporation Multi-resonant, high-impedance electromagnetic surfaces
GB0101567D0 (en) 2001-01-22 2001-03-07 Antenova Ltd Dielectric resonator antenna with mutually orrthogonal feeds
US6437747B1 (en) 2001-04-09 2002-08-20 Centurion Wireless Technologies, Inc. Tunable PIFA antenna
FI118403B (fi) 2001-06-01 2007-10-31 Pulse Finland Oy Dielektrinen antenni
US6661392B2 (en) 2001-08-17 2003-12-09 Lucent Technologies Inc. Resonant antennas
US6801164B2 (en) * 2001-08-27 2004-10-05 Motorola, Inc. Broad band and multi-band antennas
US6552687B1 (en) 2002-01-17 2003-04-22 Harris Corporation Enhanced bandwidth single layer current sheet antenna
US6800577B2 (en) 2002-03-20 2004-10-05 Council Of Scientific And Industrial Research Microwave dielectric ceramic composition of the formula xmo-yla2o3-ztio2 (m=sr, ca; x:y:z=1:2:4, 2:2:5, 1:2:5 or 1:4:9), method of manufacture thereof and devices comprising the same
JP4892160B2 (ja) 2002-03-26 2012-03-07 日本特殊陶業株式会社 誘電体磁器組成物および誘電体共振器
GB0207052D0 (en) 2002-03-26 2002-05-08 Antenova Ltd Novel dielectric resonator antenna resonance modes
AU2003234005A1 (en) 2002-05-15 2003-12-02 Antenova Limited Improvements relating to attaching dielectric resonator antennas to microstrip lines
DE10227251B4 (de) 2002-06-19 2004-05-27 Diehl Munitionssysteme Gmbh & Co. Kg Kombinations-Antenne für Artilleriemunition
GB0218820D0 (en) 2002-08-14 2002-09-18 Antenova Ltd An electrically small dielectric resonator antenna with wide bandwith
FR2843832A1 (fr) 2002-08-21 2004-02-27 Thomson Licensing Sa Antenne large bande a resonateur dielectrique
US7088290B2 (en) 2002-08-30 2006-08-08 Matsushita Electric Industrial Co., Ltd. Dielectric loaded antenna apparatus with inclined radiation surface and array antenna apparatus including the dielectric loaded antenna apparatus
FR2844399A1 (fr) 2002-09-09 2004-03-12 Thomson Licensing Sa Antennes de type resonateur dielectrique
JP3937433B2 (ja) 2002-09-17 2007-06-27 日本電気株式会社 平面回路−導波管接続構造
US7310031B2 (en) 2002-09-17 2007-12-18 M/A-Com, Inc. Dielectric resonators and circuits made therefrom
US7705782B2 (en) 2002-10-23 2010-04-27 Southern Methodist University Microstrip array antenna
TWI281782B (en) 2002-12-25 2007-05-21 Quanta Comp Inc Portable wireless device
JP4217709B2 (ja) 2003-02-18 2009-02-04 財団法人国際科学振興財団 携帯端末用アンテナおよびそれを用いた携帯端末
FR2851852B1 (fr) 2003-02-27 2005-04-01 Alstom Antenne pour detecter des decharges partielles dans une cuve d'appareillage electrique
US6879287B2 (en) 2003-05-24 2005-04-12 Agency For Science, Technology And Research Packaged integrated antenna for circular and linear polarizations
GB2402552A (en) 2003-06-04 2004-12-08 Andrew Fox Broadband dielectric resonator antenna system
GB2403069B8 (en) 2003-06-16 2008-07-17 Antenova Ltd Hybrid antenna using parasiting excitation of conducting antennas by dielectric antennas
US6816128B1 (en) 2003-06-25 2004-11-09 Rockwell Collins Pressurized antenna for electronic warfare sensors and jamming equipment
US8144059B2 (en) 2003-06-26 2012-03-27 Hrl Laboratories, Llc Active dielectric resonator antenna
CA2435830A1 (en) 2003-07-22 2005-01-22 Communications Research Centre Canada Ultra wideband antenna
US6995715B2 (en) 2003-07-30 2006-02-07 Sony Ericsson Mobile Communications Ab Antennas integrated with acoustic guide channels and wireless terminals incorporating the same
US7161555B2 (en) 2003-09-11 2007-01-09 Matsushita Electric Industrial Co., Ltd. Dielectric antenna and radio device using the same
FR2860107B1 (fr) 2003-09-23 2006-01-13 Cit Alcatel Antenne reseau reflecteur reconfigurable a faibles pertes
US6965354B2 (en) 2003-11-12 2005-11-15 Imperial College Innovations Limited Narrow beam antenna
EP1622221A1 (en) 2004-02-11 2006-02-01 Sony Deutschland GmbH Circular polarised array antenna
FR2866480B1 (fr) 2004-02-17 2006-07-28 Cit Alcatel Dispositif rayonnant compact multipolarisation a alimentation orthogonale par ligne(s) a champ de surface
US20060194690A1 (en) 2004-02-23 2006-08-31 Hideyuki Osuzu Alumina-based ceramic material and production method thereof
JP4118835B2 (ja) 2004-05-25 2008-07-16 日本電波工業株式会社 機能平面アレーアンテナ
US7071879B2 (en) 2004-06-01 2006-07-04 Ems Technologies Canada, Ltd. Dielectric-resonator array antenna system
US7009565B2 (en) 2004-07-30 2006-03-07 Lucent Technologies Inc. Miniaturized antennas based on negative permittivity materials
WO2006049002A1 (ja) 2004-11-05 2006-05-11 Pioneer Corporation 誘電体アンテナ装置
US7379030B1 (en) 2004-11-12 2008-05-27 Lockheed Martin Corporation Artificial dielectric antenna elements
JP4394567B2 (ja) 2004-12-20 2010-01-06 京セラ株式会社 液晶部品モジュールおよび誘電率制御方法
GB0500856D0 (en) 2005-01-17 2005-02-23 Antenova Ltd Pure dielectric antennas and related devices
US7450790B1 (en) 2005-09-27 2008-11-11 The Regents Of The University Of California Non-electronic radio frequency front-end with immunity to electromagnetic pulse damage
EP1772748A1 (en) 2005-10-05 2007-04-11 Sony Deutschland GmbH Microwave alignment apparatus
US7636063B2 (en) 2005-12-02 2009-12-22 Eswarappa Channabasappa Compact broadband patch antenna
US7876283B2 (en) 2005-12-15 2011-01-25 Stmicroelectronics S.A. Antenna having a dielectric structure for a simplified fabrication process
US7504721B2 (en) 2006-01-19 2009-03-17 International Business Machines Corporation Apparatus and methods for packaging dielectric resonator antennas with integrated circuit chips
IL173941A0 (en) 2006-02-26 2007-03-08 Haim Goldberger Monolithic modules for high frequecney applications
US7570219B1 (en) 2006-05-16 2009-08-04 Rockwell Collins, Inc. Circular polarization antenna for precision guided munitions
US7443363B2 (en) 2006-06-22 2008-10-28 Sony Ericsson Mobile Communications Ab Compact dielectric resonator antenna
US7595765B1 (en) 2006-06-29 2009-09-29 Ball Aerospace & Technologies Corp. Embedded surface wave antenna with improved frequency bandwidth and radiation performance
US7710325B2 (en) 2006-08-15 2010-05-04 Intel Corporation Multi-band dielectric resonator antenna
US7619564B2 (en) 2006-08-23 2009-11-17 National Taiwan University Wideband dielectric resonator monopole antenna
US10727597B2 (en) 2006-10-09 2020-07-28 Advanced Digital Broadcast S.A. Dielectric antenna device for wireless communications
US7292204B1 (en) 2006-10-21 2007-11-06 National Taiwan University Dielectric resonator antenna with a caved well
US20080094309A1 (en) 2006-10-23 2008-04-24 M/A-Com, Inc. Dielectric Resonator Radiators
CN101523750B (zh) 2006-10-27 2016-08-31 株式会社村田制作所 带电磁耦合模块的物品
US7834815B2 (en) 2006-12-04 2010-11-16 AGC Automotive America R & D, Inc. Circularly polarized dielectric antenna
US20080129617A1 (en) 2006-12-04 2008-06-05 Agc Automotive Americas R&D, Inc. Wideband Dielectric Antenna
US7498969B1 (en) 2007-02-02 2009-03-03 Rockwell Collins, Inc. Proximity radar antenna co-located with GPS DRA fuze
US7382322B1 (en) 2007-03-21 2008-06-03 Cirocomm Technology Corp. Circularly polarized patch antenna assembly
WO2008136249A1 (ja) 2007-04-27 2008-11-13 Murata Manufacturing Co., Ltd. 共振素子および、その製造方法
TWI332727B (en) 2007-05-02 2010-11-01 Univ Nat Taiwan Broadband dielectric resonator antenna embedding a moat and design method thereof
TWI324839B (en) 2007-05-07 2010-05-11 Univ Nat Taiwan Wideband dielectric resonator antenna and design method thereof
US8264417B2 (en) 2007-06-19 2012-09-11 The United States Of America As Represented By The Secretary Of The Navy Aperture antenna with shaped dielectric loading
US7750869B2 (en) 2007-07-24 2010-07-06 Northeastern University Dielectric and magnetic particles based metamaterials
TWI345336B (en) 2007-10-23 2011-07-11 Univ Nat Taiwan Dielectric resonator antenna
US7843288B2 (en) 2007-11-15 2010-11-30 Samsung Electronics Co., Ltd. Apparatus and system for transmitting power wirelessly
TWI353686B (en) 2007-11-20 2011-12-01 Univ Nat Taiwan A circularly-polarized dielectric resonator antenn
US7538728B1 (en) 2007-12-04 2009-05-26 National Taiwan University Antenna and resonant frequency tuning method thereof
TWI338975B (en) 2007-12-14 2011-03-11 Univ Nat Taiwan Circularly-polarized dielectric resonator antenna
TWI354399B (en) 2008-01-18 2011-12-11 Univ Nat Taiwan A dielectric resonator antenna with a transverse-r
FI20085304A0 (fi) 2008-04-11 2008-04-11 Polar Electro Oy Resonaattorirakenne pienikokoisissa radiolaitteissa
US7825860B2 (en) 2008-04-16 2010-11-02 Sony Ericsson Mobile Communications Ab Antenna assembly
CN101565300A (zh) 2008-04-25 2009-10-28 浙江大学 一种低损耗微波介质陶瓷
US9018616B2 (en) 2008-07-25 2015-04-28 Ramot At Tel-Aviv University Ltd. Rectifying antenna device with nanostructure diode
US8736502B1 (en) 2008-08-08 2014-05-27 Ball Aerospace & Technologies Corp. Conformal wide band surface wave radiating element
KR20100028303A (ko) 2008-09-04 2010-03-12 삼성전기주식회사 저유전손실의 유전체 페이스트 및 그를 이용한 유전체의 제조방법
US7999749B2 (en) 2008-10-23 2011-08-16 Sony Ericsson Mobile Communications Ab Antenna assembly
US8498539B1 (en) 2009-04-21 2013-07-30 Oewaves, Inc. Dielectric photonic receivers and concentrators for radio frequency and microwave applications
US8098197B1 (en) 2009-08-28 2012-01-17 Rockwell Collins, Inc. System and method for providing hybrid global positioning system/height of burst antenna operation with optimizied radiation patterns
US8149181B2 (en) 2009-09-02 2012-04-03 National Tsing Hua University Dielectric resonator for negative refractivity medium
FR2952240B1 (fr) 2009-11-02 2012-12-21 Axess Europ Antenne a resonateur dielectrique a double polarisation
US8547287B2 (en) 2009-11-24 2013-10-01 City University Of Hong Kong Light transmissible resonators for circuit and antenna applications
KR101067118B1 (ko) 2009-12-08 2011-09-22 고려대학교 산학협력단 다층 기판에 내장된 유전체 공진기 안테나
US20110163921A1 (en) 2010-01-06 2011-07-07 Psion Teklogix Inc. Uhf rfid internal antenna for handheld terminals
KR101119354B1 (ko) 2010-04-13 2012-03-07 고려대학교 산학협력단 대역폭 향상을 위한 다층 기판에 내장된 유전체 공진기 안테나
US8902115B1 (en) 2010-07-27 2014-12-02 Sandia Corporation Resonant dielectric metamaterials
US9774076B2 (en) 2010-08-31 2017-09-26 Siklu Communication ltd. Compact millimeter-wave radio systems and methods
KR20120088484A (ko) 2010-10-13 2012-08-08 한국전자통신연구원 다층 기판을 이용한 안테나 구조
US8835339B2 (en) 2010-12-13 2014-09-16 Skyworks Solutions, Inc. Enhanced high Q material compositions and methods of preparing same
US8928544B2 (en) 2011-02-21 2015-01-06 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Wideband circularly polarized hybrid dielectric resonator antenna
EP2694454A4 (en) 2011-03-23 2014-10-08 Univ Missouri HIGH DIELECTRIC CONSTANT COMPOSITE MATERIALS AND METHODS OF MAKING SAME
US8803749B2 (en) 2011-03-25 2014-08-12 Kwok Wa Leung Elliptically or circularly polarized dielectric block antenna
US8624788B2 (en) 2011-04-27 2014-01-07 Blackberry Limited Antenna assembly utilizing metal-dielectric resonant structures for specific absorption rate compliance
KR101757719B1 (ko) 2011-05-11 2017-07-14 한국전자통신연구원 안테나
CN103843198B (zh) 2011-07-29 2016-05-04 萨斯喀彻温大学 聚合物基谐振器天线
KR101309469B1 (ko) 2011-09-26 2013-09-23 삼성전기주식회사 알에프 모듈
KR101255947B1 (ko) 2011-10-05 2013-04-23 삼성전기주식회사 대역폭 조절 가능한 유전체 공진기 안테나
KR20130050105A (ko) 2011-11-07 2013-05-15 엘지전자 주식회사 안테나 장치 및 이를 구비하는 이동 단말기
EP2595243B1 (en) 2011-11-15 2017-10-25 Alcatel Lucent Wideband antenna
US20130120193A1 (en) 2011-11-16 2013-05-16 Schott Ag Glass ceramics for use as a dielectric for gigahertz applications
GB201200638D0 (en) 2012-01-13 2012-02-29 Sarantel Ltd An antenna assembly
US8773319B1 (en) 2012-01-30 2014-07-08 L-3 Communications Corp. Conformal lens-reflector antenna system
US9608330B2 (en) 2012-02-07 2017-03-28 Los Alamos National Laboratory Superluminal antenna
US9123995B2 (en) 2012-03-06 2015-09-01 City University Of Hong Kong Dielectric antenna and method of discretely emitting radiation pattern using same
US10361480B2 (en) 2012-03-13 2019-07-23 Microsoft Technology Licensing, Llc Antenna isolation using a tuned groundplane notch
US20130278610A1 (en) 2012-04-19 2013-10-24 Qualcomm Mems Technologies, Inc. Topped-post designs for evanescent-mode electromagnetic-wave cavity resonators
WO2013190392A2 (en) 2012-06-22 2013-12-27 University Of Manitoba Dielectric strap waveguides, antennas, and microwave devices
KR20140021380A (ko) 2012-08-10 2014-02-20 삼성전기주식회사 유전체 공진기 어레이 안테나
US9716319B2 (en) 2012-09-24 2017-07-25 The Antenna Company International N.V. Lens antenna, method for manufacturing and using such an antenna, and antenna system
US9225070B1 (en) 2012-10-01 2015-12-29 Lockheed Martin Corporation Cavity backed aperture coupled dielectrically loaded waveguide radiating element with even mode excitation and wide angle impedance matching
JP6121680B2 (ja) 2012-10-05 2017-04-26 日立オートモティブシステムズ株式会社 レーダモジュールおよびそれを用いた速度計測装置
US10340599B2 (en) 2013-01-31 2019-07-02 University Of Saskatchewan Meta-material resonator antennas
JP5941854B2 (ja) 2013-02-13 2016-06-29 日立オートモティブシステムズ株式会社 ミリ波誘電体レンズアンテナおよびそれを用いた速度センサ
JP6373010B2 (ja) 2013-03-12 2018-08-15 キヤノン株式会社 発振素子
EP2981980B1 (de) 2013-06-28 2022-05-18 Siemens Aktiengesellschaft Induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden
US10135149B2 (en) 2013-07-30 2018-11-20 Samsung Electronics Co., Ltd. Phased array for millimeter-wave mobile handsets and other devices
JP5788452B2 (ja) 2013-09-13 2015-09-30 東光株式会社 誘電体導波管共振器およびそれを用いた誘電体導波管フィルタ
WO2015089643A1 (en) 2013-12-20 2015-06-25 Tayfeh Aligodarz Mohammadreza Dielectric resonator antenna arrays
US9496617B2 (en) 2014-01-17 2016-11-15 Qualcomm Incorporated Surface wave launched dielectric resonator antenna
KR20150087595A (ko) 2014-01-22 2015-07-30 한국전자통신연구원 유전체 공진기 안테나
US9825368B2 (en) 2014-05-05 2017-11-21 Fractal Antenna Systems, Inc. Method and apparatus for folded antenna components
US9985354B2 (en) 2014-10-15 2018-05-29 Rogers Corporation Array apparatus comprising a dielectric resonator array disposed on a ground layer and individually fed by corresponding signal lines, thereby providing a corresponding magnetic dipole vector
WO2016084050A1 (en) 2014-11-28 2016-06-02 Paris Michaels Inter-satellite space communication system - method and apparatus
US10547118B2 (en) 2015-01-27 2020-01-28 Huawei Technologies Co., Ltd. Dielectric resonator antenna arrays
US9548541B2 (en) 2015-03-30 2017-01-17 Huawei Technologies Canada Co., Ltd. Apparatus and method for a high aperture efficiency broadband antenna element with stable gain
US20160294068A1 (en) 2015-03-30 2016-10-06 Huawei Technologies Canada Co., Ltd. Dielectric Resonator Antenna Element
US10361476B2 (en) 2015-05-26 2019-07-23 Qualcomm Incorporated Antenna structures for wireless communications
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9793611B2 (en) 2015-08-03 2017-10-17 City University Of Hong Kong Antenna
US9825373B1 (en) 2015-09-15 2017-11-21 Harris Corporation Monopatch antenna
US10610122B2 (en) 2015-09-29 2020-04-07 Avraham Suhami Linear velocity imaging tomography
US10355361B2 (en) 2015-10-28 2019-07-16 Rogers Corporation Dielectric resonator antenna and method of making the same
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10601137B2 (en) 2015-10-28 2020-03-24 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10056683B2 (en) 2015-11-03 2018-08-21 King Fahd University Of Petroleum And Minerals Dielectric resonator antenna array system
KR102425825B1 (ko) 2015-12-16 2022-07-27 삼성전자주식회사 다중 공진 안테나 장치
US10381735B2 (en) 2016-03-21 2019-08-13 Huawei Technologies Co., Ltd. Multi-band single feed dielectric resonator antenna (DRA) array
CN106299672A (zh) * 2016-10-18 2017-01-04 哈尔滨工业大学 一种极化可调的锥形介质谐振天线
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
US10965032B2 (en) 2018-01-08 2021-03-30 City University Of Hong Kong Dielectric resonator antenna
US11276934B2 (en) 2018-06-07 2022-03-15 City University Of Hong Kong Antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141566A (ja) 2008-12-11 2010-06-24 Denso Corp 誘電体装荷アンテナ

Also Published As

Publication number Publication date
WO2019140420A1 (en) 2019-07-18
KR20200100634A (ko) 2020-08-26
JP2021510949A (ja) 2021-04-30
US10910722B2 (en) 2021-02-02
CN111602298A (zh) 2020-08-28
DE112019000418T5 (de) 2020-10-08
US20190221940A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP7209717B2 (ja) 第1および第2の誘電体部分を有する誘電体共振器アンテナ
JP7209716B2 (ja) 第1および第2の誘電体部分を有する誘電体共振器アンテナ
JP7244517B2 (ja) 第1および第2の誘電体部分を有する誘電体共振器アンテナ
KR100885739B1 (ko) 안테나 장치
US9853485B2 (en) Antenna for wireless charging systems
US9899744B1 (en) Antenna for wireless charging systems
US11271316B2 (en) Omnidirectional volumetric antenna
US10727565B2 (en) Apparatus for multiple resonance antenna
US11114752B2 (en) Three-dimensional antenna apparatus having at least one additional radiator
KR20130055281A (ko) 유전체 캐비티 안테나
JP2022514178A (ja) 電磁デバイス
JP2008061030A (ja) アンテナ装置
JP2021517760A (ja) 基板集積型導波路アンテナ
US10944163B2 (en) Bung-type antenna and antennal structure and antennal assembly associated therewith
JP6930441B2 (ja) アンテナ装置
JP2020025260A (ja) 導波路装置およびアンテナ装置
CN113169432B (zh) 耦合的介电谐振器和介电波导
JP2005045407A (ja) アンテナ構造およびそれを備えた通信機
KR102170576B1 (ko) 레이더 장치
TWI791925B (zh) 電磁裝置及其陣列
KR20070031387A (ko) 낮은 프로파일 안테나

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20200529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230110

R150 Certificate of patent or registration of utility model

Ref document number: 7209717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150