JP7190097B2 - 測定器用の玉軸受ガイドユニットを有する測定システム - Google Patents

測定器用の玉軸受ガイドユニットを有する測定システム Download PDF

Info

Publication number
JP7190097B2
JP7190097B2 JP2018113416A JP2018113416A JP7190097B2 JP 7190097 B2 JP7190097 B2 JP 7190097B2 JP 2018113416 A JP2018113416 A JP 2018113416A JP 2018113416 A JP2018113416 A JP 2018113416A JP 7190097 B2 JP7190097 B2 JP 7190097B2
Authority
JP
Japan
Prior art keywords
axial
measuring
magnetic
rotation
measuring arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018113416A
Other languages
English (en)
Other versions
JP2019007952A (ja
Inventor
ルドコウスキ マティアス
Original Assignee
カール マール ホールティング ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール マール ホールティング ゲーエムベーハー filed Critical カール マール ホールティング ゲーエムベーハー
Publication of JP2019007952A publication Critical patent/JP2019007952A/ja
Application granted granted Critical
Publication of JP7190097B2 publication Critical patent/JP7190097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/047Accessories, e.g. for positioning, for tool-setting, for measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/002Details
    • G01B3/008Arrangements for controlling the measuring force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0009Guiding surfaces; Arrangements compensating for non-linearity there-of
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/001Constructional details of gauge heads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • G01B7/012Contact-making feeler heads therefor
    • G01B7/016Constructional details of contacts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Rolling Contact Bearings (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、測定器用の測定システムに関する。測定システムは、回転軸を中心に枢動可能に取り付けられた、回転軸から反対方向に離れるように突出してロッカを形成する2つのアームを有する測定アームを備えることができる。ロッカの前アームには、測定素子又はプローブ素子、たとえば、プローブチップ、プローブスキッド、若しくはプローブボールが配置されており、他方の後端には、センサ及び力発生装置が割り当てられている。センサによって後アームの撓みを検出することができ、これに基づいて測定値を求めることができる。力発生装置は、測定される物体又は工作物の表面に規定の力でプローブ素子を押し当てるために使用される。この種のプローブシステムは、たとえば、ドイツ特許出願公開第4013742号明細書、ドイツ特許出願公開第3152731号明細書、ドイツ特許出願公開第19617022号明細書、ドイツ特許出願公開第102007019833号明細書、又はドイツ特許出願公開第102015004525号明細書から知られている。この種のプローブシステムは、たとえば物体の表面粗さを測定するときに使用することができる。
この種のプローブシステムでは、プローブ素子を物体の表面に置く測定力を調整することができる。測定力調整は、たとえば、ドイツ特許出願公開第4013742号明細書又はドイツ特許出願公開第102009020294号明細書から知られている。
この種の測定システム又はプローブシステムを、たとえば座標測定器に使用することで、測定システムは全体として、適切な装置により、空間の中で位置決めされること又は向きを定められることができる。対応する装置が、たとえば、ドイツ特許出願公開第102009019129号明細書又はドイツ特許出願公開第102014110801号明細書に記載されている。
従来技術から進んで、本発明の目的は、測定アームの広い回転角度範囲で精密な測定を行うことを可能にする測定システムを構築することと考えることができる。
この目的は、以下の特徴を有する測定システムによって達成される。
本発明による測定システムは、接触に基づく測定用の触覚プローブシステムとして具体化することができ、又は非接触測定システムとして具体化することができる。前記測定システムは、たとえば、物体の表面粗さ、幾何形状、又は寸法許容差を測定するために使用することができる。この測定のために、測定アームの回転運動又は枢動運動が検出される。物体に配置された測定素子若しくはプローブ素子によって、回転運動若しくは枢動運動が次に引き起こされ、この素子は、物体の表面に接触するか、又は接触なしに規定の若しくは既知の距離を置いて物体の表面に沿って移動する。
前記測定システムは、回転軸に沿って延在する回転不能な軸ピンを備える固定アセンブリを備える。前記固定アセンブリのさらなる部分、たとえばハウジング若しくは電気モータの固定子を、前記軸ピンに対して、少なくとも回転不能又は軸方向に移動不能のいずれか一に締結することができる。
前記軸ピンには、測定アーム収容ユニットが玉軸受ガイドスリーブによって取り付けられている。前記軸ピン及び前記玉軸受ガイドスリーブは、玉軸受ガイドユニットの一部とすることができる。前記玉軸受ガイドスリーブにより、前記測定アーム収容ユニットの前記軸ピンを中心とする回転、及び前記測定アーム収容ユニットの前記軸ピンに沿った軸方向の移動が可能になる。前記測定アーム収容ユニットの前記軸ピンに沿った移動を防止するため又は少なくとも制限するために、磁気アキシアル軸受装置が設けられている。前記磁気アキシアル軸受装置は、前記測定アーム収容ユニットの前記軸ピンに沿った軸方向位置を定めるように構成されている。前記玉軸受ガイドスリーブ又は前記玉軸受ガイドユニットにより、前記測定アーム収容ユニットの非常に低摩擦の回転支持が実現される。前記磁気アキシアル軸受装置は、前記測定アーム収容ユニットの望ましくない軸方向の移動をなくすこと又は少なくとも最小限にすることができる。それは、摩擦なしに作動し、前記測定アーム収容ユニットの前記軸ピンに沿った軸方向位置を、軸方向に作用する磁力によって定めることができる。したがって、前記測定システムは非常に精密に測定を行うことができる。同時に、前記玉軸受ガイドスリーブ又は前記玉軸受ガイドユニットによる前記測定アーム収容ユニットの回転支持により、広い回転角度測定範囲が可能になる。
前記磁気アキシアル軸受装置が、前記玉軸受ガイドスリーブの前記軸ピンに沿った軸方向の軸方向位置を定めるようにさらに構成されていると好ましい。したがって、前記玉軸受ガイドスリーブの望ましくない軸方向の移動も防止又は少なくとも制限することができる。
前記磁気アキシアル軸受装置は、前記測定アーム収容ユニットの軸方向一方側の第1のアキシアル磁気軸受、及び前記測定アーム収容ユニットの軸方向他方側の第2のアキシアル磁気軸受を備えることができる。両方のアキシアル磁気軸受は、反対方向に向けられた磁力を発生させて、前記測定アーム収容ユニットを2つのアキシアル磁気軸受の間に言わば挟持することができる。前記2つのアキシアル磁気軸受は、共同回転のために前記測定アーム収容ユニットに接続され、前記軸ピンを中心に回転可能に取り付けられた、他の構成要素の異なる軸方向側に配置することもできる。
例示的な一実施形態では、前記第1のアキシアル磁気軸受は、前記測定アーム収容ユニットと前記固定アセンブリとの間に軸方向に作用する第1の磁力を発生させるように構成されている。第1の磁力は、たとえば、前記固定アセンブリのハウジングと前記測定アーム収容ユニットとの間に作用することができ、これを前記ハウジングから遠ざけるように軸方向に押すことができる。
前記第2のアキシアル磁気軸受は、前記測定アーム収容ユニットと前記固定アセンブリとの間に軸方向に作用する第2の磁力を発生させるように構成することができる。たとえば、第2の磁力は、前記固定アセンブリの固定子と前記測定アーム収容ユニットとの間に作用することができ、前記測定アーム収容ユニットを前記固定子から遠ざけるように軸方向に押すことができる。第1の磁力が第2の磁力と反対に作用し、この2つの磁力が特に互いに向けられていると好ましい。たとえば、前記測定アーム収容ユニットは、前記固定アセンブリの前記固定子と前記固定アセンブリの前記ハウジングとの間に配置することができ、2つの磁力によって軸方向に付勢することができる。
少なくとも前記第1のアキシアル磁気軸受又は前記第2のアキシアル磁気軸受のいずれか一方が、前記玉軸受ガイドスリーブと前記固定アセンブリとの間に軸方向に作用する第3の磁力を発生させるように構成されているとさらに有利である。さらに、少なくとも前記第1のアキシアル磁気軸受又は前記第2のアキシアル磁気軸受のいずれか一方は、前記玉軸受ガイドスリーブと、少なくとも前記測定アーム収容ユニット又は前記固定アセンブリのいずれか一方との間に軸方向に作用する、第4の磁力を発生させるように構成することができる。
第3の磁力が第4の磁力と反対に作用し、第3の磁力及び第4の磁力が特に互いに向けられているとここでは好ましい。したがって、前記玉軸受ガイドスリーブは、前記アキシアル磁気軸受のうちの少なくとも1つによって、軸方向に磁気的に付勢し、位置決めすることができる。
前記アキシアル磁気軸受は、好ましくは、軸方向に排他的に作用する磁力を発生させるように構成されている。具体的には、回転軸に対して半径方向に作用する合成磁力は発生しないものとする。磁力のいかなる半径方向成分も、好ましくは、ただ合成軸方向磁力だけが有効であるように互いに打ち消し合う。
関連磁力、特に、第1の磁力又は第2の磁力又は第3の磁力又は第4の磁力のうち少なくともいずれか一つを発生させるために、少なくとも前記第1のアキシアル磁気軸受又は前記第2のアキシアル磁気軸受のいずれか一方は、各場合に、少なくとも2つのリング磁石を備える。全てのリング磁石は、好ましくは永久磁気である。前記リング磁石は、好ましくは回転軸と同軸に配置されている。第1の磁力を発生させるリング磁石は、好ましくは、第2の磁力を発生させるリング磁石と同じ半径方向寸法を有する。第3の磁力を発生させるリング磁石が、第4の磁力を発生させるリング磁石と同じ半径方向寸法を有するとやはり有利である。したがって、回転軸に対して直角に延びる軸を中心とする傾動モーメントを避けることができる。例示的な一実施形態では、全てのリング磁石は同じ半径方向寸法を有することができ、又は同一に形成することができる。
リング磁石は、たとえば、それぞれがN磁極及びS磁極を有し、各磁極が回転軸Dを中心に環状に延在する。リング磁石の2つの磁極は、軸方向に隣接して配置されている。2つのリング磁石の同様の磁極を軸方向に直接隣接して配置することにより、2つのリング磁石を互いに遠ざけるように押す、軸方向に作用する磁力を発生させることができる。
リング磁石はまた、周方向に分布しそれぞれがN極及びS極を有する個々の磁気素子を有する磁石を意味すると理解される。たとえば、軸方向に隣接して配置されたN極及びS極をそれぞれが有する複数の磁気素子は、好ましくは、回転軸を中心に周方向に規則正しく分布することができ、このようにしてリング磁石を形成することができる。
前記玉軸受ガイドスリーブが、それぞれが1つの玉用の複数の玉座を備えるとさらに好ましい。各玉は、対応する玉座内で、好ましくは玉中心点を中心に全ての方向に回転することができる。前記玉座又は前記玉は、好ましくは、回転軸を中心に少なくとも1つの螺旋経路又はヘリックスに沿って配置されている。この螺旋経路のために、回転軸Dを中心に周方向に回転する場合、前記玉軸受ガイドスリーブは、螺旋経路のピッチ又はリード角に従って、2つの軸方向側の一方に向かって移動する傾向にある。この軸方向移動の傾向は、前記アキシアル軸受装置によってなくなるか、又は少なくとも制限される。したがって、前記磁気アキシアル軸受装置のみによって完全になくすことはできない、前記玉軸受ガイドスリーブの繰り返される軸方向の微動を、軽減又は回避することが可能である。
さらに、前記玉又は前記玉座の螺旋経路により、複数の玉が回転軸に対して同じ半径方向平面内で軸方向ピン上を転動するのを防止することが可能である。したがって、摩耗を低減することができる。
前記測定アーム収容ユニットの回転角度位置又はそれに配置された測定アームの回転軸を中心とする回転角度値を検出するために、スケール部及び前記スケール部と協働する検出ユニットを備える測定装置が好ましくは設けられている。前記スケール部及び前記検出ユニットは、好ましくは非接触で協働する。前記スケール部及び前記検出ユニットは、共同回転のために前記測定アーム収容ユニットに接続されており、この接続は間接的又は直接的に確立することができる。前記測定装置の他の部分は、それに応じて前記固定アセンブリに配置されている。前記スケール部は、好ましくは、前記測定アーム収容ユニットと一緒に回転軸を中心に回転可能に取り付けられており、前記検出ユニットは、前記固定アセンブリに回転不能に配置されている。
好ましい実施形態では、前記検出ユニットは送信機及び受信機を備えることができる。前記送信機は、電磁放射線又は電磁波を送信し、これが、ビーム経路内に配置された前記スケール部によって、前記スケール部の回転軸を中心とする回転運動又は回転位置に応じて変更され、次いで、前記受信機によって受信される。たとえば、前記送信機は光送信機として具体化することができ、前記受信機は光受信機として具体化することができ、前記スケール部は光路内に配置することができる。光の代わりに、前記送信機はまた、たとえば、前記スケール部によって変動する磁場を生成することができ、変動した磁場を前記受信機によって検出することができる(誘導結合)。
前記検出ユニットはまた、特に回転軸を中心とする回転の方向又は回転の向きを特定するように構成されている。たとえば、回転の方向を特定するために、回転軸を中心に互いに対してずれたスケール素子を有する複数のスケール範囲を前記スケール部に設けることができ、又は回転軸を中心に互いにオフセットして配置された受信機を設けることができ、この受信機はまた、それぞれ個別の若しくは共通の送信機に関連付けることができる。
ここでは、前記送信機及び前記受信機は、前記スケール部の同じ側又は反対側に配置することができる。前記送信機及び前記受信機を前記スケール部の同じ軸方向側に配置するのが好ましい。この場合には、前記スケール部は、回転軸を中心に周方向に配置された、交互の放射線反射領域及び放射線非反射領域又はスケール素子を備えることができる。
モータユニットが、前記固定アセンブリの一部であって共同回転のために前記軸ピン又はハウジングに締結することができる固定子を備えるとやはり有利である。前記固定子は、好ましくは回転子を同軸に囲むことができる。前記モータユニットが永久励磁される電気モータを備え、この電気モータの磁石が前記固定子に配置されているとさらに有利である。したがって、前記回転子の質量及びその慣性モーメントを減少させることができる。
前記回転子には、好ましくは複数の回転子巻線が設けられて、少なくとも1つの電気巻線端子に電気的に接続されている。前記少なくとも1つの電気巻線端子は、前記回転子と一緒に回転軸を中心に回転可能に配置されている。例示的な一実施形態では、複数の巻線端子が設けられており、設けられた各回転子巻線に個別の巻線端子を設けることができ、全ての回転子巻線に追加の共通の巻線端子を設けることができる。たとえば、それに応じて、3つの巻線に4つの巻線端子を設けることができる。巻線端子の数は、前記回転子巻線の電気的接続及び回転子巻線の数によって異なることができる。
さらに、例示的な一実施形態では、前記測定アーム収容ユニットに少なくとも1つの電気測定アーム端子を設けることができる。前記測定アーム端子により、前記測定アーム収容ユニットに保持された測定アームへの電気的接続が生じることができる。少なくとも2つの測定アーム端子が好ましくは設けられている。たとえば、したがって、前記測定アーム内又は上に配置されたデータキャリア、特にチップを読み取ること、また測定アームタイプを自動的に特定することが可能である。たとえば、前記測定アーム収容ユニットに測定アームが配置されているかどうかを検出するために、さらなる測定アーム端子を設けることができる。
前記固定アセンブリに、たとえば前記ハウジング又は前記固定子に、少なくとも1つの電気端子を備える端子装置が設けられているとさらに好ましい。さらに、前記電気端子装置を、前記少なくとも1つの巻線端子又は前記少なくとも1つの測定アーム端子に電気的に接続する、電気的接続装置を設けることができる。前記接続装置は特に、この電気的接続を、前記軸ピンに回転可能に取り付けられた構成要素、特に前記測定アーム収容ユニット及び/若しくは前記回転子の、前記固定アセンブリに対する相対回転が、所望の回転角度範囲内、好ましくは約360°以下で、又は360°よりも大きい回転角度範囲内で可能となるように、確立又は提供するように構成されている。基本的に、前記測定アーム収容ユニットが、回転軸を中心に前記ハウジングに対して1又は複数回360°回転することができるように、前記測定システムを形成することが可能である。
前記接続装置は、例示的な一実施形態では、たとえば電気モータ又は他の回転電気接続の場合に知られているように、ブラシ接触を介して電気的接続を提供することができる。非接触誘導結合を用いることもできる。ブラシの代わりに、導電性転動体、たとえば玉を設けることもでき、回転角度範囲内で周方向に延びる転動体軌道への電気的接続を確立することができ、それにより、相対回転が可能となる。
好ましい例示的な実施形態では、前記電気的接続装置は、少なくとも1つのスパイラル導体を備え、そのスパイラルが実質的に半径方向平面内に回転軸に対して半径方向に延びる。前記スパイラル導体の半径方向外端は、前記固定アセンブリの前記端子装置に電気的に接続することができ、他方の半径方向内端は、関連付けられた巻線端子又は測定端子に電気的に接続することができる。前記回転子又は前記測定アーム収容ユニットの、回転軸を中心とする前記固定ユニットに対する回転の場合には、前記スパイラル導体は、その相対回転の方向の向きに応じて、それぞれ半径方向内側又は半径方向外側に、螺旋状に巻回又は巻出しすることができる。この種のスパイラル導体により、研磨接触又は転がり接触のない電気的接続が確立される。
前記測定システムは、重量補償装置をさらに備えることができる。前記重量補償装置は、回転軸を中心に補償トルクを発生させるように構成されており、この補償トルクは、前記固定アセンブリと前記測定アーム収容ユニットとの間で有効である。前記測定アーム収容ユニットに収容された測定アームは、その重量力のために、回転軸を中心にトルクを発生させる。前記測定アームの重量力によって誘起されるこのトルクは、前記重量補償装置の補償トルクによって、平衡させること又は少なくとも部分的に補償することができる。測定アームによって回転軸を中心に発生するトルクはまた、水平線又は垂直線に対する前記アームの向きにも依存する。前記モータユニットにかかる負荷が前記測定アームの所望の回転角度範囲内で最大限に軽減されるように、補償トルクを前記重量補償装置によって調整することができる。調整される補償トルクの目的は、前記モータユニットによって印加されるトルクを所望の回転角度範囲内でできるだけ低く保ち、それにより、前記測定アームの必要な測定力又は回転位置を実現することとすることができる。
好ましい例示的な実施形態では、前記重量補償装置は少なくとも1つのコイルばねを備えることができ、その半径方向内端が、共同回転のために前記測定アーム収容ユニットに接続されており、その半径方向外端が、前記固定アセンブリに、たとえば前記ハウジングに接続されている。前記少なくとも1つのコイルばねによって、補償トルクを印加することができる。ここでは、前記少なくとも1つのコイルばねが、スパイラル電線路を同時に形成すると有利であり得る。この目的のために、前記コイルばねは導電性材料から製作することができ、又は少なくとも導電性材料を含むことができる。前記コイルばねはこの場合二重機能を有し、一方では補償トルクを発生させることができ、他方では、前記固定アセンブリと、少なくとも前記回転子又は前記測定アーム収容ユニットのいずれか一方に対して回転可能な構成要素との間の、導電接続を提供することができる。
前記重量補償装置が、補償トルクの値を設定することができる設定装置を備えると有利である。たとえば、前記少なくとも1つのコイルばねの半径方向外端が締結された一部分は、前記少なくとも1つのコイルばねの半径方向内端が締結された別の部分に対して、回転軸を中心に回転することができ、所望の回転位置に固定することができる。
前記測定システムの有利な実施形態が、従属請求項、明細書、及び図面から明らかになる。添付図面を参照して、前記測定システムの好ましい実施態様を以下に詳細に説明する。
図1は、測定アームがほぼ水平位置にある本発明による測定システムを備える測定器の概略斜視図を示す。 図2は、測定アームがほぼ垂直位置にある図1の測定システムを備える測定器を示す。 図3は、それに取り付けることができる測定アームを備える本発明による測定システムの例示的な実施形態の概略斜視描写を示す。 図4は、本発明による測定システムの例示的な実施形態の概略ブロック図的部分断面描写を示す。 図5は、固定アセンブリ上の電気端子装置と固定アセンブリに対して回転可能な測定システムの構成要素上の電気端子との間の電気的接続を概略的に示す回路図を示す。 図6は、本発明による測定システムの例示的な実施形態の回転軸に沿った斜視断面図を示す。 図7は、図6の測定システムの、特に測定システムの固定アセンブリの一部の斜視断面図を示す。 図8は、図7の固定アセンブリのない図6の測定システムの一部の斜視断面図を示す。 図9は、図8の測定システムの一部を別の斜視断面図で示す。 図10は、図6~図9による測定システムの締結リングを有するコイルばねの斜視図を示す。 図11は、図6~図9による測定システムの玉軸受ガイドスリーブの斜視図を示す。 図12は、スパイラル導体又はコイルばねの半径方向内端の間の電気的接触の基本図を示す。 図13は、スパイラル導体又はコイルばねのそれらの半径方向内端における電気的接触の斜視部分断面描写を示す。 図14は、図6~図11による測定システムの固定アセンブリのハウジングの斜視図を示す。
図1及び図2は、たとえば工作物又は物体12の表面11の表面粗さを測定するために使用することができる測定器10を示す。この種の測定器10を使用して、物体12の幾何形状又は寸法許容差をも測定することができる。
測定器10は、送り軸14と、測定アーム16を備える測定システム15とを備える。測定アーム16は自由端を有し、そこに、触覚又は接触に基づいて物体12を測定するための測定素子17、たとえばプローブ素子を搭載する。測定アーム16は、測定素子17と反対側の端部を、測定システム15の測定アーム収容ユニット18に収容又は保持されている。測定アーム収容ユニット18は、回転軸Dを中心に回転可能に取り付けられている。したがって、測定アーム収容ユニット18に保持された測定アーム16は、回転軸Dを中心に枢動することができる。
送り軸14により、測定アーム16が配置された測定システム15は、測定中に、測定方向、たとえば、水平測定方向Mx又は垂直測定方向Mzに移動することができる。測定素子17が物体12と接触して、物体12の表面11に沿って測定方向に移動する場合、測定アーム16は、表面11の形状、幾何形状、又は粗さに応じて、測定素子17を介して撓む。測定システム15は、測定アーム16又は測定アーム収容ユニット18の枢動位置を検出することができる。さらに、測定素子17の測定方向Mx,Mzの位置を、送り軸14の位置を介して決定することができる。測定素子17の枢動位置及び関連位置と測定方向とを表す測定値ペアを用いて、表面11の粗さ、又は物体12の形状若しくは幾何形状を求めることができる。
図1及び図2に単に概略的に示してある測定器10の例示的な実施形態では、送り軸14は枢動可能である。送り軸14は、高精度の直線軸として形成されている。したがって、それは、所望の測定方向Mx,Mzに向けることができ、少なくとも水平線又は垂直線のいずれか一方に対して任意の角度に傾斜した測定方向も設定することもできる。したがって、測定中に、ただ送り軸14だけによって測定アーム16を移動させれば十分である。変形形態では、機械軸をこの目的のために十分に精密に制御することができる場合、測定アーム16を有する測定システム15はまた、所望の測定方向Mx,Mzに応じて、少なくとも異なる又は複数のいずれか一方の機械軸によって、所望の測定方向に同時に移動させることもできる。
測定アーム収容ユニット18は、測定アーム16の取付用の少なくとも機械的又は電気的のいずれか一方のインタフェースを備えることができる(図3)。測定アーム16用の少なくとも機械的又は電気的のうち一方の締結手段は、測定アーム収容ユニット18の収容体19に配置することができ、この収容体は、回転軸Dから離れるように半径方向に突出している。収容体19は、回転軸Dを中心に回転可能に取り付けられている。それは、この目的のために、回転部20に接続されており、又は回転部20と一体に形成されている。回転部20は、図4、図6、図8、及び図9に示してあり、測定アーム収容ユニット18の一部である。回転部20は、本実施例によれば回転軸Dと同軸に配置されている。
測定システム15は、電気モータ25を有するモータユニット24を備える。電気モータ25は、好ましくはブラシレス電気モータとして具体化される。それは、固定子26及び回転子27を有する。本実施例によれば、電気モータ25は永久励磁される。この目的のために、回転軸Dを中心に周方向Uに分布するように、固定子26に永久磁石28が配置されている。例示的な一実施形態では、固定子26はポット状又はカップ状であり、永久磁石28は固定子の内周面に配置されている(図6及び図7)。固定子26は、共同回転のために、外端29が軸ピン30に、回転軸Dに平行に向けられた軸方向Aに接続されている。軸ピン30は、軸ピン30の長手方向軸が回転軸Dを画定するように、回転軸Dに沿って延在する。ここで提示する例示的な実施形態では、固定子26は、その外端29に、回転軸Dに対して半径方向に延在し、少なくとも摩擦係合接続又は確実係合接続又は好ましくは一体結合接続のうちいずれか一つにより、共同回転のために軸ピン30に接続された壁部31を備える。
電気モータ25の回転子27は、複数の回転子巻線32を、好ましい例示的な実施形態では3つの回転子巻線32を備え、この回転子巻線32のうちの2つは、図6、図8、及び図9に見ることができる。回転子巻線32は、回転子27の積層鉄心33の外周囲に配置されている。
測定アーム収容ユニット18の回転部20は、共同回転のために回転子27に接続されている。共同回転のためのこの接続は、本例示的な実施形態では、回転子27と回転部20の両方が共同回転のために共通のキャリアスリーブ38に配置されているので実現される。回転子27及び回転部20を回転可能に取り付けるために、共通のキャリアスリーブ38は、本実施例によれば、回転軸Dを中心に周方向Uに回転可能に、また回転軸Dに沿って軸方向Aに変位可能に、取り付けられている。この目的のために、本実施例によれば玉軸受ガイドユニット39が設けられている。玉軸受ガイドユニット39により、キャリアスリーブ38の周方向Uの回転及び軸ピン30に対する軸方向Aの変位が可能になる。
本実施例による玉軸受ガイドユニット39は、複数の玉41(図11)を備える玉軸受ガイドスリーブ40を備える。本例示的な実施形態の場合、玉軸受ガイドユニット39はまた、玉41を有する玉軸受ガイドスリーブ40の他に、軸ピン30及びキャリアスリーブ38をも含む。玉41は、玉中心点を中心に全ての方向に回転可能に、それぞれが玉軸受ガイドスリーブ40の玉座内に配置されている。したがって、玉軸受ガイドスリーブ40はまた、玉軸受用保持器と呼ぶこともできる。玉41が、回転軸Dを中心に螺旋経路Sに沿って配置されていることが、特に図8、図9、及び図11から分かる。螺旋経路Sは、図8に破線で概略的に示してある。螺旋経路Sはまた、ヘリックスと呼ぶこともできる。螺旋経路Sはリード角αを有する。図示してある例示的な実施形態と比較した変形形態では、周方向Uに互いにオフセットして配置された複数の螺旋経路Sに沿って、玉41を配置することも可能である。玉軸受ガイドスリーブ40は、一方の軸端に、実質的に半径方向平面内に回転軸Dに対して半径方向に配置されたリングフランジ42を備える。
回転可能に取り付けられた部品の軸ピン30に沿った軸方向移動は、望ましくない。摩擦のない十分な剛性の軸方向支持を提供するために、測定システム15は、測定アーム収容ユニット18及び共同回転のためにそれに接続された回転子27の軸方向位置を定めることができる、磁気アキシアル軸受装置46を備える。本例示的な実施形態では、玉軸受ガイドスリーブ40の軸方向位置もまた、磁気アキシアル軸受装置46によって定められる。
本実施例による磁気アキシアル軸受装置46(図6)は、第1のアキシアル磁気軸受47及び第2のアキシアル磁気軸受48を有する。2つのアキシアル磁気軸受47,48は、軸方向Aに互いに離れて配置されている。第1のアキシアル磁気軸受47は、測定アーム収容ユニット18、本実施例によれば回転部20と、固定アセンブリ52との間に軸方向Aに作用する、第1の磁力F1を発生させるように構成されている。固定アセンブリ52は、軸ピン30、及び共同回転のために軸ピン30に間接的若しくは直接的に接続された、又はそれに固定的に接続された、測定システム15の全ての構成要素を含む。
本実施例によれば、共同回転のために軸ピン30に接続されたハウジング49が設けられている。それは、中空円筒状デザインを有し、本実施例によれば、全く貫通開口がないわけではないケージのように形成されている。本例示的な実施形態のハウジング49は、モータユニット24と軸方向反対側の外端50に、回転軸Dに対して実質的に半径方向に延在し、共同回転のためにハウジングを軸ピン30に接続する、壁部51を有する。
したがって、ハウジング49及び固定子26は、固定アセンブリ52の構成要素である。
第1の磁力F1は、回転部20をハウジング49の外端50から遠ざけて、固定子26に向かわせる。第2のアキシアル磁気軸受48は、測定アーム収容ユニット18の回転部20と、固定アセンブリ52、本実施例によれば固定子26との間に、第2の磁力F2を発生させる。第2の磁力F2は、回転部20、本実施例によれば、回転部20、キャリアスリーブ38、及び回転子27で形成された回転可能に取り付けられたアセンブリを、固定子26から遠ざけて、ハウジング49の外端50に向かわせる。磁力F1,F2は、図4に概略的に示してある。固定子26及びハウジング49は、軸ピン30により、互いに対して軸方向Aに移動不能に結合されており、周方向Uの共同回転のために結合されている。第1の磁力F1及び第2の磁力F2は、反対方向から互いに向けられており、等しい大きさである。回転子27、測定アーム収容ユニット18の回転部20、及びキャリアスリーブ38で形成された回転可能に取り付けられたアセンブリは、反対方向に向けられた磁力F1,F2によって、軸方向に付勢され、位置決めされる。図4の異なる矢印の長さは、大きさを表すものではなく、それよりも、磁力が支持される箇所を示すことを意図するものである。
玉軸受ガイドスリーブ40の軸方向位置が、2つのアキシアル磁気軸受のうちの1つにより、本実施例によれば第1のアキシアル磁気軸受47により、さらに予め定められる。この目的のために、軸方向に作用する第3の磁力F3が第1のアキシアル磁気軸受47によって発生して、固定アセンブリ52、本実施例によればハウジング49と、玉軸受ガイドスリーブ40との間に作用する。本実施例によれば、第3の磁力F3は、玉軸受ガイドスリーブ40をハウジング49の外端50から固定子26の方向に遠ざける。第1のアキシアル磁気軸受47は、第4の磁力F4をさらに発生させる。第3の磁力F3及び第4の磁力F4は、互いに反対方向に向けられている。それらは等しい大きさであり、玉軸受ガイドスリーブ40の軸ピン30に沿った軸方向位置を定める。本例示的な実施形態では、第4の磁力F4は、測定アーム収容ユニット18の回転部20と玉軸受ガイドスリーブ40との間に作用して、玉軸受ガイドスリーブ40を回転部20からハウジング49の外端50の方向に遠ざける。回転部20は次に、第2のアキシアル磁気軸受48により、第4の磁力F4を固定アセンブリ52上に支持する。
2つのアキシアル磁気軸受47,48の配置は、特に図6から分かる。各アキシアル磁気軸受47,48は、回転軸Dと同軸に配置され、軸方向Aに磁化された、複数のリング磁石を有する。これは、リング磁石のN極及びS極が、軸方向に隣接して配置されていることを意味する。図6~図9には、リング磁石のN極が破線の平行線で満たされた領域によって概略的に示してあり、リング磁石のS極が菱形ハッチングよって概略的に示してある。アキシアル磁気軸受47,48の全てのリング磁石は、本実施例によれば永久磁気である。
図6から分かるように、第1のアキシアル磁気軸受47は、軸方向Aに隣接して配置された3つのリング磁石を備える。第1のリング磁石55は、共同回転のために、また軸方向に変位不可能に軸ピン30に取り付けられた、支持リング56上に位置している。他の例示的な実施形態では、支持リング56は、ハウジング49に、たとえば壁部51に直接接続することもできる。したがって、支持リング56は、少なくとも固定アセンブリ52又はハウジング49のいずれか一方の一部である。
第1のリング磁石55に直接隣接して、第1のアキシアル磁気軸受47の第2のリング磁石57が配置されている。第2のリング磁石57は、玉軸受ガイドスリーブ40上に、たとえばリングフランジ42に締結されており、玉軸受ガイドスリーブ40と一緒に軸ピン30に対して移動することができる。第3の磁力F3を発生させるために、第1のリング磁石55及び第2のリング磁石57が互いに反発し合うように、第2のリング磁石57のN極は、ここでは第1のリング磁石55のN極に直接隣接して配置されている。
第1のアキシアル磁気軸受47は、第3のリング磁石58をさらに備える。第3のリング磁石58は、本実施例によれば遊びをもって玉軸受ガイドスリーブ40を囲んでいる。それは、その半径方向外側領域で、測定アーム収容ユニット18の回転部20に固定的に接続されている。本実施例によれば、回転部20は、キャリアスリーブ38を越えて軸方向に突出し、第3のリング磁石58が締結された、軸方向延在部59を有する。本例示的な実施形態のキャリアスリーブ38は、第3のリング磁石58から軸方向に離れて配置されている。第1のアキシアル磁気軸受47の全てのリング磁石55,57,58は、回転軸Dと同軸に配置されている。
第3のリング磁石58が第2のリング磁石57によって第1のリング磁石55に間接的に支持されているので、第1のアキシアル磁気軸受47のこの例示的な実施形態で第1の磁力F1が実現される。この積層配置の結果、第1のアキシアル磁気軸受47のリング磁石の数を最小限にすることができる。変更された例示的な実施形態では、同一の極が互いに隣接した状態で第1のリング磁石55及び第3のリング磁石58が配置されている場合、これらの間に第1の磁力F1を直接的に発生させることもできる。
ここで示す例示的な実施形態の場合には、第1のアキシアル磁気軸受47の3つの全てのリング磁石55,57,58は同じ半径方向寸法を有し、好ましくは同一に形成されている。所望の反発力を実現するために、真ん中に配置された第2のリング磁石57は、他の2つのリング磁石55,58と比較して正反対の磁気分極で配置されている。
第2のアキシアル磁気軸受48は、第4のリング磁石60及び第5のリング磁石61を備える。本実施例によれば、第4のリング磁石60及び第5のリング磁石61は、同じ半径方向寸法並びに/又は第1のアキシアル磁気軸受47のリング磁石55,57,58と同じ半径方向寸法を有し、第1のアキシアル磁気軸受47のリング磁石55,57,58と同一に構成することができる。第4のリング磁石60及び第5のリング磁石61は、回転軸Dを同軸に囲んでいる。第4のリング磁石60は、回転子27に固定的に配置されている。第5のリング磁石61は、固定子26に固定的に配置されており、本実施例によれば壁部31に配置されている。第4のリング磁石60及び第5のリング磁石61は、互いに隣接して配置されており、2つのリング磁石60,61が互いに反発するように、同一の磁極が直接隣接して配置されている。したがって、固定子26と回転子27との間に軸方向の磁力が発生して、第2の磁力F2を形成する。本実施例によれば、2つのN極が互いに直接隣接して配置されている。
上記で説明したように、本例示的な実施形態では、全てのリング磁石55,57,58,60,61は同じ半径方向寸法を有する。したがって、これらのリング磁石によって発生する磁力は、回転軸Dに対して直角にトルクが生じないように、回転軸Dから等距離に配置されている。
玉軸受ガイドスリーブ40の玉41が、回転軸Dを中心に螺旋経路S上に配置されているので、玉軸受ガイドスリーブ40は、軸ピン30を中心とする回転に伴って、螺旋経路Sのピッチに従って軸ピン30に沿って軸方向Aの一方側にだけ移動する傾向にある。この移動は、磁気アキシアル軸受装置46によって防止される。螺旋経路Sに沿った玉41の配置により、磁気アキシアル軸受装置46のみによって支持することができない玉軸受ガイドスリーブ40の非常に小さい微動を、軸ピン30に沿って回避することができる。したがって、玉軸受ガイドスリーブ40の、その結果、それに取り付けられた測定アーム収容ユニット18の軸方向Aの位置決めもまた、さらに改善することができる。
測定アーム収容ユニット18又は収容体19の回転軸Dを中心とする回転位置を検出するための測定システム15は、測定装置67を備える。測定装置67は、図4にかなり概略的に示してある。測定装置67の構成要素はまた、図7及び図9にも見られる。スケール部68及び検出ユニット69が測定装置67に属する。回転位置を検出するために、検出ユニット69は、本実施例によれば非接触で、スケール部68と共に作動する。この目的のために、本実施例による検出ユニット69は、送信機70及び受信機71を備える。送信機70は、本実施例によれば光送信機として具体化され、受信機71は、本実施例によれば光受信機として具体化される。送信機70及び受信機71は、スケール部68に対して同じ側又は反対側に配置することができる。本実施例によれば、送信機70及び受信機71は同じ側に隣接して配置されており、ハウジング49に締結されている。
スケール部68は、固定アセンブリ52に、及び本実施例によれば共同回転のために測定アーム収容ユニットに接続されている。スケール部68は、本例示的な実施形態では、完全に閉じた周方向Uのリングディスクとして具体化される(図9)。それは、環状スケール領域内に光反射素子及び光非反射素子を交互に備える。反射素子は、送信機70から発せられた光を反射し、その光は非反射素子によって少なくとも部分的に吸収される。反射光の異なる強度が受信機71によって検出される。したがって、相対移動を特定することができる。したがって、検出ユニット69の助けにより、軸ピン30を中心とする、したがって回転軸Dを中心とする、測定アーム収容ユニット18の回転角度位置の変化を検出することができる。このようにして検出された回転角度値は、測定される変数、たとえば物体12の表面11の粗さ又はその形状若しくは幾何形状を求めるのに使用できる測定値と、相関関係にある。
スケール部68又はそのスケール領域はまた、図示してある例示的な実施形態と比較した変形形態では、完全に閉じていなくてもよく、それに応じて測定範囲が360°よりも小さい角度範囲に制限されているとき、円弧の形で具体化することができる。環状に閉じたスケール領域を有する本実施例によれば完全に閉じたディスクによって、基本的にいかなる任意の回転角度位置(0°~360°)も、測定アーム16を使用して測定することができる。
モータユニット24又は電気モータ25は、測定アーム収容ユニット18に、その結果、それに配置された測定アーム16に、回転軸Dを中心とするモータトルクを発生させるように構成されている。したがって、測定中に、測定素子17を物体12の表面11に当接させる予め定められた測定力を設定し、特に制御することができる。制御ユニット(図示せず)が、さらにパラメータ依存的に、電気モータ25のモータトルクについてモータ制御可変特性を予め定めることができ、このモータ制御変数は、少なくとも前記制御ユニットに保存された特性曲線に従って、開ループ制御又は閉ループ制御によって制御することができる。モータ制御変数は、たとえばモータ電流とすることができる。少なくとも1つの特性曲線は、少なくとも1つのパラメータに依存することができ、たとえば、使用される測定アーム16、特に回転軸Dと測定素子17との間の少なくともその長さ、又はその重さのいずれか一方、特に水平線若しくは垂直線に対する測定アーム16の電流回転角度位置、並びに他のパラメータに依存することができる。したがって、制御ユニットは所望の測定力を制御することができる。少なくとも1つの特性曲線は、少なくとも異なる測定アームについて、又は異なる測定範囲(回転軸を中心とする回転角度範囲)のいずれか一方で、経験的に求めることができる。
本実施例によれば、1又は複数の回転可能に取り付けられた構成要素と固定アセンブリ52との間の電気的接続を確立することが必要である。電気的接続は、特に図5に概略的に示してある。回転子27には、回転子巻線32の電気的接続のために複数の電気巻線端子76が設けられている。本例示的な実施形態では、4つの電気巻線端子が回転子27に設けられている。巻線端子76は、本実施例によれば3つの回転子巻線32のそれぞれに設けられており、さらに、全ての回転子巻線32が電気的に接続されたスターポイント77に電気的に接続された共通の巻線端子76が設けられている。回転子巻線32及びその電気的接続の数に応じて、より多くの又はより少ない電気巻線端子76を回転子27に設けることもできる。
本実施例によれば、測定アーム収容ユニット18に少なくとも1つの電気測定アーム端子78が設けられており、各場合に、収容体19上の1又は複数の電気接触素子79に電気的に接続される。少なくとも1つの接触素子79は、接触面、接触ピン、接触ソケット等によって形成することができる。それは、収容された測定アーム16と共に、測定アーム16上の適当な対応する電気対向接触子への電気的接続を提供するように構成されている。測定アーム収容ユニットの実施形態に応じて、1つ、2つ、若しくはさらにより多くの少なくとも接触素子79又は測定アーム端子78のいずれか一方を設けることができる。図5には、単なる一例として、2つの測定アーム端子78が示してある。
両方の巻線端子76と測定アーム端子78は、回転軸Dを中心に回転可能に取り付けられている。ハウジング49又は固定アセンブリ52の別の部分には、回転軸D又は軸ピン30に対して回転可能に固定して配置された電気端子装置80が設けられている(図3、図4、及び図14)。電気端子装置80は、設けられた巻線端子76及び測定アーム端子78の数に応じて、対応する数の電気端子81を有する。たとえば、図14には端子クランプ82の形の9つの電気端子81が示してある。端子装置80の電気端子81は、本例示的な実施形態では電気絶縁板83上に締結されており、この板はここではハウジング49に固定的に接続されている。
測定アーム収容ユニット18又は回転子27の軸ピン30を中心とする回転可能性を著しく制限することなく、端子装置80の電気端子81と設けられた少なくとも巻線端子76又は測定アーム端子78のいずれか一方との間の電気的接続を提供する、電気的接続装置84が設けられている。
たとえば、電気的接続装置84は、ブラシ等などの摺動接触子、又は導電性であり、回転軸Dと同心円状に配置された導電性軌道上を摺動若しくは転動する玉若しくはローラなどの転動体を備えることもできる。前記軌道は、たとえば対応するライン又はケーブルにより、少なくとも巻線端子76又は測定アーム端子78のいずれか一方に電気的に接続することができる。
本例示的な実施形態の場合には、電気接続装置84は、1又は複数の電気スパイラル導体85を備える。各スパイラル導体85は、回転軸Dの方向に外端86から半径方向内側に螺旋状に巻回され、巻きの半径が半径方向内側に減少する。スパイラル導体85は、回転軸Dに対して実質的に半径方向平面内に延在する。スパイラル導体85の半径方向内端を備える又は形成する半径方向最内巻き87が、締結リング88内に収容されている。締結リング88は、半径方向外側に開いた溝又はチャネルを有する。前記チャネルは、締結リング88の環状基部88bによって半径方向内側に互いに接続された、締結リング88の第2の側壁88aによって、軸方向Aに画定される。したがって、締結リング88はU字形断面を有する。半径方向最内巻き87は、摩擦係合、一体結合、若しくは確実係合させて、又はこれらの締結タイプの組み合わせによって、締結リング88内に固定することができる。本例示的な実施形態では、締結リング88の側壁88aは、少なくともいくつかの箇所で再成形され、少なくとも、これらの箇所で半径方向最内巻き87に締付力を加えるか、又はこれらの再成形箇所で半径方向最内巻き87への確実係合接続を形成する。
スパイラル導体85及び締結リング88は、導電性材料製であり、機械的接続の確立により同様に互いに電気的に接続されている。スパイラル導体の外端86は、特に図14に示してあるように、電気端子装置80の関連付けられた端子81に電気的に接続されている。
締結リング88及び特にその環状基部88bは、1又は複数の周辺箇所で、その半径方向内側に面した下面上に非円領域89がある状態で形成されている。非円領域89は、締結リング88の半径方向内側下面の残りの部分を有する共通の円筒側面上に位置せず、その外側に位置する、周辺箇所を意味すると理解されたい。ここで提示する例示的な実施形態の場合には、非円領域89は、円筒側面を有する円筒に広がる扁平部分によって具体化され、締結リング88の下面がこの円筒側面上の非円領域89の外側に位置する。
スパイラル導体85用の締結リング88は、回転軸Dと同軸に配置された本体、本実施例によればスリーブ状キャリア90の外側面上に配置されている。この外側面は、締結リング88の半径方向内側下面に適合された断面輪郭を有する。それは、非円領域89、本例示的な実施形態では扁平部分に対応する、周辺領域を備える。したがって、締結リング88は、回転軸Dを中心にスリーブ状キャリア90に対して回転するのを防止される。扁平部分の代わりに、たとえば、スリーブ状キャリア90の側面の軸方向溝、及びこの軸方向溝に係合する、各締結リング88の半径方向内側下面上の対応する突出部など、他の回転防止手段を設けることもできる。締結リング88はまた、接着、溶接等などの一体結合接続により、スリーブ状キャリア90に接続することもできる。
本例示的な実施形態のスリーブ状キャリア90は、電気絶縁材料からなる。電気絶縁材料製の絶縁リング91が、各場合に2つの直接隣接する締結リング88の間に配置されている。絶縁リング91が間に配置された状態の締結リング88は、スリーブ状キャリア90の端面フランジ92と固定リング93との間に軸方向Aに固定され、本実施例によれば挟持される。たとえば、固定リング93は、フランジ92と反対側の軸端で、スリーブ状キャリア90に螺合することができる。
スリーブ状キャリア90は、共同回転のために、回転部20に、本実施例によれば軸方向延在部59に接続されている。したがって、それは、測定アーム収容ユニット18の回転部20又は回転子27と一緒に、回転軸Dを中心にハウジング49に対して回転する。回転の向きに応じて、螺旋状に巻回されたスパイラル導体85を巻回又は巻出しすることができ、その個々の巻きが、互いにより近づき、又は互いにさらに遠ざかる。
図面から、特に図10から明らかなように、ここで説明する例示的な実施形態のスパイラル導体85は、コイルばね97で形成されている。コイルばね97は、スリーブ状キャリア90とハウジング49との間にトルクを発生させることができ、このトルクは、たとえば、測定アーム16の重量力によって加えられるトルクの少なくとも部分的な補償のための補償トルクMK(図14)として機能する。したがって、コイルばね97は重量補償装置98を形成する。補償トルクMKは、使用される測定アーム16、特にその長さ及び重量に応じて設定することができ、その結果、所望の測定力を加えるために、モータユニット24又は電気モータ25は、できるだけ最小の大きさの回転子トルクを発生させなければならない。回転軸Dを中心とする回転角度に依存するコイルばね97のばね特性曲線は、十分に小さい傾きを有し、その結果、測定アーム16により回転軸Dを中心に発生するトルクの良好な補償が、所望の回転角度測定範囲にわたって可能である。
重量補償装置98は、補償トルクMKの大きさを設定するように構成された設定装置99を有する。設定装置99は、本実施例によれば、補償トルクMKの所望の大きさに達するまで、スリーブ状キャリア90が回転軸Dを中心にハウジング49に対して回転するように、形成されている(図14)。この位置では、測定アーム収容ユニット18の回転部20へのスリーブ状キャリア90の接続が生じ、次いで、これが回転軸Dを中心とする所望の補償トルクMKの作用を受ける。
図12及び図13には、スリーブ状キャリア90の領域の電気接触が示してある。各導電性締結リング88は、導電性接触ピン103に当接する。接触ピン103はスリーブ状キャリア90上に配置され、対応する関連付けられた締結リング88に向かって、回転軸Dから離れるように半径方向外側に突出している。各接触ピン103は、さらに導体104に電気的に接続されている。導体104は、本例示的な実施形態ではリボンケーブル105の導体である。図13に概略的に見ることができるように、リボンケーブル105は、スリーブ状キャリア90の半径方向外側の軸方向凹部内を通っている。導体104は、リボンケーブル105の絶縁体によって電気的に絶縁されている。
リボンケーブル105は、測定アーム収容ユニット18の回転部20に案内される。測定アーム収容ユニット18の領域で、個々の導体104は、測定アーム端子78の1つと巻線端子76の1つのどちらかに電気的に接続されている。環状プリント基板106が回転部20に締結されていることが、図6、図8、及び図9に見ることができる。環状プリント基板106は、少なくとも電気部品又は電子部品のいずれか一方を搭載することができる。さらに、回転子巻線32への電気的接続がそこで生じる。
したがって、測定システム15は、測定アーム収容ユニット18及びそれに接続された測定アーム16の、回転軸Dを中心とする広い事実上無限の測定範囲又は回転角度範囲を可能にすることができる。モータユニット24及び測定装置67は回転式に作動し、回転軸Dを中心に、特に回転軸Dと同軸に配置されている。2アームロッカを有する測定システムの場合のように、測定アームの可能撓み範囲の制限は、本発明による実施形態には存在しない。
さらに、測定システム15は有利な取付けを提供する。玉軸受ガイドスリーブ40により、軸ピン30を中心とする低摩擦回転可能性が可能となる。磁気アキシアル軸受装置46は、測定システム15の回転可能に取り付けられた構成要素を軸方向Aに支持し、摩擦なしにその軸方向位置を定める。
図6~図9及び図13の断面図では、明瞭にするために、全ての切断面、特にコイルばね97及び締結リング88の切断面に、ハッチングを施したわけではないことに留意するべきである。
本発明は、測定器10用の測定システム15に関する。測定アーム収容ユニット18は、ハウジング49に、又は共同回転のためにハウジング49に接続された軸ピン30に、回転軸Dを中心に回転可能若しくは枢動可能に取り付けられている。測定アーム収容ユニット18に測定アーム16を配置することができる。電気モータ25を有するモータユニット24を使用して、測定アーム収容ユニット18に回転軸Dを中心にモータトルクを発生させる。モータユニット24は、回転軸Dと同軸に配置された回転子27を有する。測定アーム収容ユニット18の回転軸Dを中心とする回転角度位置を特定する回転角度が、スケール部68及び検出ユニット69を有する測定装置67によって検出される。スケール部68は、円弧の形で、環状に、又はディスクの形で、回転軸Dを中心に又は回転軸Dと同軸に配置されている。測定アーム収容ユニット18は、回転軸Dを中心に周方向に回転可能となり、また回転軸Dに沿って軸方向Aに変位可能となるように、玉軸受ガイドユニット39の玉軸受ガイドスリーブ40によって軸ピン30に取り付けられている。測定アーム収容ユニット18の軸方向Aの軸方向位置が、磁気アキシアル軸受装置46の助けによって定められ、作動中に維持される。
10 測定器
11 表面
12 物体
14 送り軸
15 測定システム
16 測定アーム
17 測定素子
18 測定アーム収容ユニット
19 収容体
20 回転部
24 モータユニット
25 電気モータ
26 固定子
27 回転子
28 永久磁石
29 固定子の外端
30 軸ピン
31 固定子の壁部
32 回転子巻線
33 積層鉄心
38 キャリアスリーブ
39 玉軸受ガイドユニット
40 玉軸受ガイドスリーブ
41 玉
42 リングフランジ
46 磁気アキシアル軸受装置
47 第1のアキシアル磁気軸受
48 第2のアキシアル磁気軸受
49 ハウジング
50 ハウジングの外端
51 ハウジングの壁部
55 第1のリング磁石
56 支持リング
57 第2のリング磁石
58 第3のリング磁石
59 軸方向延在部
60 第4のリング磁石
61 第5のリング磁石
67 測定装置
68 スケール部
69 検出ユニット
70 送信機
71 受信機
72 スケール領域
76 電気巻線端子
77 スターポイント
78 電気測定アーム端子
79 接触素子
80 電気端子装置
81 電気端子
82 端子クランプ
83 板
84 電気的接続装置
85 スパイラル導体
86 スパイラル導体の外端
87 半径方向最内巻き
88 締結リング
88a 締結リングの側壁
88b 締結リングの環状基部
89 非円領域
90 スリーブ状キャリア
91 絶縁リング
92 スリーブ状キャリアのフランジ
93 固定リング
97 コイルばね
98 重量補償装置
99 設定装置
103 接触ピン
104 導体
105 リボンケーブル
106 プリント基板
α リード角
A 軸方向
D 回転軸
F1 第1の磁力
F2 第2の磁力
F3 第3の磁力
F4 第4の磁力
Mx 水平測定方向
Mz 垂直測定方向
MK 補償トルク
S 螺旋経路
U 周方向

Claims (16)

  1. 測定アーム(16)を配置するように構成された測定アーム収容ユニット(18)と、
    軸ピン(30)を有する固定アセンブリ(52)であって、前記軸ピン(30)が回転軸(D)に沿って軸方向(A)に延在する、固定アセンブリ(52)と、
    前記測定アーム収容ユニット(18)が、前記軸ピン(30)を中心に回転可能に取り付けられ、前記軸ピン(30)に沿って前記軸方向(A)に変位可能に取り付けられるように、測定アーム収容ユニット(18)を前記軸ピン(30)に取り付ける玉軸受ガイドスリーブ(40)と、
    前記測定アーム収容ユニット(18)の前記軸ピン(30)に沿った軸方向位置を定めるように構成された磁気アキシアル軸受装置(46)と
    を備える、測定器(10)用の測定システム。
  2. 前記磁気アキシアル軸受装置(46)が、玉軸受ガイドスリーブ(40)の前記軸ピン(30)に沿った前記軸方向(A)の軸方向位置を定めるように構成されていることを特徴とする、請求項1に記載の測定システム。
  3. 前記磁気アキシアル軸受装置(46)が、前記測定アーム収容ユニット(18)の軸方向一方側の第1のアキシアル磁気軸受(47)、及び前記測定アーム収容ユニット(18)の軸方向他方側の第2のアキシアル磁気軸受(48)を備えることを特徴とする、請求項1又は請求項2に記載の測定システム。
  4. 前記第1のアキシアル磁気軸受(47)が、前記測定アーム収容ユニット(18)と前記固定アセンブリ(52)との間に前記軸方向(A)に作用する第1の磁力(F1)を発生させるように構成されていることを特徴とする、請求項3に記載の測定システム。
  5. 前記第2のアキシアル磁気軸受(48)が、前記測定アーム収容ユニット(18)と前記固定アセンブリ(52)との間に前記軸方向(A)に作用する第2の磁力(F2)を発生させるように構成されていることを特徴とする、請求項4に記載の測定システム。
  6. 前記第1の磁力(F1)が前記第2の磁力(F2)と反対に作用することを特徴とする、請求項5に記載の測定システム。
  7. 前記第1の磁力(F1)及び前記第2の磁力(F2)が互いに向けられていることを特徴とする、請求項に記載の測定システム。
  8. 少なくとも前記第1のアキシアル磁気軸受(47)又は前記第2のアキシアル磁気軸受(48)のいずれか一方が、前記玉軸受ガイドスリーブ(40)と前記固定アセンブリ(52)との間に前記軸方向(A)に作用する第3の磁力(F3)を発生させるように構成されていることを特徴とする、請求項3~請求項7のいずれか1項に記載の測定システム。
  9. 少なくとも前記第1のアキシアル磁気軸受(47)又は前記第2のアキシアル磁気軸受(48)のいずれか一方が、前記玉軸受ガイドスリーブ(40)と前記測定アーム収容ユニット(18)との間に前記軸方向(A)に作用する第4の磁力(F4)を発生させるように構成されていることを特徴とする、請求項3~請求項8のいずれか1項に記載の測定システム。
  10. 第3の磁力(F3)が第4の磁力(F4)と反対に作用することを特徴とする、請求項8に従属する請求項9に記載の測定システム。
  11. 第3の磁力(F3)及び第4の磁力(F4)が互いに向けられていることを特徴とする、請求項8に従属する請求項9に記載の測定システム。
  12. 記第1のアキシアル磁気軸受(47)及び前記第2のアキシアル磁気軸受(48)のうち少なくとも一方が、前記回転軸(D)と同軸に配置された少なくとも2つのリング磁石を備えることを特徴とする、請求項3~請求項11のいずれか1項に記載の測定システム。
  13. 前記玉軸受ガイドスリーブ(40)が、それぞれが1つの玉(41)用の複数の玉座を備え、前記玉(41)が前記回転軸(D)を中心に螺旋経路に沿って配置されていることを特徴とする、請求項1~請求項12のいずれか1項に記載の測定システム。
  14. 測定値を検出するために、スケール部(68)及び前記スケール部(68)と協働する検出ユニット(69)を備える測定装置(67)が設けられ、前記スケール部(68)又は前記検出ユニット(69)が前記測定アーム収容ユニット(18)に接続されており、前記測定アーム収容ユニット(18)と一緒に前記回転軸(D)を中心に回転可能に配置されていることを特徴とする、請求項1~請求項13のいずれか1項に記載の測定システム。
  15. 前記回転軸(D)と同軸に配置され共同回転のために前記測定アーム収容ユニット(18)に接続された回転子(27)を備える、モータユニット(24)が設けられていることを特徴とする、請求項1~請求項14のいずれか1項に記載の測定システム。
  16. 前記測定アーム収容ユニット(18)及び前記回転子(27)が、前記玉軸受ガイドスリーブ(40)によって前記軸ピン(30)に取り付けられた共通のキャリアスリーブ(38)に配置されていることを特徴とする、請求項15に記載の測定システム。
JP2018113416A 2017-06-21 2018-06-14 測定器用の玉軸受ガイドユニットを有する測定システム Active JP7190097B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017113699.1A DE102017113699B3 (de) 2017-06-21 2017-06-21 Messsystem mit einer Kugelführungseinheit für ein Messgerät
DE102017113699.1 2017-06-21

Publications (2)

Publication Number Publication Date
JP2019007952A JP2019007952A (ja) 2019-01-17
JP7190097B2 true JP7190097B2 (ja) 2022-12-15

Family

ID=62510404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113416A Active JP7190097B2 (ja) 2017-06-21 2018-06-14 測定器用の玉軸受ガイドユニットを有する測定システム

Country Status (5)

Country Link
US (1) US10962347B2 (ja)
JP (1) JP7190097B2 (ja)
CN (1) CN109099879B (ja)
DE (1) DE102017113699B3 (ja)
GB (1) GB2565884B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113699B3 (de) 2017-06-21 2018-06-28 Carl Mahr Holding Gmbh Messsystem mit einer Kugelführungseinheit für ein Messgerät
DE102017113695B3 (de) * 2017-06-21 2018-12-27 Carl Mahr Holding Gmbh Wippenloses Messsystem für ein Messgerät
US20220106760A1 (en) * 2019-02-12 2022-04-07 Jia Yi Chin Pile set measurement apparatus
GB2582375B (en) * 2019-03-22 2022-07-06 Taylor Hobson Ltd Metrological apparatus and method of manufacture
CN114440743B (zh) * 2022-01-28 2024-03-01 中国铁建重工集团股份有限公司 一种轴承套圈圆度检测装置及其检测方法
CN116734710B (zh) * 2023-08-09 2023-10-27 陕西省外经贸建设集团有限公司 一种房屋建筑墙面施工平整度测量装置
CN116793180B (zh) * 2023-08-29 2023-10-31 山西建筑工程集团有限公司 一种防撞墙偏位测量装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181233A (ja) 2003-12-24 2005-07-07 Matsushita Electric Ind Co Ltd 測定用プローブ及び光学式測定装置
JP2010276513A (ja) 2009-05-29 2010-12-09 Mitsutoyo Corp 表面性状測定機用検出器
JP2012526268A (ja) 2009-05-07 2012-10-25 カール マール ホールディング ゲーエムベーハー 表面形状の測定方法および装置
DE102012108707A1 (de) 2012-09-17 2014-05-28 Breitmeier Messtechnik Gmbh Oberflächenprofil- und/oder Rauheitsmessgerät
JP2017044615A (ja) 2015-08-27 2017-03-02 株式会社ミツトヨ プローブヘッド回転機構

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3152731C2 (de) 1981-02-14 1986-11-27 Mitutoyo Mfg. Co., Ltd., Tokio/Tokyo Konturmeßinstrument
JPS60224012A (ja) 1984-04-20 1985-11-08 Mitsutoyo Mfg Co Ltd 三次元測定機のz軸構造
JP2585992B2 (ja) 1987-05-19 1997-02-26 株式会社ニコン 電動プロ−ブのプロ−ブ角度制御装置
DE3717459A1 (de) 1987-05-23 1988-12-01 Zeiss Carl Fa Handgefuehrtes koordinatenmessgeraet
US5189806A (en) 1988-12-19 1993-03-02 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
NL8901010A (nl) 1989-04-21 1990-11-16 Pelt & Hooykaas Driedimensionale meetinrichting.
DE4013742C2 (de) 1990-04-28 1994-06-30 Focus Mestechnik Gmbh & Co Kg Abtastkopf für eine Maschine zum Ausmessen der Mikrooberflächenkontur von Werkstücken
DE4225533A1 (de) * 1992-08-01 1994-02-03 Hottinger Messtechnik Baldwin Elektrischer Wegsensor
DE4238139C2 (de) 1992-11-12 2002-10-24 Zeiss Carl Koordinatenmeßgerät
US5621978A (en) 1993-07-14 1997-04-22 Sarauer; Alan J. Bar for coordinate measuring machine
DE4437033C2 (de) 1994-10-17 1996-08-22 Mahr Gmbh Goettingen Vorschubgerät für die Oberflächenmessung nach dem Tastschnitt-Verfahren
DE19521845C2 (de) 1995-06-16 1998-08-27 Stegmann Max Antriebstech Drehwinkelmeßvorrichtung
SE9600078L (sv) 1996-01-09 1997-05-12 Johansson Ab C E Anordning för dimensionsbestämning av tredimensionella mätobjekt
DE19617022C1 (de) 1996-04-27 1997-12-11 Mahr Gmbh Konturenmeßgerät
GB9612587D0 (en) 1996-06-15 1996-08-21 Renishaw Plc Rotary bearing and drive mechanisms
DE19630823C1 (de) 1996-07-31 1997-12-11 Zeiss Carl Fa Koordinatenmeßgerät mit Kollisionsschutz
JP2976203B1 (ja) * 1998-05-27 1999-11-10 セイコー精機株式会社 磁気軸受
JP3992853B2 (ja) 1998-09-30 2007-10-17 株式会社ミツトヨ 表面追従型測定機
DE29904767U1 (de) 1999-03-16 1999-06-02 Fa. Carl Zeiss, 89518 Heidenheim Koordinatenmeßgerät mit einem biegesteifen Meßtisch
DE10006753A1 (de) 2000-02-15 2001-08-16 Zeiss Carl Dreh-Schwenkeinrichtung für den Tastkopf eines Koordinatenmeßgerätes
WO2002027269A1 (de) 2000-09-28 2002-04-04 Carl Zeiss Kalibrierung eines messenden sensors auf einem koordinatenmessgerät mit einer kugel und zwei parameterfeldern
JP2002340503A (ja) 2001-05-16 2002-11-27 Mitsutoyo Corp 表面性状測定機における被測定物の相対姿勢調整方法
US20030037451A1 (en) 2001-08-27 2003-02-27 Sarauer Alan J. Vehicle frame measuring device
US7073271B2 (en) * 2002-02-14 2006-07-11 Faro Technologies Inc. Portable coordinate measurement machine
DE10214490B4 (de) 2002-03-26 2010-12-02 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur Korrektur von Führungsfehlern bei einem Koordinatenmeßgerät
GB2392966B (en) * 2002-09-13 2006-05-31 Black & Decker Inc Rotary tool with overload clutch
GB0326532D0 (en) 2003-11-13 2003-12-17 Renishaw Plc Method of error compensation
US7036238B2 (en) 2003-12-22 2006-05-02 Mitutoyo Corporation Width-measuring method and surface texture measuring instrument
US7294948B2 (en) 2004-10-25 2007-11-13 Novatorque, Inc. Rotor-stator structure for electrodynamic machines
DE102005007002B4 (de) 2005-02-16 2006-12-28 Carl Mahr Holding Gmbh Rauheitsmessgerät mit wechselbarem Tastarm
GB0508395D0 (en) 2005-04-26 2005-06-01 Renishaw Plc Method for scanning the surface of a workpiece
DE102007018444C5 (de) 2007-04-19 2011-02-17 Carl Mahr Holding Gmbh Tastschnitt-Messeinrichtung mit Tastermagazin zur Oberflächen- und Konturmessung
DE102007019833B4 (de) 2007-04-25 2012-12-13 T & S Gesellschaft für Längenprüftechnik mbH Tastsystem zur Vermessung einer Oberfläche eines Werkstücks
DE102009019129A1 (de) 2009-04-29 2010-11-04 Breitmeier Messtechnik Gmbh Vorrichtung zur Positionierung eines Sensors
CN102859316B (zh) * 2010-04-30 2016-08-31 瑞尼斯豪公司 计量仪器
EP2384851B1 (en) 2010-05-03 2018-01-03 Tesa Sa Coordinate Measuring System with rotatory adapter
CN101852582A (zh) 2010-05-28 2010-10-06 河北理工大学 弯管内壁几何参数测量装置及测量方法
US8701301B2 (en) 2011-04-19 2014-04-22 Mitutoyo Corporation Surface texture measuring instrument
DE102012107211B4 (de) * 2012-01-10 2016-07-14 Tedrive Steering Systems Gmbh Servolenkbaugruppe mit Differenzwinkelsensorik
CN102768028A (zh) 2012-06-04 2012-11-07 天津大学 单关节臂在线原位测量方法及装置
FR2993333B1 (fr) * 2012-07-11 2014-08-22 Commissariat Energie Atomique Dispositif de transmission de mouvement a reducteur epicycloidal, reducteur epicycloidal et bras de manipulation
JP6133678B2 (ja) 2013-05-01 2017-05-24 株式会社ミツトヨ 表面性状測定装置およびその制御方法
CN103882892B (zh) * 2014-03-26 2016-04-20 国家电网公司 一种静载荷位移传感器安装辅助装置
JP6282517B2 (ja) * 2014-04-09 2018-02-21 株式会社ミツトヨ 形状測定機
DE102014110801B4 (de) 2014-07-30 2016-08-25 Hexagon Metrology Gmbh Verfahren zur Ausrichtung eines an einem Koordinatenmessgerät angeordneten Rauheitssensors sowie Koordinatenmessgerät zur Durchführung des Verfahrens
DE102015004525B4 (de) 2015-04-08 2019-09-26 Liebherr-Aerospace Lindenberg Gmbh Lenkbares Flugzeugfahrwerk
DE102015105978B3 (de) 2015-04-20 2016-09-15 Carl Mahr Holding Gmbh Haltevorrichtung für eine optische Messeinrichtung
CN205497222U (zh) * 2016-02-29 2016-08-24 无锡市海鸿精工机械制造有限公司 一种轴承内外圈精密磨削多功能机床的内孔自动测量装置
DE102017106425B4 (de) 2017-03-24 2020-02-06 Carl Zeiss Industrielle Messtechnik Gmbh Von einem Koordinatenmessgerät verfahrbare Vorrichtung zum Positionieren eines Messinstruments bezüglich eines Werkstücks
DE102017113709B4 (de) 2017-06-21 2019-01-24 Carl Mahr Holding Gmbh Messarmaufnahmeeinrichtung eines Messsystems
DE102017113695B3 (de) 2017-06-21 2018-12-27 Carl Mahr Holding Gmbh Wippenloses Messsystem für ein Messgerät
DE102017113699B3 (de) 2017-06-21 2018-06-28 Carl Mahr Holding Gmbh Messsystem mit einer Kugelführungseinheit für ein Messgerät
JP7261560B2 (ja) 2018-10-31 2023-04-20 株式会社ミツトヨ 表面性状測定方法および表面性状測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181233A (ja) 2003-12-24 2005-07-07 Matsushita Electric Ind Co Ltd 測定用プローブ及び光学式測定装置
JP2012526268A (ja) 2009-05-07 2012-10-25 カール マール ホールディング ゲーエムベーハー 表面形状の測定方法および装置
JP2010276513A (ja) 2009-05-29 2010-12-09 Mitsutoyo Corp 表面性状測定機用検出器
DE102012108707A1 (de) 2012-09-17 2014-05-28 Breitmeier Messtechnik Gmbh Oberflächenprofil- und/oder Rauheitsmessgerät
JP2017044615A (ja) 2015-08-27 2017-03-02 株式会社ミツトヨ プローブヘッド回転機構

Also Published As

Publication number Publication date
GB201810001D0 (en) 2018-08-01
GB2565884B (en) 2021-01-06
CN109099879B (zh) 2021-01-22
GB2565884A (en) 2019-02-27
US20190003819A1 (en) 2019-01-03
US10962347B2 (en) 2021-03-30
CN109099879A (zh) 2018-12-28
JP2019007952A (ja) 2019-01-17
DE102017113699B3 (de) 2018-06-28

Similar Documents

Publication Publication Date Title
JP7190097B2 (ja) 測定器用の玉軸受ガイドユニットを有する測定システム
CN109099875B (zh) 用于测量仪器的无摇杆测量系统
KR100844521B1 (ko) 가동 부품에 대하여 위치 범위를 가지는 부품의 위치와 상호 연관되는 출력 신호를 제공하는 장치 및 가동 부품의 위치를 결정하는 방법
US6906513B2 (en) Rotary motion detector
US20210109122A1 (en) Encoder device and manufacturing method thereof, drive device, stage device, and robot device
US20150160042A1 (en) Devices and methods related to high-resolution multi-turn sensors
JP4741798B2 (ja) 歯車機構及びこの歯車機構を備えたロータリーエンコーダ
CN107401975B (zh) 用于对旋转的机械部件进行角度测量的线性感应式位置传感器
CN110160429B (zh) 无轴承的角度测量装置
CN111442787B (zh) 用于角度测量装置的扫描单元
JP2002162252A (ja) 回転位置検出装置
US20210023697A1 (en) Encoder device, drive device, stage device, and robot device
US20220155051A1 (en) Absolute encoder
US6211588B1 (en) Electromoter having a position sensor with a plurality of field sensitive elements on a semiconductor chip
JP6938130B2 (ja) 光学式測定器の回り止め
US10473487B2 (en) Sensor arrangement comprising an angle sensor and rolling bearing arrangement comprising sensor arrangement
CN111637832A (zh) 扫描角度盘的扫描单元和具有扫描单元的角度测量装置
JP3323273B2 (ja) 回転角度を規定するための測定装置
CN111442714B (zh) 用于角度测量装置的扫描单元
JP7392943B2 (ja) トルク検出付きモータ
JPH01116423A (ja) トルク検出装置
US11733066B2 (en) Assembly having a rotary encoder and a tolerance ring
JP3959303B2 (ja) 車高検出装置
US20230036212A1 (en) Magnetorheological braking device, in particular operating apparatus
CN114974854A (zh) 具有恒定的测量间隙的旋转变压器和电机系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R150 Certificate of patent or registration of utility model

Ref document number: 7190097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150